ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2118 by gezelter, Fri Mar 11 15:53:18 2005 UTC vs.
Revision 3122 by chuckv, Wed Feb 28 00:53:14 2007 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
47    use vector_class
48    use simulation
49    use status
50 +  use interpolation
51   #ifdef IS_MPI
52    use mpiSimulation
53   #endif
# Line 54 | Line 55 | module electrostatic_module
55  
56    PRIVATE
57  
58 +
59 + #define __FORTRAN90
60 + #include "UseTheForce/DarkSide/fInteractionMap.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
62 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
63 +
64 +
65    !! these prefactors convert the multipole interactions into kcal / mol
66    !! all were computed assuming distances are measured in angstroms
67    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 76 | module electrostatic_module
76    !! This unit is also known affectionately as an esu centi-barn.
77    real(kind=dp), parameter :: pre14 = 69.13373_dp
78  
79 +  real(kind=dp), parameter :: zero = 0.0_dp
80 +  
81 +  !! conversions for the simulation box dipole moment
82 +  real(kind=dp), parameter :: chargeToC = 1.60217733e-19_dp
83 +  real(kind=dp), parameter :: angstromToM = 1.0e-10_dp
84 +  real(kind=dp), parameter :: debyeToCm = 3.33564095198e-30_dp
85 +
86 +  !! number of points for electrostatic splines
87 +  integer, parameter :: np = 100
88 +
89 +  !! variables to handle different summation methods for long-range
90 +  !! electrostatics:
91 +  integer, save :: summationMethod = NONE
92 +  integer, save :: screeningMethod = UNDAMPED
93 +  logical, save :: summationMethodChecked = .false.
94 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
95 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
96 +  logical, save :: haveDefaultCutoff = .false.
97 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
98 +  real(kind=DP), save :: alpha2 = 0.0_DP
99 +  real(kind=DP), save :: alpha4 = 0.0_DP
100 +  real(kind=DP), save :: alpha6 = 0.0_DP
101 +  real(kind=DP), save :: alpha8 = 0.0_DP
102 +  logical, save :: haveDampingAlpha = .false.
103 +  real(kind=DP), save :: dielectric = 1.0_DP
104 +  logical, save :: haveDielectric = .false.
105 +  real(kind=DP), save :: constEXP = 0.0_DP
106 +  real(kind=dp), save :: rcuti = 0.0_DP
107 +  real(kind=dp), save :: rcuti2 = 0.0_DP
108 +  real(kind=dp), save :: rcuti3 = 0.0_DP
109 +  real(kind=dp), save :: rcuti4 = 0.0_DP
110 +  real(kind=dp), save :: alphaPi = 0.0_DP
111 +  real(kind=dp), save :: invRootPi = 0.0_DP
112 +  real(kind=dp), save :: rrf = 1.0_DP
113 +  real(kind=dp), save :: rt = 1.0_DP
114 +  real(kind=dp), save :: rrfsq = 1.0_DP
115 +  real(kind=dp), save :: preRF = 0.0_DP
116 +  real(kind=dp), save :: preRF2 = 0.0_DP
117 +  real(kind=dp), save :: erfcVal = 1.0_DP
118 +  real(kind=dp), save :: derfcVal = 0.0_DP
119 +  type(cubicSpline), save :: erfcSpline
120 +  logical, save :: haveElectroSpline = .false.
121 +  real(kind=dp), save :: c1 = 1.0_DP
122 +  real(kind=dp), save :: c2 = 1.0_DP
123 +  real(kind=dp), save :: c3 = 0.0_DP
124 +  real(kind=dp), save :: c4 = 0.0_DP
125 +  real(kind=dp), save :: c5 = 0.0_DP
126 +  real(kind=dp), save :: c6 = 0.0_DP
127 +  real(kind=dp), save :: c1c = 1.0_DP
128 +  real(kind=dp), save :: c2c = 1.0_DP
129 +  real(kind=dp), save :: c3c = 0.0_DP
130 +  real(kind=dp), save :: c4c = 0.0_DP
131 +  real(kind=dp), save :: c5c = 0.0_DP
132 +  real(kind=dp), save :: c6c = 0.0_DP
133 +  real(kind=dp), save :: one_third = 1.0_DP / 3.0_DP
134 +
135 + #if defined(__IFC) || defined(__PGI)
136 + ! error function for ifc version > 7.
137 +  real(kind=dp), external :: erfc
138 + #endif
139 +  
140 +  public :: setElectrostaticSummationMethod
141 +  public :: setScreeningMethod
142 +  public :: setElectrostaticCutoffRadius
143 +  public :: setDampingAlpha
144 +  public :: setReactionFieldDielectric
145 +  public :: buildElectroSpline
146    public :: newElectrostaticType
147    public :: setCharge
148    public :: setDipoleMoment
# Line 76 | Line 151 | module electrostatic_module
151    public :: doElectrostaticPair
152    public :: getCharge
153    public :: getDipoleMoment
154 +  public :: destroyElectrostaticTypes
155 +  public :: self_self
156 +  public :: rf_self_excludes
157 +  public :: accumulate_box_dipole
158  
159    type :: Electrostatic
160       integer :: c_ident
# Line 83 | Line 162 | module electrostatic_module
162       logical :: is_Dipole = .false.
163       logical :: is_SplitDipole = .false.
164       logical :: is_Quadrupole = .false.
165 +     logical :: is_Tap = .false.
166       real(kind=DP) :: charge = 0.0_DP
167       real(kind=DP) :: dipole_moment = 0.0_DP
168       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 91 | Line 171 | contains
171  
172    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
173  
174 +  logical, save :: hasElectrostaticMap
175 +
176   contains
177  
178 <  subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
179 <       is_SplitDipole, is_Quadrupole, status)
178 >  subroutine setElectrostaticSummationMethod(the_ESM)
179 >    integer, intent(in) :: the_ESM    
180 >
181 >    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
182 >       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
183 >    endif
184 >
185 >    summationMethod = the_ESM
186 >
187 >  end subroutine setElectrostaticSummationMethod
188 >
189 >  subroutine setScreeningMethod(the_SM)
190 >    integer, intent(in) :: the_SM    
191 >    screeningMethod = the_SM
192 >  end subroutine setScreeningMethod
193 >
194 >  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
195 >    real(kind=dp), intent(in) :: thisRcut
196 >    real(kind=dp), intent(in) :: thisRsw
197 >    defaultCutoff = thisRcut
198 >    defaultCutoff2 = defaultCutoff*defaultCutoff
199 >    rrf = defaultCutoff
200 >    rt = thisRsw
201 >    haveDefaultCutoff = .true.
202 >  end subroutine setElectrostaticCutoffRadius
203 >
204 >  subroutine setDampingAlpha(thisAlpha)
205 >    real(kind=dp), intent(in) :: thisAlpha
206 >    dampingAlpha = thisAlpha
207 >    alpha2 = dampingAlpha*dampingAlpha
208 >    alpha4 = alpha2*alpha2
209 >    alpha6 = alpha4*alpha2
210 >    alpha8 = alpha4*alpha4
211 >    haveDampingAlpha = .true.
212 >  end subroutine setDampingAlpha
213 >  
214 >  subroutine setReactionFieldDielectric(thisDielectric)
215 >    real(kind=dp), intent(in) :: thisDielectric
216 >    dielectric = thisDielectric
217 >    haveDielectric = .true.
218 >  end subroutine setReactionFieldDielectric
219 >
220 >  subroutine buildElectroSpline()
221 >    real( kind = dp ), dimension(np) :: xvals, yvals
222 >    real( kind = dp ) :: dx, rmin, rval
223 >    integer :: i
224 >
225 >    rmin = 0.0_dp
226 >
227 >    dx = (defaultCutoff-rmin) / dble(np-1)
228      
229 +    do i = 1, np
230 +       rval = rmin + dble(i-1)*dx
231 +       xvals(i) = rval
232 +       yvals(i) = erfc(dampingAlpha*rval)
233 +    enddo
234 +
235 +    call newSpline(erfcSpline, xvals, yvals, .true.)
236 +
237 +    haveElectroSpline = .true.
238 +  end subroutine buildElectroSpline
239 +
240 +  subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
241 +       is_SplitDipole, is_Quadrupole, is_Tap, status)
242 +
243      integer, intent(in) :: c_ident
244      logical, intent(in) :: is_Charge
245      logical, intent(in) :: is_Dipole
246      logical, intent(in) :: is_SplitDipole
247      logical, intent(in) :: is_Quadrupole
248 +    logical, intent(in) :: is_Tap
249      integer, intent(out) :: status
250      integer :: nAtypes, myATID, i, j
251  
252      status = 0
253      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
254 <    
254 >
255      !! Be simple-minded and assume that we need an ElectrostaticMap that
256      !! is the same size as the total number of atom types
257  
258      if (.not.allocated(ElectrostaticMap)) then
259 <      
259 >
260         nAtypes = getSize(atypes)
261 <    
261 >
262         if (nAtypes == 0) then
263            status = -1
264            return
265         end if
266 <      
267 <       if (.not. allocated(ElectrostaticMap)) then
268 <          allocate(ElectrostaticMap(nAtypes))
124 <       endif
125 <      
266 >
267 >       allocate(ElectrostaticMap(nAtypes))
268 >
269      end if
270  
271      if (myATID .gt. size(ElectrostaticMap)) then
272         status = -1
273         return
274      endif
275 <    
275 >
276      ! set the values for ElectrostaticMap for this atom type:
277  
278      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 137 | Line 280 | contains
280      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
281      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
282      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
283 <    
283 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
284 >
285 >    hasElectrostaticMap = .true.
286 >
287    end subroutine newElectrostaticType
288  
289    subroutine setCharge(c_ident, charge, status)
# Line 149 | Line 295 | contains
295      status = 0
296      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
297  
298 <    if (.not.allocated(ElectrostaticMap)) then
298 >    if (.not.hasElectrostaticMap) then
299         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!")
300         status = -1
301         return
# Line 165 | Line 311 | contains
311         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
312         status = -1
313         return
314 <    endif      
314 >    endif
315  
316      ElectrostaticMap(myATID)%charge = charge
317    end subroutine setCharge
# Line 179 | Line 325 | contains
325      status = 0
326      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
327  
328 <    if (.not.allocated(ElectrostaticMap)) then
328 >    if (.not.hasElectrostaticMap) then
329         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!")
330         status = -1
331         return
# Line 209 | Line 355 | contains
355      status = 0
356      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
357  
358 <    if (.not.allocated(ElectrostaticMap)) then
358 >    if (.not.hasElectrostaticMap) then
359         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!")
360         status = -1
361         return
# Line 239 | Line 385 | contains
385      status = 0
386      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
387  
388 <    if (.not.allocated(ElectrostaticMap)) then
388 >    if (.not.hasElectrostaticMap) then
389         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!")
390         status = -1
391         return
# Line 256 | Line 402 | contains
402         status = -1
403         return
404      endif
405 <    
405 >
406      do i = 1, 3
407 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
408 <               quadrupole_moments(i)
409 <       enddo
407 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
408 >            quadrupole_moments(i)
409 >    enddo
410  
411    end subroutine setQuadrupoleMoments
412  
413 <  
413 >
414    function getCharge(atid) result (c)
415      integer, intent(in) :: atid
416      integer :: localError
417      real(kind=dp) :: c
418 <    
419 <    if (.not.allocated(ElectrostaticMap)) then
418 >
419 >    if (.not.hasElectrostaticMap) then
420         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
421         return
422      end if
423 <    
423 >
424      if (.not.ElectrostaticMap(atid)%is_Charge) then
425         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
426         return
427      endif
428 <    
428 >
429      c = ElectrostaticMap(atid)%charge
430    end function getCharge
431  
# Line 287 | Line 433 | contains
433      integer, intent(in) :: atid
434      integer :: localError
435      real(kind=dp) :: dm
436 <    
437 <    if (.not.allocated(ElectrostaticMap)) then
436 >
437 >    if (.not.hasElectrostaticMap) then
438         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
439         return
440      end if
441 <    
441 >
442      if (.not.ElectrostaticMap(atid)%is_Dipole) then
443         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
444         return
445      endif
446 <    
446 >
447      dm = ElectrostaticMap(atid)%dipole_moment
448    end function getDipoleMoment
449  
450 <  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
450 >  subroutine checkSummationMethod()
451 >
452 >    if (.not.haveDefaultCutoff) then
453 >       call handleError("checkSummationMethod", "no Default Cutoff set!")
454 >    endif
455 >
456 >    rcuti = 1.0_dp / defaultCutoff
457 >    rcuti2 = rcuti*rcuti
458 >    rcuti3 = rcuti2*rcuti
459 >    rcuti4 = rcuti2*rcuti2
460 >
461 >    if (screeningMethod .eq. DAMPED) then
462 >       if (.not.haveDampingAlpha) then
463 >          call handleError("checkSummationMethod", "no Damping Alpha set!")
464 >       endif
465 >      
466 >       if (.not.haveDefaultCutoff) then
467 >          call handleError("checkSummationMethod", "no Default Cutoff set!")
468 >       endif
469 >
470 >       constEXP = exp(-alpha2*defaultCutoff2)
471 >       invRootPi = 0.56418958354775628695_dp
472 >       alphaPi = 2.0_dp*dampingAlpha*invRootPi
473 >
474 >       c1c = erfc(dampingAlpha*defaultCutoff) * rcuti
475 >       c2c = alphaPi*constEXP*rcuti + c1c*rcuti
476 >       c3c = 2.0_dp*alphaPi*alpha2 + 3.0_dp*c2c*rcuti
477 >       c4c = 4.0_dp*alphaPi*alpha4 + 5.0_dp*c3c*rcuti2
478 >       c5c = 8.0_dp*alphaPi*alpha6 + 7.0_dp*c4c*rcuti2
479 >       c6c = 16.0_dp*alphaPi*alpha8 + 9.0_dp*c5c*rcuti2
480 >    else
481 >       c1c = rcuti
482 >       c2c = c1c*rcuti
483 >       c3c = 3.0_dp*c2c*rcuti
484 >       c4c = 5.0_dp*c3c*rcuti2
485 >       c5c = 7.0_dp*c4c*rcuti2
486 >       c6c = 9.0_dp*c5c*rcuti2
487 >    endif
488 >
489 >    if (summationMethod .eq. REACTION_FIELD) then
490 >       if (haveDielectric) then
491 >          defaultCutoff2 = defaultCutoff*defaultCutoff
492 >          preRF = (dielectric-1.0_dp) / &
493 >               ((2.0_dp*dielectric+1.0_dp)*defaultCutoff2*defaultCutoff)
494 >          preRF2 = 2.0_dp*preRF
495 >       else
496 >          call handleError("checkSummationMethod", "Dielectric not set")
497 >       endif
498 >      
499 >    endif
500 >
501 >    if (.not.haveElectroSpline) then
502 >       call buildElectroSpline()
503 >    end if
504 >
505 >    summationMethodChecked = .true.
506 >  end subroutine checkSummationMethod
507 >
508 >
509 >  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, rcut, sw, &
510         vpair, fpair, pot, eFrame, f, t, do_pot)
511 <    
511 >
512      logical, intent(in) :: do_pot
513 <    
513 >
514      integer, intent(in) :: atom1, atom2
515      integer :: localError
516  
517 <    real(kind=dp), intent(in) :: rij, r2, sw
517 >    real(kind=dp), intent(in) :: rij, r2, sw, rcut
518      real(kind=dp), intent(in), dimension(3) :: d
519      real(kind=dp), intent(inout) :: vpair
520 <    real(kind=dp), intent(inout), dimension(3) :: fpair
520 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
521  
522      real( kind = dp ) :: pot
523      real( kind = dp ), dimension(9,nLocal) :: eFrame
524      real( kind = dp ), dimension(3,nLocal) :: f
525 +    real( kind = dp ), dimension(3,nLocal) :: felec
526      real( kind = dp ), dimension(3,nLocal) :: t
321    
322    real (kind = dp), dimension(3) :: ul_i
323    real (kind = dp), dimension(3) :: ul_j
527  
528 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
529 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
530 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
531 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
532 +
533      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
534      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
535 +    logical :: i_is_Tap, j_is_Tap
536      integer :: me1, me2, id1, id2
537      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
538 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
538 >    real (kind=dp) :: qxx_i, qyy_i, qzz_i
539 >    real (kind=dp) :: qxx_j, qyy_j, qzz_j
540 >    real (kind=dp) :: cx_i, cy_i, cz_i
541 >    real (kind=dp) :: cx_j, cy_j, cz_j
542 >    real (kind=dp) :: cx2, cy2, cz2
543 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
544      real (kind=dp) :: riji, ri, ri2, ri3, ri4
545 <    real (kind=dp) :: pref, vterm, epot, dudr    
545 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
546      real (kind=dp) :: xhat, yhat, zhat
547      real (kind=dp) :: dudx, dudy, dudz
334    real (kind=dp) :: drdxj, drdyj, drdzj
335    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
548      real (kind=dp) :: scale, sc2, bigR
549 +    real (kind=dp) :: varEXP
550 +    real (kind=dp) :: pot_term
551 +    real (kind=dp) :: preVal, rfVal
552 +    real (kind=dp) :: c2ri, c3ri, c4rij
553 +    real (kind=dp) :: cti3, ctj3, ctidotj
554 +    real (kind=dp) :: preSw, preSwSc
555 +    real (kind=dp) :: xhatdot2, yhatdot2, zhatdot2
556 +    real (kind=dp) :: xhatc4, yhatc4, zhatc4
557  
558 <    if (.not.allocated(ElectrostaticMap)) then
559 <       call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
560 <       return
341 <    end if
558 >    if (.not.summationMethodChecked) then
559 >       call checkSummationMethod()
560 >    endif
561  
562   #ifdef IS_MPI
563      me1 = atid_Row(atom1)
# Line 350 | Line 569 | contains
569  
570      !! some variables we'll need independent of electrostatic type:
571  
572 <    riji = 1.0d0 / rij
573 <
572 >    riji = 1.0_dp / rij
573 >  
574      xhat = d(1) * riji
575      yhat = d(2) * riji
576      zhat = d(3) * riji
577  
359    drdxj = xhat
360    drdyj = yhat
361    drdzj = zhat
362
578      !! logicals
364
579      i_is_Charge = ElectrostaticMap(me1)%is_Charge
580      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
581      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
582      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
583 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
584  
585      j_is_Charge = ElectrostaticMap(me2)%is_Charge
586      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
587      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
588      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
589 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
590  
591      if (i_is_Charge) then
592         q_i = ElectrostaticMap(me1)%charge      
593      endif
594 <    
594 >
595      if (i_is_Dipole) then
596         mu_i = ElectrostaticMap(me1)%dipole_moment
597   #ifdef IS_MPI
598 <       ul_i(1) = eFrame_Row(3,atom1)
599 <       ul_i(2) = eFrame_Row(6,atom1)
600 <       ul_i(3) = eFrame_Row(9,atom1)
598 >       uz_i(1) = eFrame_Row(3,atom1)
599 >       uz_i(2) = eFrame_Row(6,atom1)
600 >       uz_i(3) = eFrame_Row(9,atom1)
601   #else
602 <       ul_i(1) = eFrame(3,atom1)
603 <       ul_i(2) = eFrame(6,atom1)
604 <       ul_i(3) = eFrame(9,atom1)
602 >       uz_i(1) = eFrame(3,atom1)
603 >       uz_i(2) = eFrame(6,atom1)
604 >       uz_i(3) = eFrame(9,atom1)
605   #endif
606 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
606 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
607  
608         if (i_is_SplitDipole) then
609            d_i = ElectrostaticMap(me1)%split_dipole_distance
610         endif
611 <      
611 >       duduz_i = zero
612 >    endif
613 >
614 >    if (i_is_Quadrupole) then
615 >       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
616 >       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
617 >       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
618 > #ifdef IS_MPI
619 >       ux_i(1) = eFrame_Row(1,atom1)
620 >       ux_i(2) = eFrame_Row(4,atom1)
621 >       ux_i(3) = eFrame_Row(7,atom1)
622 >       uy_i(1) = eFrame_Row(2,atom1)
623 >       uy_i(2) = eFrame_Row(5,atom1)
624 >       uy_i(3) = eFrame_Row(8,atom1)
625 >       uz_i(1) = eFrame_Row(3,atom1)
626 >       uz_i(2) = eFrame_Row(6,atom1)
627 >       uz_i(3) = eFrame_Row(9,atom1)
628 > #else
629 >       ux_i(1) = eFrame(1,atom1)
630 >       ux_i(2) = eFrame(4,atom1)
631 >       ux_i(3) = eFrame(7,atom1)
632 >       uy_i(1) = eFrame(2,atom1)
633 >       uy_i(2) = eFrame(5,atom1)
634 >       uy_i(3) = eFrame(8,atom1)
635 >       uz_i(1) = eFrame(3,atom1)
636 >       uz_i(2) = eFrame(6,atom1)
637 >       uz_i(3) = eFrame(9,atom1)
638 > #endif
639 >       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
640 >       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
641 >       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
642 >       dudux_i = zero
643 >       duduy_i = zero
644 >       duduz_i = zero
645      endif
646  
647      if (j_is_Charge) then
648         q_j = ElectrostaticMap(me2)%charge      
649      endif
650 <    
650 >
651      if (j_is_Dipole) then
652         mu_j = ElectrostaticMap(me2)%dipole_moment
653   #ifdef IS_MPI
654 <       ul_j(1) = eFrame_Col(3,atom2)
655 <       ul_j(2) = eFrame_Col(6,atom2)
656 <       ul_j(3) = eFrame_Col(9,atom2)
654 >       uz_j(1) = eFrame_Col(3,atom2)
655 >       uz_j(2) = eFrame_Col(6,atom2)
656 >       uz_j(3) = eFrame_Col(9,atom2)
657   #else
658 <       ul_j(1) = eFrame(3,atom2)
659 <       ul_j(2) = eFrame(6,atom2)
660 <       ul_j(3) = eFrame(9,atom2)
658 >       uz_j(1) = eFrame(3,atom2)
659 >       uz_j(2) = eFrame(6,atom2)
660 >       uz_j(3) = eFrame(9,atom2)
661   #endif
662 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
662 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
663  
664         if (j_is_SplitDipole) then
665            d_j = ElectrostaticMap(me2)%split_dipole_distance
666         endif
667 +       duduz_j = zero
668      endif
669  
670 <    epot = 0.0_dp
671 <    dudx = 0.0_dp
672 <    dudy = 0.0_dp
673 <    dudz = 0.0_dp
670 >    if (j_is_Quadrupole) then
671 >       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
672 >       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
673 >       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
674 > #ifdef IS_MPI
675 >       ux_j(1) = eFrame_Col(1,atom2)
676 >       ux_j(2) = eFrame_Col(4,atom2)
677 >       ux_j(3) = eFrame_Col(7,atom2)
678 >       uy_j(1) = eFrame_Col(2,atom2)
679 >       uy_j(2) = eFrame_Col(5,atom2)
680 >       uy_j(3) = eFrame_Col(8,atom2)
681 >       uz_j(1) = eFrame_Col(3,atom2)
682 >       uz_j(2) = eFrame_Col(6,atom2)
683 >       uz_j(3) = eFrame_Col(9,atom2)
684 > #else
685 >       ux_j(1) = eFrame(1,atom2)
686 >       ux_j(2) = eFrame(4,atom2)
687 >       ux_j(3) = eFrame(7,atom2)
688 >       uy_j(1) = eFrame(2,atom2)
689 >       uy_j(2) = eFrame(5,atom2)
690 >       uy_j(3) = eFrame(8,atom2)
691 >       uz_j(1) = eFrame(3,atom2)
692 >       uz_j(2) = eFrame(6,atom2)
693 >       uz_j(3) = eFrame(9,atom2)
694 > #endif
695 >       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
696 >       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
697 >       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
698 >       dudux_j = zero
699 >       duduy_j = zero
700 >       duduz_j = zero
701 >    endif
702 >  
703 >    epot = zero
704 >    dudx = zero
705 >    dudy = zero
706 >    dudz = zero  
707  
425    duduix = 0.0_dp
426    duduiy = 0.0_dp
427    duduiz = 0.0_dp
428
429    dudujx = 0.0_dp
430    dudujy = 0.0_dp
431    dudujz = 0.0_dp
432
708      if (i_is_Charge) then
709  
710         if (j_is_Charge) then
711 <          
712 <          vterm = pre11 * q_i * q_j * riji
713 <          vpair = vpair + vterm
714 <          epot = epot + sw*vterm
715 <
441 <          dudr  = - sw * vterm * riji
442 <
443 <          dudx = dudx + dudr * drdxj
444 <          dudy = dudy + dudr * drdyj
445 <          dudz = dudz + dudr * drdzj
446 <      
447 <       endif
448 <
449 <       if (j_is_Dipole) then
450 <
451 <          if (j_is_SplitDipole) then
452 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
453 <             ri = 1.0_dp / BigR
454 <             scale = rij * ri
711 >          if (screeningMethod .eq. DAMPED) then
712 >             ! assemble the damping variables
713 >             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
714 >             c1 = erfcVal*riji
715 >             c2 = (-derfcVal + c1)*riji
716            else
717 <             ri = riji
718 <             scale = 1.0_dp
717 >             c1 = riji
718 >             c2 = c1*riji
719            endif
720  
721 <          ri2 = ri * ri
461 <          ri3 = ri2 * ri
462 <          sc2 = scale * scale
463 <            
464 <          pref = pre12 * q_i * mu_j
465 <          vterm = pref * ct_j * ri2 * scale
466 <          vpair = vpair + vterm
467 <          epot = epot + sw * vterm
721 >          preVal = pre11 * q_i * q_j
722  
723 <          !! this has a + sign in the () because the rij vector is
724 <          !! r_j - r_i and the charge-dipole potential takes the origin
725 <          !! as the point dipole, which is atom j in this case.
726 <
473 <          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0*ct_j*xhat*sc2)
474 <          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0*ct_j*yhat*sc2)
475 <          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0*ct_j*zhat*sc2)
476 <
477 <          dudujx = dudujx - pref * sw * ri2 * xhat * scale
478 <          dudujy = dudujy - pref * sw * ri2 * yhat * scale
479 <          dudujz = dudujz - pref * sw * ri2 * zhat * scale
480 <          
481 <       endif
482 <
483 <    endif
723 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
724 >             vterm = preVal * (c1 - c1c)
725 >            
726 >             dudr  = -sw * preVal * c2
727    
728 <    if (i_is_Dipole) then
729 <      
730 <       if (j_is_Charge) then
731 <
732 <          if (i_is_SplitDipole) then
733 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
734 <             ri = 1.0_dp / BigR
735 <             scale = rij * ri
728 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
729 >             vterm = preVal * ( c1 - c1c + c2c*(rij - defaultCutoff) )
730 >            
731 >             dudr  = sw * preVal * (c2c - c2)
732 >  
733 >          elseif (summationMethod .eq. REACTION_FIELD) then
734 >             rfVal = preRF*rij*rij
735 >             vterm = preVal * ( riji + rfVal )
736 >            
737 >             dudr  = sw * preVal * ( 2.0_dp*rfVal - riji )*riji
738 >  
739            else
740 <             ri = riji
741 <             scale = 1.0_dp
740 >             vterm = preVal * riji*erfcVal
741 >            
742 >             dudr  = - sw * preVal * c2
743 >  
744            endif
745  
498          ri2 = ri * ri
499          ri3 = ri2 * ri
500          sc2 = scale * scale
501            
502          pref = pre12 * q_j * mu_i
503          vterm = pref * ct_i * ri2 * scale
746            vpair = vpair + vterm
747 <          epot = epot + sw * vterm
747 >          epot = epot + sw*vterm
748  
749 <          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * xhat*sc2)
750 <          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * yhat*sc2)
751 <          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * zhat*sc2)
749 >          dudx = dudx + dudr * xhat
750 >          dudy = dudy + dudr * yhat
751 >          dudz = dudz + dudr * zhat
752  
511          duduix = duduix + pref * sw * ri2 * xhat * scale
512          duduiy = duduiy + pref * sw * ri2 * yhat * scale
513          duduiz = duduiz + pref * sw * ri2 * zhat * scale
753         endif
754  
755         if (j_is_Dipole) then
756 +          ! pref is used by all the possible methods
757 +          pref = pre12 * q_i * mu_j
758 +          preSw = sw*pref
759  
760 <          if (i_is_SplitDipole) then
761 <             if (j_is_SplitDipole) then
762 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
763 <             else
764 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
765 <             endif
766 <             ri = 1.0_dp / BigR
767 <             scale = rij * ri                
760 >          if (summationMethod .eq. REACTION_FIELD) then
761 >             ri2 = riji * riji
762 >             ri3 = ri2 * riji
763 >    
764 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
765 >             vpair = vpair + vterm
766 >             epot = epot + sw*vterm
767 >            
768 >             dudx = dudx - preSw*( ri3*(uz_j(1) - 3.0_dp*ct_j*xhat) - &
769 >                  preRF2*uz_j(1) )
770 >             dudy = dudy - preSw*( ri3*(uz_j(2) - 3.0_dp*ct_j*yhat) - &
771 >                  preRF2*uz_j(2) )
772 >             dudz = dudz - preSw*( ri3*(uz_j(3) - 3.0_dp*ct_j*zhat) - &
773 >                  preRF2*uz_j(3) )        
774 >             duduz_j(1) = duduz_j(1) - preSw * xhat * ( ri2 - preRF2*rij )
775 >             duduz_j(2) = duduz_j(2) - preSw * yhat * ( ri2 - preRF2*rij )
776 >             duduz_j(3) = duduz_j(3) - preSw * zhat * ( ri2 - preRF2*rij )
777 >
778            else
779 +             ! determine the inverse r used if we have split dipoles
780               if (j_is_SplitDipole) then
781                  BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
782                  ri = 1.0_dp / BigR
783 <                scale = rij * ri                            
784 <             else                
783 >                scale = rij * ri
784 >             else
785                  ri = riji
786                  scale = 1.0_dp
787               endif
535          endif
788  
789 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
789 >             sc2 = scale * scale
790  
791 <          ri2 = ri * ri
792 <          ri3 = ri2 * ri
793 <          ri4 = ri2 * ri2
794 <          sc2 = scale * scale
791 >             if (screeningMethod .eq. DAMPED) then
792 >                ! assemble the damping variables
793 >                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
794 >                c1 = erfcVal*ri
795 >                c2 = (-derfcVal + c1)*ri
796 >                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
797 >             else
798 >                c1 = ri
799 >                c2 = c1*ri
800 >                c3 = 3.0_dp*c2*ri
801 >             endif
802 >            
803 >             c2ri = c2*ri
804  
805 <          pref = pre22 * mu_i * mu_j
806 <          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
807 <          vpair = vpair + vterm
808 <          epot = epot + sw * vterm
809 <          
810 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
805 >             ! calculate the potential
806 >             pot_term =  scale * c2
807 >             vterm = -pref * ct_j * pot_term
808 >             vpair = vpair + vterm
809 >             epot = epot + sw*vterm
810 >            
811 >             ! calculate derivatives for forces and torques
812 >             dudx = dudx - preSw*( uz_j(1)*c2ri - ct_j*xhat*sc2*c3 )
813 >             dudy = dudy - preSw*( uz_j(2)*c2ri - ct_j*yhat*sc2*c3 )
814 >             dudz = dudz - preSw*( uz_j(3)*c2ri - ct_j*zhat*sc2*c3 )
815 >                          
816 >             duduz_j(1) = duduz_j(1) - preSw * pot_term * xhat
817 >             duduz_j(2) = duduz_j(2) - preSw * pot_term * yhat
818 >             duduz_j(3) = duduz_j(3) - preSw * pot_term * zhat
819  
820 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*ul_j(1)-ct_j*ul_i(1))
821 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*ul_j(2)-ct_j*ul_i(2))
553 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*ul_j(3)-ct_j*ul_i(3))
820 >          endif
821 >       endif
822  
823 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*xhat*sc2)
824 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*yhat*sc2)
825 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*zhat*sc2)
823 >       if (j_is_Quadrupole) then
824 >          ! first precalculate some necessary variables
825 >          cx2 = cx_j * cx_j
826 >          cy2 = cy_j * cy_j
827 >          cz2 = cz_j * cz_j
828 >          pref =  pre14 * q_i * one_third
829 >          
830 >          if (screeningMethod .eq. DAMPED) then
831 >             ! assemble the damping variables
832 >             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
833 >             c1 = erfcVal*riji
834 >             c2 = (-derfcVal + c1)*riji
835 >             c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*riji
836 >             c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*riji*riji
837 >          else
838 >             c1 = riji
839 >             c2 = c1*riji
840 >             c3 = 3.0_dp*c2*riji
841 >             c4 = 5.0_dp*c3*riji*riji
842 >          endif
843  
844 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*xhat*sc2)
845 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*yhat*sc2)
846 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*zhat*sc2)
847 <       endif
844 >          ! precompute variables for convenience
845 >          preSw = sw*pref
846 >          c2ri = c2*riji
847 >          c3ri = c3*riji
848 >          c4rij = c4*rij
849 >          xhatdot2 = 2.0_dp*xhat*c3
850 >          yhatdot2 = 2.0_dp*yhat*c3
851 >          zhatdot2 = 2.0_dp*zhat*c3
852 >          xhatc4 = xhat*c4rij
853 >          yhatc4 = yhat*c4rij
854 >          zhatc4 = zhat*c4rij
855  
856 +          ! calculate the potential
857 +          pot_term = ( qxx_j*(cx2*c3 - c2ri) + qyy_j*(cy2*c3 - c2ri) + &
858 +               qzz_j*(cz2*c3 - c2ri) )
859 +          vterm = pref * pot_term
860 +          vpair = vpair + vterm
861 +          epot = epot + sw*vterm
862 +
863 +          ! calculate derivatives for the forces and torques
864 +          dudx = dudx - preSw * ( &
865 +               qxx_j*(cx2*xhatc4 - (2.0_dp*cx_j*ux_j(1) + xhat)*c3ri) + &
866 +               qyy_j*(cy2*xhatc4 - (2.0_dp*cy_j*uy_j(1) + xhat)*c3ri) + &
867 +               qzz_j*(cz2*xhatc4 - (2.0_dp*cz_j*uz_j(1) + xhat)*c3ri) )
868 +          dudy = dudy - preSw * ( &
869 +               qxx_j*(cx2*yhatc4 - (2.0_dp*cx_j*ux_j(2) + yhat)*c3ri) + &
870 +               qyy_j*(cy2*yhatc4 - (2.0_dp*cy_j*uy_j(2) + yhat)*c3ri) + &
871 +               qzz_j*(cz2*yhatc4 - (2.0_dp*cz_j*uz_j(2) + yhat)*c3ri) )
872 +          dudz = dudz - preSw * ( &
873 +               qxx_j*(cx2*zhatc4 - (2.0_dp*cx_j*ux_j(3) + zhat)*c3ri) + &
874 +               qyy_j*(cy2*zhatc4 - (2.0_dp*cy_j*uy_j(3) + zhat)*c3ri) + &
875 +               qzz_j*(cz2*zhatc4 - (2.0_dp*cz_j*uz_j(3) + zhat)*c3ri) )
876 +          
877 +          dudux_j(1) = dudux_j(1) + preSw*(qxx_j*cx_j*xhatdot2)
878 +          dudux_j(2) = dudux_j(2) + preSw*(qxx_j*cx_j*yhatdot2)
879 +          dudux_j(3) = dudux_j(3) + preSw*(qxx_j*cx_j*zhatdot2)
880 +          
881 +          duduy_j(1) = duduy_j(1) + preSw*(qyy_j*cy_j*xhatdot2)
882 +          duduy_j(2) = duduy_j(2) + preSw*(qyy_j*cy_j*yhatdot2)
883 +          duduy_j(3) = duduy_j(3) + preSw*(qyy_j*cy_j*zhatdot2)
884 +          
885 +          duduz_j(1) = duduz_j(1) + preSw*(qzz_j*cz_j*xhatdot2)
886 +          duduz_j(2) = duduz_j(2) + preSw*(qzz_j*cz_j*yhatdot2)
887 +          duduz_j(3) = duduz_j(3) + preSw*(qzz_j*cz_j*zhatdot2)
888 +
889 +          
890 +       endif
891      endif
892      
893 +    if (i_is_Dipole) then
894 +
895 +       if (j_is_Charge) then
896 +          ! variables used by all the methods
897 +          pref = pre12 * q_j * mu_i                      
898 +          preSw = sw*pref
899 +
900 +          if (summationMethod .eq. REACTION_FIELD) then
901 +
902 +             ri2 = riji * riji
903 +             ri3 = ri2 * riji
904 +
905 +             vterm = pref * ct_i * ( ri2 - preRF2*rij )
906 +             vpair = vpair + vterm
907 +             epot = epot + sw*vterm
908 +            
909 +             dudx = dudx + preSw * ( ri3*(uz_i(1) - 3.0_dp*ct_i*xhat) - &
910 +                  preRF2*uz_i(1) )
911 +             dudy = dudy + preSw * ( ri3*(uz_i(2) - 3.0_dp*ct_i*yhat) - &
912 +                  preRF2*uz_i(2) )
913 +             dudz = dudz + preSw * ( ri3*(uz_i(3) - 3.0_dp*ct_i*zhat) - &
914 +                  preRF2*uz_i(3) )
915 +            
916 +             duduz_i(1) = duduz_i(1) + preSw * xhat * ( ri2 - preRF2*rij )
917 +             duduz_i(2) = duduz_i(2) + preSw * yhat * ( ri2 - preRF2*rij )
918 +             duduz_i(3) = duduz_i(3) + preSw * zhat * ( ri2 - preRF2*rij )
919 +
920 +          else
921 +             ! determine inverse r if we are using split dipoles
922 +             if (i_is_SplitDipole) then
923 +                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
924 +                ri = 1.0_dp / BigR
925 +                scale = rij * ri
926 +             else
927 +                ri = riji
928 +                scale = 1.0_dp
929 +             endif
930 +
931 +             sc2 = scale * scale
932 +              
933 +             if (screeningMethod .eq. DAMPED) then
934 +                ! assemble the damping variables
935 +                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
936 +                c1 = erfcVal*ri
937 +                c2 = (-derfcVal + c1)*ri
938 +                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
939 +             else
940 +                c1 = ri
941 +                c2 = c1*ri
942 +                c3 = 3.0_dp*c2*ri
943 +             endif
944 +            
945 +             c2ri = c2*ri
946 +
947 +             ! calculate the potential
948 +             pot_term = c2 * scale
949 +             vterm = pref * ct_i * pot_term
950 +             vpair = vpair + vterm
951 +             epot = epot + sw*vterm
952 +
953 +             ! calculate derivatives for the forces and torques
954 +             dudx = dudx + preSw * ( uz_i(1)*c2ri - ct_i*xhat*sc2*c3 )
955 +             dudy = dudy + preSw * ( uz_i(2)*c2ri - ct_i*yhat*sc2*c3 )
956 +             dudz = dudz + preSw * ( uz_i(3)*c2ri - ct_i*zhat*sc2*c3 )
957 +
958 +             duduz_i(1) = duduz_i(1) + preSw * pot_term * xhat
959 +             duduz_i(2) = duduz_i(2) + preSw * pot_term * yhat
960 +             duduz_i(3) = duduz_i(3) + preSw * pot_term * zhat
961 +            
962 +          endif
963 +       endif
964 +      
965 +       if (j_is_Dipole) then
966 +          ! variables used by all methods
967 +          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
968 +          pref = pre22 * mu_i * mu_j
969 +          preSw = sw*pref
970 +
971 +          if (summationMethod .eq. REACTION_FIELD) then
972 +             ri2 = riji * riji
973 +             ri3 = ri2 * riji
974 +             ri4 = ri2 * ri2
975 +
976 +             vterm = pref*( ri3*(ct_ij - 3.0_dp * ct_i * ct_j) - &
977 +                  preRF2*ct_ij )
978 +             vpair = vpair + vterm
979 +             epot = epot + sw*vterm
980 +            
981 +             a1 = 5.0_dp * ct_i * ct_j - ct_ij
982 +            
983 +             dudx = dudx + preSw*3.0_dp*ri4*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
984 +             dudy = dudy + preSw*3.0_dp*ri4*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
985 +             dudz = dudz + preSw*3.0_dp*ri4*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
986 +            
987 +             duduz_i(1) = duduz_i(1) + preSw*(ri3*(uz_j(1)-3.0_dp*ct_j*xhat) &
988 +                  - preRF2*uz_j(1))
989 +             duduz_i(2) = duduz_i(2) + preSw*(ri3*(uz_j(2)-3.0_dp*ct_j*yhat) &
990 +                  - preRF2*uz_j(2))
991 +             duduz_i(3) = duduz_i(3) + preSw*(ri3*(uz_j(3)-3.0_dp*ct_j*zhat) &
992 +                  - preRF2*uz_j(3))
993 +             duduz_j(1) = duduz_j(1) + preSw*(ri3*(uz_i(1)-3.0_dp*ct_i*xhat) &
994 +                  - preRF2*uz_i(1))
995 +             duduz_j(2) = duduz_j(2) + preSw*(ri3*(uz_i(2)-3.0_dp*ct_i*yhat) &
996 +                  - preRF2*uz_i(2))
997 +             duduz_j(3) = duduz_j(3) + preSw*(ri3*(uz_i(3)-3.0_dp*ct_i*zhat) &
998 +                  - preRF2*uz_i(3))
999 +
1000 +          else
1001 +             if (i_is_SplitDipole) then
1002 +                if (j_is_SplitDipole) then
1003 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
1004 +                else
1005 +                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
1006 +                endif
1007 +                ri = 1.0_dp / BigR
1008 +                scale = rij * ri                
1009 +             else
1010 +                if (j_is_SplitDipole) then
1011 +                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
1012 +                   ri = 1.0_dp / BigR
1013 +                   scale = rij * ri                            
1014 +                else                
1015 +                   ri = riji
1016 +                   scale = 1.0_dp
1017 +                endif
1018 +             endif
1019 +
1020 +             if (screeningMethod .eq. DAMPED) then
1021 +                ! assemble the damping variables
1022 +                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
1023 +                c1 = erfcVal*ri
1024 +                c2 = (-derfcVal + c1)*ri
1025 +                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
1026 +                c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*ri*ri
1027 +             else
1028 +                c1 = ri
1029 +                c2 = c1*ri
1030 +                c3 = 3.0_dp*c2*ri
1031 +                c4 = 5.0_dp*c3*ri*ri
1032 +             endif
1033 +
1034 +             ! precompute variables for convenience
1035 +             sc2 = scale * scale
1036 +             cti3 = ct_i*sc2*c3
1037 +             ctj3 = ct_j*sc2*c3
1038 +             ctidotj = ct_i * ct_j * sc2        
1039 +             preSwSc = preSw*scale
1040 +             c2ri = c2*ri
1041 +             c3ri = c3*ri
1042 +             c4rij = c4*rij
1043 +
1044 +
1045 +             ! calculate the potential
1046 +             pot_term = (ct_ij*c2ri - ctidotj*c3)
1047 +             vterm = pref * pot_term
1048 +             vpair = vpair + vterm
1049 +             epot = epot + sw*vterm
1050 +
1051 +             ! calculate derivatives for the forces and torques
1052 +             dudx = dudx + preSwSc * ( ctidotj*xhat*c4rij - &
1053 +                  (ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat)*c3ri )
1054 +             dudy = dudy + preSwSc * ( ctidotj*yhat*c4rij - &
1055 +                  (ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat)*c3ri )
1056 +             dudz = dudz + preSwSc * ( ctidotj*zhat*c4rij - &
1057 +                  (ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat)*c3ri )
1058 +
1059 +             duduz_i(1) = duduz_i(1) + preSw * ( uz_j(1)*c2ri - ctj3*xhat )
1060 +             duduz_i(2) = duduz_i(2) + preSw * ( uz_j(2)*c2ri - ctj3*yhat )
1061 +             duduz_i(3) = duduz_i(3) + preSw * ( uz_j(3)*c2ri - ctj3*zhat )
1062 +            
1063 +             duduz_j(1) = duduz_j(1) + preSw * ( uz_i(1)*c2ri - cti3*xhat )
1064 +             duduz_j(2) = duduz_j(2) + preSw * ( uz_i(2)*c2ri - cti3*yhat )
1065 +             duduz_j(3) = duduz_j(3) + preSw * ( uz_i(3)*c2ri - cti3*zhat )
1066 +
1067 +          endif
1068 +       endif
1069 +    endif
1070 +
1071 +    if (i_is_Quadrupole) then
1072 +       if (j_is_Charge) then
1073 +          ! precompute some necessary variables
1074 +          cx2 = cx_i * cx_i
1075 +          cy2 = cy_i * cy_i
1076 +          cz2 = cz_i * cz_i
1077 +          pref = pre14 * q_j * one_third
1078 +
1079 +          if (screeningMethod .eq. DAMPED) then
1080 +             ! assemble the damping variables
1081 +             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
1082 +             c1 = erfcVal*riji
1083 +             c2 = (-derfcVal + c1)*riji
1084 +             c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*riji
1085 +             c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*riji*riji
1086 +          else
1087 +             c1 = riji
1088 +             c2 = c1*riji
1089 +             c3 = 3.0_dp*c2*riji
1090 +             c4 = 5.0_dp*c3*riji*riji
1091 +          endif
1092 +          
1093 +          ! precompute some variables for convenience
1094 +          preSw = sw*pref
1095 +          c2ri = c2*riji
1096 +          c3ri = c3*riji
1097 +          c4rij = c4*rij
1098 +          xhatdot2 = 2.0_dp*xhat*c3
1099 +          yhatdot2 = 2.0_dp*yhat*c3
1100 +          zhatdot2 = 2.0_dp*zhat*c3
1101 +          xhatc4 = xhat*c4rij
1102 +          yhatc4 = yhat*c4rij
1103 +          zhatc4 = zhat*c4rij
1104 +
1105 +          ! calculate the potential
1106 +          pot_term = ( qxx_i * (cx2*c3 - c2ri) + qyy_i * (cy2*c3 - c2ri) + &
1107 +               qzz_i * (cz2*c3 - c2ri) )
1108 +
1109 +          vterm = pref * pot_term
1110 +          vpair = vpair + vterm
1111 +          epot = epot + sw*vterm
1112 +
1113 +          ! calculate the derivatives for the forces and torques
1114 +          dudx = dudx - preSw * ( &
1115 +               qxx_i*(cx2*xhatc4 - (2.0_dp*cx_i*ux_i(1) + xhat)*c3ri) + &
1116 +               qyy_i*(cy2*xhatc4 - (2.0_dp*cy_i*uy_i(1) + xhat)*c3ri) + &
1117 +               qzz_i*(cz2*xhatc4 - (2.0_dp*cz_i*uz_i(1) + xhat)*c3ri) )
1118 +          dudy = dudy - preSw * ( &
1119 +               qxx_i*(cx2*yhatc4 - (2.0_dp*cx_i*ux_i(2) + yhat)*c3ri) + &
1120 +               qyy_i*(cy2*yhatc4 - (2.0_dp*cy_i*uy_i(2) + yhat)*c3ri) + &
1121 +               qzz_i*(cz2*yhatc4 - (2.0_dp*cz_i*uz_i(2) + yhat)*c3ri) )
1122 +          dudz = dudz - preSw * ( &
1123 +               qxx_i*(cx2*zhatc4 - (2.0_dp*cx_i*ux_i(3) + zhat)*c3ri) + &
1124 +               qyy_i*(cy2*zhatc4 - (2.0_dp*cy_i*uy_i(3) + zhat)*c3ri) + &
1125 +               qzz_i*(cz2*zhatc4 - (2.0_dp*cz_i*uz_i(3) + zhat)*c3ri) )
1126 +          
1127 +          dudux_i(1) = dudux_i(1) + preSw*(qxx_i*cx_i*xhatdot2)
1128 +          dudux_i(2) = dudux_i(2) + preSw*(qxx_i*cx_i*yhatdot2)
1129 +          dudux_i(3) = dudux_i(3) + preSw*(qxx_i*cx_i*zhatdot2)
1130 +          
1131 +          duduy_i(1) = duduy_i(1) + preSw*(qyy_i*cy_i*xhatdot2)
1132 +          duduy_i(2) = duduy_i(2) + preSw*(qyy_i*cy_i*yhatdot2)
1133 +          duduy_i(3) = duduy_i(3) + preSw*(qyy_i*cy_i*zhatdot2)
1134 +          
1135 +          duduz_i(1) = duduz_i(1) + preSw*(qzz_i*cz_i*xhatdot2)
1136 +          duduz_i(2) = duduz_i(2) + preSw*(qzz_i*cz_i*yhatdot2)
1137 +          duduz_i(3) = duduz_i(3) + preSw*(qzz_i*cz_i*zhatdot2)
1138 +       endif
1139 +    endif
1140 +
1141 +
1142      if (do_pot) then
1143   #ifdef IS_MPI
1144 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1145 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1144 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5_dp*epot
1145 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5_dp*epot
1146   #else
1147         pot = pot + epot
1148   #endif
1149      endif
1150 <        
1150 >
1151   #ifdef IS_MPI
1152      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1153      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1154      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1155 <    
1155 >
1156      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1157      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1158      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1159 <    
1159 >
1160      if (i_is_Dipole .or. i_is_Quadrupole) then
1161 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1162 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1163 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1161 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1162 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1163 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1164      endif
1165 +    if (i_is_Quadrupole) then
1166 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1167 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1168 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1169  
1170 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1171 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1172 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1173 +    endif
1174 +
1175      if (j_is_Dipole .or. j_is_Quadrupole) then
1176 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1177 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1178 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1176 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1177 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1178 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1179      endif
1180 +    if (j_is_Quadrupole) then
1181 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1182 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1183 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1184  
1185 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1186 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1187 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1188 +    endif
1189 +
1190   #else
1191      f(1,atom1) = f(1,atom1) + dudx
1192      f(2,atom1) = f(2,atom1) + dudy
1193      f(3,atom1) = f(3,atom1) + dudz
1194 <    
1194 >
1195      f(1,atom2) = f(1,atom2) - dudx
1196      f(2,atom2) = f(2,atom2) - dudy
1197      f(3,atom2) = f(3,atom2) - dudz
1198 <    
1198 >
1199      if (i_is_Dipole .or. i_is_Quadrupole) then
1200 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1201 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1202 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1200 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1201 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1202 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1203      endif
1204 <      
1204 >    if (i_is_Quadrupole) then
1205 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1206 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1207 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1208 >
1209 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1210 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1211 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1212 >    endif
1213 >
1214      if (j_is_Dipole .or. j_is_Quadrupole) then
1215 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1216 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1217 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1215 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1216 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1217 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1218      endif
1219 +    if (j_is_Quadrupole) then
1220 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1221 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1222 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1223 +
1224 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1225 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1226 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1227 +    endif
1228 +
1229   #endif
1230 <    
1230 >
1231   #ifdef IS_MPI
1232      id1 = AtomRowToGlobal(atom1)
1233      id2 = AtomColToGlobal(atom2)
# Line 624 | Line 1237 | contains
1237   #endif
1238  
1239      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1240 <      
1240 >
1241         fpair(1) = fpair(1) + dudx
1242         fpair(2) = fpair(2) + dudy
1243         fpair(3) = fpair(3) + dudz
# Line 633 | Line 1246 | contains
1246  
1247      return
1248    end subroutine doElectrostaticPair
1249 <  
1249 >
1250 >  subroutine destroyElectrostaticTypes()
1251 >
1252 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1253 >
1254 >  end subroutine destroyElectrostaticTypes
1255 >
1256 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1257 >    logical, intent(in) :: do_pot
1258 >    integer, intent(in) :: atom1
1259 >    integer :: atid1
1260 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1261 >    real(kind=dp), dimension(3,nLocal) :: t
1262 >    real(kind=dp) :: mu1, chg1
1263 >    real(kind=dp) :: preVal, epot, mypot
1264 >    real(kind=dp) :: eix, eiy, eiz
1265 >
1266 >    ! this is a local only array, so we use the local atom type id's:
1267 >    atid1 = atid(atom1)
1268 >
1269 >    if (.not.summationMethodChecked) then
1270 >       call checkSummationMethod()
1271 >    endif
1272 >    
1273 >    if (summationMethod .eq. REACTION_FIELD) then
1274 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1275 >          mu1 = getDipoleMoment(atid1)
1276 >          
1277 >          preVal = pre22 * preRF2 * mu1*mu1
1278 >          mypot = mypot - 0.5_dp*preVal
1279 >          
1280 >          ! The self-correction term adds into the reaction field vector
1281 >          
1282 >          eix = preVal * eFrame(3,atom1)
1283 >          eiy = preVal * eFrame(6,atom1)
1284 >          eiz = preVal * eFrame(9,atom1)
1285 >          
1286 >          ! once again, this is self-self, so only the local arrays are needed
1287 >          ! even for MPI jobs:
1288 >          
1289 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1290 >               eFrame(9,atom1)*eiy
1291 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1292 >               eFrame(3,atom1)*eiz
1293 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1294 >               eFrame(6,atom1)*eix
1295 >          
1296 >       endif
1297 >
1298 >    elseif ( (summationMethod .eq. SHIFTED_FORCE) .or. &
1299 >         (summationMethod .eq. SHIFTED_POTENTIAL) ) then
1300 >       if (ElectrostaticMap(atid1)%is_Charge) then
1301 >          chg1 = getCharge(atid1)
1302 >          
1303 >          if (screeningMethod .eq. DAMPED) then
1304 >             mypot = mypot - 0.5_dp*(c1c + alphaPi) * chg1 * chg1 * pre11    
1305 >            
1306 >          else            
1307 >             mypot = mypot - 0.5_dp*(rcuti * chg1 * chg1) * pre11
1308 >            
1309 >          endif
1310 >       endif
1311 >    endif
1312 >    
1313 >    return
1314 >  end subroutine self_self
1315 >
1316 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1317 >       f, t, do_pot)
1318 >    logical, intent(in) :: do_pot
1319 >    integer, intent(in) :: atom1
1320 >    integer, intent(in) :: atom2
1321 >    logical :: i_is_Charge, j_is_Charge
1322 >    logical :: i_is_Dipole, j_is_Dipole
1323 >    integer :: atid1
1324 >    integer :: atid2
1325 >    real(kind=dp), intent(in) :: rij
1326 >    real(kind=dp), intent(in) :: sw
1327 >    real(kind=dp), intent(in), dimension(3) :: d
1328 >    real(kind=dp), intent(inout) :: vpair
1329 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1330 >    real(kind=dp), dimension(3,nLocal) :: f
1331 >    real(kind=dp), dimension(3,nLocal) :: t
1332 >    real (kind = dp), dimension(3) :: duduz_i
1333 >    real (kind = dp), dimension(3) :: duduz_j
1334 >    real (kind = dp), dimension(3) :: uz_i
1335 >    real (kind = dp), dimension(3) :: uz_j
1336 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1337 >    real(kind=dp) :: xhat, yhat, zhat
1338 >    real(kind=dp) :: ct_i, ct_j
1339 >    real(kind=dp) :: ri2, ri3, riji, vterm
1340 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1341 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1342 >
1343 >    if (.not.summationMethodChecked) then
1344 >       call checkSummationMethod()
1345 >    endif
1346 >
1347 >    dudx = zero
1348 >    dudy = zero
1349 >    dudz = zero
1350 >
1351 >    riji = 1.0_dp/rij
1352 >
1353 >    xhat = d(1) * riji
1354 >    yhat = d(2) * riji
1355 >    zhat = d(3) * riji
1356 >
1357 >    ! this is a local only array, so we use the local atom type id's:
1358 >    atid1 = atid(atom1)
1359 >    atid2 = atid(atom2)
1360 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1361 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1362 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1363 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1364 >
1365 >    if (i_is_Charge.and.j_is_Charge) then
1366 >       q_i = ElectrostaticMap(atid1)%charge
1367 >       q_j = ElectrostaticMap(atid2)%charge
1368 >      
1369 >       preVal = pre11 * q_i * q_j
1370 >       rfVal = preRF*rij*rij
1371 >       vterm = preVal * rfVal
1372 >      
1373 >       myPot = myPot + sw*vterm
1374 >      
1375 >       dudr  = sw*preVal * 2.0_dp*rfVal*riji
1376 >      
1377 >       dudx = dudx + dudr * xhat
1378 >       dudy = dudy + dudr * yhat
1379 >       dudz = dudz + dudr * zhat
1380 >      
1381 >    elseif (i_is_Charge.and.j_is_Dipole) then
1382 >       q_i = ElectrostaticMap(atid1)%charge
1383 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1384 >       uz_j(1) = eFrame(3,atom2)
1385 >       uz_j(2) = eFrame(6,atom2)
1386 >       uz_j(3) = eFrame(9,atom2)
1387 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1388 >      
1389 >       ri2 = riji * riji
1390 >       ri3 = ri2 * riji
1391 >      
1392 >       pref = pre12 * q_i * mu_j
1393 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1394 >       myPot = myPot + sw*vterm
1395 >      
1396 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0_dp*ct_j*xhat) &
1397 >            - preRF2*uz_j(1) )
1398 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0_dp*ct_j*yhat) &
1399 >            - preRF2*uz_j(2) )
1400 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0_dp*ct_j*zhat) &
1401 >            - preRF2*uz_j(3) )
1402 >      
1403 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1404 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1405 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1406 >      
1407 >    elseif (i_is_Dipole.and.j_is_Charge) then
1408 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1409 >       q_j = ElectrostaticMap(atid2)%charge
1410 >       uz_i(1) = eFrame(3,atom1)
1411 >       uz_i(2) = eFrame(6,atom1)
1412 >       uz_i(3) = eFrame(9,atom1)
1413 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1414 >      
1415 >       ri2 = riji * riji
1416 >       ri3 = ri2 * riji
1417 >      
1418 >       pref = pre12 * q_j * mu_i
1419 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1420 >       myPot = myPot + sw*vterm
1421 >      
1422 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0_dp*ct_i*xhat) &
1423 >            - preRF2*uz_i(1) )
1424 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0_dp*ct_i*yhat) &
1425 >            - preRF2*uz_i(2) )
1426 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0_dp*ct_i*zhat) &
1427 >            - preRF2*uz_i(3) )
1428 >      
1429 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1430 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1431 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1432 >      
1433 >    endif
1434 >      
1435 >
1436 >    ! accumulate the forces and torques resulting from the self term
1437 >    f(1,atom1) = f(1,atom1) + dudx
1438 >    f(2,atom1) = f(2,atom1) + dudy
1439 >    f(3,atom1) = f(3,atom1) + dudz
1440 >    
1441 >    f(1,atom2) = f(1,atom2) - dudx
1442 >    f(2,atom2) = f(2,atom2) - dudy
1443 >    f(3,atom2) = f(3,atom2) - dudz
1444 >    
1445 >    if (i_is_Dipole) then
1446 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1447 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1448 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1449 >    elseif (j_is_Dipole) then
1450 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1451 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1452 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1453 >    endif
1454 >
1455 >    return
1456 >  end subroutine rf_self_excludes
1457 >
1458 >  subroutine accumulate_box_dipole(atom1, eFrame, d, pChg, nChg, pChgPos, &
1459 >       nChgPos, dipVec, pChgCount, nChgCount)
1460 >    integer, intent(in) :: atom1
1461 >    logical :: i_is_Charge
1462 >    logical :: i_is_Dipole
1463 >    integer :: atid1
1464 >    integer :: pChgCount
1465 >    integer :: nChgCount
1466 >    real(kind=dp), intent(in), dimension(3) :: d
1467 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1468 >    real(kind=dp) :: pChg
1469 >    real(kind=dp) :: nChg
1470 >    real(kind=dp), dimension(3) :: pChgPos
1471 >    real(kind=dp), dimension(3) :: nChgPos
1472 >    real(kind=dp), dimension(3) :: dipVec
1473 >    real(kind=dp), dimension(3) :: uz_i
1474 >    real(kind=dp), dimension(3) :: pos
1475 >    real(kind=dp) :: q_i, mu_i
1476 >    real(kind=dp) :: pref, preVal
1477 >
1478 >    if (.not.summationMethodChecked) then
1479 >       call checkSummationMethod()
1480 >    endif
1481 >
1482 >    ! this is a local only array, so we use the local atom type id's:
1483 >    atid1 = atid(atom1)
1484 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1485 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1486 >    
1487 >    if (i_is_Charge) then
1488 >       q_i = ElectrostaticMap(atid1)%charge
1489 >       ! convert to the proper units
1490 >       q_i = q_i * chargeToC
1491 >       pos = d * angstromToM
1492 >
1493 >       if (q_i.le.0.0_dp) then
1494 >          nChg = nChg - q_i
1495 >          nChgPos(1) = nChgPos(1) + pos(1)
1496 >          nChgPos(2) = nChgPos(2) + pos(2)
1497 >          nChgPos(3) = nChgPos(3) + pos(3)
1498 >          nChgCount = nChgCount + 1
1499 >
1500 >       else
1501 >          pChg = pChg + q_i
1502 >          pChgPos(1) = pChgPos(1) + pos(1)
1503 >          pChgPos(2) = pChgPos(2) + pos(2)
1504 >          pChgPos(3) = pChgPos(3) + pos(3)
1505 >          pChgCount = pChgCount + 1
1506 >
1507 >       endif
1508 >
1509 >    endif
1510 >    
1511 >    if (i_is_Dipole) then
1512 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1513 >       uz_i(1) = eFrame(3,atom1)
1514 >       uz_i(2) = eFrame(6,atom1)
1515 >       uz_i(3) = eFrame(9,atom1)
1516 >       ! convert to the proper units
1517 >       mu_i = mu_i * debyeToCm
1518 >
1519 >       dipVec(1) = dipVec(1) + uz_i(1)*mu_i
1520 >       dipVec(2) = dipVec(2) + uz_i(2)*mu_i
1521 >       dipVec(3) = dipVec(3) + uz_i(3)*mu_i
1522 >
1523 >    endif
1524 >  
1525 >    return
1526 >  end subroutine accumulate_box_dipole
1527 >
1528   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines