ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2156 by chrisfen, Fri Apr 8 22:13:41 2005 UTC vs.
Revision 2395 by chrisfen, Mon Oct 24 14:06:36 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 +
58 + #define __FORTRAN90
59 + #include "UseTheForce/DarkSide/fInteractionMap.h"
60 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
61 +
62 +
63    !! these prefactors convert the multipole interactions into kcal / mol
64    !! all were computed assuming distances are measured in angstroms
65    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 74 | module electrostatic_module
74    !! This unit is also known affectionately as an esu centi-barn.
75    real(kind=dp), parameter :: pre14 = 69.13373_dp
76  
77 +  !! variables to handle different summation methods for long-range electrostatics:
78 +  integer, save :: summationMethod = NONE
79 +  logical, save :: summationMethodChecked = .false.
80 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
81 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
82 +  logical, save :: haveDefaultCutoff = .false.
83 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
84 +  logical, save :: haveDampingAlpha = .false.
85 +  real(kind=DP), save :: dielectric = 1.0_DP
86 +  logical, save :: haveDielectric = .false.
87 +  real(kind=DP), save :: constERFC = 0.0_DP
88 +  real(kind=DP), save :: constEXP = 0.0_DP
89 +  logical, save :: haveDWAconstants = .false.
90 +  real(kind=dp), save :: rcuti = 0.0_DP
91 +  real(kind=dp), save :: rcuti2 = 0.0_DP
92 +  real(kind=dp), save :: rcuti3 = 0.0_DP
93 +  real(kind=dp), save :: rcuti4 = 0.0_DP
94 +  real(kind=dp), save :: alphaPi = 0.0_DP
95 +  real(kind=dp), save :: invRootPi = 0.0_DP
96 +  real(kind=dp), save :: rrf = 1.0_DP
97 +  real(kind=dp), save :: rt = 1.0_DP
98 +  real(kind=dp), save :: rrfsq = 1.0_DP
99 +  real(kind=dp), save :: preRF = 0.0_DP
100 +  real(kind=dp), save :: preRF2 = 0.0_DP
101 +  logical, save :: preRFCalculated = .false.
102 +
103 + #ifdef __IFC
104 + ! error function for ifc version > 7.
105 +  double precision, external :: derfc
106 + #endif
107 +  
108 +  public :: setElectrostaticSummationMethod
109 +  public :: setElectrostaticCutoffRadius
110 +  public :: setDampedWolfAlpha
111 +  public :: setReactionFieldDielectric
112 +  public :: setReactionFieldPrefactor
113    public :: newElectrostaticType
114    public :: setCharge
115    public :: setDipoleMoment
# Line 76 | Line 118 | module electrostatic_module
118    public :: doElectrostaticPair
119    public :: getCharge
120    public :: getDipoleMoment
121 <  public :: pre22
121 >  public :: destroyElectrostaticTypes
122 >  public :: rf_self_self
123  
124    type :: Electrostatic
125       integer :: c_ident
# Line 84 | Line 127 | module electrostatic_module
127       logical :: is_Dipole = .false.
128       logical :: is_SplitDipole = .false.
129       logical :: is_Quadrupole = .false.
130 +     logical :: is_Tap = .false.
131       real(kind=DP) :: charge = 0.0_DP
132       real(kind=DP) :: dipole_moment = 0.0_DP
133       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 93 | Line 137 | contains
137    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
138  
139   contains
140 +
141 +  subroutine setElectrostaticSummationMethod(the_ESM)
142 +    integer, intent(in) :: the_ESM    
143 +
144 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
145 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
146 +    endif
147 +
148 +    summationMethod = the_ESM
149 +
150 +  end subroutine setElectrostaticSummationMethod
151 +
152 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
153 +    real(kind=dp), intent(in) :: thisRcut
154 +    real(kind=dp), intent(in) :: thisRsw
155 +    defaultCutoff = thisRcut
156 +    rrf = defaultCutoff
157 +    rt = thisRsw
158 +    haveDefaultCutoff = .true.
159 +  end subroutine setElectrostaticCutoffRadius
160  
161 +  subroutine setDampedWolfAlpha(thisAlpha)
162 +    real(kind=dp), intent(in) :: thisAlpha
163 +    dampingAlpha = thisAlpha
164 +    haveDampingAlpha = .true.
165 +  end subroutine setDampedWolfAlpha
166 +  
167 +  subroutine setReactionFieldDielectric(thisDielectric)
168 +    real(kind=dp), intent(in) :: thisDielectric
169 +    dielectric = thisDielectric
170 +    haveDielectric = .true.
171 +  end subroutine setReactionFieldDielectric
172 +
173 +  subroutine setReactionFieldPrefactor
174 +    if (haveDefaultCutoff .and. haveDielectric) then
175 +       defaultCutoff2 = defaultCutoff*defaultCutoff
176 +       preRF = (dielectric-1.0d0) / &
177 +            ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
178 +       preRF2 = 2.0d0*preRF
179 +       preRFCalculated = .true.
180 +    else if (.not.haveDefaultCutoff) then
181 +       call handleError("setReactionFieldPrefactor", "Default cutoff not set")
182 +    else
183 +       call handleError("setReactionFieldPrefactor", "Dielectric not set")
184 +    endif
185 +  end subroutine setReactionFieldPrefactor
186 +
187    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
188 <       is_SplitDipole, is_Quadrupole, status)
189 <    
188 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
189 >
190      integer, intent(in) :: c_ident
191      logical, intent(in) :: is_Charge
192      logical, intent(in) :: is_Dipole
193      logical, intent(in) :: is_SplitDipole
194      logical, intent(in) :: is_Quadrupole
195 +    logical, intent(in) :: is_Tap
196      integer, intent(out) :: status
197      integer :: nAtypes, myATID, i, j
198  
199      status = 0
200      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
201 <    
201 >
202      !! Be simple-minded and assume that we need an ElectrostaticMap that
203      !! is the same size as the total number of atom types
204  
205      if (.not.allocated(ElectrostaticMap)) then
206 <      
206 >
207         nAtypes = getSize(atypes)
208 <    
208 >
209         if (nAtypes == 0) then
210            status = -1
211            return
212         end if
213 <      
213 >
214         if (.not. allocated(ElectrostaticMap)) then
215            allocate(ElectrostaticMap(nAtypes))
216         endif
217 <      
217 >
218      end if
219  
220      if (myATID .gt. size(ElectrostaticMap)) then
221         status = -1
222         return
223      endif
224 <    
224 >
225      ! set the values for ElectrostaticMap for this atom type:
226  
227      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 138 | Line 229 | contains
229      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
230      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
231      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
232 <    
232 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
233 >
234    end subroutine newElectrostaticType
235  
236    subroutine setCharge(c_ident, charge, status)
# Line 166 | Line 258 | contains
258         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
259         status = -1
260         return
261 <    endif      
261 >    endif
262  
263      ElectrostaticMap(myATID)%charge = charge
264    end subroutine setCharge
# Line 257 | Line 349 | contains
349         status = -1
350         return
351      endif
352 <    
352 >
353      do i = 1, 3
354 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 <               quadrupole_moments(i)
356 <       enddo
354 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 >            quadrupole_moments(i)
356 >    enddo
357  
358    end subroutine setQuadrupoleMoments
359  
360 <  
360 >
361    function getCharge(atid) result (c)
362      integer, intent(in) :: atid
363      integer :: localError
364      real(kind=dp) :: c
365 <    
365 >
366      if (.not.allocated(ElectrostaticMap)) then
367         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
368         return
369      end if
370 <    
370 >
371      if (.not.ElectrostaticMap(atid)%is_Charge) then
372         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
373         return
374      endif
375 <    
375 >
376      c = ElectrostaticMap(atid)%charge
377    end function getCharge
378  
# Line 288 | Line 380 | contains
380      integer, intent(in) :: atid
381      integer :: localError
382      real(kind=dp) :: dm
383 <    
383 >
384      if (.not.allocated(ElectrostaticMap)) then
385         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
386         return
387      end if
388 <    
388 >
389      if (.not.ElectrostaticMap(atid)%is_Dipole) then
390         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
391         return
392      endif
393 <    
393 >
394      dm = ElectrostaticMap(atid)%dipole_moment
395    end function getDipoleMoment
396  
397 +  subroutine checkSummationMethod()
398 +
399 +    if (.not.haveDefaultCutoff) then
400 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
401 +    endif
402 +
403 +    rcuti = 1.0d0 / defaultCutoff
404 +    rcuti2 = rcuti*rcuti
405 +    rcuti3 = rcuti2*rcuti
406 +    rcuti4 = rcuti2*rcuti2
407 +
408 +    if (summationMethod .eq. DAMPED_WOLF) then
409 +       if (.not.haveDWAconstants) then
410 +          
411 +          if (.not.haveDampingAlpha) then
412 +             call handleError("checkSummationMethod", "no Damping Alpha set!")
413 +          endif
414 +          
415 +          if (.not.haveDefaultCutoff) then
416 +             call handleError("checkSummationMethod", "no Default Cutoff set!")
417 +          endif
418 +
419 +          constEXP = exp(-dampingAlpha*dampingAlpha*defaultCutoff*defaultCutoff)
420 +          constERFC = derfc(dampingAlpha*defaultCutoff)
421 +          invRootPi = 0.56418958354775628695d0
422 +          alphaPi = 2*dampingAlpha*invRootPi
423 +  
424 +          haveDWAconstants = .true.
425 +       endif
426 +    endif
427 +
428 +    if (summationMethod .eq. REACTION_FIELD) then
429 +       if (.not.haveDielectric) then
430 +          call handleError("checkSummationMethod", "no reaction field Dielectric set!")
431 +       endif
432 +    endif
433 +
434 +    summationMethodChecked = .true.
435 +  end subroutine checkSummationMethod
436 +
437 +
438 +
439    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
440         vpair, fpair, pot, eFrame, f, t, do_pot)
441 <    
441 >
442      logical, intent(in) :: do_pot
443 <    
443 >
444      integer, intent(in) :: atom1, atom2
445      integer :: localError
446  
# Line 319 | Line 453 | contains
453      real( kind = dp ), dimension(9,nLocal) :: eFrame
454      real( kind = dp ), dimension(3,nLocal) :: f
455      real( kind = dp ), dimension(3,nLocal) :: t
456 <    
456 >
457      real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
458      real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
459      real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
# Line 327 | Line 461 | contains
461  
462      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
463      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
464 +    logical :: i_is_Tap, j_is_Tap
465      integer :: me1, me2, id1, id2
466      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
467      real (kind=dp) :: qxx_i, qyy_i, qzz_i
# Line 336 | Line 471 | contains
471      real (kind=dp) :: cx2, cy2, cz2
472      real (kind=dp) :: ct_i, ct_j, ct_ij, a1
473      real (kind=dp) :: riji, ri, ri2, ri3, ri4
474 <    real (kind=dp) :: pref, vterm, epot, dudr    
474 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
475      real (kind=dp) :: xhat, yhat, zhat
476      real (kind=dp) :: dudx, dudy, dudz
342    real (kind=dp) :: drdxj, drdyj, drdzj
477      real (kind=dp) :: scale, sc2, bigR
478 +    real (kind=dp) :: varERFC, varEXP
479 +    real (kind=dp) :: limScale
480 +    real (kind=dp) :: preVal, rfVal
481  
482      if (.not.allocated(ElectrostaticMap)) then
483         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
484         return
485      end if
486  
487 +    if (.not.summationMethodChecked) then
488 +       call checkSummationMethod()
489 +    endif
490 +
491 +    if (.not.preRFCalculated) then
492 +       call setReactionFieldPrefactor()
493 +    endif
494 +
495   #ifdef IS_MPI
496      me1 = atid_Row(atom1)
497      me2 = atid_Col(atom2)
# Line 358 | Line 503 | contains
503      !! some variables we'll need independent of electrostatic type:
504  
505      riji = 1.0d0 / rij
506 <
506 >  
507      xhat = d(1) * riji
508      yhat = d(2) * riji
509      zhat = d(3) * riji
510  
366    drdxj = xhat
367    drdyj = yhat
368    drdzj = zhat
369
511      !! logicals
371
512      i_is_Charge = ElectrostaticMap(me1)%is_Charge
513      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
514      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
515      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
516 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
517  
518      j_is_Charge = ElectrostaticMap(me2)%is_Charge
519      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
520      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
521      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
522 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
523  
524      if (i_is_Charge) then
525         q_i = ElectrostaticMap(me1)%charge      
526      endif
527 <    
527 >
528      if (i_is_Dipole) then
529         mu_i = ElectrostaticMap(me1)%dipole_moment
530   #ifdef IS_MPI
# Line 399 | Line 541 | contains
541         if (i_is_SplitDipole) then
542            d_i = ElectrostaticMap(me1)%split_dipole_distance
543         endif
544 <      
544 >
545      endif
546  
547      if (i_is_Quadrupole) then
# Line 432 | Line 574 | contains
574         cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
575      endif
576  
435
577      if (j_is_Charge) then
578         q_j = ElectrostaticMap(me2)%charge      
579      endif
580 <    
580 >
581      if (j_is_Dipole) then
582         mu_j = ElectrostaticMap(me2)%dipole_moment
583   #ifdef IS_MPI
# Line 448 | Line 589 | contains
589         uz_j(2) = eFrame(6,atom2)
590         uz_j(3) = eFrame(9,atom2)
591   #endif
592 <       ct_j = uz_j(1)*drdxj + uz_j(2)*drdyj + uz_j(3)*drdzj
592 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
593  
594         if (j_is_SplitDipole) then
595            d_j = ElectrostaticMap(me2)%split_dipole_distance
# Line 484 | Line 625 | contains
625         cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
626         cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
627      endif
628 <
628 >  
629      epot = 0.0_dp
630      dudx = 0.0_dp
631      dudy = 0.0_dp
# Line 501 | Line 642 | contains
642      if (i_is_Charge) then
643  
644         if (j_is_Charge) then
504          
505          vterm = pre11 * q_i * q_j * riji
506          vpair = vpair + vterm
507          epot = epot + sw*vterm
645  
646 <          dudr  = - sw * vterm * riji
646 >          if (summationMethod .eq. UNDAMPED_WOLF) then
647 >             vterm = pre11 * q_i * q_j * (riji - rcuti)
648 >             vpair = vpair + vterm
649 >             epot = epot + sw*vterm
650 >            
651 >             dudr  = -sw*pre11*q_i*q_j * (riji*riji-rcuti2)*riji
652 >            
653 >             dudx = dudx + dudr * d(1)
654 >             dudy = dudy + dudr * d(2)
655 >             dudz = dudz + dudr * d(3)
656  
657 <          dudx = dudx + dudr * drdxj
658 <          dudy = dudy + dudr * drdyj
659 <          dudz = dudz + dudr * drdzj
660 <      
661 <       endif
657 >          elseif (summationMethod .eq. DAMPED_WOLF) then
658 >             varERFC = derfc(dampingAlpha*rij)
659 >             varEXP = exp(-dampingAlpha*dampingAlpha*rij*rij)
660 >             vterm = pre11 * q_i * q_j * (varERFC*riji - constERFC*rcuti)
661 >             vpair = vpair + vterm
662 >             epot = epot + sw*vterm
663 >            
664 >             dudr  = -sw*pre11*q_i*q_j * ( riji*((varERFC*riji*riji &
665 >                                                  + alphaPi*varEXP) &
666 >                                                 - (constERFC*rcuti2 &
667 >                                                    + alphaPi*constEXP)) )
668 >            
669 >             dudx = dudx + dudr * d(1)
670 >             dudy = dudy + dudr * d(2)
671 >             dudz = dudz + dudr * d(3)
672  
673 <       if (j_is_Dipole) then
673 >          elseif (summationMethod .eq. REACTION_FIELD) then
674 >             preVal = pre11 * q_i * q_j
675 >             rfVal = preRF*rij*rij
676 >             vterm = preVal * ( riji + rfVal )
677 >             vpair = vpair + vterm
678 >             epot = epot + sw*vterm
679 >            
680 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
681 >            
682 >             dudx = dudx + dudr * xhat
683 >             dudy = dudy + dudr * yhat
684 >             dudz = dudz + dudr * zhat
685  
519          if (j_is_SplitDipole) then
520             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
521             ri = 1.0_dp / BigR
522             scale = rij * ri
686            else
687 <             ri = riji
688 <             scale = 1.0_dp
687 >             vterm = pre11 * q_i * q_j * riji
688 >             vpair = vpair + vterm
689 >             epot = epot + sw*vterm
690 >            
691 >             dudr  = - sw * vterm * riji
692 >            
693 >             dudx = dudx + dudr * xhat
694 >             dudy = dudy + dudr * yhat
695 >             dudz = dudz + dudr * zhat
696 >
697            endif
698  
699 <          ri2 = ri * ri
700 <          ri3 = ri2 * ri
701 <          sc2 = scale * scale
702 <            
699 >       endif
700 >
701 >       if (j_is_Dipole) then
702 >
703            pref = pre12 * q_i * mu_j
533          vterm = - pref * ct_j * ri2 * scale
534          vpair = vpair + vterm
535          epot = epot + sw * vterm
704  
705 <          !! this has a + sign in the () because the rij vector is
706 <          !! r_j - r_i and the charge-dipole potential takes the origin
707 <          !! as the point dipole, which is atom j in this case.
705 >          if (summationMethod .eq. UNDAMPED_WOLF) then
706 >             ri2 = riji * riji
707 >             ri3 = ri2 * riji
708  
709 <          dudx = dudx - pref * sw * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
710 <          dudy = dudy - pref * sw * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
711 <          dudz = dudz - pref * sw * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
709 >             pref = pre12 * q_i * mu_j
710 >             vterm = - pref * ct_j * (ri2 - rcuti2)
711 >             vpair = vpair + vterm
712 >             epot = epot + sw*vterm
713 >            
714 >             !! this has a + sign in the () because the rij vector is
715 >             !! r_j - r_i and the charge-dipole potential takes the origin
716 >             !! as the point dipole, which is atom j in this case.
717 >            
718 >             dudx = dudx - sw*pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
719 >                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
720 >             dudy = dudy - sw*pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
721 >                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
722 >             dudz = dudz - sw*pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
723 >                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
724 >            
725 >             duduz_j(1) = duduz_j(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
726 >             duduz_j(2) = duduz_j(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
727 >             duduz_j(3) = duduz_j(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
728  
729 <          duduz_j(1) = duduz_j(1) - pref * sw * ri2 * xhat * scale
730 <          duduz_j(2) = duduz_j(2) - pref * sw * ri2 * yhat * scale
731 <          duduz_j(3) = duduz_j(3) - pref * sw * ri2 * zhat * scale
732 <          
729 >          elseif (summationMethod .eq. REACTION_FIELD) then
730 >             ri2 = ri * ri
731 >             ri3 = ri2 * ri
732 >    
733 >             pref = pre12 * q_i * mu_j
734 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
735 >             vpair = vpair + vterm
736 >             epot = epot + sw*vterm
737 >            
738 >             !! this has a + sign in the () because the rij vector is
739 >             !! r_j - r_i and the charge-dipole potential takes the origin
740 >             !! as the point dipole, which is atom j in this case.
741 >            
742 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
743 >                                     preRF2*uz_j(1) )
744 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
745 >                                     preRF2*uz_j(2) )
746 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
747 >                                     preRF2*uz_j(3) )        
748 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
749 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
750 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
751 >
752 >          else
753 >             if (j_is_SplitDipole) then
754 >                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
755 >                ri = 1.0_dp / BigR
756 >                scale = rij * ri
757 >             else
758 >                ri = riji
759 >                scale = 1.0_dp
760 >             endif
761 >            
762 >             ri2 = ri * ri
763 >             ri3 = ri2 * ri
764 >             sc2 = scale * scale
765 >
766 >             pref = pre12 * q_i * mu_j
767 >             vterm = - pref * ct_j * ri2 * scale
768 >             vpair = vpair + vterm
769 >             epot = epot + sw*vterm
770 >            
771 >             !! this has a + sign in the () because the rij vector is
772 >             !! r_j - r_i and the charge-dipole potential takes the origin
773 >             !! as the point dipole, which is atom j in this case.
774 >            
775 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
776 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
777 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
778 >            
779 >             duduz_j(1) = duduz_j(1) - sw*pref * ri2 * xhat * scale
780 >             duduz_j(2) = duduz_j(2) - sw*pref * ri2 * yhat * scale
781 >             duduz_j(3) = duduz_j(3) - sw*pref * ri2 * zhat * scale
782 >
783 >          endif
784         endif
785  
786         if (j_is_Quadrupole) then
# Line 556 | Line 791 | contains
791            cy2 = cy_j * cy_j
792            cz2 = cz_j * cz_j
793  
794 <
795 <          pref =  pre14 * q_i / 1.0_dp
796 <          vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
797 <               qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
798 <               qzz_j * (3.0_dp*cz2 - 1.0_dp))
799 <          vpair = vpair + vterm
800 <          epot = epot + sw * vterm
801 <
802 <          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + pref * sw * ri4 * ( &
803 <               qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
569 <               qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
570 <               qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
571 <          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + pref * sw * ri4 * ( &
572 <               qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
573 <               qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
574 <               qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
575 <          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + pref * sw * ri4 * ( &
576 <               qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
577 <               qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
578 <               qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
579 <          
580 <          dudux_j(1) = dudux_j(1) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*xhat)
581 <          dudux_j(2) = dudux_j(2) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*yhat)
582 <          dudux_j(3) = dudux_j(3) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*zhat)
583 <
584 <          duduy_j(1) = duduy_j(1) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*xhat)
585 <          duduy_j(2) = duduy_j(2) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*yhat)
586 <          duduy_j(3) = duduy_j(3) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*zhat)
587 <
588 <          duduz_j(1) = duduz_j(1) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*xhat)
589 <          duduz_j(2) = duduz_j(2) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*yhat)
590 <          duduz_j(3) = duduz_j(3) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*zhat)
591 <       endif
592 <
593 <    endif
594 <  
595 <    if (i_is_Dipole) then
596 <      
597 <       if (j_is_Charge) then
598 <
599 <          if (i_is_SplitDipole) then
600 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
601 <             ri = 1.0_dp / BigR
602 <             scale = rij * ri
603 <          else
604 <             ri = riji
605 <             scale = 1.0_dp
606 <          endif
607 <
608 <          ri2 = ri * ri
609 <          ri3 = ri2 * ri
610 <          sc2 = scale * scale
794 >          if (summationMethod .eq. UNDAMPED_WOLF) then
795 >             pref =  pre14 * q_i / 3.0_dp
796 >             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
797 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
798 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
799 >             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
800 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
801 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
802 >             vpair = vpair + ( vterm1 - vterm2 )
803 >             epot = epot + sw*( vterm1 - vterm2 )
804              
805 <          pref = pre12 * q_j * mu_i
806 <          vterm = pref * ct_i * ri2 * scale
807 <          vpair = vpair + vterm
808 <          epot = epot + sw * vterm
809 <
810 <          dudx = dudx + pref * sw * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
811 <          dudy = dudy + pref * sw * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
812 <          dudz = dudz + pref * sw * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
813 <
814 <          duduz_i(1) = duduz_i(1) + pref * sw * ri2 * xhat * scale
815 <          duduz_i(2) = duduz_i(2) + pref * sw * ri2 * yhat * scale
816 <          duduz_i(3) = duduz_i(3) + pref * sw * ri2 * zhat * scale
805 >             dudx = dudx - (5.0_dp * &
806 >                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + sw*pref * ( &
807 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
808 >                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
809 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
810 >                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
811 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
812 >                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
813 >             dudy = dudy - (5.0_dp * &
814 >                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + sw*pref * ( &
815 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
816 >                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
817 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
818 >                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
819 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
820 >                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
821 >             dudz = dudz - (5.0_dp * &
822 >                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + sw*pref * ( &
823 >                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
824 >                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
825 >                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
826 >                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
827 >                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
828 >                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
829 >            
830 >             dudux_j(1) = dudux_j(1) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*xhat) -&
831 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
832 >             dudux_j(2) = dudux_j(2) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*yhat) -&
833 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
834 >             dudux_j(3) = dudux_j(3) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*zhat) -&
835 >                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
836 >            
837 >             duduy_j(1) = duduy_j(1) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*xhat) -&
838 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
839 >             duduy_j(2) = duduy_j(2) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*yhat) -&
840 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
841 >             duduy_j(3) = duduy_j(3) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*zhat) -&
842 >                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
843 >            
844 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*xhat) -&
845 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
846 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*yhat) -&
847 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
848 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*zhat) -&
849 >                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
850 >        
851 >          else
852 >             pref =  pre14 * q_i / 3.0_dp
853 >             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
854 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
855 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
856 >             vpair = vpair + vterm
857 >             epot = epot + sw*vterm
858 >            
859 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
860 >                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
861 >                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
862 >                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
863 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
864 >                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
865 >                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
866 >                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
867 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
868 >                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
869 >                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
870 >                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
871 >            
872 >             dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
873 >             dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
874 >             dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
875 >            
876 >             duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
877 >             duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
878 >             duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
879 >            
880 >             duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
881 >             duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
882 >             duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
883 >          
884 >          endif
885         endif
886 +    endif
887  
888 <       if (j_is_Dipole) then
888 >    if (i_is_Dipole) then
889  
890 <          if (i_is_SplitDipole) then
891 <             if (j_is_SplitDipole) then
892 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
893 <             else
894 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
895 <             endif
896 <             ri = 1.0_dp / BigR
897 <             scale = rij * ri                
890 >       if (j_is_Charge) then
891 >          
892 >          pref = pre12 * q_j * mu_i
893 >          
894 >          if (summationMethod .eq. UNDAMPED_WOLF) then
895 >             ri2 = riji * riji
896 >             ri3 = ri2 * riji
897 >
898 >             pref = pre12 * q_j * mu_i
899 >             vterm = pref * ct_i * (ri2 - rcuti2)
900 >             vpair = vpair + vterm
901 >             epot = epot + sw*vterm
902 >            
903 >             !! this has a + sign in the () because the rij vector is
904 >             !! r_j - r_i and the charge-dipole potential takes the origin
905 >             !! as the point dipole, which is atom j in this case.
906 >            
907 >             dudx = dudx + sw*pref * ( ri3*( uz_i(1) - 3.0d0*ct_i*xhat) &
908 >                  - rcuti3*( uz_i(1) - 3.0d0*ct_i*d(1)*rcuti ) )
909 >             dudy = dudy + sw*pref * ( ri3*( uz_i(2) - 3.0d0*ct_i*yhat) &
910 >                  - rcuti3*( uz_i(2) - 3.0d0*ct_i*d(2)*rcuti ) )
911 >             dudz = dudz + sw*pref * ( ri3*( uz_i(3) - 3.0d0*ct_i*zhat) &
912 >                  - rcuti3*( uz_i(3) - 3.0d0*ct_i*d(3)*rcuti ) )
913 >            
914 >             duduz_i(1) = duduz_i(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
915 >             duduz_i(2) = duduz_i(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
916 >             duduz_i(3) = duduz_i(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
917 >
918 >          elseif (summationMethod .eq. REACTION_FIELD) then
919 >             ri2 = ri * ri
920 >             ri3 = ri2 * ri
921 >
922 >             pref = pre12 * q_j * mu_i
923 >             vterm = pref * ct_i * ( ri2 - preRF*rij )
924 >             vpair = vpair + vterm
925 >             epot = epot + sw*vterm
926 >            
927 >             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0*ct_i*xhat - &
928 >                                             preRF*uz_i(1) )
929 >             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0*ct_i*yhat - &
930 >                                             preRF*uz_i(2) )
931 >             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0*ct_i*zhat - &
932 >                                             preRF*uz_i(3) )
933 >            
934 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF*rij )
935 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF*rij )
936 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF*rij )
937 >
938            else
939 <             if (j_is_SplitDipole) then
940 <                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
939 >             if (i_is_SplitDipole) then
940 >                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
941                  ri = 1.0_dp / BigR
942 <                scale = rij * ri                            
943 <             else                
942 >                scale = rij * ri
943 >             else
944                  ri = riji
945                  scale = 1.0_dp
946               endif
947 +            
948 +             ri2 = ri * ri
949 +             ri3 = ri2 * ri
950 +             sc2 = scale * scale
951 +
952 +             pref = pre12 * q_j * mu_i
953 +             vterm = pref * ct_i * ri2 * scale
954 +             vpair = vpair + vterm
955 +             epot = epot + sw*vterm
956 +            
957 +             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
958 +             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
959 +             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
960 +            
961 +             duduz_i(1) = duduz_i(1) + sw*pref * ri2 * xhat * scale
962 +             duduz_i(2) = duduz_i(2) + sw*pref * ri2 * yhat * scale
963 +             duduz_i(3) = duduz_i(3) + sw*pref * ri2 * zhat * scale
964            endif
965 +       endif
966 +      
967 +       if (j_is_Dipole) then
968  
969 <          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
969 >          if (summationMethod .eq. UNDAMPED_WOLF) then
970 >             ri2 = riji * riji
971 >             ri3 = ri2 * riji
972 >             ri4 = ri2 * ri2
973  
974 <          ri2 = ri * ri
975 <          ri3 = ri2 * ri
976 <          ri4 = ri2 * ri2
977 <          sc2 = scale * scale
974 >             pref = pre22 * mu_i * mu_j
975 >             vterm = pref * (ri3 - rcuti3) * (ct_ij - 3.0d0 * ct_i * ct_j)
976 >             vpair = vpair + vterm
977 >             epot = epot + sw*vterm
978 >            
979 >             a1 = 5.0d0 * ct_i * ct_j - ct_ij
980 >            
981 >             dudx = dudx + sw*pref*3.0d0*ri4 &
982 >                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) &
983 >                         - sw*pref*3.0d0*rcuti4 &
984 >                             * (a1*rcuti*d(1)-ct_i*uz_j(1)-ct_j*uz_i(1))
985 >             dudy = dudy + sw*pref*3.0d0*ri4 &
986 >                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) &
987 >                         - sw*pref*3.0d0*rcuti4 &
988 >                             * (a1*rcuti*d(2)-ct_i*uz_j(2)-ct_j*uz_i(2))
989 >             dudz = dudz + sw*pref*3.0d0*ri4 &
990 >                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) &
991 >                         - sw*pref*3.0d0*rcuti4 &
992 >                             * (a1*rcuti*d(3)-ct_i*uz_j(3)-ct_j*uz_i(3))
993 >            
994 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
995 >                  - rcuti3*(uz_j(1) - 3.0d0*ct_j*d(1)*rcuti))
996 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
997 >                  - rcuti3*(uz_j(2) - 3.0d0*ct_j*d(2)*rcuti))
998 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
999 >                  - rcuti3*(uz_j(3) - 3.0d0*ct_j*d(3)*rcuti))
1000 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1001 >                  - rcuti3*(uz_i(1) - 3.0d0*ct_i*d(1)*rcuti))
1002 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1003 >                  - rcuti3*(uz_i(2) - 3.0d0*ct_i*d(2)*rcuti))
1004 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1005 >                  - rcuti3*(uz_i(3) - 3.0d0*ct_i*d(3)*rcuti))
1006  
1007 <          pref = pre22 * mu_i * mu_j
1008 <          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
656 <          vpair = vpair + vterm
657 <          epot = epot + sw * vterm
658 <          
659 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
1007 >         elseif (summationMethod .eq. REACTION_FIELD) then
1008 >             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
1009  
1010 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1011 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1012 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1010 >             ri2 = riji * riji
1011 >             ri3 = ri2 * riji
1012 >             ri4 = ri2 * ri2
1013  
1014 <          duduz_i(1) = duduz_i(1) + pref*sw*ri3*(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
1015 <          duduz_i(2) = duduz_i(2) + pref*sw*ri3*(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
1016 <          duduz_i(3) = duduz_i(3) + pref*sw*ri3*(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
1014 >             pref = pre22 * mu_i * mu_j
1015 >              
1016 >             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
1017 >                  preRF2*ct_ij )
1018 >             vpair = vpair + vterm
1019 >             epot = epot + sw*vterm
1020 >            
1021 >             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1022 >            
1023 >             dudx = dudx + sw*pref*3.0d0*ri4 &
1024 >                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1025 >             dudy = dudy + sw*pref*3.0d0*ri4 &
1026 >                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1027 >             dudz = dudz + sw*pref*3.0d0*ri4 &
1028 >                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1029 >            
1030 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1031 >                  - preRF2*uz_j(1))
1032 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1033 >                  - preRF2*uz_j(2))
1034 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1035 >                  - preRF2*uz_j(3))
1036 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1037 >                  - preRF2*uz_i(1))
1038 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1039 >                  - preRF2*uz_i(2))
1040 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1041 >                  - preRF2*uz_i(3))
1042  
1043 <          duduz_j(1) = duduz_j(1) + pref*sw*ri3*(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
1044 <          duduz_j(2) = duduz_j(2) + pref*sw*ri3*(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
1045 <          duduz_j(3) = duduz_j(3) + pref*sw*ri3*(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1043 >          else
1044 >             if (i_is_SplitDipole) then
1045 >                if (j_is_SplitDipole) then
1046 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
1047 >                else
1048 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
1049 >                endif
1050 >                ri = 1.0_dp / BigR
1051 >                scale = rij * ri                
1052 >             else
1053 >                if (j_is_SplitDipole) then
1054 >                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
1055 >                   ri = 1.0_dp / BigR
1056 >                   scale = rij * ri                            
1057 >                else                
1058 >                   ri = riji
1059 >                   scale = 1.0_dp
1060 >                endif
1061 >             endif
1062 >            
1063 >             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
1064 >            
1065 >             ri2 = ri * ri
1066 >             ri3 = ri2 * ri
1067 >             ri4 = ri2 * ri2
1068 >             sc2 = scale * scale
1069 >            
1070 >             pref = pre22 * mu_i * mu_j
1071 >             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1072 >             vpair = vpair + vterm
1073 >             epot = epot + sw*vterm
1074 >            
1075 >             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
1076 >            
1077 >             dudx = dudx + sw*pref*3.0d0*ri4*scale &
1078 >                             *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1079 >             dudy = dudy + sw*pref*3.0d0*ri4*scale &
1080 >                             *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1081 >             dudz = dudz + sw*pref*3.0d0*ri4*scale &
1082 >                             *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1083 >            
1084 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3 &
1085 >                                         *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
1086 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3 &
1087 >                                         *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
1088 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3 &
1089 >                                         *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
1090 >            
1091 >             duduz_j(1) = duduz_j(1) + sw*pref*ri3 &
1092 >                                         *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
1093 >             duduz_j(2) = duduz_j(2) + sw*pref*ri3 &
1094 >                                         *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
1095 >             duduz_j(3) = duduz_j(3) + sw*pref*ri3 &
1096 >                                         *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1097 >          endif
1098         endif
673
1099      endif
1100  
1101      if (i_is_Quadrupole) then
1102         if (j_is_Charge) then
1103 <          
1103 >
1104            ri2 = riji * riji
1105            ri3 = ri2 * riji
1106            ri4 = ri2 * ri2
1107            cx2 = cx_i * cx_i
1108            cy2 = cy_i * cy_i
1109            cz2 = cz_i * cz_i
1110 <          
1111 <          pref = pre14 * q_j / 1.0_dp
1112 <          vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1113 <               qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1114 <               qzz_i * (3.0_dp*cz2 - 1.0_dp))
1115 <          vpair = vpair + vterm
1116 <          epot = epot + sw * vterm
1117 <          
1118 <          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + pref * sw * ri4 * ( &
1119 <               qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1120 <               qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1121 <               qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1122 <          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + pref * sw * ri4 * ( &
1123 <               qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1124 <               qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1125 <               qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1126 <          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + pref * sw * ri4 * ( &
1127 <               qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1128 <               qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1129 <               qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1130 <          
1131 <          dudux_i(1) = dudux_i(1) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*xhat)
1132 <          dudux_i(2) = dudux_i(2) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*yhat)
1133 <          dudux_i(3) = dudux_i(3) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*zhat)
1134 <          
1135 <          duduy_i(1) = duduy_i(1) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*xhat)
1136 <          duduy_i(2) = duduy_i(2) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*yhat)
1137 <          duduy_i(3) = duduy_i(3) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*zhat)
1138 <          
1139 <          duduz_i(1) = duduz_i(1) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*xhat)
1140 <          duduz_i(2) = duduz_i(2) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*yhat)
1141 <          duduz_i(3) = duduz_i(3) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*zhat)
1110 >
1111 >          if (summationMethod .eq. UNDAMPED_WOLF) then
1112 >             pref = pre14 * q_j / 3.0_dp
1113 >             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1114 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1115 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1116 >             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1117 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1118 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1119 >             vpair = vpair + ( vterm1 - vterm2 )
1120 >             epot = epot + sw*( vterm1 - vterm2 )
1121 >            
1122 >             dudx = dudx - sw*(5.0_dp*(vterm1*riji*xhat-vterm2*rcuti2*d(1))) +&
1123 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
1124 >                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
1125 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
1126 >                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
1127 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
1128 >                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
1129 >             dudy = dudy - sw*(5.0_dp*(vterm1*riji*yhat-vterm2*rcuti2*d(2))) +&
1130 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
1131 >                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
1132 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
1133 >                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
1134 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
1135 >                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
1136 >             dudz = dudz - sw*(5.0_dp*(vterm1*riji*zhat-vterm2*rcuti2*d(3))) +&
1137 >                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
1138 >                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
1139 >                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
1140 >                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
1141 >                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
1142 >                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
1143 >            
1144 >             dudux_i(1) = dudux_i(1) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*xhat) -&
1145 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
1146 >             dudux_i(2) = dudux_i(2) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*yhat) -&
1147 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
1148 >             dudux_i(3) = dudux_i(3) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*zhat) -&
1149 >                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
1150 >            
1151 >             duduy_i(1) = duduy_i(1) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*xhat) -&
1152 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
1153 >             duduy_i(2) = duduy_i(2) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*yhat) -&
1154 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
1155 >             duduy_i(3) = duduy_i(3) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*zhat) -&
1156 >                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
1157 >            
1158 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*xhat) -&
1159 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
1160 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*yhat) -&
1161 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1162 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*zhat) -&
1163 >                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1164 >
1165 >          else
1166 >             pref = pre14 * q_j / 3.0_dp
1167 >             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1168 >                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1169 >                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1170 >             vpair = vpair + vterm
1171 >             epot = epot + sw*vterm
1172 >            
1173 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
1174 >                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1175 >                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1176 >                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1177 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
1178 >                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1179 >                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1180 >                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1181 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
1182 >                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1183 >                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1184 >                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1185 >            
1186 >             dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
1187 >             dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
1188 >             dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1189 >            
1190 >             duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1191 >             duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1192 >             duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1193 >            
1194 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1195 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1196 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1197 >          endif
1198         endif
1199      endif
1200 <      
1201 <    
1200 >
1201 >
1202      if (do_pot) then
1203   #ifdef IS_MPI
1204 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1205 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1204 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1205 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1206   #else
1207         pot = pot + epot
1208   #endif
1209      endif
1210 <        
1210 >
1211   #ifdef IS_MPI
1212      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1213      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1214      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1215 <    
1215 >
1216      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1217      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1218      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1219 <    
1219 >
1220      if (i_is_Dipole .or. i_is_Quadrupole) then
1221         t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1222         t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
# Line 770 | Line 1251 | contains
1251      f(1,atom1) = f(1,atom1) + dudx
1252      f(2,atom1) = f(2,atom1) + dudy
1253      f(3,atom1) = f(3,atom1) + dudz
1254 <    
1254 >
1255      f(1,atom2) = f(1,atom2) - dudx
1256      f(2,atom2) = f(2,atom2) - dudy
1257      f(3,atom2) = f(3,atom2) - dudz
1258 <    
1258 >
1259      if (i_is_Dipole .or. i_is_Quadrupole) then
1260         t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1261         t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
# Line 806 | Line 1287 | contains
1287      endif
1288  
1289   #endif
1290 <    
1290 >
1291   #ifdef IS_MPI
1292      id1 = AtomRowToGlobal(atom1)
1293      id2 = AtomColToGlobal(atom2)
# Line 816 | Line 1297 | contains
1297   #endif
1298  
1299      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1300 <      
1300 >
1301         fpair(1) = fpair(1) + dudx
1302         fpair(2) = fpair(2) + dudy
1303         fpair(3) = fpair(3) + dudz
# Line 825 | Line 1306 | contains
1306  
1307      return
1308    end subroutine doElectrostaticPair
1309 <  
1309 >
1310 >  subroutine destroyElectrostaticTypes()
1311 >
1312 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1313 >
1314 >  end subroutine destroyElectrostaticTypes
1315 >
1316 >  subroutine rf_self_self(atom1, eFrame, rfpot, t, do_pot)
1317 >    logical, intent(in) :: do_pot
1318 >    integer, intent(in) :: atom1
1319 >    integer :: atid1
1320 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1321 >    real(kind=dp), dimension(3,nLocal) :: t
1322 >    real(kind=dp) :: mu1
1323 >    real(kind=dp) :: preVal, epot, rfpot
1324 >    real(kind=dp) :: eix, eiy, eiz
1325 >
1326 >    ! this is a local only array, so we use the local atom type id's:
1327 >    atid1 = atid(atom1)
1328 >    
1329 >    if (ElectrostaticMap(atid1)%is_Dipole) then
1330 >       mu1 = getDipoleMoment(atid1)
1331 >      
1332 >       preVal = pre22 * preRF2 * mu1*mu1
1333 >       rfpot = rfpot - 0.5d0*preVal
1334 >
1335 >       ! The self-correction term adds into the reaction field vector
1336 >      
1337 >       eix = preVal * eFrame(3,atom1)
1338 >       eiy = preVal * eFrame(6,atom1)
1339 >       eiz = preVal * eFrame(9,atom1)
1340 >
1341 >       ! once again, this is self-self, so only the local arrays are needed
1342 >       ! even for MPI jobs:
1343 >      
1344 >       t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1345 >            eFrame(9,atom1)*eiy
1346 >       t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1347 >            eFrame(3,atom1)*eiz
1348 >       t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1349 >            eFrame(6,atom1)*eix
1350 >
1351 >    endif
1352 >    
1353 >    return
1354 >  end subroutine rf_self_self
1355 >
1356   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines