ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2156 by chrisfen, Fri Apr 8 22:13:41 2005 UTC vs.
Revision 2722 by gezelter, Thu Apr 20 18:24:24 2006 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
47    use vector_class
48    use simulation
49    use status
50 +  use interpolation
51   #ifdef IS_MPI
52    use mpiSimulation
53   #endif
# Line 54 | Line 55 | module electrostatic_module
55  
56    PRIVATE
57  
58 +
59 + #define __FORTRAN90
60 + #include "UseTheForce/DarkSide/fInteractionMap.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
62 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
63 +
64 +
65    !! these prefactors convert the multipole interactions into kcal / mol
66    !! all were computed assuming distances are measured in angstroms
67    !! Charge-Charge, assuming charges are measured in electrons
68 <  real(kind=dp), parameter :: pre11 = 332.0637778_dp
68 >  real(kind=dp), parameter :: pre11 = 332.0637778d0
69    !! Charge-Dipole, assuming charges are measured in electrons, and
70    !! dipoles are measured in debyes
71 <  real(kind=dp), parameter :: pre12 = 69.13373_dp
71 >  real(kind=dp), parameter :: pre12 = 69.13373d0
72    !! Dipole-Dipole, assuming dipoles are measured in debyes
73 <  real(kind=dp), parameter :: pre22 = 14.39325_dp
73 >  real(kind=dp), parameter :: pre22 = 14.39325d0
74    !! Charge-Quadrupole, assuming charges are measured in electrons, and
75    !! quadrupoles are measured in 10^-26 esu cm^2
76    !! This unit is also known affectionately as an esu centi-barn.
77 <  real(kind=dp), parameter :: pre14 = 69.13373_dp
77 >  real(kind=dp), parameter :: pre14 = 69.13373d0
78  
79 +  real(kind=dp), parameter :: zero = 0.0d0
80 +
81 +  !! variables to handle different summation methods for long-range
82 +  !! electrostatics:
83 +  integer, save :: summationMethod = NONE
84 +  integer, save :: screeningMethod = UNDAMPED
85 +  logical, save :: summationMethodChecked = .false.
86 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
87 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
88 +  logical, save :: haveDefaultCutoff = .false.
89 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
90 +  real(kind=DP), save :: alpha2 = 0.0_DP
91 +  logical, save :: haveDampingAlpha = .false.
92 +  real(kind=DP), save :: dielectric = 1.0_DP
93 +  logical, save :: haveDielectric = .false.
94 +  real(kind=DP), save :: constEXP = 0.0_DP
95 +  real(kind=dp), save :: rcuti = 0.0_DP
96 +  real(kind=dp), save :: rcuti2 = 0.0_DP
97 +  real(kind=dp), save :: rcuti3 = 0.0_DP
98 +  real(kind=dp), save :: rcuti4 = 0.0_DP
99 +  real(kind=dp), save :: alphaPi = 0.0_DP
100 +  real(kind=dp), save :: invRootPi = 0.0_DP
101 +  real(kind=dp), save :: rrf = 1.0_DP
102 +  real(kind=dp), save :: rt = 1.0_DP
103 +  real(kind=dp), save :: rrfsq = 1.0_DP
104 +  real(kind=dp), save :: preRF = 0.0_DP
105 +  real(kind=dp), save :: preRF2 = 0.0_DP
106 +  real(kind=dp), save :: f0 = 1.0_DP
107 +  real(kind=dp), save :: f1 = 1.0_DP
108 +  real(kind=dp), save :: f2 = 0.0_DP
109 +  real(kind=dp), save :: f3 = 0.0_DP
110 +  real(kind=dp), save :: f4 = 0.0_DP
111 +  real(kind=dp), save :: f0c = 1.0_DP
112 +  real(kind=dp), save :: f1c = 1.0_DP
113 +  real(kind=dp), save :: f2c = 0.0_DP
114 +  real(kind=dp), save :: f3c = 0.0_DP
115 +  real(kind=dp), save :: f4c = 0.0_DP
116 +
117 + #if defined(__IFC) || defined(__PGI)
118 + ! error function for ifc version > 7.
119 +  double precision, external :: derfc
120 + #endif
121 +  
122 +  public :: setElectrostaticSummationMethod
123 +  public :: setScreeningMethod
124 +  public :: setElectrostaticCutoffRadius
125 +  public :: setDampingAlpha
126 +  public :: setReactionFieldDielectric
127 +  public :: buildElectroSplines
128    public :: newElectrostaticType
129    public :: setCharge
130    public :: setDipoleMoment
# Line 76 | Line 133 | module electrostatic_module
133    public :: doElectrostaticPair
134    public :: getCharge
135    public :: getDipoleMoment
136 <  public :: pre22
136 >  public :: destroyElectrostaticTypes
137 >  public :: self_self
138 >  public :: rf_self_excludes
139  
140 +
141    type :: Electrostatic
142       integer :: c_ident
143       logical :: is_Charge = .false.
144       logical :: is_Dipole = .false.
145       logical :: is_SplitDipole = .false.
146       logical :: is_Quadrupole = .false.
147 +     logical :: is_Tap = .false.
148       real(kind=DP) :: charge = 0.0_DP
149       real(kind=DP) :: dipole_moment = 0.0_DP
150       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 92 | Line 153 | contains
153  
154    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
155  
156 +  logical, save :: hasElectrostaticMap
157 +
158   contains
159  
160 +  subroutine setElectrostaticSummationMethod(the_ESM)
161 +    integer, intent(in) :: the_ESM    
162 +
163 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
164 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
165 +    endif
166 +
167 +    summationMethod = the_ESM
168 +
169 +  end subroutine setElectrostaticSummationMethod
170 +
171 +  subroutine setScreeningMethod(the_SM)
172 +    integer, intent(in) :: the_SM    
173 +    screeningMethod = the_SM
174 +  end subroutine setScreeningMethod
175 +
176 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
177 +    real(kind=dp), intent(in) :: thisRcut
178 +    real(kind=dp), intent(in) :: thisRsw
179 +    defaultCutoff = thisRcut
180 +    defaultCutoff2 = defaultCutoff*defaultCutoff
181 +    rrf = defaultCutoff
182 +    rt = thisRsw
183 +    haveDefaultCutoff = .true.
184 +  end subroutine setElectrostaticCutoffRadius
185 +
186 +  subroutine setDampingAlpha(thisAlpha)
187 +    real(kind=dp), intent(in) :: thisAlpha
188 +    dampingAlpha = thisAlpha
189 +    alpha2 = dampingAlpha*dampingAlpha
190 +    haveDampingAlpha = .true.
191 +  end subroutine setDampingAlpha
192 +  
193 +  subroutine setReactionFieldDielectric(thisDielectric)
194 +    real(kind=dp), intent(in) :: thisDielectric
195 +    dielectric = thisDielectric
196 +    haveDielectric = .true.
197 +  end subroutine setReactionFieldDielectric
198 +
199 +  subroutine buildElectroSplines()
200 +  end subroutine buildElectroSplines
201 +
202    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
203 <       is_SplitDipole, is_Quadrupole, status)
204 <    
203 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
204 >
205      integer, intent(in) :: c_ident
206      logical, intent(in) :: is_Charge
207      logical, intent(in) :: is_Dipole
208      logical, intent(in) :: is_SplitDipole
209      logical, intent(in) :: is_Quadrupole
210 +    logical, intent(in) :: is_Tap
211      integer, intent(out) :: status
212      integer :: nAtypes, myATID, i, j
213  
214      status = 0
215      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
216 <    
216 >
217      !! Be simple-minded and assume that we need an ElectrostaticMap that
218      !! is the same size as the total number of atom types
219  
220      if (.not.allocated(ElectrostaticMap)) then
221 <      
221 >
222         nAtypes = getSize(atypes)
223 <    
223 >
224         if (nAtypes == 0) then
225            status = -1
226            return
227         end if
228 <      
229 <       if (.not. allocated(ElectrostaticMap)) then
230 <          allocate(ElectrostaticMap(nAtypes))
125 <       endif
126 <      
228 >
229 >       allocate(ElectrostaticMap(nAtypes))
230 >
231      end if
232  
233      if (myATID .gt. size(ElectrostaticMap)) then
234         status = -1
235         return
236      endif
237 <    
237 >
238      ! set the values for ElectrostaticMap for this atom type:
239  
240      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 138 | Line 242 | contains
242      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
243      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
244      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
245 <    
245 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
246 >
247 >    hasElectrostaticMap = .true.
248 >
249    end subroutine newElectrostaticType
250  
251    subroutine setCharge(c_ident, charge, status)
# Line 150 | Line 257 | contains
257      status = 0
258      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
259  
260 <    if (.not.allocated(ElectrostaticMap)) then
260 >    if (.not.hasElectrostaticMap) then
261         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!")
262         status = -1
263         return
# Line 166 | Line 273 | contains
273         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
274         status = -1
275         return
276 <    endif      
276 >    endif
277  
278      ElectrostaticMap(myATID)%charge = charge
279    end subroutine setCharge
# Line 180 | Line 287 | contains
287      status = 0
288      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
289  
290 <    if (.not.allocated(ElectrostaticMap)) then
290 >    if (.not.hasElectrostaticMap) then
291         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!")
292         status = -1
293         return
# Line 210 | Line 317 | contains
317      status = 0
318      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
319  
320 <    if (.not.allocated(ElectrostaticMap)) then
320 >    if (.not.hasElectrostaticMap) then
321         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!")
322         status = -1
323         return
# Line 240 | Line 347 | contains
347      status = 0
348      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
349  
350 <    if (.not.allocated(ElectrostaticMap)) then
350 >    if (.not.hasElectrostaticMap) then
351         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!")
352         status = -1
353         return
# Line 257 | Line 364 | contains
364         status = -1
365         return
366      endif
367 <    
367 >
368      do i = 1, 3
369 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
370 <               quadrupole_moments(i)
371 <       enddo
369 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
370 >            quadrupole_moments(i)
371 >    enddo
372  
373    end subroutine setQuadrupoleMoments
374  
375 <  
375 >
376    function getCharge(atid) result (c)
377      integer, intent(in) :: atid
378      integer :: localError
379      real(kind=dp) :: c
380 <    
381 <    if (.not.allocated(ElectrostaticMap)) then
380 >
381 >    if (.not.hasElectrostaticMap) then
382         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
383         return
384      end if
385 <    
385 >
386      if (.not.ElectrostaticMap(atid)%is_Charge) then
387         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
388         return
389      endif
390 <    
390 >
391      c = ElectrostaticMap(atid)%charge
392    end function getCharge
393  
# Line 288 | Line 395 | contains
395      integer, intent(in) :: atid
396      integer :: localError
397      real(kind=dp) :: dm
398 <    
399 <    if (.not.allocated(ElectrostaticMap)) then
398 >
399 >    if (.not.hasElectrostaticMap) then
400         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
401         return
402      end if
403 <    
403 >
404      if (.not.ElectrostaticMap(atid)%is_Dipole) then
405         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
406         return
407      endif
408 <    
408 >
409      dm = ElectrostaticMap(atid)%dipole_moment
410    end function getDipoleMoment
411  
412 <  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
413 <       vpair, fpair, pot, eFrame, f, t, do_pot)
414 <    
412 >  subroutine checkSummationMethod()
413 >
414 >    if (.not.haveDefaultCutoff) then
415 >       call handleError("checkSummationMethod", "no Default Cutoff set!")
416 >    endif
417 >
418 >    rcuti = 1.0d0 / defaultCutoff
419 >    rcuti2 = rcuti*rcuti
420 >    rcuti3 = rcuti2*rcuti
421 >    rcuti4 = rcuti2*rcuti2
422 >
423 >    if (screeningMethod .eq. DAMPED) then
424 >       if (.not.haveDampingAlpha) then
425 >          call handleError("checkSummationMethod", "no Damping Alpha set!")
426 >       endif
427 >      
428 >       if (.not.haveDefaultCutoff) then
429 >          call handleError("checkSummationMethod", "no Default Cutoff set!")
430 >       endif
431 >
432 >       constEXP = exp(-alpha2*defaultCutoff2)
433 >       invRootPi = 0.56418958354775628695d0
434 >       alphaPi = 2.0d0*dampingAlpha*invRootPi
435 >       f0c = derfc(dampingAlpha*defaultCutoff)
436 >       f1c = alphaPi*defaultCutoff*constEXP + f0c
437 >       f2c = alphaPi*2.0d0*alpha2*constEXP
438 >       f3c = alphaPi*2.0d0*alpha2*constEXP*defaultCutoff2*defaultCutoff
439 >    endif
440 >
441 >    if (summationMethod .eq. REACTION_FIELD) then
442 >       if (haveDielectric) then
443 >          defaultCutoff2 = defaultCutoff*defaultCutoff
444 >          preRF = (dielectric-1.0d0) / &
445 >               ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
446 >          preRF2 = 2.0d0*preRF
447 >       else
448 >          call handleError("checkSummationMethod", "Dielectric not set")
449 >       endif
450 >      
451 >    endif
452 >
453 >    summationMethodChecked = .true.
454 >  end subroutine checkSummationMethod
455 >
456 >
457 >  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, rcut, sw, &
458 >       vpair, fpair, pot, eFrame, f, t, do_pot)
459 >
460      logical, intent(in) :: do_pot
461 <    
461 >
462      integer, intent(in) :: atom1, atom2
463      integer :: localError
464  
465 <    real(kind=dp), intent(in) :: rij, r2, sw
465 >    real(kind=dp), intent(in) :: rij, r2, sw, rcut
466      real(kind=dp), intent(in), dimension(3) :: d
467      real(kind=dp), intent(inout) :: vpair
468 <    real(kind=dp), intent(inout), dimension(3) :: fpair
468 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
469  
470      real( kind = dp ) :: pot
471      real( kind = dp ), dimension(9,nLocal) :: eFrame
472      real( kind = dp ), dimension(3,nLocal) :: f
473 +    real( kind = dp ), dimension(3,nLocal) :: felec
474      real( kind = dp ), dimension(3,nLocal) :: t
475 <    
475 >
476      real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
477      real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
478      real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
# Line 327 | Line 480 | contains
480  
481      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
482      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
483 +    logical :: i_is_Tap, j_is_Tap
484      integer :: me1, me2, id1, id2
485      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
486      real (kind=dp) :: qxx_i, qyy_i, qzz_i
# Line 334 | Line 488 | contains
488      real (kind=dp) :: cx_i, cy_i, cz_i
489      real (kind=dp) :: cx_j, cy_j, cz_j
490      real (kind=dp) :: cx2, cy2, cz2
491 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
491 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
492      real (kind=dp) :: riji, ri, ri2, ri3, ri4
493 <    real (kind=dp) :: pref, vterm, epot, dudr    
493 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
494      real (kind=dp) :: xhat, yhat, zhat
495      real (kind=dp) :: dudx, dudy, dudz
342    real (kind=dp) :: drdxj, drdyj, drdzj
496      real (kind=dp) :: scale, sc2, bigR
497 +    real (kind=dp) :: varEXP
498 +    real (kind=dp) :: pot_term
499 +    real (kind=dp) :: preVal, rfVal
500 +    real (kind=dp) :: f13, f134
501  
502 <    if (.not.allocated(ElectrostaticMap)) then
503 <       call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
504 <       return
348 <    end if
502 >    if (.not.summationMethodChecked) then
503 >       call checkSummationMethod()
504 >    endif
505  
506   #ifdef IS_MPI
507      me1 = atid_Row(atom1)
# Line 358 | Line 514 | contains
514      !! some variables we'll need independent of electrostatic type:
515  
516      riji = 1.0d0 / rij
517 <
517 >  
518      xhat = d(1) * riji
519      yhat = d(2) * riji
520      zhat = d(3) * riji
521  
366    drdxj = xhat
367    drdyj = yhat
368    drdzj = zhat
369
522      !! logicals
371
523      i_is_Charge = ElectrostaticMap(me1)%is_Charge
524      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
525      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
526      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
527 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
528  
529      j_is_Charge = ElectrostaticMap(me2)%is_Charge
530      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
531      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
532      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
533 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
534  
535      if (i_is_Charge) then
536         q_i = ElectrostaticMap(me1)%charge      
537      endif
538 <    
538 >
539      if (i_is_Dipole) then
540         mu_i = ElectrostaticMap(me1)%dipole_moment
541   #ifdef IS_MPI
# Line 399 | Line 552 | contains
552         if (i_is_SplitDipole) then
553            d_i = ElectrostaticMap(me1)%split_dipole_distance
554         endif
555 <      
555 >       duduz_i = zero
556      endif
557  
558      if (i_is_Quadrupole) then
# Line 430 | Line 583 | contains
583         cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
584         cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
585         cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
586 +       dudux_i = zero
587 +       duduy_i = zero
588 +       duduz_i = zero
589      endif
590  
435
591      if (j_is_Charge) then
592         q_j = ElectrostaticMap(me2)%charge      
593      endif
594 <    
594 >
595      if (j_is_Dipole) then
596         mu_j = ElectrostaticMap(me2)%dipole_moment
597   #ifdef IS_MPI
# Line 448 | Line 603 | contains
603         uz_j(2) = eFrame(6,atom2)
604         uz_j(3) = eFrame(9,atom2)
605   #endif
606 <       ct_j = uz_j(1)*drdxj + uz_j(2)*drdyj + uz_j(3)*drdzj
606 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
607  
608         if (j_is_SplitDipole) then
609            d_j = ElectrostaticMap(me2)%split_dipole_distance
610         endif
611 +       duduz_j = zero
612      endif
613  
614      if (j_is_Quadrupole) then
# Line 483 | Line 639 | contains
639         cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
640         cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
641         cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
642 +       dudux_j = zero
643 +       duduy_j = zero
644 +       duduz_j = zero
645      endif
646 <
647 <    epot = 0.0_dp
648 <    dudx = 0.0_dp
649 <    dudy = 0.0_dp
650 <    dudz = 0.0_dp
492 <
493 <    dudux_i = 0.0_dp
494 <    duduy_i = 0.0_dp
495 <    duduz_i = 0.0_dp
496 <
497 <    dudux_j = 0.0_dp
498 <    duduy_j = 0.0_dp
499 <    duduz_j = 0.0_dp
646 >  
647 >    epot = zero
648 >    dudx = zero
649 >    dudy = zero
650 >    dudz = zero  
651  
652      if (i_is_Charge) then
653  
654         if (j_is_Charge) then
655 <          
656 <          vterm = pre11 * q_i * q_j * riji
655 >          if (screeningMethod .eq. DAMPED) then
656 >             f0 = derfc(dampingAlpha*rij)
657 >             varEXP = exp(-alpha2*rij*rij)
658 >             f1 = alphaPi*rij*varEXP + f0
659 >          endif
660 >
661 >          preVal = pre11 * q_i * q_j
662 >
663 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
664 >             vterm = preVal * (riji*f0 - rcuti*f0c)
665 >            
666 >             dudr  = -sw * preVal * riji * riji * f1
667 >  
668 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
669 >             vterm = preVal * ( riji*f0 - rcuti*f0c + &
670 >                  f1c*rcuti2*(rij-defaultCutoff) )
671 >            
672 >             dudr  = -sw*preVal * (riji*riji*f1 - rcuti2*f1c)
673 >  
674 >          elseif (summationMethod .eq. REACTION_FIELD) then
675 >             rfVal = preRF*rij*rij
676 >             vterm = preVal * ( riji + rfVal )
677 >            
678 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
679 >  
680 >          else
681 >             vterm = preVal * riji*f0
682 >            
683 >             dudr  = - sw * preVal * riji*riji*f1
684 >  
685 >          endif
686 >
687            vpair = vpair + vterm
688            epot = epot + sw*vterm
689  
690 <          dudr  = - sw * vterm * riji
690 >          dudx = dudx + dudr * xhat
691 >          dudy = dudy + dudr * yhat
692 >          dudz = dudz + dudr * zhat
693  
511          dudx = dudx + dudr * drdxj
512          dudy = dudy + dudr * drdyj
513          dudz = dudz + dudr * drdzj
514      
694         endif
695  
696         if (j_is_Dipole) then
697 <
698 <          if (j_is_SplitDipole) then
699 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
700 <             ri = 1.0_dp / BigR
701 <             scale = rij * ri
523 <          else
524 <             ri = riji
525 <             scale = 1.0_dp
697 >          if (screeningMethod .eq. DAMPED) then
698 >             f0 = derfc(dampingAlpha*rij)
699 >             varEXP = exp(-alpha2*rij*rij)
700 >             f1 = alphaPi*rij*varEXP + f0
701 >             f3 = alphaPi*2.0d0*alpha2*varEXP*rij*rij*rij
702            endif
703  
528          ri2 = ri * ri
529          ri3 = ri2 * ri
530          sc2 = scale * scale
531            
704            pref = pre12 * q_i * mu_j
533          vterm = - pref * ct_j * ri2 * scale
534          vpair = vpair + vterm
535          epot = epot + sw * vterm
705  
706 <          !! this has a + sign in the () because the rij vector is
707 <          !! r_j - r_i and the charge-dipole potential takes the origin
708 <          !! as the point dipole, which is atom j in this case.
706 >          if (summationMethod .eq. REACTION_FIELD) then
707 >             ri2 = riji * riji
708 >             ri3 = ri2 * riji
709 >    
710 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
711 >             vpair = vpair + vterm
712 >             epot = epot + sw*vterm
713 >            
714 >             !! this has a + sign in the () because the rij vector is
715 >             !! r_j - r_i and the charge-dipole potential takes the origin
716 >             !! as the point dipole, which is atom j in this case.
717 >            
718 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
719 >                                     preRF2*uz_j(1) )
720 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
721 >                                     preRF2*uz_j(2) )
722 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
723 >                                     preRF2*uz_j(3) )        
724 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
725 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
726 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
727  
728 <          dudx = dudx - pref * sw * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
729 <          dudy = dudy - pref * sw * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
730 <          dudz = dudz - pref * sw * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
728 >          else
729 >             if (j_is_SplitDipole) then
730 >                BigR = sqrt(r2 + 0.25d0 * d_j * d_j)
731 >                ri = 1.0d0 / BigR
732 >                scale = rij * ri
733 >             else
734 >                ri = riji
735 >                scale = 1.0d0
736 >             endif
737 >            
738 >             ri2 = ri * ri
739 >             ri3 = ri2 * ri
740 >             sc2 = scale * scale
741  
742 <          duduz_j(1) = duduz_j(1) - pref * sw * ri2 * xhat * scale
743 <          duduz_j(2) = duduz_j(2) - pref * sw * ri2 * yhat * scale
744 <          duduz_j(3) = duduz_j(3) - pref * sw * ri2 * zhat * scale
745 <          
742 >             pot_term =  ri2 * scale * f1
743 >             vterm = - pref * ct_j * pot_term
744 >             vpair = vpair + vterm
745 >             epot = epot + sw*vterm
746 >            
747 >             !! this has a + sign in the () because the rij vector is
748 >             !! r_j - r_i and the charge-dipole potential takes the origin
749 >             !! as the point dipole, which is atom j in this case.
750 >            
751 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1)*f1 - &
752 >                  ct_j*xhat*sc2*( 3.0d0*f1 + f3 ) )
753 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2)*f1 - &
754 >                  ct_j*yhat*sc2*( 3.0d0*f1 + f3 ) )
755 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3)*f1 - &
756 >                  ct_j*zhat*sc2*( 3.0d0*f1 + f3 ) )
757 >                          
758 >             duduz_j(1) = duduz_j(1) - sw*pref * pot_term * xhat
759 >             duduz_j(2) = duduz_j(2) - sw*pref * pot_term * yhat
760 >             duduz_j(3) = duduz_j(3) - sw*pref * pot_term * zhat
761 >
762 >          endif
763         endif
764  
765         if (j_is_Quadrupole) then
766 +          if (screeningMethod .eq. DAMPED) then
767 +             f0 = derfc(dampingAlpha*rij)
768 +             varEXP = exp(-alpha2*rij*rij)
769 +             f1 = alphaPi*rij*varEXP + f0
770 +             f2 = alphaPi*2.0d0*alpha2*varEXP
771 +             f3 = f2*rij*rij*rij
772 +             f4 = 2.0d0*alpha2*f2*rij
773 +          endif
774 +
775            ri2 = riji * riji
776            ri3 = ri2 * riji
777            ri4 = ri2 * ri2
# Line 556 | Line 779 | contains
779            cy2 = cy_j * cy_j
780            cz2 = cz_j * cz_j
781  
782 <
783 <          pref =  pre14 * q_i / 1.0_dp
784 <          vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
785 <               qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
786 <               qzz_j * (3.0_dp*cz2 - 1.0_dp))
782 >          pref =  pre14 * q_i / 3.0d0
783 >          pot_term = ri3*(qxx_j * (3.0d0*cx2 - 1.0d0) + &
784 >               qyy_j * (3.0d0*cy2 - 1.0d0) + &
785 >               qzz_j * (3.0d0*cz2 - 1.0d0))
786 >          vterm = pref * (pot_term*f1 + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f2)
787            vpair = vpair + vterm
788 <          epot = epot + sw * vterm
566 <
567 <          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + pref * sw * ri4 * ( &
568 <               qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
569 <               qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
570 <               qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
571 <          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + pref * sw * ri4 * ( &
572 <               qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
573 <               qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
574 <               qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
575 <          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + pref * sw * ri4 * ( &
576 <               qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
577 <               qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
578 <               qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
788 >          epot = epot + sw*vterm
789            
790 <          dudux_j(1) = dudux_j(1) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*xhat)
791 <          dudux_j(2) = dudux_j(2) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*yhat)
792 <          dudux_j(3) = dudux_j(3) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*zhat)
793 <
794 <          duduy_j(1) = duduy_j(1) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*xhat)
795 <          duduy_j(2) = duduy_j(2) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*yhat)
796 <          duduy_j(3) = duduy_j(3) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*zhat)
797 <
798 <          duduz_j(1) = duduz_j(1) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*xhat)
799 <          duduz_j(2) = duduz_j(2) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*yhat)
800 <          duduz_j(3) = duduz_j(3) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*zhat)
790 >          dudx = dudx - sw*pref*pot_term*riji*xhat*(5.0d0*f1 + f3) + &
791 >               sw*pref*ri4 * ( &
792 >               qxx_j*(2.0d0*cx_j*ux_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
793 >               qyy_j*(2.0d0*cy_j*uy_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
794 >               qzz_j*(2.0d0*cz_j*uz_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) ) &
795 >               + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4
796 >          dudy = dudy - sw*pref*pot_term*riji*yhat*(5.0d0*f1 + f3) + &
797 >               sw*pref*ri4 * ( &
798 >               qxx_j*(2.0d0*cx_j*ux_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
799 >               qyy_j*(2.0d0*cy_j*uy_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
800 >               qzz_j*(2.0d0*cz_j*uz_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) ) &
801 >               + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4
802 >          dudz = dudz - sw*pref*pot_term*riji*zhat*(5.0d0*f1 + f3) + &
803 >               sw*pref*ri4 * ( &
804 >               qxx_j*(2.0d0*cx_j*ux_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
805 >               qyy_j*(2.0d0*cy_j*uy_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
806 >               qzz_j*(2.0d0*cz_j*uz_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) ) &
807 >               + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4
808 >          
809 >          dudux_j(1) = dudux_j(1) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*xhat) &
810 >               * (3.0d0*f1 + f3) )
811 >          dudux_j(2) = dudux_j(2) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*yhat) &
812 >               * (3.0d0*f1 + f3) )
813 >          dudux_j(3) = dudux_j(3) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*zhat) &
814 >               * (3.0d0*f1 + f3) )
815 >          
816 >          duduy_j(1) = duduy_j(1) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*xhat) &
817 >               * (3.0d0*f1 + f3) )
818 >          duduy_j(2) = duduy_j(2) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*yhat) &
819 >               * (3.0d0*f1 + f3) )
820 >          duduy_j(3) = duduy_j(3) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*zhat) &
821 >               * (3.0d0*f1 + f3) )
822 >          
823 >          duduz_j(1) = duduz_j(1) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*xhat) &
824 >               * (3.0d0*f1 + f3) )
825 >          duduz_j(2) = duduz_j(2) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*yhat) &
826 >               * (3.0d0*f1 + f3) )
827 >          duduz_j(3) = duduz_j(3) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*zhat) &
828 >               * (3.0d0*f1 + f3) )
829 >          
830         endif
592
831      endif
832 <  
832 >    
833      if (i_is_Dipole) then
596      
597       if (j_is_Charge) then
834  
835 <          if (i_is_SplitDipole) then
836 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
837 <             ri = 1.0_dp / BigR
838 <             scale = rij * ri
839 <          else
840 <             ri = riji
605 <             scale = 1.0_dp
835 >       if (j_is_Charge) then
836 >          if (screeningMethod .eq. DAMPED) then
837 >             f0 = derfc(dampingAlpha*rij)
838 >             varEXP = exp(-alpha2*rij*rij)
839 >             f1 = alphaPi*rij*varEXP + f0
840 >             f3 = alphaPi*2.0d0*alpha2*varEXP*rij*rij*rij
841            endif
842 <
608 <          ri2 = ri * ri
609 <          ri3 = ri2 * ri
610 <          sc2 = scale * scale
611 <            
842 >          
843            pref = pre12 * q_j * mu_i
844 <          vterm = pref * ct_i * ri2 * scale
845 <          vpair = vpair + vterm
846 <          epot = epot + sw * vterm
847 <
848 <          dudx = dudx + pref * sw * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
849 <          dudy = dudy + pref * sw * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
850 <          dudz = dudz + pref * sw * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
851 <
852 <          duduz_i(1) = duduz_i(1) + pref * sw * ri2 * xhat * scale
853 <          duduz_i(2) = duduz_i(2) + pref * sw * ri2 * yhat * scale
854 <          duduz_i(3) = duduz_i(3) + pref * sw * ri2 * zhat * scale
855 <       endif
844 >          
845 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
846 >             ri2 = riji * riji
847 >             ri3 = ri2 * riji
848 >            
849 >             pot_term = ri2*f1 - rcuti2*f1c
850 >             vterm = pref * ct_i * pot_term
851 >             vpair = vpair + vterm
852 >             epot = epot + sw*vterm
853 >            
854 >             dudx = dudx + sw*pref*( ri3*(uz_i(1)*f1-ct_i*xhat*(3.0d0*f1+f3)) )
855 >             dudy = dudy + sw*pref*( ri3*(uz_i(2)*f1-ct_i*yhat*(3.0d0*f1+f3)) )
856 >             dudz = dudz + sw*pref*( ri3*(uz_i(3)*f1-ct_i*zhat*(3.0d0*f1+f3)) )
857 >            
858 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
859 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
860 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
861  
862 <       if (j_is_Dipole) then
862 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
863 >             ri2 = riji * riji
864 >             ri3 = ri2 * riji
865  
866 <          if (i_is_SplitDipole) then
867 <             if (j_is_SplitDipole) then
868 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
869 <             else
870 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
871 <             endif
872 <             ri = 1.0_dp / BigR
873 <             scale = rij * ri                
866 >             !! might need a -(f1c-f0c) or dct_i/dr in the derivative term...
867 >             pot_term = ri2*f1 - rcuti2*f1c + &
868 >                  (2.0d0*rcuti3*f1c + f2c)*( rij - defaultCutoff )
869 >             vterm = pref * ct_i * pot_term
870 >             vpair = vpair + vterm
871 >             epot = epot + sw*vterm
872 >            
873 >             dudx = dudx + sw*pref*( ri3*(uz_i(1)*f1-ct_i*xhat*(3.0d0*f1+f3)) &
874 >                  - rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) )
875 >             dudy = dudy + sw*pref*( ri3*(uz_i(2)*f1-ct_i*yhat*(3.0d0*f1+f3)) &
876 >                  - rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) )
877 >             dudz = dudz + sw*pref*( ri3*(uz_i(3)*f1-ct_i*zhat*(3.0d0*f1+f3)) &
878 >                  - rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) )
879 >            
880 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
881 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
882 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
883 >
884 >          elseif (summationMethod .eq. REACTION_FIELD) then
885 >             ri2 = riji * riji
886 >             ri3 = ri2 * riji
887 >
888 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
889 >             vpair = vpair + vterm
890 >             epot = epot + sw*vterm
891 >            
892 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
893 >                  preRF2*uz_i(1) )
894 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
895 >                  preRF2*uz_i(2) )
896 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
897 >                  preRF2*uz_i(3) )
898 >            
899 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
900 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
901 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
902 >
903            else
904 <             if (j_is_SplitDipole) then
905 <                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
906 <                ri = 1.0_dp / BigR
907 <                scale = rij * ri                            
908 <             else                
904 >             if (i_is_SplitDipole) then
905 >                BigR = sqrt(r2 + 0.25d0 * d_i * d_i)
906 >                ri = 1.0d0 / BigR
907 >                scale = rij * ri
908 >             else
909                  ri = riji
910 <                scale = 1.0_dp
910 >                scale = 1.0d0
911               endif
912 +            
913 +             ri2 = ri * ri
914 +             ri3 = ri2 * ri
915 +             sc2 = scale * scale
916 +
917 +             pot_term = ri2 * f1 * scale
918 +             vterm = pref * ct_i * pot_term
919 +             vpair = vpair + vterm
920 +             epot = epot + sw*vterm
921 +            
922 +             dudx = dudx + sw*pref * ri3 * ( uz_i(1)*f1 - &
923 +                  ct_i*xhat*sc2*( 3.0d0*f1 + f3 ) )
924 +             dudy = dudy + sw*pref * ri3 * ( uz_i(2)*f1 - &
925 +                  ct_i*yhat*sc2*( 3.0d0*f1 + f3 ) )
926 +             dudz = dudz + sw*pref * ri3 * ( uz_i(3)*f1 - &
927 +                  ct_i*zhat*sc2*( 3.0d0*f1 + f3 ) )
928 +            
929 +             duduz_i(1) = duduz_i(1) + sw*pref * pot_term * xhat
930 +             duduz_i(2) = duduz_i(2) + sw*pref * pot_term * yhat
931 +             duduz_i(3) = duduz_i(3) + sw*pref * pot_term * zhat
932            endif
933 +       endif
934 +      
935 +       if (j_is_Dipole) then
936 +          if (screeningMethod .eq. DAMPED) then
937 +             f0 = derfc(dampingAlpha*rij)
938 +             varEXP = exp(-alpha2*rij*rij)
939 +             f1 = alphaPi*rij*varEXP + f0
940 +             f2 = alphaPi*2.0d0*alpha2*varEXP
941 +             f3 = f2*rij*rij*rij
942 +             f4 = 2.0d0*alpha2*f3*rij*rij
943 +          endif
944  
945            ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
946 <
947 <          ri2 = ri * ri
948 <          ri3 = ri2 * ri
946 >          
947 >          ri2 = riji * riji
948 >          ri3 = ri2 * riji
949            ri4 = ri2 * ri2
652          sc2 = scale * scale
653
654          pref = pre22 * mu_i * mu_j
655          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
656          vpair = vpair + vterm
657          epot = epot + sw * vterm
950            
951 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
951 >          pref = pre22 * mu_i * mu_j
952  
953 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
954 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
955 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
953 >          if (summationMethod .eq. REACTION_FIELD) then
954 >             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
955 >                  preRF2*ct_ij )
956 >             vpair = vpair + vterm
957 >             epot = epot + sw*vterm
958 >            
959 >             a1 = 5.0d0 * ct_i * ct_j - ct_ij
960 >            
961 >             dudx = dudx + sw*pref*3.0d0*ri4 &
962 >                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
963 >             dudy = dudy + sw*pref*3.0d0*ri4 &
964 >                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
965 >             dudz = dudz + sw*pref*3.0d0*ri4 &
966 >                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
967 >            
968 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
969 >                  - preRF2*uz_j(1))
970 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
971 >                  - preRF2*uz_j(2))
972 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
973 >                  - preRF2*uz_j(3))
974 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
975 >                  - preRF2*uz_i(1))
976 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
977 >                  - preRF2*uz_i(2))
978 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
979 >                  - preRF2*uz_i(3))
980  
981 <          duduz_i(1) = duduz_i(1) + pref*sw*ri3*(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
982 <          duduz_i(2) = duduz_i(2) + pref*sw*ri3*(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
983 <          duduz_i(3) = duduz_i(3) + pref*sw*ri3*(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
981 >          else
982 >             if (i_is_SplitDipole) then
983 >                if (j_is_SplitDipole) then
984 >                   BigR = sqrt(r2 + 0.25d0 * d_i * d_i + 0.25d0 * d_j * d_j)
985 >                else
986 >                   BigR = sqrt(r2 + 0.25d0 * d_i * d_i)
987 >                endif
988 >                ri = 1.0d0 / BigR
989 >                scale = rij * ri                
990 >             else
991 >                if (j_is_SplitDipole) then
992 >                   BigR = sqrt(r2 + 0.25d0 * d_j * d_j)
993 >                   ri = 1.0d0 / BigR
994 >                   scale = rij * ri                            
995 >                else                
996 >                   ri = riji
997 >                   scale = 1.0d0
998 >                endif
999 >             endif
1000 >            
1001 >             sc2 = scale * scale
1002  
1003 <          duduz_j(1) = duduz_j(1) + pref*sw*ri3*(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
1004 <          duduz_j(2) = duduz_j(2) + pref*sw*ri3*(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
1005 <          duduz_j(3) = duduz_j(3) + pref*sw*ri3*(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1006 <       endif
1003 >             pot_term = (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1004 >             vterm = pref * ( ri3*pot_term*f1 + (ct_i * ct_j)*f2 )
1005 >             vpair = vpair + vterm
1006 >             epot = epot + sw*vterm
1007 >            
1008 >             f13 = f1+f3
1009 >             f134 = f13 + f4
1010 >            
1011 > !!$             dudx = dudx + sw*pref * ( ri4*scale*( &
1012 > !!$                  3.0d0*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))*f1 &
1013 > !!$                  - pot_term*f3) &
1014 > !!$                  + 2.0d0*ct_i*ct_j*xhat*(ct_i*uz_j(1)+ct_j*uz_i(1))*f3 &
1015 > !!$                  + (ct_i * ct_j)*f4 )
1016 > !!$             dudy = dudy + sw*pref * ( ri4*scale*( &
1017 > !!$                  3.0d0*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))*f1 &
1018 > !!$                  - pot_term*f3) &
1019 > !!$                  + 2.0d0*ct_i*ct_j*yhat*(ct_i*uz_j(2)+ct_j*uz_i(2))*f3 &
1020 > !!$                  + (ct_i * ct_j)*f4 )
1021 > !!$             dudz = dudz + sw*pref * ( ri4*scale*( &
1022 > !!$                  3.0d0*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))*f1 &
1023 > !!$                  - pot_term*f3) &
1024 > !!$                  + 2.0d0*ct_i*ct_j*zhat*(ct_i*uz_j(3)+ct_j*uz_i(3))*f3 &
1025 > !!$                  + (ct_i * ct_j)*f4 )
1026  
1027 +             dudx = dudx + sw*pref * ( ri4*scale*( &
1028 +                  15.0d0*(ct_i * ct_j * sc2)*xhat*f134 - &
1029 +                  3.0d0*(ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat)*f134) )
1030 +             dudy = dudy + sw*pref * ( ri4*scale*( &
1031 +                  15.0d0*(ct_i * ct_j * sc2)*yhat*f134 - &
1032 +                  3.0d0*(ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat)*f134) )
1033 +             dudz = dudz + sw*pref * ( ri4*scale*( &
1034 +                  15.0d0*(ct_i * ct_j * sc2)*zhat*f134 - &
1035 +                  3.0d0*(ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat)*f134) )
1036 +            
1037 +             duduz_i(1) = duduz_i(1) + sw*pref * &
1038 +                  ( ri3*(uz_j(1) - 3.0d0*ct_j*xhat*sc2)*f1 + (ct_j*xhat)*f2 )
1039 +             duduz_i(2) = duduz_i(2) + sw*pref * &
1040 +                  ( ri3*(uz_j(2) - 3.0d0*ct_j*yhat*sc2)*f1 + (ct_j*yhat)*f2 )
1041 +             duduz_i(3) = duduz_i(3) + sw*pref * &
1042 +                  ( ri3*(uz_j(3) - 3.0d0*ct_j*zhat*sc2)*f1 + (ct_j*zhat)*f2 )
1043 +            
1044 +             duduz_j(1) = duduz_j(1) + sw*pref * &
1045 +                  ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat*sc2)*f1 + (ct_i*xhat)*f2 )
1046 +             duduz_j(2) = duduz_j(2) + sw*pref * &
1047 +                  ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat*sc2)*f1 + (ct_i*yhat)*f2 )
1048 +             duduz_j(3) = duduz_j(3) + sw*pref * &
1049 +                  ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat*sc2)*f1 + (ct_i*zhat)*f2 )
1050 +          endif
1051 +       endif
1052      endif
1053  
1054      if (i_is_Quadrupole) then
1055         if (j_is_Charge) then
1056 <          
1056 >          if (screeningMethod .eq. DAMPED) then
1057 >             f0 = derfc(dampingAlpha*rij)
1058 >             varEXP = exp(-alpha2*rij*rij)
1059 >             f1 = alphaPi*rij*varEXP + f0
1060 >             f2 = alphaPi*2.0d0*alpha2*varEXP
1061 >             f3 = f2*rij*rij*rij
1062 >             f4 = 2.0d0*alpha2*f2*rij
1063 >          endif
1064 >
1065            ri2 = riji * riji
1066            ri3 = ri2 * riji
1067            ri4 = ri2 * ri2
1068            cx2 = cx_i * cx_i
1069            cy2 = cy_i * cy_i
1070            cz2 = cz_i * cz_i
1071 <          
1072 <          pref = pre14 * q_j / 1.0_dp
1073 <          vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1074 <               qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1075 <               qzz_i * (3.0_dp*cz2 - 1.0_dp))
1071 >
1072 >          pref = pre14 * q_j / 3.0d0
1073 >          pot_term = ri3 * (qxx_i * (3.0d0*cx2 - 1.0d0) + &
1074 >                            qyy_i * (3.0d0*cy2 - 1.0d0) + &
1075 >                            qzz_i * (3.0d0*cz2 - 1.0d0))
1076 >          vterm = pref * (pot_term*f1 + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f2)
1077            vpair = vpair + vterm
1078 <          epot = epot + sw * vterm
1078 >          epot = epot + sw*vterm
1079            
1080 <          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + pref * sw * ri4 * ( &
1081 <               qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1082 <               qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1083 <               qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1084 <          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + pref * sw * ri4 * ( &
1085 <               qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1086 <               qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1087 <               qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1088 <          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + pref * sw * ri4 * ( &
1089 <               qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1090 <               qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1091 <               qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1092 <          
1093 <          dudux_i(1) = dudux_i(1) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*xhat)
1094 <          dudux_i(2) = dudux_i(2) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*yhat)
1095 <          dudux_i(3) = dudux_i(3) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*zhat)
1096 <          
1097 <          duduy_i(1) = duduy_i(1) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*xhat)
711 <          duduy_i(2) = duduy_i(2) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*yhat)
712 <          duduy_i(3) = duduy_i(3) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*zhat)
1080 >          dudx = dudx - sw*pref*pot_term*riji*xhat*(5.0d0*f1 + f3) + &
1081 >               sw*pref*ri4 * ( &
1082 >               qxx_i*(2.0d0*cx_i*ux_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
1083 >               qyy_i*(2.0d0*cy_i*uy_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
1084 >               qzz_i*(2.0d0*cz_i*uz_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) ) &
1085 >               + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4
1086 >          dudy = dudy - sw*pref*pot_term*riji*yhat*(5.0d0*f1 + f3) + &
1087 >               sw*pref*ri4 * ( &
1088 >               qxx_i*(2.0d0*cx_i*ux_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
1089 >               qyy_i*(2.0d0*cy_i*uy_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
1090 >               qzz_i*(2.0d0*cz_i*uz_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) ) &
1091 >               + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4
1092 >          dudz = dudz - sw*pref*pot_term*riji*zhat*(5.0d0*f1 + f3) + &
1093 >               sw*pref*ri4 * ( &
1094 >               qxx_i*(2.0d0*cx_i*ux_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
1095 >               qyy_i*(2.0d0*cy_i*uy_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
1096 >               qzz_i*(2.0d0*cz_i*uz_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) ) &
1097 >               + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4
1098            
1099 <          duduz_i(1) = duduz_i(1) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*xhat)
1100 <          duduz_i(2) = duduz_i(2) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*yhat)
1101 <          duduz_i(3) = duduz_i(3) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*zhat)
1099 >          dudux_i(1) = dudux_i(1) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*xhat) &
1100 >               * (3.0d0*f1 + f3) )
1101 >          dudux_i(2) = dudux_i(2) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*yhat) &
1102 >               * (3.0d0*f1 + f3) )
1103 >          dudux_i(3) = dudux_i(3) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*zhat) &
1104 >               * (3.0d0*f1 + f3) )
1105 >          
1106 >          duduy_i(1) = duduy_i(1) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*xhat) &
1107 >               * (3.0d0*f1 + f3) )
1108 >          duduy_i(2) = duduy_i(2) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*yhat) &
1109 >               * (3.0d0*f1 + f3) )
1110 >          duduy_i(3) = duduy_i(3) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*zhat) &
1111 >               * (3.0d0*f1 + f3) )
1112 >          
1113 >          duduz_i(1) = duduz_i(1) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*xhat) &
1114 >               * (3.0d0*f1 + f3) )
1115 >          duduz_i(2) = duduz_i(2) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*yhat) &
1116 >               * (3.0d0*f1 + f3) )
1117 >          duduz_i(3) = duduz_i(3) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*zhat) &
1118 >               * (3.0d0*f1 + f3) )
1119 >
1120         endif
1121      endif
1122 <      
1123 <    
1122 >
1123 >
1124      if (do_pot) then
1125   #ifdef IS_MPI
1126 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1127 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1126 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1127 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1128   #else
1129         pot = pot + epot
1130   #endif
1131      endif
1132 <        
1132 >
1133   #ifdef IS_MPI
1134      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1135      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1136      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1137 <    
1137 >
1138      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1139      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1140      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1141 <    
1141 >
1142      if (i_is_Dipole .or. i_is_Quadrupole) then
1143         t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1144         t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
# Line 770 | Line 1173 | contains
1173      f(1,atom1) = f(1,atom1) + dudx
1174      f(2,atom1) = f(2,atom1) + dudy
1175      f(3,atom1) = f(3,atom1) + dudz
1176 <    
1176 >
1177      f(1,atom2) = f(1,atom2) - dudx
1178      f(2,atom2) = f(2,atom2) - dudy
1179      f(3,atom2) = f(3,atom2) - dudz
1180 <    
1180 >
1181      if (i_is_Dipole .or. i_is_Quadrupole) then
1182         t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1183         t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
# Line 806 | Line 1209 | contains
1209      endif
1210  
1211   #endif
1212 <    
1212 >
1213   #ifdef IS_MPI
1214      id1 = AtomRowToGlobal(atom1)
1215      id2 = AtomColToGlobal(atom2)
# Line 816 | Line 1219 | contains
1219   #endif
1220  
1221      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1222 <      
1222 >
1223         fpair(1) = fpair(1) + dudx
1224         fpair(2) = fpair(2) + dudy
1225         fpair(3) = fpair(3) + dudz
# Line 825 | Line 1228 | contains
1228  
1229      return
1230    end subroutine doElectrostaticPair
1231 <  
1231 >
1232 >  subroutine destroyElectrostaticTypes()
1233 >
1234 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1235 >
1236 >  end subroutine destroyElectrostaticTypes
1237 >
1238 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1239 >    logical, intent(in) :: do_pot
1240 >    integer, intent(in) :: atom1
1241 >    integer :: atid1
1242 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1243 >    real(kind=dp), dimension(3,nLocal) :: t
1244 >    real(kind=dp) :: mu1, c1
1245 >    real(kind=dp) :: preVal, epot, mypot
1246 >    real(kind=dp) :: eix, eiy, eiz
1247 >
1248 >    ! this is a local only array, so we use the local atom type id's:
1249 >    atid1 = atid(atom1)
1250 >
1251 >    if (.not.summationMethodChecked) then
1252 >       call checkSummationMethod()
1253 >    endif
1254 >    
1255 >    if (summationMethod .eq. REACTION_FIELD) then
1256 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1257 >          mu1 = getDipoleMoment(atid1)
1258 >          
1259 >          preVal = pre22 * preRF2 * mu1*mu1
1260 >          mypot = mypot - 0.5d0*preVal
1261 >          
1262 >          ! The self-correction term adds into the reaction field vector
1263 >          
1264 >          eix = preVal * eFrame(3,atom1)
1265 >          eiy = preVal * eFrame(6,atom1)
1266 >          eiz = preVal * eFrame(9,atom1)
1267 >          
1268 >          ! once again, this is self-self, so only the local arrays are needed
1269 >          ! even for MPI jobs:
1270 >          
1271 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1272 >               eFrame(9,atom1)*eiy
1273 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1274 >               eFrame(3,atom1)*eiz
1275 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1276 >               eFrame(6,atom1)*eix
1277 >          
1278 >       endif
1279 >
1280 >    elseif ( (summationMethod .eq. SHIFTED_FORCE) .or. &
1281 >         (summationMethod .eq. SHIFTED_POTENTIAL) ) then
1282 >       if (ElectrostaticMap(atid1)%is_Charge) then
1283 >          c1 = getCharge(atid1)
1284 >          
1285 >          if (screeningMethod .eq. DAMPED) then
1286 >             mypot = mypot - (f0c * rcuti * 0.5d0 + &
1287 >                  dampingAlpha*invRootPi) * c1 * c1    
1288 >            
1289 >          else            
1290 >             mypot = mypot - (rcuti * 0.5d0 * c1 * c1)
1291 >            
1292 >          endif
1293 >       endif
1294 >    endif
1295 >    
1296 >    return
1297 >  end subroutine self_self
1298 >
1299 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1300 >       f, t, do_pot)
1301 >    logical, intent(in) :: do_pot
1302 >    integer, intent(in) :: atom1
1303 >    integer, intent(in) :: atom2
1304 >    logical :: i_is_Charge, j_is_Charge
1305 >    logical :: i_is_Dipole, j_is_Dipole
1306 >    integer :: atid1
1307 >    integer :: atid2
1308 >    real(kind=dp), intent(in) :: rij
1309 >    real(kind=dp), intent(in) :: sw
1310 >    real(kind=dp), intent(in), dimension(3) :: d
1311 >    real(kind=dp), intent(inout) :: vpair
1312 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1313 >    real(kind=dp), dimension(3,nLocal) :: f
1314 >    real(kind=dp), dimension(3,nLocal) :: t
1315 >    real (kind = dp), dimension(3) :: duduz_i
1316 >    real (kind = dp), dimension(3) :: duduz_j
1317 >    real (kind = dp), dimension(3) :: uz_i
1318 >    real (kind = dp), dimension(3) :: uz_j
1319 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1320 >    real(kind=dp) :: xhat, yhat, zhat
1321 >    real(kind=dp) :: ct_i, ct_j
1322 >    real(kind=dp) :: ri2, ri3, riji, vterm
1323 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1324 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1325 >
1326 >    if (.not.summationMethodChecked) then
1327 >       call checkSummationMethod()
1328 >    endif
1329 >
1330 >    dudx = zero
1331 >    dudy = zero
1332 >    dudz = zero
1333 >
1334 >    riji = 1.0d0/rij
1335 >
1336 >    xhat = d(1) * riji
1337 >    yhat = d(2) * riji
1338 >    zhat = d(3) * riji
1339 >
1340 >    ! this is a local only array, so we use the local atom type id's:
1341 >    atid1 = atid(atom1)
1342 >    atid2 = atid(atom2)
1343 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1344 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1345 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1346 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1347 >
1348 >    if (i_is_Charge.and.j_is_Charge) then
1349 >       q_i = ElectrostaticMap(atid1)%charge
1350 >       q_j = ElectrostaticMap(atid2)%charge
1351 >      
1352 >       preVal = pre11 * q_i * q_j
1353 >       rfVal = preRF*rij*rij
1354 >       vterm = preVal * rfVal
1355 >      
1356 >       myPot = myPot + sw*vterm
1357 >      
1358 >       dudr  = sw*preVal * 2.0d0*rfVal*riji
1359 >      
1360 >       dudx = dudx + dudr * xhat
1361 >       dudy = dudy + dudr * yhat
1362 >       dudz = dudz + dudr * zhat
1363 >      
1364 >    elseif (i_is_Charge.and.j_is_Dipole) then
1365 >       q_i = ElectrostaticMap(atid1)%charge
1366 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1367 >       uz_j(1) = eFrame(3,atom2)
1368 >       uz_j(2) = eFrame(6,atom2)
1369 >       uz_j(3) = eFrame(9,atom2)
1370 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1371 >      
1372 >       ri2 = riji * riji
1373 >       ri3 = ri2 * riji
1374 >      
1375 >       pref = pre12 * q_i * mu_j
1376 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1377 >       myPot = myPot + sw*vterm
1378 >      
1379 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1380 >            - preRF2*uz_j(1) )
1381 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1382 >            - preRF2*uz_j(2) )
1383 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1384 >            - preRF2*uz_j(3) )
1385 >      
1386 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1387 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1388 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1389 >      
1390 >    elseif (i_is_Dipole.and.j_is_Charge) then
1391 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1392 >       q_j = ElectrostaticMap(atid2)%charge
1393 >       uz_i(1) = eFrame(3,atom1)
1394 >       uz_i(2) = eFrame(6,atom1)
1395 >       uz_i(3) = eFrame(9,atom1)
1396 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1397 >      
1398 >       ri2 = riji * riji
1399 >       ri3 = ri2 * riji
1400 >      
1401 >       pref = pre12 * q_j * mu_i
1402 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1403 >       myPot = myPot + sw*vterm
1404 >      
1405 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1406 >            - preRF2*uz_i(1) )
1407 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1408 >            - preRF2*uz_i(2) )
1409 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1410 >            - preRF2*uz_i(3) )
1411 >      
1412 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1413 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1414 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1415 >      
1416 >    endif
1417 >      
1418 >
1419 >    ! accumulate the forces and torques resulting from the self term
1420 >    f(1,atom1) = f(1,atom1) + dudx
1421 >    f(2,atom1) = f(2,atom1) + dudy
1422 >    f(3,atom1) = f(3,atom1) + dudz
1423 >    
1424 >    f(1,atom2) = f(1,atom2) - dudx
1425 >    f(2,atom2) = f(2,atom2) - dudy
1426 >    f(3,atom2) = f(3,atom2) - dudz
1427 >    
1428 >    if (i_is_Dipole) then
1429 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1430 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1431 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1432 >    elseif (j_is_Dipole) then
1433 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1434 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1435 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1436 >    endif
1437 >
1438 >    return
1439 >  end subroutine rf_self_excludes
1440 >
1441   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines