ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2118 by gezelter, Fri Mar 11 15:53:18 2005 UTC vs.
Revision 2724 by chrisfen, Fri Apr 21 03:19:52 2006 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
47    use vector_class
48    use simulation
49    use status
50 +  use interpolation
51   #ifdef IS_MPI
52    use mpiSimulation
53   #endif
# Line 54 | Line 55 | module electrostatic_module
55  
56    PRIVATE
57  
58 +
59 + #define __FORTRAN90
60 + #include "UseTheForce/DarkSide/fInteractionMap.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
62 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
63 +
64 +
65    !! these prefactors convert the multipole interactions into kcal / mol
66    !! all were computed assuming distances are measured in angstroms
67    !! Charge-Charge, assuming charges are measured in electrons
68 <  real(kind=dp), parameter :: pre11 = 332.0637778_dp
68 >  real(kind=dp), parameter :: pre11 = 332.0637778d0
69    !! Charge-Dipole, assuming charges are measured in electrons, and
70    !! dipoles are measured in debyes
71 <  real(kind=dp), parameter :: pre12 = 69.13373_dp
71 >  real(kind=dp), parameter :: pre12 = 69.13373d0
72    !! Dipole-Dipole, assuming dipoles are measured in debyes
73 <  real(kind=dp), parameter :: pre22 = 14.39325_dp
73 >  real(kind=dp), parameter :: pre22 = 14.39325d0
74    !! Charge-Quadrupole, assuming charges are measured in electrons, and
75    !! quadrupoles are measured in 10^-26 esu cm^2
76    !! This unit is also known affectionately as an esu centi-barn.
77 <  real(kind=dp), parameter :: pre14 = 69.13373_dp
77 >  real(kind=dp), parameter :: pre14 = 69.13373d0
78  
79 +  real(kind=dp), parameter :: zero = 0.0d0
80 +  
81 +  !! number of points for electrostatic splines
82 +  integer, parameter :: np = 100
83 +
84 +  !! variables to handle different summation methods for long-range
85 +  !! electrostatics:
86 +  integer, save :: summationMethod = NONE
87 +  integer, save :: screeningMethod = UNDAMPED
88 +  logical, save :: summationMethodChecked = .false.
89 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
90 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
91 +  logical, save :: haveDefaultCutoff = .false.
92 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
93 +  real(kind=DP), save :: alpha2 = 0.0_DP
94 +  logical, save :: haveDampingAlpha = .false.
95 +  real(kind=DP), save :: dielectric = 1.0_DP
96 +  logical, save :: haveDielectric = .false.
97 +  real(kind=DP), save :: constEXP = 0.0_DP
98 +  real(kind=dp), save :: rcuti = 0.0_DP
99 +  real(kind=dp), save :: rcuti2 = 0.0_DP
100 +  real(kind=dp), save :: rcuti3 = 0.0_DP
101 +  real(kind=dp), save :: rcuti4 = 0.0_DP
102 +  real(kind=dp), save :: alphaPi = 0.0_DP
103 +  real(kind=dp), save :: invRootPi = 0.0_DP
104 +  real(kind=dp), save :: rrf = 1.0_DP
105 +  real(kind=dp), save :: rt = 1.0_DP
106 +  real(kind=dp), save :: rrfsq = 1.0_DP
107 +  real(kind=dp), save :: preRF = 0.0_DP
108 +  real(kind=dp), save :: preRF2 = 0.0_DP
109 +  real(kind=dp), save :: f0 = 1.0_DP
110 +  real(kind=dp), save :: f1 = 1.0_DP
111 +  real(kind=dp), save :: f2 = 0.0_DP
112 +  real(kind=dp), save :: f3 = 0.0_DP
113 +  real(kind=dp), save :: f4 = 0.0_DP
114 +  real(kind=dp), save :: f0c = 1.0_DP
115 +  real(kind=dp), save :: f1c = 1.0_DP
116 +  real(kind=dp), save :: f2c = 0.0_DP
117 +  real(kind=dp), save :: f3c = 0.0_DP
118 +  real(kind=dp), save :: f4c = 0.0_DP
119 +  real(kind=dp), save :: df0 = 0.0_DP
120 +  type(cubicSpline), save :: f0spline
121 +  logical, save :: haveElectroSpline = .false.
122 +
123 +
124 + #if defined(__IFC) || defined(__PGI)
125 + ! error function for ifc version > 7.
126 +  double precision, external :: derfc
127 + #endif
128 +  
129 +  public :: setElectrostaticSummationMethod
130 +  public :: setScreeningMethod
131 +  public :: setElectrostaticCutoffRadius
132 +  public :: setDampingAlpha
133 +  public :: setReactionFieldDielectric
134 +  public :: buildElectroSpline
135    public :: newElectrostaticType
136    public :: setCharge
137    public :: setDipoleMoment
# Line 76 | Line 140 | module electrostatic_module
140    public :: doElectrostaticPair
141    public :: getCharge
142    public :: getDipoleMoment
143 +  public :: destroyElectrostaticTypes
144 +  public :: self_self
145 +  public :: rf_self_excludes
146  
147 +
148    type :: Electrostatic
149       integer :: c_ident
150       logical :: is_Charge = .false.
151       logical :: is_Dipole = .false.
152       logical :: is_SplitDipole = .false.
153       logical :: is_Quadrupole = .false.
154 +     logical :: is_Tap = .false.
155       real(kind=DP) :: charge = 0.0_DP
156       real(kind=DP) :: dipole_moment = 0.0_DP
157       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 91 | Line 160 | contains
160  
161    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
162  
163 +  logical, save :: hasElectrostaticMap
164 +
165   contains
166  
167 <  subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
168 <       is_SplitDipole, is_Quadrupole, status)
167 >  subroutine setElectrostaticSummationMethod(the_ESM)
168 >    integer, intent(in) :: the_ESM    
169 >
170 >    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
171 >       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
172 >    endif
173 >
174 >    summationMethod = the_ESM
175 >
176 >  end subroutine setElectrostaticSummationMethod
177 >
178 >  subroutine setScreeningMethod(the_SM)
179 >    integer, intent(in) :: the_SM    
180 >    screeningMethod = the_SM
181 >  end subroutine setScreeningMethod
182 >
183 >  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
184 >    real(kind=dp), intent(in) :: thisRcut
185 >    real(kind=dp), intent(in) :: thisRsw
186 >    defaultCutoff = thisRcut
187 >    defaultCutoff2 = defaultCutoff*defaultCutoff
188 >    rrf = defaultCutoff
189 >    rt = thisRsw
190 >    haveDefaultCutoff = .true.
191 >  end subroutine setElectrostaticCutoffRadius
192 >
193 >  subroutine setDampingAlpha(thisAlpha)
194 >    real(kind=dp), intent(in) :: thisAlpha
195 >    dampingAlpha = thisAlpha
196 >    alpha2 = dampingAlpha*dampingAlpha
197 >    haveDampingAlpha = .true.
198 >  end subroutine setDampingAlpha
199 >  
200 >  subroutine setReactionFieldDielectric(thisDielectric)
201 >    real(kind=dp), intent(in) :: thisDielectric
202 >    dielectric = thisDielectric
203 >    haveDielectric = .true.
204 >  end subroutine setReactionFieldDielectric
205 >
206 >  subroutine buildElectroSpline()
207 >    real( kind = dp ), dimension(np) :: xvals, yvals
208 >    real( kind = dp ) :: dx, rmin, rval
209 >    integer :: i
210 >
211 >    rmin = 0.0d0
212 >
213 >    dx = (defaultCutoff-rmin) / dble(np-1)
214      
215 +    do i = 1, np
216 +       rval = rmin + dble(i-1)*dx
217 +       xvals(i) = rval
218 +       yvals(i) = derfc(dampingAlpha*rval)
219 +    enddo
220 +
221 +    call newSpline(f0spline, xvals, yvals, .true.)
222 +
223 +    haveElectroSpline = .true.
224 +  end subroutine buildElectroSpline
225 +
226 +  subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
227 +       is_SplitDipole, is_Quadrupole, is_Tap, status)
228 +
229      integer, intent(in) :: c_ident
230      logical, intent(in) :: is_Charge
231      logical, intent(in) :: is_Dipole
232      logical, intent(in) :: is_SplitDipole
233      logical, intent(in) :: is_Quadrupole
234 +    logical, intent(in) :: is_Tap
235      integer, intent(out) :: status
236      integer :: nAtypes, myATID, i, j
237  
238      status = 0
239      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
240 <    
240 >
241      !! Be simple-minded and assume that we need an ElectrostaticMap that
242      !! is the same size as the total number of atom types
243  
244      if (.not.allocated(ElectrostaticMap)) then
245 <      
245 >
246         nAtypes = getSize(atypes)
247 <    
247 >
248         if (nAtypes == 0) then
249            status = -1
250            return
251         end if
252 <      
253 <       if (.not. allocated(ElectrostaticMap)) then
254 <          allocate(ElectrostaticMap(nAtypes))
124 <       endif
125 <      
252 >
253 >       allocate(ElectrostaticMap(nAtypes))
254 >
255      end if
256  
257      if (myATID .gt. size(ElectrostaticMap)) then
258         status = -1
259         return
260      endif
261 <    
261 >
262      ! set the values for ElectrostaticMap for this atom type:
263  
264      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 137 | Line 266 | contains
266      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
267      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
268      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
269 <    
269 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
270 >
271 >    hasElectrostaticMap = .true.
272 >
273    end subroutine newElectrostaticType
274  
275    subroutine setCharge(c_ident, charge, status)
# Line 149 | Line 281 | contains
281      status = 0
282      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
283  
284 <    if (.not.allocated(ElectrostaticMap)) then
284 >    if (.not.hasElectrostaticMap) then
285         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!")
286         status = -1
287         return
# Line 165 | Line 297 | contains
297         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
298         status = -1
299         return
300 <    endif      
300 >    endif
301  
302      ElectrostaticMap(myATID)%charge = charge
303    end subroutine setCharge
# Line 179 | Line 311 | contains
311      status = 0
312      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
313  
314 <    if (.not.allocated(ElectrostaticMap)) then
314 >    if (.not.hasElectrostaticMap) then
315         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!")
316         status = -1
317         return
# Line 209 | Line 341 | contains
341      status = 0
342      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
343  
344 <    if (.not.allocated(ElectrostaticMap)) then
344 >    if (.not.hasElectrostaticMap) then
345         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!")
346         status = -1
347         return
# Line 239 | Line 371 | contains
371      status = 0
372      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
373  
374 <    if (.not.allocated(ElectrostaticMap)) then
374 >    if (.not.hasElectrostaticMap) then
375         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!")
376         status = -1
377         return
# Line 256 | Line 388 | contains
388         status = -1
389         return
390      endif
391 <    
391 >
392      do i = 1, 3
393 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
394 <               quadrupole_moments(i)
395 <       enddo
393 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
394 >            quadrupole_moments(i)
395 >    enddo
396  
397    end subroutine setQuadrupoleMoments
398  
399 <  
399 >
400    function getCharge(atid) result (c)
401      integer, intent(in) :: atid
402      integer :: localError
403      real(kind=dp) :: c
404 <    
405 <    if (.not.allocated(ElectrostaticMap)) then
404 >
405 >    if (.not.hasElectrostaticMap) then
406         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
407         return
408      end if
409 <    
409 >
410      if (.not.ElectrostaticMap(atid)%is_Charge) then
411         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
412         return
413      endif
414 <    
414 >
415      c = ElectrostaticMap(atid)%charge
416    end function getCharge
417  
# Line 287 | Line 419 | contains
419      integer, intent(in) :: atid
420      integer :: localError
421      real(kind=dp) :: dm
422 <    
423 <    if (.not.allocated(ElectrostaticMap)) then
422 >
423 >    if (.not.hasElectrostaticMap) then
424         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
425         return
426      end if
427 <    
427 >
428      if (.not.ElectrostaticMap(atid)%is_Dipole) then
429         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
430         return
431      endif
432 <    
432 >
433      dm = ElectrostaticMap(atid)%dipole_moment
434    end function getDipoleMoment
435  
436 <  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
436 >  subroutine checkSummationMethod()
437 >
438 >    if (.not.haveDefaultCutoff) then
439 >       call handleError("checkSummationMethod", "no Default Cutoff set!")
440 >    endif
441 >
442 >    rcuti = 1.0d0 / defaultCutoff
443 >    rcuti2 = rcuti*rcuti
444 >    rcuti3 = rcuti2*rcuti
445 >    rcuti4 = rcuti2*rcuti2
446 >
447 >    if (screeningMethod .eq. DAMPED) then
448 >       if (.not.haveDampingAlpha) then
449 >          call handleError("checkSummationMethod", "no Damping Alpha set!")
450 >       endif
451 >      
452 >       if (.not.haveDefaultCutoff) then
453 >          call handleError("checkSummationMethod", "no Default Cutoff set!")
454 >       endif
455 >
456 >       constEXP = exp(-alpha2*defaultCutoff2)
457 >       invRootPi = 0.56418958354775628695d0
458 >       alphaPi = 2.0d0*dampingAlpha*invRootPi
459 >       f0c = derfc(dampingAlpha*defaultCutoff)
460 >       f1c = alphaPi*defaultCutoff*constEXP + f0c
461 >       f2c = alphaPi*2.0d0*alpha2*constEXP
462 >       f3c = alphaPi*2.0d0*alpha2*constEXP*defaultCutoff2*defaultCutoff
463 >    endif
464 >
465 >    if (summationMethod .eq. REACTION_FIELD) then
466 >       if (haveDielectric) then
467 >          defaultCutoff2 = defaultCutoff*defaultCutoff
468 >          preRF = (dielectric-1.0d0) / &
469 >               ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
470 >          preRF2 = 2.0d0*preRF
471 >       else
472 >          call handleError("checkSummationMethod", "Dielectric not set")
473 >       endif
474 >      
475 >    endif
476 >
477 >    if (.not.haveElectroSpline) then
478 >       call buildElectroSpline()
479 >    end if
480 >
481 >    summationMethodChecked = .true.
482 >  end subroutine checkSummationMethod
483 >
484 >
485 >  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, rcut, sw, &
486         vpair, fpair, pot, eFrame, f, t, do_pot)
487 <    
487 >
488      logical, intent(in) :: do_pot
489 <    
489 >
490      integer, intent(in) :: atom1, atom2
491      integer :: localError
492  
493 <    real(kind=dp), intent(in) :: rij, r2, sw
493 >    real(kind=dp), intent(in) :: rij, r2, sw, rcut
494      real(kind=dp), intent(in), dimension(3) :: d
495      real(kind=dp), intent(inout) :: vpair
496 <    real(kind=dp), intent(inout), dimension(3) :: fpair
496 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
497  
498      real( kind = dp ) :: pot
499      real( kind = dp ), dimension(9,nLocal) :: eFrame
500      real( kind = dp ), dimension(3,nLocal) :: f
501 +    real( kind = dp ), dimension(3,nLocal) :: felec
502      real( kind = dp ), dimension(3,nLocal) :: t
321    
322    real (kind = dp), dimension(3) :: ul_i
323    real (kind = dp), dimension(3) :: ul_j
503  
504 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
505 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
506 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
507 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
508 +
509      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
510      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
511 +    logical :: i_is_Tap, j_is_Tap
512      integer :: me1, me2, id1, id2
513      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
514 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
514 >    real (kind=dp) :: qxx_i, qyy_i, qzz_i
515 >    real (kind=dp) :: qxx_j, qyy_j, qzz_j
516 >    real (kind=dp) :: cx_i, cy_i, cz_i
517 >    real (kind=dp) :: cx_j, cy_j, cz_j
518 >    real (kind=dp) :: cx2, cy2, cz2
519 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
520      real (kind=dp) :: riji, ri, ri2, ri3, ri4
521 <    real (kind=dp) :: pref, vterm, epot, dudr    
521 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
522      real (kind=dp) :: xhat, yhat, zhat
523      real (kind=dp) :: dudx, dudy, dudz
334    real (kind=dp) :: drdxj, drdyj, drdzj
335    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
524      real (kind=dp) :: scale, sc2, bigR
525 +    real (kind=dp) :: varEXP
526 +    real (kind=dp) :: pot_term
527 +    real (kind=dp) :: preVal, rfVal
528 +    real (kind=dp) :: f13, f134
529  
530 <    if (.not.allocated(ElectrostaticMap)) then
531 <       call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
532 <       return
341 <    end if
530 >    if (.not.summationMethodChecked) then
531 >       call checkSummationMethod()
532 >    endif
533  
534   #ifdef IS_MPI
535      me1 = atid_Row(atom1)
# Line 351 | Line 542 | contains
542      !! some variables we'll need independent of electrostatic type:
543  
544      riji = 1.0d0 / rij
545 <
545 >  
546      xhat = d(1) * riji
547      yhat = d(2) * riji
548      zhat = d(3) * riji
549  
359    drdxj = xhat
360    drdyj = yhat
361    drdzj = zhat
362
550      !! logicals
364
551      i_is_Charge = ElectrostaticMap(me1)%is_Charge
552      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
553      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
554      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
555 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
556  
557      j_is_Charge = ElectrostaticMap(me2)%is_Charge
558      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
559      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
560      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
561 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
562  
563      if (i_is_Charge) then
564         q_i = ElectrostaticMap(me1)%charge      
565      endif
566 <    
566 >
567      if (i_is_Dipole) then
568         mu_i = ElectrostaticMap(me1)%dipole_moment
569   #ifdef IS_MPI
570 <       ul_i(1) = eFrame_Row(3,atom1)
571 <       ul_i(2) = eFrame_Row(6,atom1)
572 <       ul_i(3) = eFrame_Row(9,atom1)
570 >       uz_i(1) = eFrame_Row(3,atom1)
571 >       uz_i(2) = eFrame_Row(6,atom1)
572 >       uz_i(3) = eFrame_Row(9,atom1)
573   #else
574 <       ul_i(1) = eFrame(3,atom1)
575 <       ul_i(2) = eFrame(6,atom1)
576 <       ul_i(3) = eFrame(9,atom1)
574 >       uz_i(1) = eFrame(3,atom1)
575 >       uz_i(2) = eFrame(6,atom1)
576 >       uz_i(3) = eFrame(9,atom1)
577   #endif
578 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
578 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
579  
580         if (i_is_SplitDipole) then
581            d_i = ElectrostaticMap(me1)%split_dipole_distance
582         endif
583 <      
583 >       duduz_i = zero
584 >    endif
585 >
586 >    if (i_is_Quadrupole) then
587 >       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
588 >       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
589 >       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
590 > #ifdef IS_MPI
591 >       ux_i(1) = eFrame_Row(1,atom1)
592 >       ux_i(2) = eFrame_Row(4,atom1)
593 >       ux_i(3) = eFrame_Row(7,atom1)
594 >       uy_i(1) = eFrame_Row(2,atom1)
595 >       uy_i(2) = eFrame_Row(5,atom1)
596 >       uy_i(3) = eFrame_Row(8,atom1)
597 >       uz_i(1) = eFrame_Row(3,atom1)
598 >       uz_i(2) = eFrame_Row(6,atom1)
599 >       uz_i(3) = eFrame_Row(9,atom1)
600 > #else
601 >       ux_i(1) = eFrame(1,atom1)
602 >       ux_i(2) = eFrame(4,atom1)
603 >       ux_i(3) = eFrame(7,atom1)
604 >       uy_i(1) = eFrame(2,atom1)
605 >       uy_i(2) = eFrame(5,atom1)
606 >       uy_i(3) = eFrame(8,atom1)
607 >       uz_i(1) = eFrame(3,atom1)
608 >       uz_i(2) = eFrame(6,atom1)
609 >       uz_i(3) = eFrame(9,atom1)
610 > #endif
611 >       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
612 >       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
613 >       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
614 >       dudux_i = zero
615 >       duduy_i = zero
616 >       duduz_i = zero
617      endif
618  
619      if (j_is_Charge) then
620         q_j = ElectrostaticMap(me2)%charge      
621      endif
622 <    
622 >
623      if (j_is_Dipole) then
624         mu_j = ElectrostaticMap(me2)%dipole_moment
625   #ifdef IS_MPI
626 <       ul_j(1) = eFrame_Col(3,atom2)
627 <       ul_j(2) = eFrame_Col(6,atom2)
628 <       ul_j(3) = eFrame_Col(9,atom2)
626 >       uz_j(1) = eFrame_Col(3,atom2)
627 >       uz_j(2) = eFrame_Col(6,atom2)
628 >       uz_j(3) = eFrame_Col(9,atom2)
629   #else
630 <       ul_j(1) = eFrame(3,atom2)
631 <       ul_j(2) = eFrame(6,atom2)
632 <       ul_j(3) = eFrame(9,atom2)
630 >       uz_j(1) = eFrame(3,atom2)
631 >       uz_j(2) = eFrame(6,atom2)
632 >       uz_j(3) = eFrame(9,atom2)
633   #endif
634 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
634 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
635  
636         if (j_is_SplitDipole) then
637            d_j = ElectrostaticMap(me2)%split_dipole_distance
638         endif
639 +       duduz_j = zero
640      endif
641  
642 <    epot = 0.0_dp
643 <    dudx = 0.0_dp
644 <    dudy = 0.0_dp
645 <    dudz = 0.0_dp
642 >    if (j_is_Quadrupole) then
643 >       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
644 >       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
645 >       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
646 > #ifdef IS_MPI
647 >       ux_j(1) = eFrame_Col(1,atom2)
648 >       ux_j(2) = eFrame_Col(4,atom2)
649 >       ux_j(3) = eFrame_Col(7,atom2)
650 >       uy_j(1) = eFrame_Col(2,atom2)
651 >       uy_j(2) = eFrame_Col(5,atom2)
652 >       uy_j(3) = eFrame_Col(8,atom2)
653 >       uz_j(1) = eFrame_Col(3,atom2)
654 >       uz_j(2) = eFrame_Col(6,atom2)
655 >       uz_j(3) = eFrame_Col(9,atom2)
656 > #else
657 >       ux_j(1) = eFrame(1,atom2)
658 >       ux_j(2) = eFrame(4,atom2)
659 >       ux_j(3) = eFrame(7,atom2)
660 >       uy_j(1) = eFrame(2,atom2)
661 >       uy_j(2) = eFrame(5,atom2)
662 >       uy_j(3) = eFrame(8,atom2)
663 >       uz_j(1) = eFrame(3,atom2)
664 >       uz_j(2) = eFrame(6,atom2)
665 >       uz_j(3) = eFrame(9,atom2)
666 > #endif
667 >       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
668 >       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
669 >       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
670 >       dudux_j = zero
671 >       duduy_j = zero
672 >       duduz_j = zero
673 >    endif
674 >  
675 >    epot = zero
676 >    dudx = zero
677 >    dudy = zero
678 >    dudz = zero  
679  
425    duduix = 0.0_dp
426    duduiy = 0.0_dp
427    duduiz = 0.0_dp
428
429    dudujx = 0.0_dp
430    dudujy = 0.0_dp
431    dudujz = 0.0_dp
432
680      if (i_is_Charge) then
681  
682         if (j_is_Charge) then
683 <          
684 <          vterm = pre11 * q_i * q_j * riji
685 <          vpair = vpair + vterm
686 <          epot = epot + sw*vterm
687 <
688 <          dudr  = - sw * vterm * riji
442 <
443 <          dudx = dudx + dudr * drdxj
444 <          dudy = dudy + dudr * drdyj
445 <          dudz = dudz + dudr * drdzj
446 <      
447 <       endif
448 <
449 <       if (j_is_Dipole) then
450 <
451 <          if (j_is_SplitDipole) then
452 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
453 <             ri = 1.0_dp / BigR
454 <             scale = rij * ri
455 <          else
456 <             ri = riji
457 <             scale = 1.0_dp
683 >          if (screeningMethod .eq. DAMPED) then
684 >             call lookupUniformSpline1d(f0spline, rij, f0, df0)
685 >             f1 = -rij * df0 + f0
686 > !!$             f0 = derfc(dampingAlpha*rij)
687 > !!$             varEXP = exp(-alpha2*rij*rij)
688 > !!$             f1 = alphaPi*rij*varEXP + f0
689            endif
690  
691 <          ri2 = ri * ri
461 <          ri3 = ri2 * ri
462 <          sc2 = scale * scale
463 <            
464 <          pref = pre12 * q_i * mu_j
465 <          vterm = pref * ct_j * ri2 * scale
466 <          vpair = vpair + vterm
467 <          epot = epot + sw * vterm
691 >          preVal = pre11 * q_i * q_j
692  
693 <          !! this has a + sign in the () because the rij vector is
694 <          !! r_j - r_i and the charge-dipole potential takes the origin
695 <          !! as the point dipole, which is atom j in this case.
696 <
473 <          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0*ct_j*xhat*sc2)
474 <          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0*ct_j*yhat*sc2)
475 <          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0*ct_j*zhat*sc2)
476 <
477 <          dudujx = dudujx - pref * sw * ri2 * xhat * scale
478 <          dudujy = dudujy - pref * sw * ri2 * yhat * scale
479 <          dudujz = dudujz - pref * sw * ri2 * zhat * scale
480 <          
481 <       endif
482 <
483 <    endif
693 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
694 >             vterm = preVal * (riji*f0 - rcuti*f0c)
695 >            
696 >             dudr  = -sw * preVal * riji * riji * f1
697    
698 <    if (i_is_Dipole) then
699 <      
700 <       if (j_is_Charge) then
701 <
702 <          if (i_is_SplitDipole) then
703 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
704 <             ri = 1.0_dp / BigR
705 <             scale = rij * ri
698 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
699 >             vterm = preVal * ( riji*f0 - rcuti*f0c + &
700 >                  f1c*rcuti2*(rij-defaultCutoff) )
701 >            
702 >             dudr  = -sw*preVal * (riji*riji*f1 - rcuti2*f1c)
703 >  
704 >          elseif (summationMethod .eq. REACTION_FIELD) then
705 >             rfVal = preRF*rij*rij
706 >             vterm = preVal * ( riji + rfVal )
707 >            
708 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
709 >  
710            else
711 <             ri = riji
712 <             scale = 1.0_dp
711 >             vterm = preVal * riji*f0
712 >            
713 >             dudr  = - sw * preVal * riji*riji*f1
714 >  
715            endif
716  
498          ri2 = ri * ri
499          ri3 = ri2 * ri
500          sc2 = scale * scale
501            
502          pref = pre12 * q_j * mu_i
503          vterm = pref * ct_i * ri2 * scale
717            vpair = vpair + vterm
718 <          epot = epot + sw * vterm
718 >          epot = epot + sw*vterm
719  
720 <          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * xhat*sc2)
721 <          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * yhat*sc2)
722 <          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * zhat*sc2)
720 >          dudx = dudx + dudr * xhat
721 >          dudy = dudy + dudr * yhat
722 >          dudz = dudz + dudr * zhat
723  
511          duduix = duduix + pref * sw * ri2 * xhat * scale
512          duduiy = duduiy + pref * sw * ri2 * yhat * scale
513          duduiz = duduiz + pref * sw * ri2 * zhat * scale
724         endif
725  
726         if (j_is_Dipole) then
727 +          if (screeningMethod .eq. DAMPED) then
728 +             call lookupUniformSpline1d(f0spline, rij, f0, df0)
729 +             f1 = -rij * df0 + f0
730 +             f3 = -2.0d0*alpha2*df0*rij*rij*rij
731 + !!$             f0 = derfc(dampingAlpha*rij)
732 + !!$             varEXP = exp(-alpha2*rij*rij)
733 + !!$             f1 = alphaPi*rij*varEXP + f0
734 + !!$             f3 = alphaPi*2.0d0*alpha2*varEXP*rij*rij*rij
735 +          endif
736  
737 <          if (i_is_SplitDipole) then
738 <             if (j_is_SplitDipole) then
739 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
740 <             else
741 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
742 <             endif
743 <             ri = 1.0_dp / BigR
744 <             scale = rij * ri                
737 >          pref = pre12 * q_i * mu_j
738 >
739 >          if (summationMethod .eq. REACTION_FIELD) then
740 >             ri2 = riji * riji
741 >             ri3 = ri2 * riji
742 >    
743 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
744 >             vpair = vpair + vterm
745 >             epot = epot + sw*vterm
746 >            
747 >             !! this has a + sign in the () because the rij vector is
748 >             !! r_j - r_i and the charge-dipole potential takes the origin
749 >             !! as the point dipole, which is atom j in this case.
750 >            
751 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
752 >                                     preRF2*uz_j(1) )
753 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
754 >                                     preRF2*uz_j(2) )
755 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
756 >                                     preRF2*uz_j(3) )        
757 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
758 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
759 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
760 >
761            else
762               if (j_is_SplitDipole) then
763 <                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
764 <                ri = 1.0_dp / BigR
765 <                scale = rij * ri                            
766 <             else                
763 >                BigR = sqrt(r2 + 0.25d0 * d_j * d_j)
764 >                ri = 1.0d0 / BigR
765 >                scale = rij * ri
766 >             else
767                  ri = riji
768 <                scale = 1.0_dp
768 >                scale = 1.0d0
769               endif
770 +            
771 +             ri2 = ri * ri
772 +             ri3 = ri2 * ri
773 +             sc2 = scale * scale
774 +
775 +             pot_term =  ri2 * scale * f1
776 +             vterm = - pref * ct_j * pot_term
777 +             vpair = vpair + vterm
778 +             epot = epot + sw*vterm
779 +            
780 +             !! this has a + sign in the () because the rij vector is
781 +             !! r_j - r_i and the charge-dipole potential takes the origin
782 +             !! as the point dipole, which is atom j in this case.
783 +            
784 +             dudx = dudx - sw*pref * ri3 * ( uz_j(1)*f1 - &
785 +                  ct_j*xhat*sc2*( 3.0d0*f1 + f3 ) )
786 +             dudy = dudy - sw*pref * ri3 * ( uz_j(2)*f1 - &
787 +                  ct_j*yhat*sc2*( 3.0d0*f1 + f3 ) )
788 +             dudz = dudz - sw*pref * ri3 * ( uz_j(3)*f1 - &
789 +                  ct_j*zhat*sc2*( 3.0d0*f1 + f3 ) )
790 +                          
791 +             duduz_j(1) = duduz_j(1) - sw*pref * pot_term * xhat
792 +             duduz_j(2) = duduz_j(2) - sw*pref * pot_term * yhat
793 +             duduz_j(3) = duduz_j(3) - sw*pref * pot_term * zhat
794 +
795            endif
796 +       endif
797  
798 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
798 >       if (j_is_Quadrupole) then
799 >          if (screeningMethod .eq. DAMPED) then
800 >             call lookupUniformSpline1d(f0spline, rij, f0, df0)
801 > !!$             f0 = derfc(dampingAlpha*rij)
802 > !!$             varEXP = exp(-alpha2*rij*rij)
803 > !!$             f1 = alphaPi*rij*varEXP + f0
804 > !!$             f2 = alphaPi*2.0d0*alpha2*varEXP
805 >             f1 = -rij * df0 + f0
806 >             f2 = -2.0d0*alpha2*df0
807 >             f3 = f2*rij*rij*rij
808 >             f4 = 2.0d0*alpha2*f2*rij
809 >          endif
810  
811 <          ri2 = ri * ri
812 <          ri3 = ri2 * ri
811 >          ri2 = riji * riji
812 >          ri3 = ri2 * riji
813            ri4 = ri2 * ri2
814 <          sc2 = scale * scale
814 >          cx2 = cx_j * cx_j
815 >          cy2 = cy_j * cy_j
816 >          cz2 = cz_j * cz_j
817  
818 <          pref = pre22 * mu_i * mu_j
819 <          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
818 >          pref =  pre14 * q_i / 3.0d0
819 >          pot_term = ri3*(qxx_j * (3.0d0*cx2 - 1.0d0) + &
820 >               qyy_j * (3.0d0*cy2 - 1.0d0) + &
821 >               qzz_j * (3.0d0*cz2 - 1.0d0))
822 >          vterm = pref * (pot_term*f1 + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f2)
823            vpair = vpair + vterm
824 <          epot = epot + sw * vterm
824 >          epot = epot + sw*vterm
825            
826 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
827 <
828 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*ul_j(1)-ct_j*ul_i(1))
829 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*ul_j(2)-ct_j*ul_i(2))
830 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*ul_j(3)-ct_j*ul_i(3))
831 <
832 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*xhat*sc2)
833 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*yhat*sc2)
834 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*zhat*sc2)
835 <
836 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*xhat*sc2)
837 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*yhat*sc2)
838 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*zhat*sc2)
826 >          dudx = dudx - sw*pref*pot_term*riji*xhat*(5.0d0*f1 + f3) + &
827 >               sw*pref*ri4 * ( &
828 >               qxx_j*(2.0d0*cx_j*ux_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
829 >               qyy_j*(2.0d0*cy_j*uy_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
830 >               qzz_j*(2.0d0*cz_j*uz_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) ) &
831 >               + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4
832 >          dudy = dudy - sw*pref*pot_term*riji*yhat*(5.0d0*f1 + f3) + &
833 >               sw*pref*ri4 * ( &
834 >               qxx_j*(2.0d0*cx_j*ux_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
835 >               qyy_j*(2.0d0*cy_j*uy_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
836 >               qzz_j*(2.0d0*cz_j*uz_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) ) &
837 >               + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4
838 >          dudz = dudz - sw*pref*pot_term*riji*zhat*(5.0d0*f1 + f3) + &
839 >               sw*pref*ri4 * ( &
840 >               qxx_j*(2.0d0*cx_j*ux_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
841 >               qyy_j*(2.0d0*cy_j*uy_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
842 >               qzz_j*(2.0d0*cz_j*uz_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) ) &
843 >               + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4
844 >          
845 >          dudux_j(1) = dudux_j(1) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*xhat) &
846 >               * (3.0d0*f1 + f3) )
847 >          dudux_j(2) = dudux_j(2) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*yhat) &
848 >               * (3.0d0*f1 + f3) )
849 >          dudux_j(3) = dudux_j(3) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*zhat) &
850 >               * (3.0d0*f1 + f3) )
851 >          
852 >          duduy_j(1) = duduy_j(1) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*xhat) &
853 >               * (3.0d0*f1 + f3) )
854 >          duduy_j(2) = duduy_j(2) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*yhat) &
855 >               * (3.0d0*f1 + f3) )
856 >          duduy_j(3) = duduy_j(3) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*zhat) &
857 >               * (3.0d0*f1 + f3) )
858 >          
859 >          duduz_j(1) = duduz_j(1) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*xhat) &
860 >               * (3.0d0*f1 + f3) )
861 >          duduz_j(2) = duduz_j(2) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*yhat) &
862 >               * (3.0d0*f1 + f3) )
863 >          duduz_j(3) = duduz_j(3) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*zhat) &
864 >               * (3.0d0*f1 + f3) )
865 >          
866         endif
563
867      endif
868      
869 +    if (i_is_Dipole) then
870 +
871 +       if (j_is_Charge) then
872 +          if (screeningMethod .eq. DAMPED) then
873 +             call lookupUniformSpline1d(f0spline, rij, f0, df0)
874 +             f1 = -rij * df0 + f0
875 +             f3 = -2.0d0*alpha2*df0*rij*rij*rij
876 + !!$             f0 = derfc(dampingAlpha*rij)
877 + !!$             varEXP = exp(-alpha2*rij*rij)
878 + !!$             f1 = alphaPi*rij*varEXP + f0
879 + !!$             f3 = alphaPi*2.0d0*alpha2*varEXP*rij*rij*rij
880 +          endif
881 +          
882 +          pref = pre12 * q_j * mu_i
883 +          
884 +          if (summationMethod .eq. SHIFTED_POTENTIAL) then
885 +             ri2 = riji * riji
886 +             ri3 = ri2 * riji
887 +            
888 +             pot_term = ri2*f1 - rcuti2*f1c
889 +             vterm = pref * ct_i * pot_term
890 +             vpair = vpair + vterm
891 +             epot = epot + sw*vterm
892 +            
893 +             dudx = dudx + sw*pref*( ri3*(uz_i(1)*f1-ct_i*xhat*(3.0d0*f1+f3)) )
894 +             dudy = dudy + sw*pref*( ri3*(uz_i(2)*f1-ct_i*yhat*(3.0d0*f1+f3)) )
895 +             dudz = dudz + sw*pref*( ri3*(uz_i(3)*f1-ct_i*zhat*(3.0d0*f1+f3)) )
896 +            
897 +             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
898 +             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
899 +             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
900 +
901 +          elseif (summationMethod .eq. SHIFTED_FORCE) then
902 +             ri2 = riji * riji
903 +             ri3 = ri2 * riji
904 +
905 +             !! might need a -(f1c-f0c) or dct_i/dr in the derivative term...
906 +             pot_term = ri2*f1 - rcuti2*f1c + &
907 +                  (2.0d0*rcuti3*f1c + f2c)*( rij - defaultCutoff )
908 +             vterm = pref * ct_i * pot_term
909 +             vpair = vpair + vterm
910 +             epot = epot + sw*vterm
911 +            
912 +             dudx = dudx + sw*pref*( ri3*(uz_i(1)*f1-ct_i*xhat*(3.0d0*f1+f3)) &
913 +                  - rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) )
914 +             dudy = dudy + sw*pref*( ri3*(uz_i(2)*f1-ct_i*yhat*(3.0d0*f1+f3)) &
915 +                  - rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) )
916 +             dudz = dudz + sw*pref*( ri3*(uz_i(3)*f1-ct_i*zhat*(3.0d0*f1+f3)) &
917 +                  - rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) )
918 +            
919 +             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
920 +             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
921 +             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
922 +
923 +          elseif (summationMethod .eq. REACTION_FIELD) then
924 +             ri2 = riji * riji
925 +             ri3 = ri2 * riji
926 +
927 +             vterm = pref * ct_i * ( ri2 - preRF2*rij )
928 +             vpair = vpair + vterm
929 +             epot = epot + sw*vterm
930 +            
931 +             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
932 +                  preRF2*uz_i(1) )
933 +             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
934 +                  preRF2*uz_i(2) )
935 +             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
936 +                  preRF2*uz_i(3) )
937 +            
938 +             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
939 +             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
940 +             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
941 +
942 +          else
943 +             if (i_is_SplitDipole) then
944 +                BigR = sqrt(r2 + 0.25d0 * d_i * d_i)
945 +                ri = 1.0d0 / BigR
946 +                scale = rij * ri
947 +             else
948 +                ri = riji
949 +                scale = 1.0d0
950 +             endif
951 +            
952 +             ri2 = ri * ri
953 +             ri3 = ri2 * ri
954 +             sc2 = scale * scale
955 +
956 +             pot_term = ri2 * f1 * scale
957 +             vterm = pref * ct_i * pot_term
958 +             vpair = vpair + vterm
959 +             epot = epot + sw*vterm
960 +            
961 +             dudx = dudx + sw*pref * ri3 * ( uz_i(1)*f1 - &
962 +                  ct_i*xhat*sc2*( 3.0d0*f1 + f3 ) )
963 +             dudy = dudy + sw*pref * ri3 * ( uz_i(2)*f1 - &
964 +                  ct_i*yhat*sc2*( 3.0d0*f1 + f3 ) )
965 +             dudz = dudz + sw*pref * ri3 * ( uz_i(3)*f1 - &
966 +                  ct_i*zhat*sc2*( 3.0d0*f1 + f3 ) )
967 +            
968 +             duduz_i(1) = duduz_i(1) + sw*pref * pot_term * xhat
969 +             duduz_i(2) = duduz_i(2) + sw*pref * pot_term * yhat
970 +             duduz_i(3) = duduz_i(3) + sw*pref * pot_term * zhat
971 +          endif
972 +       endif
973 +      
974 +       if (j_is_Dipole) then
975 +          if (screeningMethod .eq. DAMPED) then
976 +             call lookupUniformSpline1d(f0spline, rij, f0, df0)
977 + !!$             f0 = derfc(dampingAlpha*rij)
978 + !!$             varEXP = exp(-alpha2*rij*rij)
979 + !!$             f1 = alphaPi*rij*varEXP + f0
980 + !!$             f2 = alphaPi*2.0d0*alpha2*varEXP
981 +             f1 = -rij * df0 + f0
982 +             f2 = -2.0d0*alpha2*df0
983 +             f3 = f2*rij*rij*rij
984 +             f4 = 2.0d0*alpha2*f3*rij*rij
985 +          endif
986 +
987 +          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
988 +          
989 +          ri2 = riji * riji
990 +          ri3 = ri2 * riji
991 +          ri4 = ri2 * ri2
992 +          
993 +          pref = pre22 * mu_i * mu_j
994 +
995 +          if (summationMethod .eq. REACTION_FIELD) then
996 +             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
997 +                  preRF2*ct_ij )
998 +             vpair = vpair + vterm
999 +             epot = epot + sw*vterm
1000 +            
1001 +             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1002 +            
1003 +             dudx = dudx + sw*pref*3.0d0*ri4 &
1004 +                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1005 +             dudy = dudy + sw*pref*3.0d0*ri4 &
1006 +                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1007 +             dudz = dudz + sw*pref*3.0d0*ri4 &
1008 +                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1009 +            
1010 +             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1011 +                  - preRF2*uz_j(1))
1012 +             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1013 +                  - preRF2*uz_j(2))
1014 +             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1015 +                  - preRF2*uz_j(3))
1016 +             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1017 +                  - preRF2*uz_i(1))
1018 +             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1019 +                  - preRF2*uz_i(2))
1020 +             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1021 +                  - preRF2*uz_i(3))
1022 +
1023 +          else
1024 +             if (i_is_SplitDipole) then
1025 +                if (j_is_SplitDipole) then
1026 +                   BigR = sqrt(r2 + 0.25d0 * d_i * d_i + 0.25d0 * d_j * d_j)
1027 +                else
1028 +                   BigR = sqrt(r2 + 0.25d0 * d_i * d_i)
1029 +                endif
1030 +                ri = 1.0d0 / BigR
1031 +                scale = rij * ri                
1032 +             else
1033 +                if (j_is_SplitDipole) then
1034 +                   BigR = sqrt(r2 + 0.25d0 * d_j * d_j)
1035 +                   ri = 1.0d0 / BigR
1036 +                   scale = rij * ri                            
1037 +                else                
1038 +                   ri = riji
1039 +                   scale = 1.0d0
1040 +                endif
1041 +             endif
1042 +            
1043 +             sc2 = scale * scale
1044 +
1045 +             pot_term = (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1046 +             vterm = pref * ( ri3*pot_term*f1 + (ct_i * ct_j)*f2 )
1047 +             vpair = vpair + vterm
1048 +             epot = epot + sw*vterm
1049 +            
1050 +             f13 = f1+f3
1051 +             f134 = f13 + f4
1052 +            
1053 + !!$             dudx = dudx + sw*pref * ( ri4*scale*( &
1054 + !!$                  3.0d0*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))*f1 &
1055 + !!$                  - pot_term*f3) &
1056 + !!$                  + 2.0d0*ct_i*ct_j*xhat*(ct_i*uz_j(1)+ct_j*uz_i(1))*f3 &
1057 + !!$                  + (ct_i * ct_j)*f4 )
1058 + !!$             dudy = dudy + sw*pref * ( ri4*scale*( &
1059 + !!$                  3.0d0*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))*f1 &
1060 + !!$                  - pot_term*f3) &
1061 + !!$                  + 2.0d0*ct_i*ct_j*yhat*(ct_i*uz_j(2)+ct_j*uz_i(2))*f3 &
1062 + !!$                  + (ct_i * ct_j)*f4 )
1063 + !!$             dudz = dudz + sw*pref * ( ri4*scale*( &
1064 + !!$                  3.0d0*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))*f1 &
1065 + !!$                  - pot_term*f3) &
1066 + !!$                  + 2.0d0*ct_i*ct_j*zhat*(ct_i*uz_j(3)+ct_j*uz_i(3))*f3 &
1067 + !!$                  + (ct_i * ct_j)*f4 )
1068 +
1069 +             dudx = dudx + sw*pref * ( ri4*scale*( &
1070 +                  15.0d0*(ct_i * ct_j * sc2)*xhat*f134 - &
1071 +                  3.0d0*(ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat)*f134) )
1072 +             dudy = dudy + sw*pref * ( ri4*scale*( &
1073 +                  15.0d0*(ct_i * ct_j * sc2)*yhat*f134 - &
1074 +                  3.0d0*(ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat)*f134) )
1075 +             dudz = dudz + sw*pref * ( ri4*scale*( &
1076 +                  15.0d0*(ct_i * ct_j * sc2)*zhat*f134 - &
1077 +                  3.0d0*(ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat)*f134) )
1078 +            
1079 +             duduz_i(1) = duduz_i(1) + sw*pref * &
1080 +                  ( ri3*(uz_j(1) - 3.0d0*ct_j*xhat*sc2)*f1 + (ct_j*xhat)*f2 )
1081 +             duduz_i(2) = duduz_i(2) + sw*pref * &
1082 +                  ( ri3*(uz_j(2) - 3.0d0*ct_j*yhat*sc2)*f1 + (ct_j*yhat)*f2 )
1083 +             duduz_i(3) = duduz_i(3) + sw*pref * &
1084 +                  ( ri3*(uz_j(3) - 3.0d0*ct_j*zhat*sc2)*f1 + (ct_j*zhat)*f2 )
1085 +            
1086 +             duduz_j(1) = duduz_j(1) + sw*pref * &
1087 +                  ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat*sc2)*f1 + (ct_i*xhat)*f2 )
1088 +             duduz_j(2) = duduz_j(2) + sw*pref * &
1089 +                  ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat*sc2)*f1 + (ct_i*yhat)*f2 )
1090 +             duduz_j(3) = duduz_j(3) + sw*pref * &
1091 +                  ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat*sc2)*f1 + (ct_i*zhat)*f2 )
1092 +          endif
1093 +       endif
1094 +    endif
1095 +
1096 +    if (i_is_Quadrupole) then
1097 +       if (j_is_Charge) then
1098 +          if (screeningMethod .eq. DAMPED) then
1099 +             call lookupUniformSpline1d(f0spline, rij, f0, df0)
1100 + !!$             f0 = derfc(dampingAlpha*rij)
1101 + !!$             varEXP = exp(-alpha2*rij*rij)
1102 + !!$             f1 = alphaPi*rij*varEXP + f0
1103 + !!$             f2 = alphaPi*2.0d0*alpha2*varEXP
1104 +             f1 = -rij * df0 + f0
1105 +             f2 = -2.0d0*alpha2*df0
1106 +             f3 = f2*rij*rij*rij
1107 +             f4 = 2.0d0*alpha2*f2*rij
1108 +          endif
1109 +
1110 +          ri2 = riji * riji
1111 +          ri3 = ri2 * riji
1112 +          ri4 = ri2 * ri2
1113 +          cx2 = cx_i * cx_i
1114 +          cy2 = cy_i * cy_i
1115 +          cz2 = cz_i * cz_i
1116 +
1117 +          pref = pre14 * q_j / 3.0d0
1118 +          pot_term = ri3 * (qxx_i * (3.0d0*cx2 - 1.0d0) + &
1119 +                            qyy_i * (3.0d0*cy2 - 1.0d0) + &
1120 +                            qzz_i * (3.0d0*cz2 - 1.0d0))
1121 +          vterm = pref * (pot_term*f1 + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f2)
1122 +          vpair = vpair + vterm
1123 +          epot = epot + sw*vterm
1124 +          
1125 +          dudx = dudx - sw*pref*pot_term*riji*xhat*(5.0d0*f1 + f3) + &
1126 +               sw*pref*ri4 * ( &
1127 +               qxx_i*(2.0d0*cx_i*ux_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
1128 +               qyy_i*(2.0d0*cy_i*uy_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
1129 +               qzz_i*(2.0d0*cz_i*uz_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) ) &
1130 +               + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4
1131 +          dudy = dudy - sw*pref*pot_term*riji*yhat*(5.0d0*f1 + f3) + &
1132 +               sw*pref*ri4 * ( &
1133 +               qxx_i*(2.0d0*cx_i*ux_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
1134 +               qyy_i*(2.0d0*cy_i*uy_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
1135 +               qzz_i*(2.0d0*cz_i*uz_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) ) &
1136 +               + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4
1137 +          dudz = dudz - sw*pref*pot_term*riji*zhat*(5.0d0*f1 + f3) + &
1138 +               sw*pref*ri4 * ( &
1139 +               qxx_i*(2.0d0*cx_i*ux_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
1140 +               qyy_i*(2.0d0*cy_i*uy_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
1141 +               qzz_i*(2.0d0*cz_i*uz_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) ) &
1142 +               + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4
1143 +          
1144 +          dudux_i(1) = dudux_i(1) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*xhat) &
1145 +               * (3.0d0*f1 + f3) )
1146 +          dudux_i(2) = dudux_i(2) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*yhat) &
1147 +               * (3.0d0*f1 + f3) )
1148 +          dudux_i(3) = dudux_i(3) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*zhat) &
1149 +               * (3.0d0*f1 + f3) )
1150 +          
1151 +          duduy_i(1) = duduy_i(1) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*xhat) &
1152 +               * (3.0d0*f1 + f3) )
1153 +          duduy_i(2) = duduy_i(2) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*yhat) &
1154 +               * (3.0d0*f1 + f3) )
1155 +          duduy_i(3) = duduy_i(3) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*zhat) &
1156 +               * (3.0d0*f1 + f3) )
1157 +          
1158 +          duduz_i(1) = duduz_i(1) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*xhat) &
1159 +               * (3.0d0*f1 + f3) )
1160 +          duduz_i(2) = duduz_i(2) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*yhat) &
1161 +               * (3.0d0*f1 + f3) )
1162 +          duduz_i(3) = duduz_i(3) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*zhat) &
1163 +               * (3.0d0*f1 + f3) )
1164 +
1165 +       endif
1166 +    endif
1167 +
1168 +
1169      if (do_pot) then
1170   #ifdef IS_MPI
1171 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1172 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1171 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1172 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1173   #else
1174         pot = pot + epot
1175   #endif
1176      endif
1177 <        
1177 >
1178   #ifdef IS_MPI
1179      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1180      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1181      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1182 <    
1182 >
1183      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1184      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1185      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1186 <    
1186 >
1187      if (i_is_Dipole .or. i_is_Quadrupole) then
1188 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1189 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1190 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1188 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1189 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1190 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1191      endif
1192 +    if (i_is_Quadrupole) then
1193 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1194 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1195 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1196  
1197 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1198 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1199 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1200 +    endif
1201 +
1202      if (j_is_Dipole .or. j_is_Quadrupole) then
1203 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1204 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1205 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1203 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1204 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1205 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1206      endif
1207 +    if (j_is_Quadrupole) then
1208 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1209 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1210 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1211  
1212 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1213 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1214 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1215 +    endif
1216 +
1217   #else
1218      f(1,atom1) = f(1,atom1) + dudx
1219      f(2,atom1) = f(2,atom1) + dudy
1220      f(3,atom1) = f(3,atom1) + dudz
1221 <    
1221 >
1222      f(1,atom2) = f(1,atom2) - dudx
1223      f(2,atom2) = f(2,atom2) - dudy
1224      f(3,atom2) = f(3,atom2) - dudz
1225 <    
1225 >
1226      if (i_is_Dipole .or. i_is_Quadrupole) then
1227 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1228 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1229 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1227 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1228 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1229 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1230      endif
1231 <      
1231 >    if (i_is_Quadrupole) then
1232 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1233 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1234 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1235 >
1236 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1237 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1238 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1239 >    endif
1240 >
1241      if (j_is_Dipole .or. j_is_Quadrupole) then
1242 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1243 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1244 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1242 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1243 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1244 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1245      endif
1246 +    if (j_is_Quadrupole) then
1247 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1248 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1249 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1250 +
1251 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1252 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1253 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1254 +    endif
1255 +
1256   #endif
1257 <    
1257 >
1258   #ifdef IS_MPI
1259      id1 = AtomRowToGlobal(atom1)
1260      id2 = AtomColToGlobal(atom2)
# Line 624 | Line 1264 | contains
1264   #endif
1265  
1266      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1267 <      
1267 >
1268         fpair(1) = fpair(1) + dudx
1269         fpair(2) = fpair(2) + dudy
1270         fpair(3) = fpair(3) + dudz
# Line 633 | Line 1273 | contains
1273  
1274      return
1275    end subroutine doElectrostaticPair
1276 <  
1276 >
1277 >  subroutine destroyElectrostaticTypes()
1278 >
1279 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1280 >
1281 >  end subroutine destroyElectrostaticTypes
1282 >
1283 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1284 >    logical, intent(in) :: do_pot
1285 >    integer, intent(in) :: atom1
1286 >    integer :: atid1
1287 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1288 >    real(kind=dp), dimension(3,nLocal) :: t
1289 >    real(kind=dp) :: mu1, c1
1290 >    real(kind=dp) :: preVal, epot, mypot
1291 >    real(kind=dp) :: eix, eiy, eiz
1292 >
1293 >    ! this is a local only array, so we use the local atom type id's:
1294 >    atid1 = atid(atom1)
1295 >
1296 >    if (.not.summationMethodChecked) then
1297 >       call checkSummationMethod()
1298 >    endif
1299 >    
1300 >    if (summationMethod .eq. REACTION_FIELD) then
1301 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1302 >          mu1 = getDipoleMoment(atid1)
1303 >          
1304 >          preVal = pre22 * preRF2 * mu1*mu1
1305 >          mypot = mypot - 0.5d0*preVal
1306 >          
1307 >          ! The self-correction term adds into the reaction field vector
1308 >          
1309 >          eix = preVal * eFrame(3,atom1)
1310 >          eiy = preVal * eFrame(6,atom1)
1311 >          eiz = preVal * eFrame(9,atom1)
1312 >          
1313 >          ! once again, this is self-self, so only the local arrays are needed
1314 >          ! even for MPI jobs:
1315 >          
1316 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1317 >               eFrame(9,atom1)*eiy
1318 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1319 >               eFrame(3,atom1)*eiz
1320 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1321 >               eFrame(6,atom1)*eix
1322 >          
1323 >       endif
1324 >
1325 >    elseif ( (summationMethod .eq. SHIFTED_FORCE) .or. &
1326 >         (summationMethod .eq. SHIFTED_POTENTIAL) ) then
1327 >       if (ElectrostaticMap(atid1)%is_Charge) then
1328 >          c1 = getCharge(atid1)
1329 >          
1330 >          if (screeningMethod .eq. DAMPED) then
1331 >             mypot = mypot - (f0c * rcuti * 0.5d0 + &
1332 >                  dampingAlpha*invRootPi) * c1 * c1    
1333 >            
1334 >          else            
1335 >             mypot = mypot - (rcuti * 0.5d0 * c1 * c1)
1336 >            
1337 >          endif
1338 >       endif
1339 >    endif
1340 >    
1341 >    return
1342 >  end subroutine self_self
1343 >
1344 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1345 >       f, t, do_pot)
1346 >    logical, intent(in) :: do_pot
1347 >    integer, intent(in) :: atom1
1348 >    integer, intent(in) :: atom2
1349 >    logical :: i_is_Charge, j_is_Charge
1350 >    logical :: i_is_Dipole, j_is_Dipole
1351 >    integer :: atid1
1352 >    integer :: atid2
1353 >    real(kind=dp), intent(in) :: rij
1354 >    real(kind=dp), intent(in) :: sw
1355 >    real(kind=dp), intent(in), dimension(3) :: d
1356 >    real(kind=dp), intent(inout) :: vpair
1357 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1358 >    real(kind=dp), dimension(3,nLocal) :: f
1359 >    real(kind=dp), dimension(3,nLocal) :: t
1360 >    real (kind = dp), dimension(3) :: duduz_i
1361 >    real (kind = dp), dimension(3) :: duduz_j
1362 >    real (kind = dp), dimension(3) :: uz_i
1363 >    real (kind = dp), dimension(3) :: uz_j
1364 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1365 >    real(kind=dp) :: xhat, yhat, zhat
1366 >    real(kind=dp) :: ct_i, ct_j
1367 >    real(kind=dp) :: ri2, ri3, riji, vterm
1368 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1369 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1370 >
1371 >    if (.not.summationMethodChecked) then
1372 >       call checkSummationMethod()
1373 >    endif
1374 >
1375 >    dudx = zero
1376 >    dudy = zero
1377 >    dudz = zero
1378 >
1379 >    riji = 1.0d0/rij
1380 >
1381 >    xhat = d(1) * riji
1382 >    yhat = d(2) * riji
1383 >    zhat = d(3) * riji
1384 >
1385 >    ! this is a local only array, so we use the local atom type id's:
1386 >    atid1 = atid(atom1)
1387 >    atid2 = atid(atom2)
1388 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1389 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1390 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1391 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1392 >
1393 >    if (i_is_Charge.and.j_is_Charge) then
1394 >       q_i = ElectrostaticMap(atid1)%charge
1395 >       q_j = ElectrostaticMap(atid2)%charge
1396 >      
1397 >       preVal = pre11 * q_i * q_j
1398 >       rfVal = preRF*rij*rij
1399 >       vterm = preVal * rfVal
1400 >      
1401 >       myPot = myPot + sw*vterm
1402 >      
1403 >       dudr  = sw*preVal * 2.0d0*rfVal*riji
1404 >      
1405 >       dudx = dudx + dudr * xhat
1406 >       dudy = dudy + dudr * yhat
1407 >       dudz = dudz + dudr * zhat
1408 >      
1409 >    elseif (i_is_Charge.and.j_is_Dipole) then
1410 >       q_i = ElectrostaticMap(atid1)%charge
1411 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1412 >       uz_j(1) = eFrame(3,atom2)
1413 >       uz_j(2) = eFrame(6,atom2)
1414 >       uz_j(3) = eFrame(9,atom2)
1415 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1416 >      
1417 >       ri2 = riji * riji
1418 >       ri3 = ri2 * riji
1419 >      
1420 >       pref = pre12 * q_i * mu_j
1421 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1422 >       myPot = myPot + sw*vterm
1423 >      
1424 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1425 >            - preRF2*uz_j(1) )
1426 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1427 >            - preRF2*uz_j(2) )
1428 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1429 >            - preRF2*uz_j(3) )
1430 >      
1431 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1432 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1433 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1434 >      
1435 >    elseif (i_is_Dipole.and.j_is_Charge) then
1436 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1437 >       q_j = ElectrostaticMap(atid2)%charge
1438 >       uz_i(1) = eFrame(3,atom1)
1439 >       uz_i(2) = eFrame(6,atom1)
1440 >       uz_i(3) = eFrame(9,atom1)
1441 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1442 >      
1443 >       ri2 = riji * riji
1444 >       ri3 = ri2 * riji
1445 >      
1446 >       pref = pre12 * q_j * mu_i
1447 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1448 >       myPot = myPot + sw*vterm
1449 >      
1450 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1451 >            - preRF2*uz_i(1) )
1452 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1453 >            - preRF2*uz_i(2) )
1454 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1455 >            - preRF2*uz_i(3) )
1456 >      
1457 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1458 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1459 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1460 >      
1461 >    endif
1462 >      
1463 >
1464 >    ! accumulate the forces and torques resulting from the self term
1465 >    f(1,atom1) = f(1,atom1) + dudx
1466 >    f(2,atom1) = f(2,atom1) + dudy
1467 >    f(3,atom1) = f(3,atom1) + dudz
1468 >    
1469 >    f(1,atom2) = f(1,atom2) - dudx
1470 >    f(2,atom2) = f(2,atom2) - dudy
1471 >    f(3,atom2) = f(3,atom2) - dudz
1472 >    
1473 >    if (i_is_Dipole) then
1474 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1475 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1476 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1477 >    elseif (j_is_Dipole) then
1478 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1479 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1480 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1481 >    endif
1482 >
1483 >    return
1484 >  end subroutine rf_self_excludes
1485 >
1486   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines