ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2118 by gezelter, Fri Mar 11 15:53:18 2005 UTC vs.
Revision 2438 by chrisfen, Tue Nov 15 19:04:02 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 +
58 + #define __FORTRAN90
59 + #include "UseTheForce/DarkSide/fInteractionMap.h"
60 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
62 +
63 +
64    !! these prefactors convert the multipole interactions into kcal / mol
65    !! all were computed assuming distances are measured in angstroms
66    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 75 | module electrostatic_module
75    !! This unit is also known affectionately as an esu centi-barn.
76    real(kind=dp), parameter :: pre14 = 69.13373_dp
77  
78 +  !! variables to handle different summation methods for long-range
79 +  !! electrostatics:
80 +  integer, save :: summationMethod = NONE
81 +  integer, save :: screeningMethod = UNDAMPED
82 +  logical, save :: summationMethodChecked = .false.
83 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
84 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
85 +  logical, save :: haveDefaultCutoff = .false.
86 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
87 +  real(kind=DP), save :: alpha2 = 0.0_DP
88 +  logical, save :: haveDampingAlpha = .false.
89 +  real(kind=DP), save :: dielectric = 1.0_DP
90 +  logical, save :: haveDielectric = .false.
91 +  real(kind=DP), save :: constEXP = 0.0_DP
92 +  real(kind=dp), save :: rcuti = 0.0_DP
93 +  real(kind=dp), save :: rcuti2 = 0.0_DP
94 +  real(kind=dp), save :: rcuti3 = 0.0_DP
95 +  real(kind=dp), save :: rcuti4 = 0.0_DP
96 +  real(kind=dp), save :: alphaPi = 0.0_DP
97 +  real(kind=dp), save :: invRootPi = 0.0_DP
98 +  real(kind=dp), save :: rrf = 1.0_DP
99 +  real(kind=dp), save :: rt = 1.0_DP
100 +  real(kind=dp), save :: rrfsq = 1.0_DP
101 +  real(kind=dp), save :: preRF = 0.0_DP
102 +  real(kind=dp), save :: preRF2 = 0.0_DP
103 +  real(kind=dp), save :: f0 = 1.0_DP
104 +  real(kind=dp), save :: f1 = 1.0_DP
105 +  real(kind=dp), save :: f2 = 0.0_DP
106 +  real(kind=dp), save :: f0c = 1.0_DP
107 +  real(kind=dp), save :: f1c = 1.0_DP
108 +  real(kind=dp), save :: f2c = 0.0_DP
109 +
110 + #ifdef __IFC
111 + ! error function for ifc version > 7.
112 +  double precision, external :: derfc
113 + #endif
114 +  
115 +  public :: setElectrostaticSummationMethod
116 +  public :: setScreeningMethod
117 +  public :: setElectrostaticCutoffRadius
118 +  public :: setDampingAlpha
119 +  public :: setReactionFieldDielectric
120    public :: newElectrostaticType
121    public :: setCharge
122    public :: setDipoleMoment
# Line 76 | Line 125 | module electrostatic_module
125    public :: doElectrostaticPair
126    public :: getCharge
127    public :: getDipoleMoment
128 +  public :: destroyElectrostaticTypes
129 +  public :: self_self
130 +  public :: rf_self_excludes
131  
132    type :: Electrostatic
133       integer :: c_ident
# Line 83 | Line 135 | module electrostatic_module
135       logical :: is_Dipole = .false.
136       logical :: is_SplitDipole = .false.
137       logical :: is_Quadrupole = .false.
138 +     logical :: is_Tap = .false.
139       real(kind=DP) :: charge = 0.0_DP
140       real(kind=DP) :: dipole_moment = 0.0_DP
141       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 92 | Line 145 | contains
145    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
146  
147   contains
148 +
149 +  subroutine setElectrostaticSummationMethod(the_ESM)
150 +    integer, intent(in) :: the_ESM    
151 +
152 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
153 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
154 +    endif
155 +
156 +    summationMethod = the_ESM
157 +
158 +  end subroutine setElectrostaticSummationMethod
159 +
160 +  subroutine setScreeningMethod(the_SM)
161 +    integer, intent(in) :: the_SM    
162 +    screeningMethod = the_SM
163 +  end subroutine setScreeningMethod
164 +
165 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
166 +    real(kind=dp), intent(in) :: thisRcut
167 +    real(kind=dp), intent(in) :: thisRsw
168 +    defaultCutoff = thisRcut
169 +    rrf = defaultCutoff
170 +    rt = thisRsw
171 +    haveDefaultCutoff = .true.
172 +  end subroutine setElectrostaticCutoffRadius
173 +
174 +  subroutine setDampingAlpha(thisAlpha)
175 +    real(kind=dp), intent(in) :: thisAlpha
176 +    dampingAlpha = thisAlpha
177 +    alpha2 = dampingAlpha*dampingAlpha
178 +    haveDampingAlpha = .true.
179 +  end subroutine setDampingAlpha
180 +  
181 +  subroutine setReactionFieldDielectric(thisDielectric)
182 +    real(kind=dp), intent(in) :: thisDielectric
183 +    dielectric = thisDielectric
184 +    haveDielectric = .true.
185 +  end subroutine setReactionFieldDielectric
186  
187    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
188 <       is_SplitDipole, is_Quadrupole, status)
189 <    
188 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
189 >
190      integer, intent(in) :: c_ident
191      logical, intent(in) :: is_Charge
192      logical, intent(in) :: is_Dipole
193      logical, intent(in) :: is_SplitDipole
194      logical, intent(in) :: is_Quadrupole
195 +    logical, intent(in) :: is_Tap
196      integer, intent(out) :: status
197      integer :: nAtypes, myATID, i, j
198  
199      status = 0
200      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
201 <    
201 >
202      !! Be simple-minded and assume that we need an ElectrostaticMap that
203      !! is the same size as the total number of atom types
204  
205      if (.not.allocated(ElectrostaticMap)) then
206 <      
206 >
207         nAtypes = getSize(atypes)
208 <    
208 >
209         if (nAtypes == 0) then
210            status = -1
211            return
212         end if
213 <      
213 >
214         if (.not. allocated(ElectrostaticMap)) then
215            allocate(ElectrostaticMap(nAtypes))
216         endif
217 <      
217 >
218      end if
219  
220      if (myATID .gt. size(ElectrostaticMap)) then
221         status = -1
222         return
223      endif
224 <    
224 >
225      ! set the values for ElectrostaticMap for this atom type:
226  
227      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 137 | Line 229 | contains
229      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
230      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
231      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
232 <    
232 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
233 >
234    end subroutine newElectrostaticType
235  
236    subroutine setCharge(c_ident, charge, status)
# Line 165 | Line 258 | contains
258         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
259         status = -1
260         return
261 <    endif      
261 >    endif
262  
263      ElectrostaticMap(myATID)%charge = charge
264    end subroutine setCharge
# Line 256 | Line 349 | contains
349         status = -1
350         return
351      endif
352 <    
352 >
353      do i = 1, 3
354 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 <               quadrupole_moments(i)
356 <       enddo
354 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 >            quadrupole_moments(i)
356 >    enddo
357  
358    end subroutine setQuadrupoleMoments
359  
360 <  
360 >
361    function getCharge(atid) result (c)
362      integer, intent(in) :: atid
363      integer :: localError
364      real(kind=dp) :: c
365 <    
365 >
366      if (.not.allocated(ElectrostaticMap)) then
367         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
368         return
369      end if
370 <    
370 >
371      if (.not.ElectrostaticMap(atid)%is_Charge) then
372         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
373         return
374      endif
375 <    
375 >
376      c = ElectrostaticMap(atid)%charge
377    end function getCharge
378  
# Line 287 | Line 380 | contains
380      integer, intent(in) :: atid
381      integer :: localError
382      real(kind=dp) :: dm
383 <    
383 >
384      if (.not.allocated(ElectrostaticMap)) then
385         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
386         return
387      end if
388 <    
388 >
389      if (.not.ElectrostaticMap(atid)%is_Dipole) then
390         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
391         return
392      endif
393 <    
393 >
394      dm = ElectrostaticMap(atid)%dipole_moment
395    end function getDipoleMoment
396  
397 +  subroutine checkSummationMethod()
398 +
399 +    if (.not.haveDefaultCutoff) then
400 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
401 +    endif
402 +
403 +    rcuti = 1.0d0 / defaultCutoff
404 +    rcuti2 = rcuti*rcuti
405 +    rcuti3 = rcuti2*rcuti
406 +    rcuti4 = rcuti2*rcuti2
407 +
408 +    if (screeningMethod .eq. DAMPED) then
409 +       if (.not.haveDampingAlpha) then
410 +          call handleError("checkSummationMethod", "no Damping Alpha set!")
411 +       endif
412 +      
413 +       if (.not.haveDefaultCutoff) then
414 +          call handleError("checkSummationMethod", "no Default Cutoff set!")
415 +       endif
416 +
417 +       constEXP = exp(-alpha2*defaultCutoff*defaultCutoff)
418 +       invRootPi = 0.56418958354775628695d0
419 +       alphaPi = 2.0d0*dampingAlpha*invRootPi
420 +       f0c = derfc(dampingAlpha*defaultCutoff)
421 +       f1c = alphaPi*defaultCutoff*constEXP + f0c
422 +       f2c = alphaPi*2.0d0*alpha2*constEXP*rcuti2
423 +
424 +    endif
425 +
426 +    if (summationMethod .eq. REACTION_FIELD) then
427 +       if (haveDielectric) then
428 +          defaultCutoff2 = defaultCutoff*defaultCutoff
429 +          preRF = (dielectric-1.0d0) / &
430 +               ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
431 +          preRF2 = 2.0d0*preRF
432 +       else
433 +          call handleError("checkSummationMethod", "Dielectric not set")
434 +       endif
435 +      
436 +    endif
437 +
438 +    summationMethodChecked = .true.
439 +  end subroutine checkSummationMethod
440 +
441 +
442    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
443         vpair, fpair, pot, eFrame, f, t, do_pot)
444 <    
444 >
445      logical, intent(in) :: do_pot
446 <    
446 >
447      integer, intent(in) :: atom1, atom2
448      integer :: localError
449  
450      real(kind=dp), intent(in) :: rij, r2, sw
451      real(kind=dp), intent(in), dimension(3) :: d
452      real(kind=dp), intent(inout) :: vpair
453 <    real(kind=dp), intent(inout), dimension(3) :: fpair
453 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
454  
455      real( kind = dp ) :: pot
456      real( kind = dp ), dimension(9,nLocal) :: eFrame
457      real( kind = dp ), dimension(3,nLocal) :: f
458 +    real( kind = dp ), dimension(3,nLocal) :: felec
459      real( kind = dp ), dimension(3,nLocal) :: t
321    
322    real (kind = dp), dimension(3) :: ul_i
323    real (kind = dp), dimension(3) :: ul_j
460  
461 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
462 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
463 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
464 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
465 +
466      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
467      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
468 +    logical :: i_is_Tap, j_is_Tap
469      integer :: me1, me2, id1, id2
470      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
471 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
471 >    real (kind=dp) :: qxx_i, qyy_i, qzz_i
472 >    real (kind=dp) :: qxx_j, qyy_j, qzz_j
473 >    real (kind=dp) :: cx_i, cy_i, cz_i
474 >    real (kind=dp) :: cx_j, cy_j, cz_j
475 >    real (kind=dp) :: cx2, cy2, cz2
476 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
477      real (kind=dp) :: riji, ri, ri2, ri3, ri4
478 <    real (kind=dp) :: pref, vterm, epot, dudr    
478 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
479      real (kind=dp) :: xhat, yhat, zhat
480      real (kind=dp) :: dudx, dudy, dudz
334    real (kind=dp) :: drdxj, drdyj, drdzj
335    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
481      real (kind=dp) :: scale, sc2, bigR
482 +    real (kind=dp) :: varEXP
483 +    real (kind=dp) :: pot_term
484 +    real (kind=dp) :: preVal, rfVal
485  
486      if (.not.allocated(ElectrostaticMap)) then
487         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
488         return
489      end if
490  
491 +    if (.not.summationMethodChecked) then
492 +       call checkSummationMethod()
493 +    endif
494 +
495   #ifdef IS_MPI
496      me1 = atid_Row(atom1)
497      me2 = atid_Col(atom2)
# Line 348 | Line 500 | contains
500      me2 = atid(atom2)
501   #endif
502  
503 + !!$    if (rij .ge. defaultCutoff) then
504 + !!$       write(*,*) 'warning: rij = ', rij, ' rcut = ', defaultCutoff, ' sw = ', sw
505 + !!$    endif
506 +
507      !! some variables we'll need independent of electrostatic type:
508  
509      riji = 1.0d0 / rij
510 <
510 >  
511      xhat = d(1) * riji
512      yhat = d(2) * riji
513      zhat = d(3) * riji
514  
359    drdxj = xhat
360    drdyj = yhat
361    drdzj = zhat
362
515      !! logicals
364
516      i_is_Charge = ElectrostaticMap(me1)%is_Charge
517      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
518      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
519      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
520 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
521  
522      j_is_Charge = ElectrostaticMap(me2)%is_Charge
523      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
524      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
525      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
526 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
527  
528      if (i_is_Charge) then
529         q_i = ElectrostaticMap(me1)%charge      
530      endif
531 <    
531 >
532      if (i_is_Dipole) then
533         mu_i = ElectrostaticMap(me1)%dipole_moment
534   #ifdef IS_MPI
535 <       ul_i(1) = eFrame_Row(3,atom1)
536 <       ul_i(2) = eFrame_Row(6,atom1)
537 <       ul_i(3) = eFrame_Row(9,atom1)
535 >       uz_i(1) = eFrame_Row(3,atom1)
536 >       uz_i(2) = eFrame_Row(6,atom1)
537 >       uz_i(3) = eFrame_Row(9,atom1)
538   #else
539 <       ul_i(1) = eFrame(3,atom1)
540 <       ul_i(2) = eFrame(6,atom1)
541 <       ul_i(3) = eFrame(9,atom1)
539 >       uz_i(1) = eFrame(3,atom1)
540 >       uz_i(2) = eFrame(6,atom1)
541 >       uz_i(3) = eFrame(9,atom1)
542   #endif
543 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
543 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
544  
545         if (i_is_SplitDipole) then
546            d_i = ElectrostaticMap(me1)%split_dipole_distance
547         endif
548 <      
548 >
549      endif
550  
551 +    if (i_is_Quadrupole) then
552 +       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
553 +       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
554 +       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
555 + #ifdef IS_MPI
556 +       ux_i(1) = eFrame_Row(1,atom1)
557 +       ux_i(2) = eFrame_Row(4,atom1)
558 +       ux_i(3) = eFrame_Row(7,atom1)
559 +       uy_i(1) = eFrame_Row(2,atom1)
560 +       uy_i(2) = eFrame_Row(5,atom1)
561 +       uy_i(3) = eFrame_Row(8,atom1)
562 +       uz_i(1) = eFrame_Row(3,atom1)
563 +       uz_i(2) = eFrame_Row(6,atom1)
564 +       uz_i(3) = eFrame_Row(9,atom1)
565 + #else
566 +       ux_i(1) = eFrame(1,atom1)
567 +       ux_i(2) = eFrame(4,atom1)
568 +       ux_i(3) = eFrame(7,atom1)
569 +       uy_i(1) = eFrame(2,atom1)
570 +       uy_i(2) = eFrame(5,atom1)
571 +       uy_i(3) = eFrame(8,atom1)
572 +       uz_i(1) = eFrame(3,atom1)
573 +       uz_i(2) = eFrame(6,atom1)
574 +       uz_i(3) = eFrame(9,atom1)
575 + #endif
576 +       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
577 +       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
578 +       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
579 +    endif
580 +
581      if (j_is_Charge) then
582         q_j = ElectrostaticMap(me2)%charge      
583      endif
584 <    
584 >
585      if (j_is_Dipole) then
586         mu_j = ElectrostaticMap(me2)%dipole_moment
587   #ifdef IS_MPI
588 <       ul_j(1) = eFrame_Col(3,atom2)
589 <       ul_j(2) = eFrame_Col(6,atom2)
590 <       ul_j(3) = eFrame_Col(9,atom2)
588 >       uz_j(1) = eFrame_Col(3,atom2)
589 >       uz_j(2) = eFrame_Col(6,atom2)
590 >       uz_j(3) = eFrame_Col(9,atom2)
591   #else
592 <       ul_j(1) = eFrame(3,atom2)
593 <       ul_j(2) = eFrame(6,atom2)
594 <       ul_j(3) = eFrame(9,atom2)
592 >       uz_j(1) = eFrame(3,atom2)
593 >       uz_j(2) = eFrame(6,atom2)
594 >       uz_j(3) = eFrame(9,atom2)
595   #endif
596 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
596 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
597  
598         if (j_is_SplitDipole) then
599            d_j = ElectrostaticMap(me2)%split_dipole_distance
600         endif
601      endif
602  
603 +    if (j_is_Quadrupole) then
604 +       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
605 +       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
606 +       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
607 + #ifdef IS_MPI
608 +       ux_j(1) = eFrame_Col(1,atom2)
609 +       ux_j(2) = eFrame_Col(4,atom2)
610 +       ux_j(3) = eFrame_Col(7,atom2)
611 +       uy_j(1) = eFrame_Col(2,atom2)
612 +       uy_j(2) = eFrame_Col(5,atom2)
613 +       uy_j(3) = eFrame_Col(8,atom2)
614 +       uz_j(1) = eFrame_Col(3,atom2)
615 +       uz_j(2) = eFrame_Col(6,atom2)
616 +       uz_j(3) = eFrame_Col(9,atom2)
617 + #else
618 +       ux_j(1) = eFrame(1,atom2)
619 +       ux_j(2) = eFrame(4,atom2)
620 +       ux_j(3) = eFrame(7,atom2)
621 +       uy_j(1) = eFrame(2,atom2)
622 +       uy_j(2) = eFrame(5,atom2)
623 +       uy_j(3) = eFrame(8,atom2)
624 +       uz_j(1) = eFrame(3,atom2)
625 +       uz_j(2) = eFrame(6,atom2)
626 +       uz_j(3) = eFrame(9,atom2)
627 + #endif
628 +       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
629 +       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
630 +       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
631 +    endif
632 +  
633      epot = 0.0_dp
634      dudx = 0.0_dp
635      dudy = 0.0_dp
636      dudz = 0.0_dp
637  
638 <    duduix = 0.0_dp
639 <    duduiy = 0.0_dp
640 <    duduiz = 0.0_dp
638 >    dudux_i = 0.0_dp
639 >    duduy_i = 0.0_dp
640 >    duduz_i = 0.0_dp
641  
642 <    dudujx = 0.0_dp
643 <    dudujy = 0.0_dp
644 <    dudujz = 0.0_dp
642 >    dudux_j = 0.0_dp
643 >    duduy_j = 0.0_dp
644 >    duduz_j = 0.0_dp
645  
646      if (i_is_Charge) then
647  
648         if (j_is_Charge) then
649 <          
650 <          vterm = pre11 * q_i * q_j * riji
651 <          vpair = vpair + vterm
652 <          epot = epot + sw*vterm
440 <
441 <          dudr  = - sw * vterm * riji
442 <
443 <          dudx = dudx + dudr * drdxj
444 <          dudy = dudy + dudr * drdyj
445 <          dudz = dudz + dudr * drdzj
446 <      
447 <       endif
448 <
449 <       if (j_is_Dipole) then
450 <
451 <          if (j_is_SplitDipole) then
452 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
453 <             ri = 1.0_dp / BigR
454 <             scale = rij * ri
455 <          else
456 <             ri = riji
457 <             scale = 1.0_dp
649 >          if (screeningMethod .eq. DAMPED) then
650 >             f0 = derfc(dampingAlpha*rij)
651 >             varEXP = exp(-alpha2*rij*rij)
652 >             f1 = alphaPi*rij*varEXP + f0
653            endif
654  
655 <          ri2 = ri * ri
461 <          ri3 = ri2 * ri
462 <          sc2 = scale * scale
463 <            
464 <          pref = pre12 * q_i * mu_j
465 <          vterm = pref * ct_j * ri2 * scale
466 <          vpair = vpair + vterm
467 <          epot = epot + sw * vterm
655 >          preVal = pre11 * q_i * q_j
656  
657 <          !! this has a + sign in the () because the rij vector is
658 <          !! r_j - r_i and the charge-dipole potential takes the origin
659 <          !! as the point dipole, which is atom j in this case.
660 <
473 <          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0*ct_j*xhat*sc2)
474 <          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0*ct_j*yhat*sc2)
475 <          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0*ct_j*zhat*sc2)
476 <
477 <          dudujx = dudujx - pref * sw * ri2 * xhat * scale
478 <          dudujy = dudujy - pref * sw * ri2 * yhat * scale
479 <          dudujz = dudujz - pref * sw * ri2 * zhat * scale
480 <          
481 <       endif
482 <
483 <    endif
657 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
658 >             vterm = preVal * (riji*f0 - rcuti*f0c)
659 >            
660 >             dudr  = -sw * preVal * riji * riji * f1
661    
662 <    if (i_is_Dipole) then
663 <      
664 <       if (j_is_Charge) then
665 <
666 <          if (i_is_SplitDipole) then
667 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
668 <             ri = 1.0_dp / BigR
669 <             scale = rij * ri
662 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
663 >             vterm = preVal * ( riji*f0 - rcuti*f0c + &
664 >                  f1c*rcuti2*(rij-defaultCutoff) )
665 >            
666 >             dudr  = -sw*preVal * (riji*riji*f1 - rcuti2*f1c)
667 >  
668 >          elseif (summationMethod .eq. REACTION_FIELD) then
669 >             rfVal = preRF*rij*rij
670 >             vterm = preVal * ( riji + rfVal )
671 >            
672 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
673 >  
674            else
675 <             ri = riji
676 <             scale = 1.0_dp
675 >             vterm = preVal * riji*f0
676 >            
677 >             dudr  = - sw * preVal * riji*riji*f1
678 >  
679            endif
680  
498          ri2 = ri * ri
499          ri3 = ri2 * ri
500          sc2 = scale * scale
501            
502          pref = pre12 * q_j * mu_i
503          vterm = pref * ct_i * ri2 * scale
681            vpair = vpair + vterm
682 <          epot = epot + sw * vterm
682 >          epot = epot + sw*vterm
683  
684 <          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * xhat*sc2)
685 <          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * yhat*sc2)
686 <          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * zhat*sc2)
684 >          dudx = dudx + dudr * xhat
685 >          dudy = dudy + dudr * yhat
686 >          dudz = dudz + dudr * zhat
687  
511          duduix = duduix + pref * sw * ri2 * xhat * scale
512          duduiy = duduiy + pref * sw * ri2 * yhat * scale
513          duduiz = duduiz + pref * sw * ri2 * zhat * scale
688         endif
689  
690         if (j_is_Dipole) then
691  
692 <          if (i_is_SplitDipole) then
693 <             if (j_is_SplitDipole) then
694 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
695 <             else
696 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
697 <             endif
698 <             ri = 1.0_dp / BigR
699 <             scale = rij * ri                
692 >          pref = pre12 * q_i * mu_j
693 >
694 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
695 > !!$             ri2 = riji * riji
696 > !!$             ri3 = ri2 * riji
697 > !!$
698 > !!$             pref = pre12 * q_i * mu_j
699 > !!$             vterm = - pref * ct_j * (ri2 - rcuti2)
700 > !!$             vpair = vpair + vterm
701 > !!$             epot = epot + sw*vterm
702 > !!$            
703 > !!$             !! this has a + sign in the () because the rij vector is
704 > !!$             !! r_j - r_i and the charge-dipole potential takes the origin
705 > !!$             !! as the point dipole, which is atom j in this case.
706 > !!$            
707 > !!$             dudx = dudx - sw*pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
708 > !!$                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
709 > !!$             dudy = dudy - sw*pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
710 > !!$                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
711 > !!$             dudz = dudz - sw*pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
712 > !!$                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
713 > !!$            
714 > !!$             duduz_j(1) = duduz_j(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
715 > !!$             duduz_j(2) = duduz_j(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
716 > !!$             duduz_j(3) = duduz_j(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
717 > !!$
718 > !!$          elseif (summationMethod .eq. REACTION_FIELD) then
719 >
720 >          if (summationMethod .eq. REACTION_FIELD) then
721 >             ri2 = riji * riji
722 >             ri3 = ri2 * riji
723 >    
724 >             pref = pre12 * q_i * mu_j
725 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
726 >             vpair = vpair + vterm
727 >             epot = epot + sw*vterm
728 >            
729 >             !! this has a + sign in the () because the rij vector is
730 >             !! r_j - r_i and the charge-dipole potential takes the origin
731 >             !! as the point dipole, which is atom j in this case.
732 >            
733 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
734 >                                     preRF2*uz_j(1) )
735 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
736 >                                     preRF2*uz_j(2) )
737 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
738 >                                     preRF2*uz_j(3) )        
739 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
740 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
741 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
742 >
743            else
744               if (j_is_SplitDipole) then
745                  BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
746                  ri = 1.0_dp / BigR
747 <                scale = rij * ri                            
748 <             else                
747 >                scale = rij * ri
748 >             else
749                  ri = riji
750                  scale = 1.0_dp
751               endif
752 <          endif
752 >            
753 >             ri2 = ri * ri
754 >             ri3 = ri2 * ri
755 >             sc2 = scale * scale
756  
757 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
757 >             pref = pre12 * q_i * mu_j
758 >             vterm = - pref * ct_j * ri2 * scale
759 >             vpair = vpair + vterm
760 >             epot = epot + sw*vterm
761 >            
762 >             !! this has a + sign in the () because the rij vector is
763 >             !! r_j - r_i and the charge-dipole potential takes the origin
764 >             !! as the point dipole, which is atom j in this case.
765 >            
766 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
767 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
768 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
769 >            
770 >             duduz_j(1) = duduz_j(1) - sw*pref * ri2 * xhat * scale
771 >             duduz_j(2) = duduz_j(2) - sw*pref * ri2 * yhat * scale
772 >             duduz_j(3) = duduz_j(3) - sw*pref * ri2 * zhat * scale
773  
774 <          ri2 = ri * ri
775 <          ri3 = ri2 * ri
774 >          endif
775 >       endif
776 >
777 >       if (j_is_Quadrupole) then
778 >          ri2 = riji * riji
779 >          ri3 = ri2 * riji
780            ri4 = ri2 * ri2
781 <          sc2 = scale * scale
781 >          cx2 = cx_j * cx_j
782 >          cy2 = cy_j * cy_j
783 >          cz2 = cz_j * cz_j
784  
785 <          pref = pre22 * mu_i * mu_j
786 <          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
787 <          vpair = vpair + vterm
788 <          epot = epot + sw * vterm
785 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
786 > !!$             pref =  pre14 * q_i / 3.0_dp
787 > !!$             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
788 > !!$                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
789 > !!$                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
790 > !!$             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
791 > !!$                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
792 > !!$                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
793 > !!$             vpair = vpair + ( vterm1 - vterm2 )
794 > !!$             epot = epot + sw*( vterm1 - vterm2 )
795 > !!$            
796 > !!$             dudx = dudx - (5.0_dp * &
797 > !!$                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + sw*pref * ( &
798 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
799 > !!$                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
800 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
801 > !!$                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
802 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
803 > !!$                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
804 > !!$             dudy = dudy - (5.0_dp * &
805 > !!$                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + sw*pref * ( &
806 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
807 > !!$                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
808 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
809 > !!$                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
810 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
811 > !!$                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
812 > !!$             dudz = dudz - (5.0_dp * &
813 > !!$                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + sw*pref * ( &
814 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
815 > !!$                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
816 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
817 > !!$                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
818 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
819 > !!$                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
820 > !!$            
821 > !!$             dudux_j(1) = dudux_j(1) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*xhat) -&
822 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
823 > !!$             dudux_j(2) = dudux_j(2) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*yhat) -&
824 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
825 > !!$             dudux_j(3) = dudux_j(3) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*zhat) -&
826 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
827 > !!$            
828 > !!$             duduy_j(1) = duduy_j(1) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*xhat) -&
829 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
830 > !!$             duduy_j(2) = duduy_j(2) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*yhat) -&
831 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
832 > !!$             duduy_j(3) = duduy_j(3) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*zhat) -&
833 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
834 > !!$            
835 > !!$             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*xhat) -&
836 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
837 > !!$             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*yhat) -&
838 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
839 > !!$             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*zhat) -&
840 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
841 > !!$        
842 > !!$          else
843 >             pref =  pre14 * q_i / 3.0_dp
844 >             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
845 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
846 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
847 >             vpair = vpair + vterm
848 >             epot = epot + sw*vterm
849 >            
850 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
851 >                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
852 >                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
853 >                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
854 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
855 >                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
856 >                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
857 >                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
858 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
859 >                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
860 >                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
861 >                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
862 >            
863 >             dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
864 >             dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
865 >             dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
866 >            
867 >             duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
868 >             duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
869 >             duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
870 >            
871 >             duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
872 >             duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
873 >             duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
874            
875 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
875 > !!$          endif
876 >       endif
877 >    endif
878  
879 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*ul_j(1)-ct_j*ul_i(1))
552 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*ul_j(2)-ct_j*ul_i(2))
553 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*ul_j(3)-ct_j*ul_i(3))
879 >    if (i_is_Dipole) then
880  
881 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*xhat*sc2)
882 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*yhat*sc2)
883 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*zhat*sc2)
884 <
885 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*xhat*sc2)
886 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*yhat*sc2)
887 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*zhat*sc2)
881 >       if (j_is_Charge) then
882 >          
883 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
884 >             ri2 = riji * riji
885 >             ri3 = ri2 * riji
886 >            
887 >             pref = pre12 * q_j * mu_i
888 >             pot_term = ri2 - rcuti2
889 >             vterm = pref * ct_i * pot_term
890 >             vpair = vpair + vterm
891 >             epot = epot + sw*vterm
892 >            
893 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1)-3.0d0*ct_i*xhat) )
894 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2)-3.0d0*ct_i*yhat) )
895 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3)-3.0d0*ct_i*zhat) )
896 >            
897 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
898 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
899 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
900 >
901 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
902 >             ri2 = riji * riji
903 >             ri3 = ri2 * riji
904 >
905 >             pref = pre12 * q_j * mu_i
906 >             pot_term = ri2 - rcuti2 + 2.0d0*rcuti3*( rij - defaultCutoff )
907 >             vterm = pref * ct_i * pot_term
908 >             vpair = vpair + vterm
909 >             epot = epot + sw*vterm
910 >            
911 >             dudx = dudx + sw*pref * ( (ri3-rcuti3)*(uz_i(1)-3.0d0*ct_i*xhat) )
912 >             dudy = dudy + sw*pref * ( (ri3-rcuti3)*(uz_i(2)-3.0d0*ct_i*yhat) )
913 >             dudz = dudz + sw*pref * ( (ri3-rcuti3)*(uz_i(3)-3.0d0*ct_i*zhat) )
914 >            
915 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
916 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
917 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
918 >
919 >          elseif (summationMethod .eq. REACTION_FIELD) then
920 >             ri2 = riji * riji
921 >             ri3 = ri2 * riji
922 >
923 >             pref = pre12 * q_j * mu_i
924 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
925 >             vpair = vpair + vterm
926 >             epot = epot + sw*vterm
927 >            
928 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
929 >                  preRF2*uz_i(1) )
930 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
931 >                  preRF2*uz_i(2) )
932 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
933 >                  preRF2*uz_i(3) )
934 >            
935 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
936 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
937 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
938 >
939 >          else
940 >             if (i_is_SplitDipole) then
941 >                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
942 >                ri = 1.0_dp / BigR
943 >                scale = rij * ri
944 >             else
945 >                ri = riji
946 >                scale = 1.0_dp
947 >             endif
948 >            
949 >             ri2 = ri * ri
950 >             ri3 = ri2 * ri
951 >             sc2 = scale * scale
952 >
953 >             pref = pre12 * q_j * mu_i
954 >             vterm = pref * ct_i * ri2 * scale
955 >             vpair = vpair + vterm
956 >             epot = epot + sw*vterm
957 >            
958 >             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
959 >             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
960 >             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
961 >            
962 >             duduz_i(1) = duduz_i(1) + sw*pref * ri2 * xhat * scale
963 >             duduz_i(2) = duduz_i(2) + sw*pref * ri2 * yhat * scale
964 >             duduz_i(3) = duduz_i(3) + sw*pref * ri2 * zhat * scale
965 >          endif
966         endif
967 +      
968 +       if (j_is_Dipole) then
969 +          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
970 +          
971 +          ri2 = riji * riji
972 +          ri3 = ri2 * riji
973 +          ri4 = ri2 * ri2
974 +          
975 +          pref = pre22 * mu_i * mu_j
976  
977 + !!$          if (summationMethod .eq. SHIFTED_POTENTIAL) then
978 + !!$             a0 = ct_ij - 3.0d0 * ct_i * ct_j
979 + !!$             pot_term = ri3 - rcuti3
980 + !!$            
981 + !!$             vterm = pref*pot_term*a0
982 + !!$             vpair = vpair + vterm
983 + !!$             epot = epot + sw*vterm
984 + !!$            
985 + !!$             a1 = 5.0d0 * ct_i * ct_j - ct_ij
986 + !!$            
987 + !!$             dudx = dudx + sw*pref*3.0d0*ri4 &
988 + !!$                  * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
989 + !!$             dudy = dudy + sw*pref*3.0d0*ri4 &
990 + !!$                  * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
991 + !!$             dudz = dudz + sw*pref*3.0d0*ri4 &
992 + !!$                  * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
993 + !!$            
994 + !!$             duduz_i(1) = duduz_i(1) + sw*pref*( pot_term &
995 + !!$                  * (uz_j(1) - 3.0d0*ct_j*xhat) )
996 + !!$             duduz_i(2) = duduz_i(2) + sw*pref*( pot_term &
997 + !!$                  * (uz_j(2) - 3.0d0*ct_j*yhat) )
998 + !!$             duduz_i(3) = duduz_i(3) + sw*pref*( pot_term &
999 + !!$                  * (uz_j(3) - 3.0d0*ct_j*zhat) )
1000 + !!$             duduz_j(1) = duduz_j(1) + sw*pref*( pot_term &
1001 + !!$                  * (uz_i(1) - 3.0d0*ct_i*xhat) )
1002 + !!$             duduz_j(2) = duduz_j(2) + sw*pref*( pot_term &
1003 + !!$                  * (uz_i(2) - 3.0d0*ct_i*yhat) )
1004 + !!$             duduz_j(3) = duduz_j(3) + sw*pref*( pot_term &
1005 + !!$                  * (uz_i(3) - 3.0d0*ct_i*zhat) )
1006 + !!$
1007 + !!$          elseif (summationMethod .eq. SHIFTED_FORCE) then
1008 + !!$             a0 = ct_ij - 3.0d0 * ct_i * ct_j
1009 + !!$             pot_term = ri3 - rcuti3 + 3.0d0*rcuti4*( rij - defaultCutoff )
1010 + !!$            
1011 + !!$             vterm = pref*pot_term*a0
1012 + !!$             vpair = vpair + vterm
1013 + !!$             epot = epot + sw*vterm
1014 + !!$            
1015 + !!$             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1016 + !!$            
1017 + !!$             dudx = dudx + sw*pref*3.0d0*( ri4 - rcuti4 ) &
1018 + !!$                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1019 + !!$             dudy = dudy + sw*pref*3.0d0*( ri4 - rcuti4 ) &
1020 + !!$                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1021 + !!$             dudz = dudz + sw*pref*3.0d0*( ri4 - rcuti4 ) &
1022 + !!$                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1023 + !!$            
1024 + !!$             duduz_i(1) = duduz_i(1) + sw*pref*( pot_term &
1025 + !!$                  * (uz_j(1) - 3.0d0*ct_j*xhat) )
1026 + !!$             duduz_i(2) = duduz_i(2) + sw*pref*( pot_term &
1027 + !!$                  * (uz_j(2) - 3.0d0*ct_j*yhat) )
1028 + !!$             duduz_i(3) = duduz_i(3) + sw*pref*( pot_term &
1029 + !!$                  * (uz_j(3) - 3.0d0*ct_j*zhat) )
1030 + !!$             duduz_j(1) = duduz_j(1) + sw*pref*( pot_term &
1031 + !!$                  * (uz_i(1) - 3.0d0*ct_i*xhat) )
1032 + !!$             duduz_j(2) = duduz_j(2) + sw*pref*( pot_term &
1033 + !!$                  * (uz_i(2) - 3.0d0*ct_i*yhat) )
1034 + !!$             duduz_j(3) = duduz_j(3) + sw*pref*( pot_term &
1035 + !!$                  * (uz_i(3) - 3.0d0*ct_i*zhat) )
1036 + !!$            
1037 + !!$          elseif (summationMethod .eq. REACTION_FIELD) then
1038 +          if (summationMethod .eq. REACTION_FIELD) then
1039 +             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
1040 +                  preRF2*ct_ij )
1041 +             vpair = vpair + vterm
1042 +             epot = epot + sw*vterm
1043 +            
1044 +             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1045 +            
1046 +             dudx = dudx + sw*pref*3.0d0*ri4 &
1047 +                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1048 +             dudy = dudy + sw*pref*3.0d0*ri4 &
1049 +                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1050 +             dudz = dudz + sw*pref*3.0d0*ri4 &
1051 +                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1052 +            
1053 +             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1054 +                  - preRF2*uz_j(1))
1055 +             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1056 +                  - preRF2*uz_j(2))
1057 +             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1058 +                  - preRF2*uz_j(3))
1059 +             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1060 +                  - preRF2*uz_i(1))
1061 +             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1062 +                  - preRF2*uz_i(2))
1063 +             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1064 +                  - preRF2*uz_i(3))
1065 +
1066 +          else
1067 +             if (i_is_SplitDipole) then
1068 +                if (j_is_SplitDipole) then
1069 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
1070 +                else
1071 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
1072 +                endif
1073 +                ri = 1.0_dp / BigR
1074 +                scale = rij * ri                
1075 +             else
1076 +                if (j_is_SplitDipole) then
1077 +                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
1078 +                   ri = 1.0_dp / BigR
1079 +                   scale = rij * ri                            
1080 +                else                
1081 +                   ri = riji
1082 +                   scale = 1.0_dp
1083 +                endif
1084 +             endif
1085 +            
1086 +             sc2 = scale * scale
1087 +
1088 +             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1089 +             vpair = vpair + vterm
1090 +             epot = epot + sw*vterm
1091 +            
1092 +             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
1093 +            
1094 +             dudx = dudx + sw*pref*3.0d0*ri4*scale &
1095 +                             *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1096 +             dudy = dudy + sw*pref*3.0d0*ri4*scale &
1097 +                             *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1098 +             dudz = dudz + sw*pref*3.0d0*ri4*scale &
1099 +                             *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1100 +            
1101 +             duduz_i(1) = duduz_i(1) + sw*pref*ri3 &
1102 +                                         *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
1103 +             duduz_i(2) = duduz_i(2) + sw*pref*ri3 &
1104 +                                         *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
1105 +             duduz_i(3) = duduz_i(3) + sw*pref*ri3 &
1106 +                                         *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
1107 +            
1108 +             duduz_j(1) = duduz_j(1) + sw*pref*ri3 &
1109 +                                         *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
1110 +             duduz_j(2) = duduz_j(2) + sw*pref*ri3 &
1111 +                                         *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
1112 +             duduz_j(3) = duduz_j(3) + sw*pref*ri3 &
1113 +                                         *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1114 +          endif
1115 +       endif
1116      endif
1117 <    
1117 >
1118 >    if (i_is_Quadrupole) then
1119 >       if (j_is_Charge) then
1120 >
1121 >          ri2 = riji * riji
1122 >          ri3 = ri2 * riji
1123 >          ri4 = ri2 * ri2
1124 >          cx2 = cx_i * cx_i
1125 >          cy2 = cy_i * cy_i
1126 >          cz2 = cz_i * cz_i
1127 >
1128 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
1129 > !!$             pref = pre14 * q_j / 3.0_dp
1130 > !!$             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1131 > !!$                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1132 > !!$                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1133 > !!$             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1134 > !!$                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1135 > !!$                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1136 > !!$             vpair = vpair + ( vterm1 - vterm2 )
1137 > !!$             epot = epot + sw*( vterm1 - vterm2 )
1138 > !!$            
1139 > !!$             dudx = dudx - sw*(5.0_dp*(vterm1*riji*xhat-vterm2*rcuti2*d(1))) +&
1140 > !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
1141 > !!$                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
1142 > !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
1143 > !!$                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
1144 > !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
1145 > !!$                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
1146 > !!$             dudy = dudy - sw*(5.0_dp*(vterm1*riji*yhat-vterm2*rcuti2*d(2))) +&
1147 > !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
1148 > !!$                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
1149 > !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
1150 > !!$                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
1151 > !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
1152 > !!$                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
1153 > !!$             dudz = dudz - sw*(5.0_dp*(vterm1*riji*zhat-vterm2*rcuti2*d(3))) +&
1154 > !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
1155 > !!$                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
1156 > !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
1157 > !!$                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
1158 > !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
1159 > !!$                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
1160 > !!$            
1161 > !!$             dudux_i(1) = dudux_i(1) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*xhat) -&
1162 > !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
1163 > !!$             dudux_i(2) = dudux_i(2) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*yhat) -&
1164 > !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
1165 > !!$             dudux_i(3) = dudux_i(3) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*zhat) -&
1166 > !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
1167 > !!$            
1168 > !!$             duduy_i(1) = duduy_i(1) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*xhat) -&
1169 > !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
1170 > !!$             duduy_i(2) = duduy_i(2) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*yhat) -&
1171 > !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
1172 > !!$             duduy_i(3) = duduy_i(3) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*zhat) -&
1173 > !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
1174 > !!$            
1175 > !!$             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*xhat) -&
1176 > !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
1177 > !!$             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*yhat) -&
1178 > !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1179 > !!$             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*zhat) -&
1180 > !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1181 > !!$
1182 > !!$          else
1183 >             pref = pre14 * q_j / 3.0_dp
1184 >             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1185 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1186 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1187 >             vpair = vpair + vterm
1188 >             epot = epot + sw*vterm
1189 >            
1190 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
1191 >                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1192 >                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1193 >                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1194 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
1195 >                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1196 >                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1197 >                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1198 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
1199 >                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1200 >                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1201 >                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1202 >            
1203 >             dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
1204 >             dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
1205 >             dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1206 >            
1207 >             duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1208 >             duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1209 >             duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1210 >            
1211 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1212 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1213 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1214 > !!$          endif
1215 >       endif
1216 >    endif
1217 >
1218 >
1219      if (do_pot) then
1220   #ifdef IS_MPI
1221 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1222 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1221 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1222 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1223   #else
1224         pot = pot + epot
1225   #endif
1226      endif
1227 <        
1227 >
1228   #ifdef IS_MPI
1229      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1230      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1231      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1232 <    
1232 >
1233      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1234      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1235      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1236 <    
1236 >
1237      if (i_is_Dipole .or. i_is_Quadrupole) then
1238 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1239 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1240 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1238 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1239 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1240 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1241      endif
1242 +    if (i_is_Quadrupole) then
1243 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1244 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1245 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1246  
1247 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1248 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1249 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1250 +    endif
1251 +
1252      if (j_is_Dipole .or. j_is_Quadrupole) then
1253 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1254 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1255 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1253 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1254 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1255 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1256      endif
1257 +    if (j_is_Quadrupole) then
1258 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1259 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1260 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1261  
1262 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1263 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1264 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1265 +    endif
1266 +
1267   #else
1268      f(1,atom1) = f(1,atom1) + dudx
1269      f(2,atom1) = f(2,atom1) + dudy
1270      f(3,atom1) = f(3,atom1) + dudz
1271 <    
1271 >
1272      f(1,atom2) = f(1,atom2) - dudx
1273      f(2,atom2) = f(2,atom2) - dudy
1274      f(3,atom2) = f(3,atom2) - dudz
1275 <    
1275 >
1276      if (i_is_Dipole .or. i_is_Quadrupole) then
1277 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1278 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1279 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1277 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1278 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1279 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1280      endif
1281 <      
1281 >    if (i_is_Quadrupole) then
1282 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1283 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1284 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1285 >
1286 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1287 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1288 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1289 >    endif
1290 >
1291      if (j_is_Dipole .or. j_is_Quadrupole) then
1292 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1293 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1294 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1292 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1293 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1294 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1295      endif
1296 +    if (j_is_Quadrupole) then
1297 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1298 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1299 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1300 +
1301 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1302 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1303 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1304 +    endif
1305 +
1306   #endif
1307 <    
1307 >
1308   #ifdef IS_MPI
1309      id1 = AtomRowToGlobal(atom1)
1310      id2 = AtomColToGlobal(atom2)
# Line 624 | Line 1314 | contains
1314   #endif
1315  
1316      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1317 <      
1317 >
1318         fpair(1) = fpair(1) + dudx
1319         fpair(2) = fpair(2) + dudy
1320         fpair(3) = fpair(3) + dudz
# Line 633 | Line 1323 | contains
1323  
1324      return
1325    end subroutine doElectrostaticPair
1326 <  
1326 >
1327 >  subroutine destroyElectrostaticTypes()
1328 >
1329 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1330 >
1331 >  end subroutine destroyElectrostaticTypes
1332 >
1333 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1334 >    logical, intent(in) :: do_pot
1335 >    integer, intent(in) :: atom1
1336 >    integer :: atid1
1337 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1338 >    real(kind=dp), dimension(3,nLocal) :: t
1339 >    real(kind=dp) :: mu1, c1
1340 >    real(kind=dp) :: preVal, epot, mypot
1341 >    real(kind=dp) :: eix, eiy, eiz
1342 >
1343 >    ! this is a local only array, so we use the local atom type id's:
1344 >    atid1 = atid(atom1)
1345 >
1346 >    if (.not.summationMethodChecked) then
1347 >       call checkSummationMethod()
1348 >    endif
1349 >    
1350 >    if (summationMethod .eq. REACTION_FIELD) then
1351 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1352 >          mu1 = getDipoleMoment(atid1)
1353 >          
1354 >          preVal = pre22 * preRF2 * mu1*mu1
1355 >          mypot = mypot - 0.5d0*preVal
1356 >          
1357 >          ! The self-correction term adds into the reaction field vector
1358 >          
1359 >          eix = preVal * eFrame(3,atom1)
1360 >          eiy = preVal * eFrame(6,atom1)
1361 >          eiz = preVal * eFrame(9,atom1)
1362 >          
1363 >          ! once again, this is self-self, so only the local arrays are needed
1364 >          ! even for MPI jobs:
1365 >          
1366 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1367 >               eFrame(9,atom1)*eiy
1368 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1369 >               eFrame(3,atom1)*eiz
1370 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1371 >               eFrame(6,atom1)*eix
1372 >          
1373 >       endif
1374 >
1375 >    elseif (summationMethod .eq. SHIFTED_FORCE) then
1376 >       if (ElectrostaticMap(atid1)%is_Charge) then
1377 >          c1 = getCharge(atid1)
1378 >          
1379 >          if (screeningMethod .eq. DAMPED) then
1380 >             mypot = mypot - (f0c * rcuti * 0.5_dp + &
1381 >                  dampingAlpha*invRootPi) * c1 * c1    
1382 >            
1383 >          else            
1384 >             mypot = mypot - (rcuti * 0.5_dp * c1 * c1)
1385 >            
1386 >          endif
1387 >       endif
1388 >    endif
1389 >    
1390 >    return
1391 >  end subroutine self_self
1392 >
1393 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1394 >       f, t, do_pot)
1395 >    logical, intent(in) :: do_pot
1396 >    integer, intent(in) :: atom1
1397 >    integer, intent(in) :: atom2
1398 >    logical :: i_is_Charge, j_is_Charge
1399 >    logical :: i_is_Dipole, j_is_Dipole
1400 >    integer :: atid1
1401 >    integer :: atid2
1402 >    real(kind=dp), intent(in) :: rij
1403 >    real(kind=dp), intent(in) :: sw
1404 >    real(kind=dp), intent(in), dimension(3) :: d
1405 >    real(kind=dp), intent(inout) :: vpair
1406 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1407 >    real(kind=dp), dimension(3,nLocal) :: f
1408 >    real(kind=dp), dimension(3,nLocal) :: t
1409 >    real (kind = dp), dimension(3) :: duduz_i
1410 >    real (kind = dp), dimension(3) :: duduz_j
1411 >    real (kind = dp), dimension(3) :: uz_i
1412 >    real (kind = dp), dimension(3) :: uz_j
1413 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1414 >    real(kind=dp) :: xhat, yhat, zhat
1415 >    real(kind=dp) :: ct_i, ct_j
1416 >    real(kind=dp) :: ri2, ri3, riji, vterm
1417 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1418 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1419 >
1420 >    if (.not.summationMethodChecked) then
1421 >       call checkSummationMethod()
1422 >    endif
1423 >
1424 >    dudx = 0.0d0
1425 >    dudy = 0.0d0
1426 >    dudz = 0.0d0
1427 >
1428 >    riji = 1.0d0/rij
1429 >
1430 >    xhat = d(1) * riji
1431 >    yhat = d(2) * riji
1432 >    zhat = d(3) * riji
1433 >
1434 >    ! this is a local only array, so we use the local atom type id's:
1435 >    atid1 = atid(atom1)
1436 >    atid2 = atid(atom2)
1437 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1438 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1439 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1440 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1441 >
1442 >    if (i_is_Charge.and.j_is_Charge) then
1443 >       q_i = ElectrostaticMap(atid1)%charge
1444 >       q_j = ElectrostaticMap(atid2)%charge
1445 >      
1446 >       preVal = pre11 * q_i * q_j
1447 >       rfVal = preRF*rij*rij
1448 >       vterm = preVal * rfVal
1449 >      
1450 >       myPot = myPot + sw*vterm
1451 >      
1452 >       dudr  = sw*preVal * 2.0d0*rfVal*riji
1453 >      
1454 >       dudx = dudx + dudr * xhat
1455 >       dudy = dudy + dudr * yhat
1456 >       dudz = dudz + dudr * zhat
1457 >      
1458 >    elseif (i_is_Charge.and.j_is_Dipole) then
1459 >       q_i = ElectrostaticMap(atid1)%charge
1460 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1461 >       uz_j(1) = eFrame(3,atom2)
1462 >       uz_j(2) = eFrame(6,atom2)
1463 >       uz_j(3) = eFrame(9,atom2)
1464 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1465 >      
1466 >       ri2 = riji * riji
1467 >       ri3 = ri2 * riji
1468 >      
1469 >       pref = pre12 * q_i * mu_j
1470 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1471 >       myPot = myPot + sw*vterm
1472 >      
1473 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1474 >            - preRF2*uz_j(1) )
1475 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1476 >            - preRF2*uz_j(2) )
1477 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1478 >            - preRF2*uz_j(3) )
1479 >      
1480 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1481 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1482 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1483 >      
1484 >    elseif (i_is_Dipole.and.j_is_Charge) then
1485 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1486 >       q_j = ElectrostaticMap(atid2)%charge
1487 >       uz_i(1) = eFrame(3,atom1)
1488 >       uz_i(2) = eFrame(6,atom1)
1489 >       uz_i(3) = eFrame(9,atom1)
1490 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1491 >      
1492 >       ri2 = riji * riji
1493 >       ri3 = ri2 * riji
1494 >      
1495 >       pref = pre12 * q_j * mu_i
1496 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1497 >       myPot = myPot + sw*vterm
1498 >      
1499 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1500 >            - preRF2*uz_i(1) )
1501 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1502 >            - preRF2*uz_i(2) )
1503 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1504 >            - preRF2*uz_i(3) )
1505 >      
1506 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1507 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1508 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1509 >      
1510 >    endif
1511 >      
1512 >
1513 >    ! accumulate the forces and torques resulting from the self term
1514 >    f(1,atom1) = f(1,atom1) + dudx
1515 >    f(2,atom1) = f(2,atom1) + dudy
1516 >    f(3,atom1) = f(3,atom1) + dudz
1517 >    
1518 >    f(1,atom2) = f(1,atom2) - dudx
1519 >    f(2,atom2) = f(2,atom2) - dudy
1520 >    f(3,atom2) = f(3,atom2) - dudz
1521 >    
1522 >    if (i_is_Dipole) then
1523 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1524 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1525 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1526 >    elseif (j_is_Dipole) then
1527 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1528 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1529 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1530 >    endif
1531 >
1532 >    return
1533 >  end subroutine rf_self_excludes
1534 >
1535   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines