ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2118 by gezelter, Fri Mar 11 15:53:18 2005 UTC vs.
Revision 2436 by chrisfen, Tue Nov 15 16:38:26 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 +
58 + #define __FORTRAN90
59 + #include "UseTheForce/DarkSide/fInteractionMap.h"
60 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
62 +
63 +
64    !! these prefactors convert the multipole interactions into kcal / mol
65    !! all were computed assuming distances are measured in angstroms
66    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 75 | module electrostatic_module
75    !! This unit is also known affectionately as an esu centi-barn.
76    real(kind=dp), parameter :: pre14 = 69.13373_dp
77  
78 +  !! variables to handle different summation methods for long-range
79 +  !! electrostatics:
80 +  integer, save :: summationMethod = NONE
81 +  integer, save :: screeningMethod = UNDAMPED
82 +  logical, save :: summationMethodChecked = .false.
83 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
84 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
85 +  logical, save :: haveDefaultCutoff = .false.
86 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
87 +  real(kind=DP), save :: alpha2 = 0.0_DP
88 +  logical, save :: haveDampingAlpha = .false.
89 +  real(kind=DP), save :: dielectric = 1.0_DP
90 +  logical, save :: haveDielectric = .false.
91 +  real(kind=DP), save :: constEXP = 0.0_DP
92 +  real(kind=dp), save :: rcuti = 0.0_DP
93 +  real(kind=dp), save :: rcuti2 = 0.0_DP
94 +  real(kind=dp), save :: rcuti3 = 0.0_DP
95 +  real(kind=dp), save :: rcuti4 = 0.0_DP
96 +  real(kind=dp), save :: alphaPi = 0.0_DP
97 +  real(kind=dp), save :: invRootPi = 0.0_DP
98 +  real(kind=dp), save :: rrf = 1.0_DP
99 +  real(kind=dp), save :: rt = 1.0_DP
100 +  real(kind=dp), save :: rrfsq = 1.0_DP
101 +  real(kind=dp), save :: preRF = 0.0_DP
102 +  real(kind=dp), save :: preRF2 = 0.0_DP
103 +  real(kind=dp), save :: f0 = 1.0_DP
104 +  real(kind=dp), save :: f1 = 1.0_DP
105 +  real(kind=dp), save :: f2 = 0.0_DP
106 +  real(kind=dp), save :: f0c = 1.0_DP
107 +  real(kind=dp), save :: f1c = 1.0_DP
108 +  real(kind=dp), save :: f2c = 0.0_DP
109 +
110 + #ifdef __IFC
111 + ! error function for ifc version > 7.
112 +  double precision, external :: derfc
113 + #endif
114 +  
115 +  public :: setElectrostaticSummationMethod
116 +  public :: setScreeningMethod
117 +  public :: setElectrostaticCutoffRadius
118 +  public :: setDampingAlpha
119 +  public :: setReactionFieldDielectric
120    public :: newElectrostaticType
121    public :: setCharge
122    public :: setDipoleMoment
# Line 76 | Line 125 | module electrostatic_module
125    public :: doElectrostaticPair
126    public :: getCharge
127    public :: getDipoleMoment
128 +  public :: destroyElectrostaticTypes
129 +  public :: self_self
130 +  public :: rf_self_excludes
131  
132    type :: Electrostatic
133       integer :: c_ident
# Line 83 | Line 135 | module electrostatic_module
135       logical :: is_Dipole = .false.
136       logical :: is_SplitDipole = .false.
137       logical :: is_Quadrupole = .false.
138 +     logical :: is_Tap = .false.
139       real(kind=DP) :: charge = 0.0_DP
140       real(kind=DP) :: dipole_moment = 0.0_DP
141       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 92 | Line 145 | contains
145    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
146  
147   contains
148 +
149 +  subroutine setElectrostaticSummationMethod(the_ESM)
150 +    integer, intent(in) :: the_ESM    
151 +
152 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
153 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
154 +    endif
155 +
156 +    summationMethod = the_ESM
157 +
158 +  end subroutine setElectrostaticSummationMethod
159 +
160 +  subroutine setScreeningMethod(the_SM)
161 +    integer, intent(in) :: the_SM    
162 +    screeningMethod = the_SM
163 +  end subroutine setScreeningMethod
164 +
165 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
166 +    real(kind=dp), intent(in) :: thisRcut
167 +    real(kind=dp), intent(in) :: thisRsw
168 +    defaultCutoff = thisRcut
169 +    rrf = defaultCutoff
170 +    rt = thisRsw
171 +    haveDefaultCutoff = .true.
172 +  end subroutine setElectrostaticCutoffRadius
173 +
174 +  subroutine setDampingAlpha(thisAlpha)
175 +    real(kind=dp), intent(in) :: thisAlpha
176 +    dampingAlpha = thisAlpha
177 +    alpha2 = dampingAlpha*dampingAlpha
178 +    haveDampingAlpha = .true.
179 +  end subroutine setDampingAlpha
180 +  
181 +  subroutine setReactionFieldDielectric(thisDielectric)
182 +    real(kind=dp), intent(in) :: thisDielectric
183 +    dielectric = thisDielectric
184 +    haveDielectric = .true.
185 +  end subroutine setReactionFieldDielectric
186  
187    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
188 <       is_SplitDipole, is_Quadrupole, status)
189 <    
188 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
189 >
190      integer, intent(in) :: c_ident
191      logical, intent(in) :: is_Charge
192      logical, intent(in) :: is_Dipole
193      logical, intent(in) :: is_SplitDipole
194      logical, intent(in) :: is_Quadrupole
195 +    logical, intent(in) :: is_Tap
196      integer, intent(out) :: status
197      integer :: nAtypes, myATID, i, j
198  
199      status = 0
200      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
201 <    
201 >
202      !! Be simple-minded and assume that we need an ElectrostaticMap that
203      !! is the same size as the total number of atom types
204  
205      if (.not.allocated(ElectrostaticMap)) then
206 <      
206 >
207         nAtypes = getSize(atypes)
208 <    
208 >
209         if (nAtypes == 0) then
210            status = -1
211            return
212         end if
213 <      
213 >
214         if (.not. allocated(ElectrostaticMap)) then
215            allocate(ElectrostaticMap(nAtypes))
216         endif
217 <      
217 >
218      end if
219  
220      if (myATID .gt. size(ElectrostaticMap)) then
221         status = -1
222         return
223      endif
224 <    
224 >
225      ! set the values for ElectrostaticMap for this atom type:
226  
227      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 137 | Line 229 | contains
229      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
230      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
231      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
232 <    
232 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
233 >
234    end subroutine newElectrostaticType
235  
236    subroutine setCharge(c_ident, charge, status)
# Line 165 | Line 258 | contains
258         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
259         status = -1
260         return
261 <    endif      
261 >    endif
262  
263      ElectrostaticMap(myATID)%charge = charge
264    end subroutine setCharge
# Line 256 | Line 349 | contains
349         status = -1
350         return
351      endif
352 <    
352 >
353      do i = 1, 3
354 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 <               quadrupole_moments(i)
356 <       enddo
354 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 >            quadrupole_moments(i)
356 >    enddo
357  
358    end subroutine setQuadrupoleMoments
359  
360 <  
360 >
361    function getCharge(atid) result (c)
362      integer, intent(in) :: atid
363      integer :: localError
364      real(kind=dp) :: c
365 <    
365 >
366      if (.not.allocated(ElectrostaticMap)) then
367         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
368         return
369      end if
370 <    
370 >
371      if (.not.ElectrostaticMap(atid)%is_Charge) then
372         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
373         return
374      endif
375 <    
375 >
376      c = ElectrostaticMap(atid)%charge
377    end function getCharge
378  
# Line 287 | Line 380 | contains
380      integer, intent(in) :: atid
381      integer :: localError
382      real(kind=dp) :: dm
383 <    
383 >
384      if (.not.allocated(ElectrostaticMap)) then
385         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
386         return
387      end if
388 <    
388 >
389      if (.not.ElectrostaticMap(atid)%is_Dipole) then
390         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
391         return
392      endif
393 <    
393 >
394      dm = ElectrostaticMap(atid)%dipole_moment
395    end function getDipoleMoment
396 +
397 +  subroutine checkSummationMethod()
398 +
399 +    if (.not.haveDefaultCutoff) then
400 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
401 +    endif
402 +
403 +    rcuti = 1.0d0 / defaultCutoff
404 +    rcuti2 = rcuti*rcuti
405 +    rcuti3 = rcuti2*rcuti
406 +    rcuti4 = rcuti2*rcuti2
407 +
408 +    if (screeningMethod .eq. DAMPED) then
409 +       if (.not.haveDampingAlpha) then
410 +          call handleError("checkSummationMethod", "no Damping Alpha set!")
411 +       endif
412 +      
413 +       if (.not.haveDefaultCutoff) then
414 +          call handleError("checkSummationMethod", "no Default Cutoff set!")
415 +       endif
416 +
417 +       constEXP = exp(-alpha2*defaultCutoff*defaultCutoff)
418 +       invRootPi = 0.56418958354775628695d0
419 +       alphaPi = 2.0d0*dampingAlpha*invRootPi
420 +       f0c = derfc(dampingAlpha*defaultCutoff)
421 +       f1c = alphaPi*defaultCutoff*constEXP + f0c
422 +       f2c = alphaPi*2.0d0*alpha2*constEXP*rcuti2
423 +
424 +    endif
425 +
426 +    if (summationMethod .eq. REACTION_FIELD) then
427 +       if (haveDielectric) then
428 +          defaultCutoff2 = defaultCutoff*defaultCutoff
429 +          preRF = (dielectric-1.0d0) / &
430 +               ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
431 +          preRF2 = 2.0d0*preRF
432 +       else
433 +          call handleError("checkSummationMethod", "Dielectric not set")
434 +       endif
435 +      
436 +    endif
437  
438 +    summationMethodChecked = .true.
439 +  end subroutine checkSummationMethod
440 +
441 +
442    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
443         vpair, fpair, pot, eFrame, f, t, do_pot)
444 <    
444 >
445      logical, intent(in) :: do_pot
446 <    
446 >
447      integer, intent(in) :: atom1, atom2
448      integer :: localError
449  
450      real(kind=dp), intent(in) :: rij, r2, sw
451      real(kind=dp), intent(in), dimension(3) :: d
452      real(kind=dp), intent(inout) :: vpair
453 <    real(kind=dp), intent(inout), dimension(3) :: fpair
453 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
454  
455      real( kind = dp ) :: pot
456      real( kind = dp ), dimension(9,nLocal) :: eFrame
457      real( kind = dp ), dimension(3,nLocal) :: f
458 +    real( kind = dp ), dimension(3,nLocal) :: felec
459      real( kind = dp ), dimension(3,nLocal) :: t
321    
322    real (kind = dp), dimension(3) :: ul_i
323    real (kind = dp), dimension(3) :: ul_j
460  
461 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
462 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
463 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
464 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
465 +
466      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
467      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
468 +    logical :: i_is_Tap, j_is_Tap
469      integer :: me1, me2, id1, id2
470      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
471 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
471 >    real (kind=dp) :: qxx_i, qyy_i, qzz_i
472 >    real (kind=dp) :: qxx_j, qyy_j, qzz_j
473 >    real (kind=dp) :: cx_i, cy_i, cz_i
474 >    real (kind=dp) :: cx_j, cy_j, cz_j
475 >    real (kind=dp) :: cx2, cy2, cz2
476 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
477      real (kind=dp) :: riji, ri, ri2, ri3, ri4
478 <    real (kind=dp) :: pref, vterm, epot, dudr    
478 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
479      real (kind=dp) :: xhat, yhat, zhat
480      real (kind=dp) :: dudx, dudy, dudz
334    real (kind=dp) :: drdxj, drdyj, drdzj
335    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
481      real (kind=dp) :: scale, sc2, bigR
482 +    real (kind=dp) :: varEXP
483 +    real (kind=dp) :: pot_term
484 +    real (kind=dp) :: preVal, rfVal
485  
486      if (.not.allocated(ElectrostaticMap)) then
487         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
488         return
489      end if
490  
491 +    if (.not.summationMethodChecked) then
492 +       call checkSummationMethod()
493 +    endif
494 +
495   #ifdef IS_MPI
496      me1 = atid_Row(atom1)
497      me2 = atid_Col(atom2)
# Line 348 | Line 500 | contains
500      me2 = atid(atom2)
501   #endif
502  
503 + !!$    if (rij .ge. defaultCutoff) then
504 + !!$       write(*,*) 'warning: rij = ', rij, ' rcut = ', defaultCutoff, ' sw = ', sw
505 + !!$    endif
506 +
507      !! some variables we'll need independent of electrostatic type:
508  
509      riji = 1.0d0 / rij
510 <
510 >  
511      xhat = d(1) * riji
512      yhat = d(2) * riji
513      zhat = d(3) * riji
514  
359    drdxj = xhat
360    drdyj = yhat
361    drdzj = zhat
362
515      !! logicals
364
516      i_is_Charge = ElectrostaticMap(me1)%is_Charge
517      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
518      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
519      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
520 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
521  
522      j_is_Charge = ElectrostaticMap(me2)%is_Charge
523      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
524      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
525      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
526 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
527  
528      if (i_is_Charge) then
529         q_i = ElectrostaticMap(me1)%charge      
530      endif
531 <    
531 >
532      if (i_is_Dipole) then
533         mu_i = ElectrostaticMap(me1)%dipole_moment
534   #ifdef IS_MPI
535 <       ul_i(1) = eFrame_Row(3,atom1)
536 <       ul_i(2) = eFrame_Row(6,atom1)
537 <       ul_i(3) = eFrame_Row(9,atom1)
535 >       uz_i(1) = eFrame_Row(3,atom1)
536 >       uz_i(2) = eFrame_Row(6,atom1)
537 >       uz_i(3) = eFrame_Row(9,atom1)
538   #else
539 <       ul_i(1) = eFrame(3,atom1)
540 <       ul_i(2) = eFrame(6,atom1)
541 <       ul_i(3) = eFrame(9,atom1)
539 >       uz_i(1) = eFrame(3,atom1)
540 >       uz_i(2) = eFrame(6,atom1)
541 >       uz_i(3) = eFrame(9,atom1)
542   #endif
543 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
543 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
544  
545         if (i_is_SplitDipole) then
546            d_i = ElectrostaticMap(me1)%split_dipole_distance
547         endif
548 <      
548 >
549      endif
550  
551 +    if (i_is_Quadrupole) then
552 +       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
553 +       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
554 +       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
555 + #ifdef IS_MPI
556 +       ux_i(1) = eFrame_Row(1,atom1)
557 +       ux_i(2) = eFrame_Row(4,atom1)
558 +       ux_i(3) = eFrame_Row(7,atom1)
559 +       uy_i(1) = eFrame_Row(2,atom1)
560 +       uy_i(2) = eFrame_Row(5,atom1)
561 +       uy_i(3) = eFrame_Row(8,atom1)
562 +       uz_i(1) = eFrame_Row(3,atom1)
563 +       uz_i(2) = eFrame_Row(6,atom1)
564 +       uz_i(3) = eFrame_Row(9,atom1)
565 + #else
566 +       ux_i(1) = eFrame(1,atom1)
567 +       ux_i(2) = eFrame(4,atom1)
568 +       ux_i(3) = eFrame(7,atom1)
569 +       uy_i(1) = eFrame(2,atom1)
570 +       uy_i(2) = eFrame(5,atom1)
571 +       uy_i(3) = eFrame(8,atom1)
572 +       uz_i(1) = eFrame(3,atom1)
573 +       uz_i(2) = eFrame(6,atom1)
574 +       uz_i(3) = eFrame(9,atom1)
575 + #endif
576 +       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
577 +       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
578 +       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
579 +    endif
580 +
581      if (j_is_Charge) then
582         q_j = ElectrostaticMap(me2)%charge      
583      endif
584 <    
584 >
585      if (j_is_Dipole) then
586         mu_j = ElectrostaticMap(me2)%dipole_moment
587   #ifdef IS_MPI
588 <       ul_j(1) = eFrame_Col(3,atom2)
589 <       ul_j(2) = eFrame_Col(6,atom2)
590 <       ul_j(3) = eFrame_Col(9,atom2)
588 >       uz_j(1) = eFrame_Col(3,atom2)
589 >       uz_j(2) = eFrame_Col(6,atom2)
590 >       uz_j(3) = eFrame_Col(9,atom2)
591   #else
592 <       ul_j(1) = eFrame(3,atom2)
593 <       ul_j(2) = eFrame(6,atom2)
594 <       ul_j(3) = eFrame(9,atom2)
592 >       uz_j(1) = eFrame(3,atom2)
593 >       uz_j(2) = eFrame(6,atom2)
594 >       uz_j(3) = eFrame(9,atom2)
595   #endif
596 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
596 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
597  
598         if (j_is_SplitDipole) then
599            d_j = ElectrostaticMap(me2)%split_dipole_distance
600         endif
601      endif
602  
603 +    if (j_is_Quadrupole) then
604 +       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
605 +       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
606 +       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
607 + #ifdef IS_MPI
608 +       ux_j(1) = eFrame_Col(1,atom2)
609 +       ux_j(2) = eFrame_Col(4,atom2)
610 +       ux_j(3) = eFrame_Col(7,atom2)
611 +       uy_j(1) = eFrame_Col(2,atom2)
612 +       uy_j(2) = eFrame_Col(5,atom2)
613 +       uy_j(3) = eFrame_Col(8,atom2)
614 +       uz_j(1) = eFrame_Col(3,atom2)
615 +       uz_j(2) = eFrame_Col(6,atom2)
616 +       uz_j(3) = eFrame_Col(9,atom2)
617 + #else
618 +       ux_j(1) = eFrame(1,atom2)
619 +       ux_j(2) = eFrame(4,atom2)
620 +       ux_j(3) = eFrame(7,atom2)
621 +       uy_j(1) = eFrame(2,atom2)
622 +       uy_j(2) = eFrame(5,atom2)
623 +       uy_j(3) = eFrame(8,atom2)
624 +       uz_j(1) = eFrame(3,atom2)
625 +       uz_j(2) = eFrame(6,atom2)
626 +       uz_j(3) = eFrame(9,atom2)
627 + #endif
628 +       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
629 +       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
630 +       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
631 +    endif
632 +  
633      epot = 0.0_dp
634      dudx = 0.0_dp
635      dudy = 0.0_dp
636      dudz = 0.0_dp
637  
638 <    duduix = 0.0_dp
639 <    duduiy = 0.0_dp
640 <    duduiz = 0.0_dp
638 >    dudux_i = 0.0_dp
639 >    duduy_i = 0.0_dp
640 >    duduz_i = 0.0_dp
641  
642 <    dudujx = 0.0_dp
643 <    dudujy = 0.0_dp
644 <    dudujz = 0.0_dp
642 >    dudux_j = 0.0_dp
643 >    duduy_j = 0.0_dp
644 >    duduz_j = 0.0_dp
645  
646      if (i_is_Charge) then
647  
648         if (j_is_Charge) then
649 <          
650 <          vterm = pre11 * q_i * q_j * riji
651 <          vpair = vpair + vterm
652 <          epot = epot + sw*vterm
649 >
650 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
651 >             if (screeningMethod .eq. DAMPED) then
652 >                f0 = derfc(dampingAlpha*rij)
653 >                varEXP = exp(-alpha2*rij*rij)
654 >                f1 = alphaPi*rij*varEXP + f0
655 >             endif
656  
657 <          dudr  = - sw * vterm * riji
657 >             vterm = pre11 * q_i * q_j * (riji*f0 - rcuti*f0c)
658 >             vpair = vpair + vterm
659 >             epot = epot + sw*vterm
660 >            
661 >             dudr  = -sw*pre11*q_i*q_j * riji*riji*f1
662 >            
663 >             dudx = dudx + dudr * xhat
664 >             dudy = dudy + dudr * yhat
665 >             dudz = dudz + dudr * zhat
666  
667 <          dudx = dudx + dudr * drdxj
668 <          dudy = dudy + dudr * drdyj
669 <          dudz = dudz + dudr * drdzj
670 <      
671 <       endif
667 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
668 >             if (screeningMethod .eq. DAMPED) then
669 >                f0 = derfc(dampingAlpha*rij)
670 >                varEXP = exp(-alpha2*rij*rij)
671 >                f1 = alphaPi*rij*varEXP + f0
672 >             endif
673  
674 <       if (j_is_Dipole) then
674 >             vterm = pre11 * q_i * q_j * ( riji*f0 - rcuti*f0c + &
675 >                  f1c*rcuti2*(rij-defaultCutoff) )
676 >            
677 >             vpair = vpair + vterm
678 >             epot = epot + sw*vterm
679 >            
680 >             dudr  = -sw*pre11*q_i*q_j * (riji*riji*f1 - rcuti2*f1c)
681 >                          
682 >             dudx = dudx + dudr * xhat
683 >             dudy = dudy + dudr * yhat
684 >             dudz = dudz + dudr * zhat
685  
686 <          if (j_is_SplitDipole) then
687 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
688 <             ri = 1.0_dp / BigR
689 <             scale = rij * ri
455 <          else
456 <             ri = riji
457 <             scale = 1.0_dp
458 <          endif
459 <
460 <          ri2 = ri * ri
461 <          ri3 = ri2 * ri
462 <          sc2 = scale * scale
686 >          elseif (summationMethod .eq. REACTION_FIELD) then
687 >             preVal = pre11 * q_i * q_j
688 >             rfVal = preRF*rij*rij
689 >             vterm = preVal * ( riji + rfVal )
690              
691 <          pref = pre12 * q_i * mu_j
692 <          vterm = pref * ct_j * ri2 * scale
693 <          vpair = vpair + vterm
694 <          epot = epot + sw * vterm
691 >             vpair = vpair + vterm
692 >             epot = epot + sw*vterm
693 >            
694 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
695 >            
696 >             dudx = dudx + dudr * xhat
697 >             dudy = dudy + dudr * yhat
698 >             dudz = dudz + dudr * zhat
699  
469          !! this has a + sign in the () because the rij vector is
470          !! r_j - r_i and the charge-dipole potential takes the origin
471          !! as the point dipole, which is atom j in this case.
472
473          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0*ct_j*xhat*sc2)
474          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0*ct_j*yhat*sc2)
475          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0*ct_j*zhat*sc2)
476
477          dudujx = dudujx - pref * sw * ri2 * xhat * scale
478          dudujy = dudujy - pref * sw * ri2 * yhat * scale
479          dudujz = dudujz - pref * sw * ri2 * zhat * scale
480          
481       endif
482
483    endif
484  
485    if (i_is_Dipole) then
486      
487       if (j_is_Charge) then
488
489          if (i_is_SplitDipole) then
490             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
491             ri = 1.0_dp / BigR
492             scale = rij * ri
700            else
701 <             ri = riji
702 <             scale = 1.0_dp
703 <          endif
497 <
498 <          ri2 = ri * ri
499 <          ri3 = ri2 * ri
500 <          sc2 = scale * scale
701 >             vterm = pre11 * q_i * q_j * riji
702 >             vpair = vpair + vterm
703 >             epot = epot + sw*vterm
704              
705 <          pref = pre12 * q_j * mu_i
706 <          vterm = pref * ct_i * ri2 * scale
707 <          vpair = vpair + vterm
708 <          epot = epot + sw * vterm
705 >             dudr  = - sw * vterm * riji
706 >            
707 >             dudx = dudx + dudr * xhat
708 >             dudy = dudy + dudr * yhat
709 >             dudz = dudz + dudr * zhat
710  
711 <          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * xhat*sc2)
508 <          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * yhat*sc2)
509 <          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * zhat*sc2)
711 >          endif
712  
511          duduix = duduix + pref * sw * ri2 * xhat * scale
512          duduiy = duduiy + pref * sw * ri2 * yhat * scale
513          duduiz = duduiz + pref * sw * ri2 * zhat * scale
713         endif
714  
715         if (j_is_Dipole) then
716  
717 <          if (i_is_SplitDipole) then
718 <             if (j_is_SplitDipole) then
719 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
720 <             else
721 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
722 <             endif
723 <             ri = 1.0_dp / BigR
724 <             scale = rij * ri                
717 >          pref = pre12 * q_i * mu_j
718 >
719 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
720 > !!$             ri2 = riji * riji
721 > !!$             ri3 = ri2 * riji
722 > !!$
723 > !!$             pref = pre12 * q_i * mu_j
724 > !!$             vterm = - pref * ct_j * (ri2 - rcuti2)
725 > !!$             vpair = vpair + vterm
726 > !!$             epot = epot + sw*vterm
727 > !!$            
728 > !!$             !! this has a + sign in the () because the rij vector is
729 > !!$             !! r_j - r_i and the charge-dipole potential takes the origin
730 > !!$             !! as the point dipole, which is atom j in this case.
731 > !!$            
732 > !!$             dudx = dudx - sw*pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
733 > !!$                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
734 > !!$             dudy = dudy - sw*pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
735 > !!$                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
736 > !!$             dudz = dudz - sw*pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
737 > !!$                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
738 > !!$            
739 > !!$             duduz_j(1) = duduz_j(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
740 > !!$             duduz_j(2) = duduz_j(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
741 > !!$             duduz_j(3) = duduz_j(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
742 > !!$
743 > !!$          elseif (summationMethod .eq. REACTION_FIELD) then
744 >
745 >          if (summationMethod .eq. REACTION_FIELD) then
746 >             ri2 = riji * riji
747 >             ri3 = ri2 * riji
748 >    
749 >             pref = pre12 * q_i * mu_j
750 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
751 >             vpair = vpair + vterm
752 >             epot = epot + sw*vterm
753 >            
754 >             !! this has a + sign in the () because the rij vector is
755 >             !! r_j - r_i and the charge-dipole potential takes the origin
756 >             !! as the point dipole, which is atom j in this case.
757 >            
758 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
759 >                                     preRF2*uz_j(1) )
760 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
761 >                                     preRF2*uz_j(2) )
762 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
763 >                                     preRF2*uz_j(3) )        
764 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
765 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
766 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
767 >
768            else
769               if (j_is_SplitDipole) then
770                  BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
771                  ri = 1.0_dp / BigR
772 <                scale = rij * ri                            
773 <             else                
772 >                scale = rij * ri
773 >             else
774                  ri = riji
775                  scale = 1.0_dp
776               endif
777 <          endif
777 >            
778 >             ri2 = ri * ri
779 >             ri3 = ri2 * ri
780 >             sc2 = scale * scale
781  
782 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
782 >             pref = pre12 * q_i * mu_j
783 >             vterm = - pref * ct_j * ri2 * scale
784 >             vpair = vpair + vterm
785 >             epot = epot + sw*vterm
786 >            
787 >             !! this has a + sign in the () because the rij vector is
788 >             !! r_j - r_i and the charge-dipole potential takes the origin
789 >             !! as the point dipole, which is atom j in this case.
790 >            
791 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
792 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
793 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
794 >            
795 >             duduz_j(1) = duduz_j(1) - sw*pref * ri2 * xhat * scale
796 >             duduz_j(2) = duduz_j(2) - sw*pref * ri2 * yhat * scale
797 >             duduz_j(3) = duduz_j(3) - sw*pref * ri2 * zhat * scale
798  
799 <          ri2 = ri * ri
800 <          ri3 = ri2 * ri
799 >          endif
800 >       endif
801 >
802 >       if (j_is_Quadrupole) then
803 >          ri2 = riji * riji
804 >          ri3 = ri2 * riji
805            ri4 = ri2 * ri2
806 <          sc2 = scale * scale
806 >          cx2 = cx_j * cx_j
807 >          cy2 = cy_j * cy_j
808 >          cz2 = cz_j * cz_j
809  
810 <          pref = pre22 * mu_i * mu_j
811 <          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
812 <          vpair = vpair + vterm
813 <          epot = epot + sw * vterm
810 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
811 > !!$             pref =  pre14 * q_i / 3.0_dp
812 > !!$             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
813 > !!$                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
814 > !!$                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
815 > !!$             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
816 > !!$                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
817 > !!$                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
818 > !!$             vpair = vpair + ( vterm1 - vterm2 )
819 > !!$             epot = epot + sw*( vterm1 - vterm2 )
820 > !!$            
821 > !!$             dudx = dudx - (5.0_dp * &
822 > !!$                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + sw*pref * ( &
823 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
824 > !!$                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
825 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
826 > !!$                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
827 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
828 > !!$                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
829 > !!$             dudy = dudy - (5.0_dp * &
830 > !!$                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + sw*pref * ( &
831 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
832 > !!$                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
833 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
834 > !!$                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
835 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
836 > !!$                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
837 > !!$             dudz = dudz - (5.0_dp * &
838 > !!$                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + sw*pref * ( &
839 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
840 > !!$                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
841 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
842 > !!$                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
843 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
844 > !!$                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
845 > !!$            
846 > !!$             dudux_j(1) = dudux_j(1) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*xhat) -&
847 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
848 > !!$             dudux_j(2) = dudux_j(2) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*yhat) -&
849 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
850 > !!$             dudux_j(3) = dudux_j(3) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*zhat) -&
851 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
852 > !!$            
853 > !!$             duduy_j(1) = duduy_j(1) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*xhat) -&
854 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
855 > !!$             duduy_j(2) = duduy_j(2) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*yhat) -&
856 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
857 > !!$             duduy_j(3) = duduy_j(3) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*zhat) -&
858 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
859 > !!$            
860 > !!$             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*xhat) -&
861 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
862 > !!$             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*yhat) -&
863 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
864 > !!$             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*zhat) -&
865 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
866 > !!$        
867 > !!$          else
868 >             pref =  pre14 * q_i / 3.0_dp
869 >             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
870 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
871 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
872 >             vpair = vpair + vterm
873 >             epot = epot + sw*vterm
874 >            
875 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
876 >                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
877 >                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
878 >                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
879 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
880 >                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
881 >                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
882 >                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
883 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
884 >                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
885 >                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
886 >                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
887 >            
888 >             dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
889 >             dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
890 >             dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
891 >            
892 >             duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
893 >             duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
894 >             duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
895 >            
896 >             duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
897 >             duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
898 >             duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
899            
900 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
901 <
902 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*ul_j(1)-ct_j*ul_i(1))
552 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*ul_j(2)-ct_j*ul_i(2))
553 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*ul_j(3)-ct_j*ul_i(3))
900 > !!$          endif
901 >       endif
902 >    endif
903  
904 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*xhat*sc2)
556 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*yhat*sc2)
557 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*zhat*sc2)
904 >    if (i_is_Dipole) then
905  
906 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*xhat*sc2)
907 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*yhat*sc2)
908 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*zhat*sc2)
906 >       if (j_is_Charge) then
907 >          
908 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
909 >             ri2 = riji * riji
910 >             ri3 = ri2 * riji
911 >            
912 >             pref = pre12 * q_j * mu_i
913 >             pot_term = ri2 - rcuti2
914 >             vterm = pref * ct_i * pot_term
915 >             vpair = vpair + vterm
916 >             epot = epot + sw*vterm
917 >            
918 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1)-3.0d0*ct_i*xhat) )
919 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2)-3.0d0*ct_i*yhat) )
920 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3)-3.0d0*ct_i*zhat) )
921 >            
922 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
923 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
924 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
925 >
926 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
927 >             ri2 = riji * riji
928 >             ri3 = ri2 * riji
929 >
930 >             pref = pre12 * q_j * mu_i
931 >             pot_term = ri2 - rcuti2 + 2.0d0*rcuti3*( rij - defaultCutoff )
932 >             vterm = pref * ct_i * pot_term
933 >             vpair = vpair + vterm
934 >             epot = epot + sw*vterm
935 >            
936 >             dudx = dudx + sw*pref * ( (ri3-rcuti3)*(uz_i(1)-3.0d0*ct_i*xhat) )
937 >             dudy = dudy + sw*pref * ( (ri3-rcuti3)*(uz_i(2)-3.0d0*ct_i*yhat) )
938 >             dudz = dudz + sw*pref * ( (ri3-rcuti3)*(uz_i(3)-3.0d0*ct_i*zhat) )
939 >            
940 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
941 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
942 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
943 >
944 >          elseif (summationMethod .eq. REACTION_FIELD) then
945 >             ri2 = riji * riji
946 >             ri3 = ri2 * riji
947 >
948 >             pref = pre12 * q_j * mu_i
949 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
950 >             vpair = vpair + vterm
951 >             epot = epot + sw*vterm
952 >            
953 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
954 >                  preRF2*uz_i(1) )
955 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
956 >                  preRF2*uz_i(2) )
957 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
958 >                  preRF2*uz_i(3) )
959 >            
960 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
961 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
962 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
963 >
964 >          else
965 >             if (i_is_SplitDipole) then
966 >                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
967 >                ri = 1.0_dp / BigR
968 >                scale = rij * ri
969 >             else
970 >                ri = riji
971 >                scale = 1.0_dp
972 >             endif
973 >            
974 >             ri2 = ri * ri
975 >             ri3 = ri2 * ri
976 >             sc2 = scale * scale
977 >
978 >             pref = pre12 * q_j * mu_i
979 >             vterm = pref * ct_i * ri2 * scale
980 >             vpair = vpair + vterm
981 >             epot = epot + sw*vterm
982 >            
983 >             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
984 >             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
985 >             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
986 >            
987 >             duduz_i(1) = duduz_i(1) + sw*pref * ri2 * xhat * scale
988 >             duduz_i(2) = duduz_i(2) + sw*pref * ri2 * yhat * scale
989 >             duduz_i(3) = duduz_i(3) + sw*pref * ri2 * zhat * scale
990 >          endif
991         endif
992 +      
993 +       if (j_is_Dipole) then
994 +          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
995 +          
996 +          ri2 = riji * riji
997 +          ri3 = ri2 * riji
998 +          ri4 = ri2 * ri2
999 +          
1000 +          pref = pre22 * mu_i * mu_j
1001  
1002 + !!$          if (summationMethod .eq. SHIFTED_POTENTIAL) then
1003 + !!$             a0 = ct_ij - 3.0d0 * ct_i * ct_j
1004 + !!$             pot_term = ri3 - rcuti3
1005 + !!$            
1006 + !!$             vterm = pref*pot_term*a0
1007 + !!$             vpair = vpair + vterm
1008 + !!$             epot = epot + sw*vterm
1009 + !!$            
1010 + !!$             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1011 + !!$            
1012 + !!$             dudx = dudx + sw*pref*3.0d0*ri4 &
1013 + !!$                  * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1014 + !!$             dudy = dudy + sw*pref*3.0d0*ri4 &
1015 + !!$                  * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1016 + !!$             dudz = dudz + sw*pref*3.0d0*ri4 &
1017 + !!$                  * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1018 + !!$            
1019 + !!$             duduz_i(1) = duduz_i(1) + sw*pref*( pot_term &
1020 + !!$                  * (uz_j(1) - 3.0d0*ct_j*xhat) )
1021 + !!$             duduz_i(2) = duduz_i(2) + sw*pref*( pot_term &
1022 + !!$                  * (uz_j(2) - 3.0d0*ct_j*yhat) )
1023 + !!$             duduz_i(3) = duduz_i(3) + sw*pref*( pot_term &
1024 + !!$                  * (uz_j(3) - 3.0d0*ct_j*zhat) )
1025 + !!$             duduz_j(1) = duduz_j(1) + sw*pref*( pot_term &
1026 + !!$                  * (uz_i(1) - 3.0d0*ct_i*xhat) )
1027 + !!$             duduz_j(2) = duduz_j(2) + sw*pref*( pot_term &
1028 + !!$                  * (uz_i(2) - 3.0d0*ct_i*yhat) )
1029 + !!$             duduz_j(3) = duduz_j(3) + sw*pref*( pot_term &
1030 + !!$                  * (uz_i(3) - 3.0d0*ct_i*zhat) )
1031 + !!$
1032 + !!$          elseif (summationMethod .eq. SHIFTED_FORCE) then
1033 + !!$             a0 = ct_ij - 3.0d0 * ct_i * ct_j
1034 + !!$             pot_term = ri3 - rcuti3 + 3.0d0*rcuti4*( rij - defaultCutoff )
1035 + !!$            
1036 + !!$             vterm = pref*pot_term*a0
1037 + !!$             vpair = vpair + vterm
1038 + !!$             epot = epot + sw*vterm
1039 + !!$            
1040 + !!$             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1041 + !!$            
1042 + !!$             dudx = dudx + sw*pref*3.0d0*( ri4 - rcuti4 ) &
1043 + !!$                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1044 + !!$             dudy = dudy + sw*pref*3.0d0*( ri4 - rcuti4 ) &
1045 + !!$                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1046 + !!$             dudz = dudz + sw*pref*3.0d0*( ri4 - rcuti4 ) &
1047 + !!$                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1048 + !!$            
1049 + !!$             duduz_i(1) = duduz_i(1) + sw*pref*( pot_term &
1050 + !!$                  * (uz_j(1) - 3.0d0*ct_j*xhat) )
1051 + !!$             duduz_i(2) = duduz_i(2) + sw*pref*( pot_term &
1052 + !!$                  * (uz_j(2) - 3.0d0*ct_j*yhat) )
1053 + !!$             duduz_i(3) = duduz_i(3) + sw*pref*( pot_term &
1054 + !!$                  * (uz_j(3) - 3.0d0*ct_j*zhat) )
1055 + !!$             duduz_j(1) = duduz_j(1) + sw*pref*( pot_term &
1056 + !!$                  * (uz_i(1) - 3.0d0*ct_i*xhat) )
1057 + !!$             duduz_j(2) = duduz_j(2) + sw*pref*( pot_term &
1058 + !!$                  * (uz_i(2) - 3.0d0*ct_i*yhat) )
1059 + !!$             duduz_j(3) = duduz_j(3) + sw*pref*( pot_term &
1060 + !!$                  * (uz_i(3) - 3.0d0*ct_i*zhat) )
1061 + !!$            
1062 + !!$          elseif (summationMethod .eq. REACTION_FIELD) then
1063 +          if (summationMethod .eq. REACTION_FIELD) then
1064 +             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
1065 +                  preRF2*ct_ij )
1066 +             vpair = vpair + vterm
1067 +             epot = epot + sw*vterm
1068 +            
1069 +             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1070 +            
1071 +             dudx = dudx + sw*pref*3.0d0*ri4 &
1072 +                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1073 +             dudy = dudy + sw*pref*3.0d0*ri4 &
1074 +                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1075 +             dudz = dudz + sw*pref*3.0d0*ri4 &
1076 +                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1077 +            
1078 +             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1079 +                  - preRF2*uz_j(1))
1080 +             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1081 +                  - preRF2*uz_j(2))
1082 +             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1083 +                  - preRF2*uz_j(3))
1084 +             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1085 +                  - preRF2*uz_i(1))
1086 +             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1087 +                  - preRF2*uz_i(2))
1088 +             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1089 +                  - preRF2*uz_i(3))
1090 +
1091 +          else
1092 +             if (i_is_SplitDipole) then
1093 +                if (j_is_SplitDipole) then
1094 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
1095 +                else
1096 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
1097 +                endif
1098 +                ri = 1.0_dp / BigR
1099 +                scale = rij * ri                
1100 +             else
1101 +                if (j_is_SplitDipole) then
1102 +                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
1103 +                   ri = 1.0_dp / BigR
1104 +                   scale = rij * ri                            
1105 +                else                
1106 +                   ri = riji
1107 +                   scale = 1.0_dp
1108 +                endif
1109 +             endif
1110 +            
1111 +             sc2 = scale * scale
1112 +
1113 +             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1114 +             vpair = vpair + vterm
1115 +             epot = epot + sw*vterm
1116 +            
1117 +             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
1118 +            
1119 +             dudx = dudx + sw*pref*3.0d0*ri4*scale &
1120 +                             *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1121 +             dudy = dudy + sw*pref*3.0d0*ri4*scale &
1122 +                             *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1123 +             dudz = dudz + sw*pref*3.0d0*ri4*scale &
1124 +                             *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1125 +            
1126 +             duduz_i(1) = duduz_i(1) + sw*pref*ri3 &
1127 +                                         *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
1128 +             duduz_i(2) = duduz_i(2) + sw*pref*ri3 &
1129 +                                         *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
1130 +             duduz_i(3) = duduz_i(3) + sw*pref*ri3 &
1131 +                                         *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
1132 +            
1133 +             duduz_j(1) = duduz_j(1) + sw*pref*ri3 &
1134 +                                         *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
1135 +             duduz_j(2) = duduz_j(2) + sw*pref*ri3 &
1136 +                                         *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
1137 +             duduz_j(3) = duduz_j(3) + sw*pref*ri3 &
1138 +                                         *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1139 +          endif
1140 +       endif
1141      endif
1142 <    
1142 >
1143 >    if (i_is_Quadrupole) then
1144 >       if (j_is_Charge) then
1145 >
1146 >          ri2 = riji * riji
1147 >          ri3 = ri2 * riji
1148 >          ri4 = ri2 * ri2
1149 >          cx2 = cx_i * cx_i
1150 >          cy2 = cy_i * cy_i
1151 >          cz2 = cz_i * cz_i
1152 >
1153 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
1154 > !!$             pref = pre14 * q_j / 3.0_dp
1155 > !!$             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1156 > !!$                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1157 > !!$                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1158 > !!$             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1159 > !!$                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1160 > !!$                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1161 > !!$             vpair = vpair + ( vterm1 - vterm2 )
1162 > !!$             epot = epot + sw*( vterm1 - vterm2 )
1163 > !!$            
1164 > !!$             dudx = dudx - sw*(5.0_dp*(vterm1*riji*xhat-vterm2*rcuti2*d(1))) +&
1165 > !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
1166 > !!$                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
1167 > !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
1168 > !!$                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
1169 > !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
1170 > !!$                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
1171 > !!$             dudy = dudy - sw*(5.0_dp*(vterm1*riji*yhat-vterm2*rcuti2*d(2))) +&
1172 > !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
1173 > !!$                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
1174 > !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
1175 > !!$                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
1176 > !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
1177 > !!$                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
1178 > !!$             dudz = dudz - sw*(5.0_dp*(vterm1*riji*zhat-vterm2*rcuti2*d(3))) +&
1179 > !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
1180 > !!$                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
1181 > !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
1182 > !!$                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
1183 > !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
1184 > !!$                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
1185 > !!$            
1186 > !!$             dudux_i(1) = dudux_i(1) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*xhat) -&
1187 > !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
1188 > !!$             dudux_i(2) = dudux_i(2) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*yhat) -&
1189 > !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
1190 > !!$             dudux_i(3) = dudux_i(3) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*zhat) -&
1191 > !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
1192 > !!$            
1193 > !!$             duduy_i(1) = duduy_i(1) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*xhat) -&
1194 > !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
1195 > !!$             duduy_i(2) = duduy_i(2) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*yhat) -&
1196 > !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
1197 > !!$             duduy_i(3) = duduy_i(3) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*zhat) -&
1198 > !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
1199 > !!$            
1200 > !!$             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*xhat) -&
1201 > !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
1202 > !!$             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*yhat) -&
1203 > !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1204 > !!$             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*zhat) -&
1205 > !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1206 > !!$
1207 > !!$          else
1208 >             pref = pre14 * q_j / 3.0_dp
1209 >             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1210 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1211 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1212 >             vpair = vpair + vterm
1213 >             epot = epot + sw*vterm
1214 >            
1215 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
1216 >                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1217 >                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1218 >                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1219 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
1220 >                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1221 >                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1222 >                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1223 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
1224 >                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1225 >                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1226 >                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1227 >            
1228 >             dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
1229 >             dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
1230 >             dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1231 >            
1232 >             duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1233 >             duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1234 >             duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1235 >            
1236 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1237 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1238 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1239 > !!$          endif
1240 >       endif
1241 >    endif
1242 >
1243 >
1244      if (do_pot) then
1245   #ifdef IS_MPI
1246 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1247 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1246 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1247 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1248   #else
1249         pot = pot + epot
1250   #endif
1251      endif
1252 <        
1252 >
1253   #ifdef IS_MPI
1254      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1255      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1256      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1257 <    
1257 >
1258      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1259      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1260      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1261 <    
1261 >
1262      if (i_is_Dipole .or. i_is_Quadrupole) then
1263 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1264 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1265 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1263 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1264 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1265 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1266      endif
1267 +    if (i_is_Quadrupole) then
1268 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1269 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1270 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1271  
1272 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1273 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1274 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1275 +    endif
1276 +
1277      if (j_is_Dipole .or. j_is_Quadrupole) then
1278 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1279 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1280 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1278 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1279 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1280 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1281      endif
1282 +    if (j_is_Quadrupole) then
1283 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1284 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1285 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1286  
1287 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1288 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1289 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1290 +    endif
1291 +
1292   #else
1293      f(1,atom1) = f(1,atom1) + dudx
1294      f(2,atom1) = f(2,atom1) + dudy
1295      f(3,atom1) = f(3,atom1) + dudz
1296 <    
1296 >
1297      f(1,atom2) = f(1,atom2) - dudx
1298      f(2,atom2) = f(2,atom2) - dudy
1299      f(3,atom2) = f(3,atom2) - dudz
1300 <    
1300 >
1301      if (i_is_Dipole .or. i_is_Quadrupole) then
1302 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1303 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1304 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1302 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1303 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1304 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1305      endif
1306 <      
1306 >    if (i_is_Quadrupole) then
1307 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1308 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1309 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1310 >
1311 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1312 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1313 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1314 >    endif
1315 >
1316      if (j_is_Dipole .or. j_is_Quadrupole) then
1317 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1318 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1319 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1317 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1318 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1319 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1320      endif
1321 +    if (j_is_Quadrupole) then
1322 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1323 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1324 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1325 +
1326 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1327 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1328 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1329 +    endif
1330 +
1331   #endif
1332 <    
1332 >
1333   #ifdef IS_MPI
1334      id1 = AtomRowToGlobal(atom1)
1335      id2 = AtomColToGlobal(atom2)
# Line 624 | Line 1339 | contains
1339   #endif
1340  
1341      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1342 <      
1342 >
1343         fpair(1) = fpair(1) + dudx
1344         fpair(2) = fpair(2) + dudy
1345         fpair(3) = fpair(3) + dudz
# Line 633 | Line 1348 | contains
1348  
1349      return
1350    end subroutine doElectrostaticPair
1351 <  
1351 >
1352 >  subroutine destroyElectrostaticTypes()
1353 >
1354 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1355 >
1356 >  end subroutine destroyElectrostaticTypes
1357 >
1358 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1359 >    logical, intent(in) :: do_pot
1360 >    integer, intent(in) :: atom1
1361 >    integer :: atid1
1362 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1363 >    real(kind=dp), dimension(3,nLocal) :: t
1364 >    real(kind=dp) :: mu1, c1
1365 >    real(kind=dp) :: preVal, epot, mypot
1366 >    real(kind=dp) :: eix, eiy, eiz
1367 >
1368 >    ! this is a local only array, so we use the local atom type id's:
1369 >    atid1 = atid(atom1)
1370 >
1371 >    if (.not.summationMethodChecked) then
1372 >       call checkSummationMethod()
1373 >    endif
1374 >    
1375 >    if (summationMethod .eq. REACTION_FIELD) then
1376 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1377 >          mu1 = getDipoleMoment(atid1)
1378 >          
1379 >          preVal = pre22 * preRF2 * mu1*mu1
1380 >          mypot = mypot - 0.5d0*preVal
1381 >          
1382 >          ! The self-correction term adds into the reaction field vector
1383 >          
1384 >          eix = preVal * eFrame(3,atom1)
1385 >          eiy = preVal * eFrame(6,atom1)
1386 >          eiz = preVal * eFrame(9,atom1)
1387 >          
1388 >          ! once again, this is self-self, so only the local arrays are needed
1389 >          ! even for MPI jobs:
1390 >          
1391 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1392 >               eFrame(9,atom1)*eiy
1393 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1394 >               eFrame(3,atom1)*eiz
1395 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1396 >               eFrame(6,atom1)*eix
1397 >          
1398 >       endif
1399 >
1400 >    elseif (summationMethod .eq. SHIFTED_FORCE) then
1401 >       if (ElectrostaticMap(atid1)%is_Charge) then
1402 >          c1 = getCharge(atid1)
1403 >          
1404 >          if (screeningMethod .eq. DAMPED) then
1405 >             mypot = mypot - (f0c * rcuti * 0.5_dp + &
1406 >                  dampingAlpha*invRootPi) * c1 * c1    
1407 >            
1408 >          else            
1409 >             mypot = mypot - (rcuti * 0.5_dp * c1 * c1)
1410 >            
1411 >          endif
1412 >       endif
1413 >    endif
1414 >    
1415 >    return
1416 >  end subroutine self_self
1417 >
1418 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1419 >       f, t, do_pot)
1420 >    logical, intent(in) :: do_pot
1421 >    integer, intent(in) :: atom1
1422 >    integer, intent(in) :: atom2
1423 >    logical :: i_is_Charge, j_is_Charge
1424 >    logical :: i_is_Dipole, j_is_Dipole
1425 >    integer :: atid1
1426 >    integer :: atid2
1427 >    real(kind=dp), intent(in) :: rij
1428 >    real(kind=dp), intent(in) :: sw
1429 >    real(kind=dp), intent(in), dimension(3) :: d
1430 >    real(kind=dp), intent(inout) :: vpair
1431 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1432 >    real(kind=dp), dimension(3,nLocal) :: f
1433 >    real(kind=dp), dimension(3,nLocal) :: t
1434 >    real (kind = dp), dimension(3) :: duduz_i
1435 >    real (kind = dp), dimension(3) :: duduz_j
1436 >    real (kind = dp), dimension(3) :: uz_i
1437 >    real (kind = dp), dimension(3) :: uz_j
1438 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1439 >    real(kind=dp) :: xhat, yhat, zhat
1440 >    real(kind=dp) :: ct_i, ct_j
1441 >    real(kind=dp) :: ri2, ri3, riji, vterm
1442 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1443 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1444 >
1445 >    if (.not.summationMethodChecked) then
1446 >       call checkSummationMethod()
1447 >    endif
1448 >
1449 >    dudx = 0.0d0
1450 >    dudy = 0.0d0
1451 >    dudz = 0.0d0
1452 >
1453 >    riji = 1.0d0/rij
1454 >
1455 >    xhat = d(1) * riji
1456 >    yhat = d(2) * riji
1457 >    zhat = d(3) * riji
1458 >
1459 >    ! this is a local only array, so we use the local atom type id's:
1460 >    atid1 = atid(atom1)
1461 >    atid2 = atid(atom2)
1462 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1463 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1464 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1465 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1466 >
1467 >    if (i_is_Charge.and.j_is_Charge) then
1468 >       q_i = ElectrostaticMap(atid1)%charge
1469 >       q_j = ElectrostaticMap(atid2)%charge
1470 >      
1471 >       preVal = pre11 * q_i * q_j
1472 >       rfVal = preRF*rij*rij
1473 >       vterm = preVal * rfVal
1474 >      
1475 >       myPot = myPot + sw*vterm
1476 >      
1477 >       dudr  = sw*preVal * 2.0d0*rfVal*riji
1478 >      
1479 >       dudx = dudx + dudr * xhat
1480 >       dudy = dudy + dudr * yhat
1481 >       dudz = dudz + dudr * zhat
1482 >      
1483 >    elseif (i_is_Charge.and.j_is_Dipole) then
1484 >       q_i = ElectrostaticMap(atid1)%charge
1485 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1486 >       uz_j(1) = eFrame(3,atom2)
1487 >       uz_j(2) = eFrame(6,atom2)
1488 >       uz_j(3) = eFrame(9,atom2)
1489 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1490 >      
1491 >       ri2 = riji * riji
1492 >       ri3 = ri2 * riji
1493 >      
1494 >       pref = pre12 * q_i * mu_j
1495 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1496 >       myPot = myPot + sw*vterm
1497 >      
1498 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1499 >            - preRF2*uz_j(1) )
1500 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1501 >            - preRF2*uz_j(2) )
1502 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1503 >            - preRF2*uz_j(3) )
1504 >      
1505 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1506 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1507 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1508 >      
1509 >    elseif (i_is_Dipole.and.j_is_Charge) then
1510 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1511 >       q_j = ElectrostaticMap(atid2)%charge
1512 >       uz_i(1) = eFrame(3,atom1)
1513 >       uz_i(2) = eFrame(6,atom1)
1514 >       uz_i(3) = eFrame(9,atom1)
1515 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1516 >      
1517 >       ri2 = riji * riji
1518 >       ri3 = ri2 * riji
1519 >      
1520 >       pref = pre12 * q_j * mu_i
1521 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1522 >       myPot = myPot + sw*vterm
1523 >      
1524 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1525 >            - preRF2*uz_i(1) )
1526 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1527 >            - preRF2*uz_i(2) )
1528 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1529 >            - preRF2*uz_i(3) )
1530 >      
1531 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1532 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1533 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1534 >      
1535 >    endif
1536 >      
1537 >
1538 >    ! accumulate the forces and torques resulting from the self term
1539 >    f(1,atom1) = f(1,atom1) + dudx
1540 >    f(2,atom1) = f(2,atom1) + dudy
1541 >    f(3,atom1) = f(3,atom1) + dudz
1542 >    
1543 >    f(1,atom2) = f(1,atom2) - dudx
1544 >    f(2,atom2) = f(2,atom2) - dudy
1545 >    f(3,atom2) = f(3,atom2) - dudz
1546 >    
1547 >    if (i_is_Dipole) then
1548 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1549 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1550 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1551 >    elseif (j_is_Dipole) then
1552 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1553 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1554 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1555 >    endif
1556 >
1557 >    return
1558 >  end subroutine rf_self_excludes
1559 >
1560   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines