ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2156 by chrisfen, Fri Apr 8 22:13:41 2005 UTC vs.
Revision 2843 by chrisfen, Fri Jun 9 18:26:18 2006 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
47    use vector_class
48    use simulation
49    use status
50 +  use interpolation
51   #ifdef IS_MPI
52    use mpiSimulation
53   #endif
# Line 54 | Line 55 | module electrostatic_module
55  
56    PRIVATE
57  
58 +
59 + #define __FORTRAN90
60 + #include "UseTheForce/DarkSide/fInteractionMap.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
62 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
63 +
64 +
65    !! these prefactors convert the multipole interactions into kcal / mol
66    !! all were computed assuming distances are measured in angstroms
67    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 76 | module electrostatic_module
76    !! This unit is also known affectionately as an esu centi-barn.
77    real(kind=dp), parameter :: pre14 = 69.13373_dp
78  
79 +  real(kind=dp), parameter :: zero = 0.0_dp
80 +  
81 +  !! number of points for electrostatic splines
82 +  integer, parameter :: np = 100
83 +
84 +  !! variables to handle different summation methods for long-range
85 +  !! electrostatics:
86 +  integer, save :: summationMethod = NONE
87 +  integer, save :: screeningMethod = UNDAMPED
88 +  logical, save :: summationMethodChecked = .false.
89 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
90 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
91 +  logical, save :: haveDefaultCutoff = .false.
92 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
93 +  real(kind=DP), save :: alpha2 = 0.0_DP
94 +  real(kind=DP), save :: alpha4 = 0.0_DP
95 +  real(kind=DP), save :: alpha6 = 0.0_DP
96 +  real(kind=DP), save :: alpha8 = 0.0_DP
97 +  logical, save :: haveDampingAlpha = .false.
98 +  real(kind=DP), save :: dielectric = 1.0_DP
99 +  logical, save :: haveDielectric = .false.
100 +  real(kind=DP), save :: constEXP = 0.0_DP
101 +  real(kind=dp), save :: rcuti = 0.0_DP
102 +  real(kind=dp), save :: rcuti2 = 0.0_DP
103 +  real(kind=dp), save :: rcuti3 = 0.0_DP
104 +  real(kind=dp), save :: rcuti4 = 0.0_DP
105 +  real(kind=dp), save :: alphaPi = 0.0_DP
106 +  real(kind=dp), save :: invRootPi = 0.0_DP
107 +  real(kind=dp), save :: rrf = 1.0_DP
108 +  real(kind=dp), save :: rt = 1.0_DP
109 +  real(kind=dp), save :: rrfsq = 1.0_DP
110 +  real(kind=dp), save :: preRF = 0.0_DP
111 +  real(kind=dp), save :: preRF2 = 0.0_DP
112 +  real(kind=dp), save :: erfcVal = 1.0_DP
113 +  real(kind=dp), save :: derfcVal = 0.0_DP
114 +  type(cubicSpline), save :: erfcSpline
115 +  logical, save :: haveElectroSpline = .false.
116 +  real(kind=dp), save :: c1 = 1.0_DP
117 +  real(kind=dp), save :: c2 = 1.0_DP
118 +  real(kind=dp), save :: c3 = 0.0_DP
119 +  real(kind=dp), save :: c4 = 0.0_DP
120 +  real(kind=dp), save :: c5 = 0.0_DP
121 +  real(kind=dp), save :: c6 = 0.0_DP
122 +  real(kind=dp), save :: c1c = 1.0_DP
123 +  real(kind=dp), save :: c2c = 1.0_DP
124 +  real(kind=dp), save :: c3c = 0.0_DP
125 +  real(kind=dp), save :: c4c = 0.0_DP
126 +  real(kind=dp), save :: c5c = 0.0_DP
127 +  real(kind=dp), save :: c6c = 0.0_DP
128 +  real(kind=dp), save :: one_third = 1.0_DP / 3.0_DP
129 +
130 + #if defined(__IFC) || defined(__PGI)
131 + ! error function for ifc version > 7.
132 +  real(kind=dp), external :: erfc
133 + #endif
134 +  
135 +  public :: setElectrostaticSummationMethod
136 +  public :: setScreeningMethod
137 +  public :: setElectrostaticCutoffRadius
138 +  public :: setDampingAlpha
139 +  public :: setReactionFieldDielectric
140 +  public :: buildElectroSpline
141    public :: newElectrostaticType
142    public :: setCharge
143    public :: setDipoleMoment
# Line 76 | Line 146 | module electrostatic_module
146    public :: doElectrostaticPair
147    public :: getCharge
148    public :: getDipoleMoment
149 <  public :: pre22
149 >  public :: destroyElectrostaticTypes
150 >  public :: self_self
151 >  public :: rf_self_excludes
152  
153 +
154    type :: Electrostatic
155       integer :: c_ident
156       logical :: is_Charge = .false.
157       logical :: is_Dipole = .false.
158       logical :: is_SplitDipole = .false.
159       logical :: is_Quadrupole = .false.
160 +     logical :: is_Tap = .false.
161       real(kind=DP) :: charge = 0.0_DP
162       real(kind=DP) :: dipole_moment = 0.0_DP
163       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 92 | Line 166 | contains
166  
167    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
168  
169 +  logical, save :: hasElectrostaticMap
170 +
171   contains
172  
173 <  subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
174 <       is_SplitDipole, is_Quadrupole, status)
173 >  subroutine setElectrostaticSummationMethod(the_ESM)
174 >    integer, intent(in) :: the_ESM    
175 >
176 >    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
177 >       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
178 >    endif
179 >
180 >    summationMethod = the_ESM
181 >
182 >  end subroutine setElectrostaticSummationMethod
183 >
184 >  subroutine setScreeningMethod(the_SM)
185 >    integer, intent(in) :: the_SM    
186 >    screeningMethod = the_SM
187 >  end subroutine setScreeningMethod
188 >
189 >  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
190 >    real(kind=dp), intent(in) :: thisRcut
191 >    real(kind=dp), intent(in) :: thisRsw
192 >    defaultCutoff = thisRcut
193 >    defaultCutoff2 = defaultCutoff*defaultCutoff
194 >    rrf = defaultCutoff
195 >    rt = thisRsw
196 >    haveDefaultCutoff = .true.
197 >  end subroutine setElectrostaticCutoffRadius
198 >
199 >  subroutine setDampingAlpha(thisAlpha)
200 >    real(kind=dp), intent(in) :: thisAlpha
201 >    dampingAlpha = thisAlpha
202 >    alpha2 = dampingAlpha*dampingAlpha
203 >    alpha4 = alpha2*alpha2
204 >    alpha6 = alpha4*alpha2
205 >    alpha8 = alpha4*alpha4
206 >    haveDampingAlpha = .true.
207 >  end subroutine setDampingAlpha
208 >  
209 >  subroutine setReactionFieldDielectric(thisDielectric)
210 >    real(kind=dp), intent(in) :: thisDielectric
211 >    dielectric = thisDielectric
212 >    haveDielectric = .true.
213 >  end subroutine setReactionFieldDielectric
214 >
215 >  subroutine buildElectroSpline()
216 >    real( kind = dp ), dimension(np) :: xvals, yvals
217 >    real( kind = dp ) :: dx, rmin, rval
218 >    integer :: i
219 >
220 >    rmin = 0.0_dp
221 >
222 >    dx = (defaultCutoff-rmin) / dble(np-1)
223      
224 +    do i = 1, np
225 +       rval = rmin + dble(i-1)*dx
226 +       xvals(i) = rval
227 +       yvals(i) = erfc(dampingAlpha*rval)
228 +    enddo
229 +
230 +    call newSpline(erfcSpline, xvals, yvals, .true.)
231 +
232 +    haveElectroSpline = .true.
233 +  end subroutine buildElectroSpline
234 +
235 +  subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
236 +       is_SplitDipole, is_Quadrupole, is_Tap, status)
237 +
238      integer, intent(in) :: c_ident
239      logical, intent(in) :: is_Charge
240      logical, intent(in) :: is_Dipole
241      logical, intent(in) :: is_SplitDipole
242      logical, intent(in) :: is_Quadrupole
243 +    logical, intent(in) :: is_Tap
244      integer, intent(out) :: status
245      integer :: nAtypes, myATID, i, j
246  
247      status = 0
248      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
249 <    
249 >
250      !! Be simple-minded and assume that we need an ElectrostaticMap that
251      !! is the same size as the total number of atom types
252  
253      if (.not.allocated(ElectrostaticMap)) then
254 <      
254 >
255         nAtypes = getSize(atypes)
256 <    
256 >
257         if (nAtypes == 0) then
258            status = -1
259            return
260         end if
261 <      
262 <       if (.not. allocated(ElectrostaticMap)) then
263 <          allocate(ElectrostaticMap(nAtypes))
125 <       endif
126 <      
261 >
262 >       allocate(ElectrostaticMap(nAtypes))
263 >
264      end if
265  
266      if (myATID .gt. size(ElectrostaticMap)) then
267         status = -1
268         return
269      endif
270 <    
270 >
271      ! set the values for ElectrostaticMap for this atom type:
272  
273      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 138 | Line 275 | contains
275      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
276      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
277      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
278 <    
278 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
279 >
280 >    hasElectrostaticMap = .true.
281 >
282    end subroutine newElectrostaticType
283  
284    subroutine setCharge(c_ident, charge, status)
# Line 150 | Line 290 | contains
290      status = 0
291      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
292  
293 <    if (.not.allocated(ElectrostaticMap)) then
293 >    if (.not.hasElectrostaticMap) then
294         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!")
295         status = -1
296         return
# Line 166 | Line 306 | contains
306         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
307         status = -1
308         return
309 <    endif      
309 >    endif
310  
311      ElectrostaticMap(myATID)%charge = charge
312    end subroutine setCharge
# Line 180 | Line 320 | contains
320      status = 0
321      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
322  
323 <    if (.not.allocated(ElectrostaticMap)) then
323 >    if (.not.hasElectrostaticMap) then
324         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!")
325         status = -1
326         return
# Line 210 | Line 350 | contains
350      status = 0
351      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
352  
353 <    if (.not.allocated(ElectrostaticMap)) then
353 >    if (.not.hasElectrostaticMap) then
354         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!")
355         status = -1
356         return
# Line 240 | Line 380 | contains
380      status = 0
381      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
382  
383 <    if (.not.allocated(ElectrostaticMap)) then
383 >    if (.not.hasElectrostaticMap) then
384         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!")
385         status = -1
386         return
# Line 257 | Line 397 | contains
397         status = -1
398         return
399      endif
400 <    
400 >
401      do i = 1, 3
402 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
403 <               quadrupole_moments(i)
404 <       enddo
402 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
403 >            quadrupole_moments(i)
404 >    enddo
405  
406    end subroutine setQuadrupoleMoments
407  
408 <  
408 >
409    function getCharge(atid) result (c)
410      integer, intent(in) :: atid
411      integer :: localError
412      real(kind=dp) :: c
413 <    
414 <    if (.not.allocated(ElectrostaticMap)) then
413 >
414 >    if (.not.hasElectrostaticMap) then
415         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
416         return
417      end if
418 <    
418 >
419      if (.not.ElectrostaticMap(atid)%is_Charge) then
420         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
421         return
422      endif
423 <    
423 >
424      c = ElectrostaticMap(atid)%charge
425    end function getCharge
426  
# Line 288 | Line 428 | contains
428      integer, intent(in) :: atid
429      integer :: localError
430      real(kind=dp) :: dm
431 <    
432 <    if (.not.allocated(ElectrostaticMap)) then
431 >
432 >    if (.not.hasElectrostaticMap) then
433         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
434         return
435      end if
436 <    
436 >
437      if (.not.ElectrostaticMap(atid)%is_Dipole) then
438         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
439         return
440      endif
441 <    
441 >
442      dm = ElectrostaticMap(atid)%dipole_moment
443    end function getDipoleMoment
444  
445 <  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
446 <       vpair, fpair, pot, eFrame, f, t, do_pot)
447 <    
445 >  subroutine checkSummationMethod()
446 >
447 >    if (.not.haveDefaultCutoff) then
448 >       call handleError("checkSummationMethod", "no Default Cutoff set!")
449 >    endif
450 >
451 >    rcuti = 1.0_dp / defaultCutoff
452 >    rcuti2 = rcuti*rcuti
453 >    rcuti3 = rcuti2*rcuti
454 >    rcuti4 = rcuti2*rcuti2
455 >
456 >    if (screeningMethod .eq. DAMPED) then
457 >       if (.not.haveDampingAlpha) then
458 >          call handleError("checkSummationMethod", "no Damping Alpha set!")
459 >       endif
460 >      
461 >       if (.not.haveDefaultCutoff) then
462 >          call handleError("checkSummationMethod", "no Default Cutoff set!")
463 >       endif
464 >
465 >       constEXP = exp(-alpha2*defaultCutoff2)
466 >       invRootPi = 0.56418958354775628695_dp
467 >       alphaPi = 2.0_dp*dampingAlpha*invRootPi
468 >
469 >       c1c = erfc(dampingAlpha*defaultCutoff) * rcuti
470 >       c2c = alphaPi*constEXP*rcuti + c1c*rcuti
471 >       c3c = 2.0_dp*alphaPi*alpha2 + 3.0_dp*c2c*rcuti
472 >       c4c = 4.0_dp*alphaPi*alpha4 + 5.0_dp*c3c*rcuti2
473 >       c5c = 8.0_dp*alphaPi*alpha6 + 7.0_dp*c4c*rcuti2
474 >       c6c = 16.0_dp*alphaPi*alpha8 + 9.0_dp*c5c*rcuti2
475 >    else
476 >       c1c = rcuti
477 >       c2c = c1c*rcuti
478 >       c3c = 3.0_dp*c2c*rcuti
479 >       c4c = 5.0_dp*c3c*rcuti2
480 >       c5c = 7.0_dp*c4c*rcuti2
481 >       c6c = 9.0_dp*c5c*rcuti2
482 >    endif
483 >
484 >    if (summationMethod .eq. REACTION_FIELD) then
485 >       if (haveDielectric) then
486 >          defaultCutoff2 = defaultCutoff*defaultCutoff
487 >          preRF = (dielectric-1.0_dp) / &
488 >               ((2.0_dp*dielectric+1.0_dp)*defaultCutoff2*defaultCutoff)
489 >          preRF2 = 2.0_dp*preRF
490 >       else
491 >          call handleError("checkSummationMethod", "Dielectric not set")
492 >       endif
493 >      
494 >    endif
495 >
496 >    if (.not.haveElectroSpline) then
497 >       call buildElectroSpline()
498 >    end if
499 >
500 >    summationMethodChecked = .true.
501 >  end subroutine checkSummationMethod
502 >
503 >
504 >  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, rcut, sw, &
505 >       vpair, fpair, pot, eFrame, f, t, do_pot)
506 >
507      logical, intent(in) :: do_pot
508 <    
508 >
509      integer, intent(in) :: atom1, atom2
510      integer :: localError
511  
512 <    real(kind=dp), intent(in) :: rij, r2, sw
512 >    real(kind=dp), intent(in) :: rij, r2, sw, rcut
513      real(kind=dp), intent(in), dimension(3) :: d
514      real(kind=dp), intent(inout) :: vpair
515 <    real(kind=dp), intent(inout), dimension(3) :: fpair
515 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
516  
517      real( kind = dp ) :: pot
518      real( kind = dp ), dimension(9,nLocal) :: eFrame
519      real( kind = dp ), dimension(3,nLocal) :: f
520 +    real( kind = dp ), dimension(3,nLocal) :: felec
521      real( kind = dp ), dimension(3,nLocal) :: t
522 <    
522 >
523      real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
524      real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
525      real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
# Line 327 | Line 527 | contains
527  
528      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
529      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
530 +    logical :: i_is_Tap, j_is_Tap
531      integer :: me1, me2, id1, id2
532      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
533      real (kind=dp) :: qxx_i, qyy_i, qzz_i
# Line 334 | Line 535 | contains
535      real (kind=dp) :: cx_i, cy_i, cz_i
536      real (kind=dp) :: cx_j, cy_j, cz_j
537      real (kind=dp) :: cx2, cy2, cz2
538 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
538 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
539      real (kind=dp) :: riji, ri, ri2, ri3, ri4
540 <    real (kind=dp) :: pref, vterm, epot, dudr    
540 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
541      real (kind=dp) :: xhat, yhat, zhat
542      real (kind=dp) :: dudx, dudy, dudz
342    real (kind=dp) :: drdxj, drdyj, drdzj
543      real (kind=dp) :: scale, sc2, bigR
544 +    real (kind=dp) :: varEXP
545 +    real (kind=dp) :: pot_term
546 +    real (kind=dp) :: preVal, rfVal
547 +    real (kind=dp) :: c2ri, c3ri, c4rij
548 +    real (kind=dp) :: cti3, ctj3, ctidotj
549 +    real (kind=dp) :: preSw, preSwSc
550 +    real (kind=dp) :: xhatdot2, yhatdot2, zhatdot2
551 +    real (kind=dp) :: xhatc4, yhatc4, zhatc4
552  
553 <    if (.not.allocated(ElectrostaticMap)) then
554 <       call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
555 <       return
348 <    end if
553 >    if (.not.summationMethodChecked) then
554 >       call checkSummationMethod()
555 >    endif
556  
557   #ifdef IS_MPI
558      me1 = atid_Row(atom1)
# Line 357 | Line 564 | contains
564  
565      !! some variables we'll need independent of electrostatic type:
566  
567 <    riji = 1.0d0 / rij
568 <
567 >    riji = 1.0_dp / rij
568 >  
569      xhat = d(1) * riji
570      yhat = d(2) * riji
571      zhat = d(3) * riji
572  
366    drdxj = xhat
367    drdyj = yhat
368    drdzj = zhat
369
573      !! logicals
371
574      i_is_Charge = ElectrostaticMap(me1)%is_Charge
575      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
576      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
577      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
578 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
579  
580      j_is_Charge = ElectrostaticMap(me2)%is_Charge
581      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
582      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
583      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
584 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
585  
586      if (i_is_Charge) then
587         q_i = ElectrostaticMap(me1)%charge      
588      endif
589 <    
589 >
590      if (i_is_Dipole) then
591         mu_i = ElectrostaticMap(me1)%dipole_moment
592   #ifdef IS_MPI
# Line 399 | Line 603 | contains
603         if (i_is_SplitDipole) then
604            d_i = ElectrostaticMap(me1)%split_dipole_distance
605         endif
606 <      
606 >       duduz_i = zero
607      endif
608  
609      if (i_is_Quadrupole) then
# Line 430 | Line 634 | contains
634         cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
635         cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
636         cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
637 +       dudux_i = zero
638 +       duduy_i = zero
639 +       duduz_i = zero
640      endif
641  
435
642      if (j_is_Charge) then
643         q_j = ElectrostaticMap(me2)%charge      
644      endif
645 <    
645 >
646      if (j_is_Dipole) then
647         mu_j = ElectrostaticMap(me2)%dipole_moment
648   #ifdef IS_MPI
# Line 448 | Line 654 | contains
654         uz_j(2) = eFrame(6,atom2)
655         uz_j(3) = eFrame(9,atom2)
656   #endif
657 <       ct_j = uz_j(1)*drdxj + uz_j(2)*drdyj + uz_j(3)*drdzj
657 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
658  
659         if (j_is_SplitDipole) then
660            d_j = ElectrostaticMap(me2)%split_dipole_distance
661         endif
662 +       duduz_j = zero
663      endif
664  
665      if (j_is_Quadrupole) then
# Line 483 | Line 690 | contains
690         cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
691         cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
692         cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
693 +       dudux_j = zero
694 +       duduy_j = zero
695 +       duduz_j = zero
696      endif
697 +  
698 +    epot = zero
699 +    dudx = zero
700 +    dudy = zero
701 +    dudz = zero  
702  
703 <    epot = 0.0_dp
489 <    dudx = 0.0_dp
490 <    dudy = 0.0_dp
491 <    dudz = 0.0_dp
703 >    if (i_is_Charge) then
704  
705 <    dudux_i = 0.0_dp
706 <    duduy_i = 0.0_dp
707 <    duduz_i = 0.0_dp
705 >       if (j_is_Charge) then
706 >          if (screeningMethod .eq. DAMPED) then
707 >             ! assemble the damping variables
708 >             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
709 >             c1 = erfcVal*riji
710 >             c2 = (-derfcVal + c1)*riji
711 >          else
712 >             c1 = riji
713 >             c2 = c1*riji
714 >          endif
715  
716 <    dudux_j = 0.0_dp
498 <    duduy_j = 0.0_dp
499 <    duduz_j = 0.0_dp
716 >          preVal = pre11 * q_i * q_j
717  
718 <    if (i_is_Charge) then
718 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
719 >             vterm = preVal * (c1 - c1c)
720 >            
721 >             dudr  = -sw * preVal * c2
722 >  
723 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
724 >             vterm = preVal * ( c1 - c1c + c2c*(rij - defaultCutoff) )
725 >            
726 >             dudr  = sw * preVal * (c2c - c2)
727 >  
728 >          elseif (summationMethod .eq. REACTION_FIELD) then
729 >             rfVal = preRF*rij*rij
730 >             vterm = preVal * ( riji + rfVal )
731 >            
732 >             dudr  = sw * preVal * ( 2.0_dp*rfVal - riji )*riji
733 >  
734 >          else
735 >             vterm = preVal * riji*erfcVal
736 >            
737 >             dudr  = - sw * preVal * c2
738 >  
739 >          endif
740  
503       if (j_is_Charge) then
504          
505          vterm = pre11 * q_i * q_j * riji
741            vpair = vpair + vterm
742            epot = epot + sw*vterm
743  
744 <          dudr  = - sw * vterm * riji
744 >          dudx = dudx + dudr * xhat
745 >          dudy = dudy + dudr * yhat
746 >          dudz = dudz + dudr * zhat
747  
511          dudx = dudx + dudr * drdxj
512          dudy = dudy + dudr * drdyj
513          dudz = dudz + dudr * drdzj
514      
748         endif
749  
750         if (j_is_Dipole) then
751 +          ! pref is used by all the possible methods
752 +          pref = pre12 * q_i * mu_j
753 +          preSw = sw*pref
754  
755 <          if (j_is_SplitDipole) then
756 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
757 <             ri = 1.0_dp / BigR
758 <             scale = rij * ri
759 <          else
760 <             ri = riji
761 <             scale = 1.0_dp
526 <          endif
527 <
528 <          ri2 = ri * ri
529 <          ri3 = ri2 * ri
530 <          sc2 = scale * scale
755 >          if (summationMethod .eq. REACTION_FIELD) then
756 >             ri2 = riji * riji
757 >             ri3 = ri2 * riji
758 >    
759 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
760 >             vpair = vpair + vterm
761 >             epot = epot + sw*vterm
762              
763 <          pref = pre12 * q_i * mu_j
764 <          vterm = - pref * ct_j * ri2 * scale
765 <          vpair = vpair + vterm
766 <          epot = epot + sw * vterm
763 >             dudx = dudx - preSw*( ri3*(uz_j(1) - 3.0_dp*ct_j*xhat) - &
764 >                  preRF2*uz_j(1) )
765 >             dudy = dudy - preSw*( ri3*(uz_j(2) - 3.0_dp*ct_j*yhat) - &
766 >                  preRF2*uz_j(2) )
767 >             dudz = dudz - preSw*( ri3*(uz_j(3) - 3.0_dp*ct_j*zhat) - &
768 >                  preRF2*uz_j(3) )        
769 >             duduz_j(1) = duduz_j(1) - preSw * xhat * ( ri2 - preRF2*rij )
770 >             duduz_j(2) = duduz_j(2) - preSw * yhat * ( ri2 - preRF2*rij )
771 >             duduz_j(3) = duduz_j(3) - preSw * zhat * ( ri2 - preRF2*rij )
772  
773 <          !! this has a + sign in the () because the rij vector is
774 <          !! r_j - r_i and the charge-dipole potential takes the origin
775 <          !! as the point dipole, which is atom j in this case.
776 <
777 <          dudx = dudx - pref * sw * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
778 <          dudy = dudy - pref * sw * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
779 <          dudz = dudz - pref * sw * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
773 >          else
774 >             ! determine the inverse r used if we have split dipoles
775 >             if (j_is_SplitDipole) then
776 >                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
777 >                ri = 1.0_dp / BigR
778 >                scale = rij * ri
779 >             else
780 >                ri = riji
781 >                scale = 1.0_dp
782 >             endif
783  
784 <          duduz_j(1) = duduz_j(1) - pref * sw * ri2 * xhat * scale
785 <          duduz_j(2) = duduz_j(2) - pref * sw * ri2 * yhat * scale
786 <          duduz_j(3) = duduz_j(3) - pref * sw * ri2 * zhat * scale
787 <          
784 >             sc2 = scale * scale
785 >
786 >             if (screeningMethod .eq. DAMPED) then
787 >                ! assemble the damping variables
788 >                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
789 >                c1 = erfcVal*ri
790 >                c2 = (-derfcVal + c1)*ri
791 >                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
792 >             else
793 >                c1 = ri
794 >                c2 = c1*ri
795 >                c3 = 3.0_dp*c2*ri
796 >             endif
797 >            
798 >             c2ri = c2*ri
799 >
800 >             ! calculate the potential
801 >             pot_term =  scale * c2
802 >             vterm = -pref * ct_j * pot_term
803 >             vpair = vpair + vterm
804 >             epot = epot + sw*vterm
805 >            
806 >             ! calculate derivatives for forces and torques
807 >             dudx = dudx - preSw*( uz_j(1)*c2ri - ct_j*xhat*sc2*c3 )
808 >             dudy = dudy - preSw*( uz_j(2)*c2ri - ct_j*yhat*sc2*c3 )
809 >             dudz = dudz - preSw*( uz_j(3)*c2ri - ct_j*zhat*sc2*c3 )
810 >                          
811 >             duduz_j(1) = duduz_j(1) - preSw * pot_term * xhat
812 >             duduz_j(2) = duduz_j(2) - preSw * pot_term * yhat
813 >             duduz_j(3) = duduz_j(3) - preSw * pot_term * zhat
814 >
815 >          endif
816         endif
817  
818         if (j_is_Quadrupole) then
819 <          ri2 = riji * riji
553 <          ri3 = ri2 * riji
554 <          ri4 = ri2 * ri2
819 >          ! first precalculate some necessary variables
820            cx2 = cx_j * cx_j
821            cy2 = cy_j * cy_j
822            cz2 = cz_j * cz_j
823 +          pref =  pre14 * q_i * one_third
824 +          
825 +          if (screeningMethod .eq. DAMPED) then
826 +             ! assemble the damping variables
827 +             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
828 +             c1 = erfcVal*riji
829 +             c2 = (-derfcVal + c1)*riji
830 +             c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*riji
831 +             c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*riji*riji
832 +          else
833 +             c1 = riji
834 +             c2 = c1*riji
835 +             c3 = 3.0_dp*c2*riji
836 +             c4 = 5.0_dp*c3*riji*riji
837 +          endif
838  
839 +          ! precompute variables for convenience
840 +          preSw = sw*pref
841 +          c2ri = c2*riji
842 +          c3ri = c3*riji
843 +          c4rij = c4*rij
844 +          xhatdot2 = 2.0_dp*xhat*c3
845 +          yhatdot2 = 2.0_dp*yhat*c3
846 +          zhatdot2 = 2.0_dp*zhat*c3
847 +          xhatc4 = xhat*c4rij
848 +          yhatc4 = yhat*c4rij
849 +          zhatc4 = zhat*c4rij
850  
851 <          pref =  pre14 * q_i / 1.0_dp
852 <          vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
853 <               qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
854 <               qzz_j * (3.0_dp*cz2 - 1.0_dp))
851 >          ! calculate the potential
852 >          pot_term = ( qxx_j*(cx2*c3 - c2ri) + qyy_j*(cy2*c3 - c2ri) + &
853 >               qzz_j*(cz2*c3 - c2ri) )
854 >          vterm = pref * pot_term
855            vpair = vpair + vterm
856 <          epot = epot + sw * vterm
856 >          epot = epot + sw*vterm
857  
858 <          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + pref * sw * ri4 * ( &
859 <               qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
860 <               qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
861 <               qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
862 <          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + pref * sw * ri4 * ( &
863 <               qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
864 <               qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
865 <               qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
866 <          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + pref * sw * ri4 * ( &
867 <               qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
868 <               qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
869 <               qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
858 >          ! calculate derivatives for the forces and torques
859 >          dudx = dudx - preSw * ( &
860 >               qxx_j*(cx2*xhatc4 - (2.0_dp*cx_j*ux_j(1) + xhat)*c3ri) + &
861 >               qyy_j*(cy2*xhatc4 - (2.0_dp*cy_j*uy_j(1) + xhat)*c3ri) + &
862 >               qzz_j*(cz2*xhatc4 - (2.0_dp*cz_j*uz_j(1) + xhat)*c3ri) )
863 >          dudy = dudy - preSw * ( &
864 >               qxx_j*(cx2*yhatc4 - (2.0_dp*cx_j*ux_j(2) + yhat)*c3ri) + &
865 >               qyy_j*(cy2*yhatc4 - (2.0_dp*cy_j*uy_j(2) + yhat)*c3ri) + &
866 >               qzz_j*(cz2*yhatc4 - (2.0_dp*cz_j*uz_j(2) + yhat)*c3ri) )
867 >          dudz = dudz - preSw * ( &
868 >               qxx_j*(cx2*zhatc4 - (2.0_dp*cx_j*ux_j(3) + zhat)*c3ri) + &
869 >               qyy_j*(cy2*zhatc4 - (2.0_dp*cy_j*uy_j(3) + zhat)*c3ri) + &
870 >               qzz_j*(cz2*zhatc4 - (2.0_dp*cz_j*uz_j(3) + zhat)*c3ri) )
871            
872 <          dudux_j(1) = dudux_j(1) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*xhat)
873 <          dudux_j(2) = dudux_j(2) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*yhat)
874 <          dudux_j(3) = dudux_j(3) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*zhat)
872 >          dudux_j(1) = dudux_j(1) + preSw*(qxx_j*cx_j*xhatdot2)
873 >          dudux_j(2) = dudux_j(2) + preSw*(qxx_j*cx_j*yhatdot2)
874 >          dudux_j(3) = dudux_j(3) + preSw*(qxx_j*cx_j*zhatdot2)
875 >          
876 >          duduy_j(1) = duduy_j(1) + preSw*(qyy_j*cy_j*xhatdot2)
877 >          duduy_j(2) = duduy_j(2) + preSw*(qyy_j*cy_j*yhatdot2)
878 >          duduy_j(3) = duduy_j(3) + preSw*(qyy_j*cy_j*zhatdot2)
879 >          
880 >          duduz_j(1) = duduz_j(1) + preSw*(qzz_j*cz_j*xhatdot2)
881 >          duduz_j(2) = duduz_j(2) + preSw*(qzz_j*cz_j*yhatdot2)
882 >          duduz_j(3) = duduz_j(3) + preSw*(qzz_j*cz_j*zhatdot2)
883  
884 <          duduy_j(1) = duduy_j(1) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*xhat)
585 <          duduy_j(2) = duduy_j(2) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*yhat)
586 <          duduy_j(3) = duduy_j(3) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*zhat)
587 <
588 <          duduz_j(1) = duduz_j(1) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*xhat)
589 <          duduz_j(2) = duduz_j(2) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*yhat)
590 <          duduz_j(3) = duduz_j(3) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*zhat)
884 >          
885         endif
592
886      endif
887 <  
887 >    
888      if (i_is_Dipole) then
889 <      
889 >
890         if (j_is_Charge) then
891 +          ! variables used by all the methods
892 +          pref = pre12 * q_j * mu_i                      
893 +          preSw = sw*pref
894  
895 <          if (i_is_SplitDipole) then
600 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
601 <             ri = 1.0_dp / BigR
602 <             scale = rij * ri
603 <          else
604 <             ri = riji
605 <             scale = 1.0_dp
606 <          endif
895 >          if (summationMethod .eq. REACTION_FIELD) then
896  
897 <          ri2 = ri * ri
898 <          ri3 = ri2 * ri
899 <          sc2 = scale * scale
897 >             ri2 = riji * riji
898 >             ri3 = ri2 * riji
899 >
900 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
901 >             vpair = vpair + vterm
902 >             epot = epot + sw*vterm
903              
904 <          pref = pre12 * q_j * mu_i
905 <          vterm = pref * ct_i * ri2 * scale
906 <          vpair = vpair + vterm
907 <          epot = epot + sw * vterm
904 >             dudx = dudx + preSw * ( ri3*(uz_i(1) - 3.0_dp*ct_i*xhat) - &
905 >                  preRF2*uz_i(1) )
906 >             dudy = dudy + preSw * ( ri3*(uz_i(2) - 3.0_dp*ct_i*yhat) - &
907 >                  preRF2*uz_i(2) )
908 >             dudz = dudz + preSw * ( ri3*(uz_i(3) - 3.0_dp*ct_i*zhat) - &
909 >                  preRF2*uz_i(3) )
910 >            
911 >             duduz_i(1) = duduz_i(1) + preSw * xhat * ( ri2 - preRF2*rij )
912 >             duduz_i(2) = duduz_i(2) + preSw * yhat * ( ri2 - preRF2*rij )
913 >             duduz_i(3) = duduz_i(3) + preSw * zhat * ( ri2 - preRF2*rij )
914  
915 <          dudx = dudx + pref * sw * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
916 <          dudy = dudy + pref * sw * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
917 <          dudz = dudz + pref * sw * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
915 >          else
916 >             ! determine inverse r if we are using split dipoles
917 >             if (i_is_SplitDipole) then
918 >                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
919 >                ri = 1.0_dp / BigR
920 >                scale = rij * ri
921 >             else
922 >                ri = riji
923 >                scale = 1.0_dp
924 >             endif
925 >
926 >             sc2 = scale * scale
927 >              
928 >             if (screeningMethod .eq. DAMPED) then
929 >                ! assemble the damping variables
930 >                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
931 >                c1 = erfcVal*ri
932 >                c2 = (-derfcVal + c1)*ri
933 >                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
934 >             else
935 >                c1 = ri
936 >                c2 = c1*ri
937 >                c3 = 3.0_dp*c2*ri
938 >             endif
939 >            
940 >             c2ri = c2*ri
941  
942 <          duduz_i(1) = duduz_i(1) + pref * sw * ri2 * xhat * scale
943 <          duduz_i(2) = duduz_i(2) + pref * sw * ri2 * yhat * scale
944 <          duduz_i(3) = duduz_i(3) + pref * sw * ri2 * zhat * scale
945 <       endif
942 >             ! calculate the potential
943 >             pot_term = c2 * scale
944 >             vterm = pref * ct_i * pot_term
945 >             vpair = vpair + vterm
946 >             epot = epot + sw*vterm
947  
948 +             ! calculate derivatives for the forces and torques
949 +             dudx = dudx + preSw * ( uz_i(1)*c2ri - ct_i*xhat*sc2*c3 )
950 +             dudy = dudy + preSw * ( uz_i(2)*c2ri - ct_i*yhat*sc2*c3 )
951 +             dudz = dudz + preSw * ( uz_i(3)*c2ri - ct_i*zhat*sc2*c3 )
952 +
953 +             duduz_i(1) = duduz_i(1) + preSw * pot_term * xhat
954 +             duduz_i(2) = duduz_i(2) + preSw * pot_term * yhat
955 +             duduz_i(3) = duduz_i(3) + preSw * pot_term * zhat
956 +            
957 +          endif
958 +       endif
959 +      
960         if (j_is_Dipole) then
961 +          ! variables used by all methods
962 +          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
963 +          pref = pre22 * mu_i * mu_j
964 +          preSw = sw*pref
965  
966 <          if (i_is_SplitDipole) then
967 <             if (j_is_SplitDipole) then
968 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
969 <             else
970 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
971 <             endif
972 <             ri = 1.0_dp / BigR
973 <             scale = rij * ri                
966 >          if (summationMethod .eq. REACTION_FIELD) then
967 >             ri2 = riji * riji
968 >             ri3 = ri2 * riji
969 >             ri4 = ri2 * ri2
970 >
971 >             vterm = pref*( ri3*(ct_ij - 3.0_dp * ct_i * ct_j) - &
972 >                  preRF2*ct_ij )
973 >             vpair = vpair + vterm
974 >             epot = epot + sw*vterm
975 >            
976 >             a1 = 5.0_dp * ct_i * ct_j - ct_ij
977 >            
978 >             dudx = dudx + preSw*3.0_dp*ri4*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
979 >             dudy = dudy + preSw*3.0_dp*ri4*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
980 >             dudz = dudz + preSw*3.0_dp*ri4*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
981 >            
982 >             duduz_i(1) = duduz_i(1) + preSw*(ri3*(uz_j(1)-3.0_dp*ct_j*xhat) &
983 >                  - preRF2*uz_j(1))
984 >             duduz_i(2) = duduz_i(2) + preSw*(ri3*(uz_j(2)-3.0_dp*ct_j*yhat) &
985 >                  - preRF2*uz_j(2))
986 >             duduz_i(3) = duduz_i(3) + preSw*(ri3*(uz_j(3)-3.0_dp*ct_j*zhat) &
987 >                  - preRF2*uz_j(3))
988 >             duduz_j(1) = duduz_j(1) + preSw*(ri3*(uz_i(1)-3.0_dp*ct_i*xhat) &
989 >                  - preRF2*uz_i(1))
990 >             duduz_j(2) = duduz_j(2) + preSw*(ri3*(uz_i(2)-3.0_dp*ct_i*yhat) &
991 >                  - preRF2*uz_i(2))
992 >             duduz_j(3) = duduz_j(3) + preSw*(ri3*(uz_i(3)-3.0_dp*ct_i*zhat) &
993 >                  - preRF2*uz_i(3))
994 >
995            else
996 <             if (j_is_SplitDipole) then
997 <                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
996 >             if (i_is_SplitDipole) then
997 >                if (j_is_SplitDipole) then
998 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
999 >                else
1000 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
1001 >                endif
1002                  ri = 1.0_dp / BigR
1003 <                scale = rij * ri                            
1004 <             else                
1005 <                ri = riji
1006 <                scale = 1.0_dp
1003 >                scale = rij * ri                
1004 >             else
1005 >                if (j_is_SplitDipole) then
1006 >                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
1007 >                   ri = 1.0_dp / BigR
1008 >                   scale = rij * ri                            
1009 >                else                
1010 >                   ri = riji
1011 >                   scale = 1.0_dp
1012 >                endif
1013               endif
645          endif
1014  
1015 <          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
1015 >             if (screeningMethod .eq. DAMPED) then
1016 >                ! assemble the damping variables
1017 >                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
1018 >                c1 = erfcVal*ri
1019 >                c2 = (-derfcVal + c1)*ri
1020 >                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
1021 >                c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*ri*ri
1022 >             else
1023 >                c1 = ri
1024 >                c2 = c1*ri
1025 >                c3 = 3.0_dp*c2*ri
1026 >                c4 = 5.0_dp*c3*ri*ri
1027 >             endif
1028  
1029 <          ri2 = ri * ri
1030 <          ri3 = ri2 * ri
1031 <          ri4 = ri2 * ri2
1032 <          sc2 = scale * scale
1029 >             ! precompute variables for convenience
1030 >             sc2 = scale * scale
1031 >             cti3 = ct_i*sc2*c3
1032 >             ctj3 = ct_j*sc2*c3
1033 >             ctidotj = ct_i * ct_j * sc2        
1034 >             preSwSc = preSw*scale
1035 >             c2ri = c2*ri
1036 >             c3ri = c3*ri
1037 >             c4rij = c4*rij
1038  
654          pref = pre22 * mu_i * mu_j
655          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
656          vpair = vpair + vterm
657          epot = epot + sw * vterm
658          
659          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
1039  
1040 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1041 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1042 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1040 >             ! calculate the potential
1041 >             pot_term = (ct_ij*c2ri - ctidotj*c3)
1042 >             vterm = pref * pot_term
1043 >             vpair = vpair + vterm
1044 >             epot = epot + sw*vterm
1045  
1046 <          duduz_i(1) = duduz_i(1) + pref*sw*ri3*(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
1047 <          duduz_i(2) = duduz_i(2) + pref*sw*ri3*(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
1048 <          duduz_i(3) = duduz_i(3) + pref*sw*ri3*(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
1046 >             ! calculate derivatives for the forces and torques
1047 >             dudx = dudx + preSwSc * ( ctidotj*xhat*c4rij - &
1048 >                  (ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat)*c3ri )
1049 >             dudy = dudy + preSwSc * ( ctidotj*yhat*c4rij - &
1050 >                  (ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat)*c3ri )
1051 >             dudz = dudz + preSwSc * ( ctidotj*zhat*c4rij - &
1052 >                  (ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat)*c3ri )
1053  
1054 <          duduz_j(1) = duduz_j(1) + pref*sw*ri3*(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
1055 <          duduz_j(2) = duduz_j(2) + pref*sw*ri3*(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
1056 <          duduz_j(3) = duduz_j(3) + pref*sw*ri3*(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1057 <       endif
1054 >             duduz_i(1) = duduz_i(1) + preSw * ( uz_j(1)*c2ri - ctj3*xhat )
1055 >             duduz_i(2) = duduz_i(2) + preSw * ( uz_j(2)*c2ri - ctj3*yhat )
1056 >             duduz_i(3) = duduz_i(3) + preSw * ( uz_j(3)*c2ri - ctj3*zhat )
1057 >            
1058 >             duduz_j(1) = duduz_j(1) + preSw * ( uz_i(1)*c2ri - cti3*xhat )
1059 >             duduz_j(2) = duduz_j(2) + preSw * ( uz_i(2)*c2ri - cti3*yhat )
1060 >             duduz_j(3) = duduz_j(3) + preSw * ( uz_i(3)*c2ri - cti3*zhat )
1061  
1062 +          endif
1063 +       endif
1064      endif
1065  
1066      if (i_is_Quadrupole) then
1067         if (j_is_Charge) then
1068 +          if (screeningMethod .eq. DAMPED) then
1069 +             ! assemble the damping variables
1070 +             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
1071 +             c1 = erfcVal*riji
1072 +             c2 = (-derfcVal + c1)*riji
1073 +             c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*riji
1074 +             c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*riji*riji
1075 +          else
1076 +             c1 = riji
1077 +             c2 = c1*riji
1078 +             c3 = 3.0_dp*c2*riji
1079 +             c4 = 5.0_dp*c3*riji*riji
1080 +          endif
1081            
1082 <          ri2 = riji * riji
680 <          ri3 = ri2 * riji
681 <          ri4 = ri2 * ri2
1082 >          ! precompute some variables
1083            cx2 = cx_i * cx_i
1084            cy2 = cy_i * cy_i
1085            cz2 = cz_i * cz_i
1086 <          
1087 <          pref = pre14 * q_j / 1.0_dp
1088 <          vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1089 <               qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1090 <               qzz_i * (3.0_dp*cz2 - 1.0_dp))
1086 >          pref = pre14 * q_j * one_third
1087 >
1088 >          ! calculate the potential
1089 >          pot_term = ( qxx_i * (cx2*c3 - c2ri) + qyy_i * (cy2*c3 - c2ri) + &
1090 >               qzz_i * (cz2*c3 - c2ri) )
1091 >
1092 >          vterm = pref * pot_term
1093            vpair = vpair + vterm
1094 <          epot = epot + sw * vterm
1095 <          
1096 <          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + pref * sw * ri4 * ( &
1097 <               qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1098 <               qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1099 <               qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1100 <          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + pref * sw * ri4 * ( &
1101 <               qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1102 <               qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1103 <               qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1104 <          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + pref * sw * ri4 * ( &
1105 <               qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1106 <               qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1107 <               qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1108 <          
1109 <          dudux_i(1) = dudux_i(1) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*xhat)
1110 <          dudux_i(2) = dudux_i(2) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*yhat)
1111 <          dudux_i(3) = dudux_i(3) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*zhat)
1112 <          
1113 <          duduy_i(1) = duduy_i(1) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*xhat)
1114 <          duduy_i(2) = duduy_i(2) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*yhat)
1115 <          duduy_i(3) = duduy_i(3) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*zhat)
1094 >          epot = epot + sw*vterm
1095 >
1096 >          ! precompute variables for convenience
1097 >          preSw = sw*pref
1098 >          c2ri = c2*riji
1099 >          c3ri = c3*riji
1100 >          c4rij = c4*rij
1101 >          xhatdot2 = 2.0_dp*xhat*c3
1102 >          yhatdot2 = 2.0_dp*yhat*c3
1103 >          zhatdot2 = 2.0_dp*zhat*c3
1104 >          xhatc4 = xhat*c4rij
1105 >          yhatc4 = yhat*c4rij
1106 >          zhatc4 = zhat*c4rij
1107 >
1108 >          ! calculate the derivatives for the forces and torques
1109 >          dudx = dudx - preSw * ( &
1110 >               qxx_i*(cx2*xhatc4 - (2.0_dp*cx_i*ux_i(1) + xhat)*c3ri) + &
1111 >               qyy_i*(cy2*xhatc4 - (2.0_dp*cy_i*uy_i(1) + xhat)*c3ri) + &
1112 >               qzz_i*(cz2*xhatc4 - (2.0_dp*cz_i*uz_i(1) + xhat)*c3ri) )
1113 >          dudy = dudy - preSw * ( &
1114 >               qxx_i*(cx2*yhatc4 - (2.0_dp*cx_i*ux_i(2) + yhat)*c3ri) + &
1115 >               qyy_i*(cy2*yhatc4 - (2.0_dp*cy_i*uy_i(2) + yhat)*c3ri) + &
1116 >               qzz_i*(cz2*yhatc4 - (2.0_dp*cz_i*uz_i(2) + yhat)*c3ri) )
1117 >          dudz = dudz - preSw * ( &
1118 >               qxx_i*(cx2*zhatc4 - (2.0_dp*cx_i*ux_i(3) + zhat)*c3ri) + &
1119 >               qyy_i*(cy2*zhatc4 - (2.0_dp*cy_i*uy_i(3) + zhat)*c3ri) + &
1120 >               qzz_i*(cz2*zhatc4 - (2.0_dp*cz_i*uz_i(3) + zhat)*c3ri) )
1121            
1122 <          duduz_i(1) = duduz_i(1) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*xhat)
1123 <          duduz_i(2) = duduz_i(2) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*yhat)
1124 <          duduz_i(3) = duduz_i(3) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*zhat)
1122 >          dudux_i(1) = dudux_i(1) + preSw*(qxx_i*cx_i*xhatdot2)
1123 >          dudux_i(2) = dudux_i(2) + preSw*(qxx_i*cx_i*yhatdot2)
1124 >          dudux_i(3) = dudux_i(3) + preSw*(qxx_i*cx_i*zhatdot2)
1125 >          
1126 >          duduy_i(1) = duduy_i(1) + preSw*(qyy_i*cy_i*xhatdot2)
1127 >          duduy_i(2) = duduy_i(2) + preSw*(qyy_i*cy_i*yhatdot2)
1128 >          duduy_i(3) = duduy_i(3) + preSw*(qyy_i*cy_i*zhatdot2)
1129 >          
1130 >          duduz_i(1) = duduz_i(1) + preSw*(qzz_i*cz_i*xhatdot2)
1131 >          duduz_i(2) = duduz_i(2) + preSw*(qzz_i*cz_i*yhatdot2)
1132 >          duduz_i(3) = duduz_i(3) + preSw*(qzz_i*cz_i*zhatdot2)
1133         endif
1134      endif
1135 <      
1136 <    
1135 >
1136 >
1137      if (do_pot) then
1138   #ifdef IS_MPI
1139 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1140 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1139 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5_dp*epot
1140 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5_dp*epot
1141   #else
1142         pot = pot + epot
1143   #endif
1144      endif
1145 <        
1145 >
1146   #ifdef IS_MPI
1147      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1148      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1149      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1150 <    
1150 >
1151      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1152      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1153      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1154 <    
1154 >
1155      if (i_is_Dipole .or. i_is_Quadrupole) then
1156         t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1157         t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
# Line 770 | Line 1186 | contains
1186      f(1,atom1) = f(1,atom1) + dudx
1187      f(2,atom1) = f(2,atom1) + dudy
1188      f(3,atom1) = f(3,atom1) + dudz
1189 <    
1189 >
1190      f(1,atom2) = f(1,atom2) - dudx
1191      f(2,atom2) = f(2,atom2) - dudy
1192      f(3,atom2) = f(3,atom2) - dudz
1193 <    
1193 >
1194      if (i_is_Dipole .or. i_is_Quadrupole) then
1195         t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1196         t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
# Line 806 | Line 1222 | contains
1222      endif
1223  
1224   #endif
1225 <    
1225 >
1226   #ifdef IS_MPI
1227      id1 = AtomRowToGlobal(atom1)
1228      id2 = AtomColToGlobal(atom2)
# Line 816 | Line 1232 | contains
1232   #endif
1233  
1234      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1235 <      
1235 >
1236         fpair(1) = fpair(1) + dudx
1237         fpair(2) = fpair(2) + dudy
1238         fpair(3) = fpair(3) + dudz
# Line 825 | Line 1241 | contains
1241  
1242      return
1243    end subroutine doElectrostaticPair
1244 <  
1244 >
1245 >  subroutine destroyElectrostaticTypes()
1246 >
1247 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1248 >
1249 >  end subroutine destroyElectrostaticTypes
1250 >
1251 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1252 >    logical, intent(in) :: do_pot
1253 >    integer, intent(in) :: atom1
1254 >    integer :: atid1
1255 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1256 >    real(kind=dp), dimension(3,nLocal) :: t
1257 >    real(kind=dp) :: mu1, chg1
1258 >    real(kind=dp) :: preVal, epot, mypot
1259 >    real(kind=dp) :: eix, eiy, eiz
1260 >
1261 >    ! this is a local only array, so we use the local atom type id's:
1262 >    atid1 = atid(atom1)
1263 >
1264 >    if (.not.summationMethodChecked) then
1265 >       call checkSummationMethod()
1266 >    endif
1267 >    
1268 >    if (summationMethod .eq. REACTION_FIELD) then
1269 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1270 >          mu1 = getDipoleMoment(atid1)
1271 >          
1272 >          preVal = pre22 * preRF2 * mu1*mu1
1273 >          mypot = mypot - 0.5_dp*preVal
1274 >          
1275 >          ! The self-correction term adds into the reaction field vector
1276 >          
1277 >          eix = preVal * eFrame(3,atom1)
1278 >          eiy = preVal * eFrame(6,atom1)
1279 >          eiz = preVal * eFrame(9,atom1)
1280 >          
1281 >          ! once again, this is self-self, so only the local arrays are needed
1282 >          ! even for MPI jobs:
1283 >          
1284 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1285 >               eFrame(9,atom1)*eiy
1286 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1287 >               eFrame(3,atom1)*eiz
1288 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1289 >               eFrame(6,atom1)*eix
1290 >          
1291 >       endif
1292 >
1293 >    elseif ( (summationMethod .eq. SHIFTED_FORCE) .or. &
1294 >         (summationMethod .eq. SHIFTED_POTENTIAL) ) then
1295 >       if (ElectrostaticMap(atid1)%is_Charge) then
1296 >          chg1 = getCharge(atid1)
1297 >          
1298 >          if (screeningMethod .eq. DAMPED) then
1299 >             mypot = mypot - (c1c * 0.5_dp + &
1300 >                  dampingAlpha*invRootPi) * chg1 * chg1    
1301 >            
1302 >          else            
1303 >             mypot = mypot - (rcuti * 0.5_dp * chg1 * chg1)
1304 >            
1305 >          endif
1306 >       endif
1307 >    endif
1308 >    
1309 >    return
1310 >  end subroutine self_self
1311 >
1312 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1313 >       f, t, do_pot)
1314 >    logical, intent(in) :: do_pot
1315 >    integer, intent(in) :: atom1
1316 >    integer, intent(in) :: atom2
1317 >    logical :: i_is_Charge, j_is_Charge
1318 >    logical :: i_is_Dipole, j_is_Dipole
1319 >    integer :: atid1
1320 >    integer :: atid2
1321 >    real(kind=dp), intent(in) :: rij
1322 >    real(kind=dp), intent(in) :: sw
1323 >    real(kind=dp), intent(in), dimension(3) :: d
1324 >    real(kind=dp), intent(inout) :: vpair
1325 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1326 >    real(kind=dp), dimension(3,nLocal) :: f
1327 >    real(kind=dp), dimension(3,nLocal) :: t
1328 >    real (kind = dp), dimension(3) :: duduz_i
1329 >    real (kind = dp), dimension(3) :: duduz_j
1330 >    real (kind = dp), dimension(3) :: uz_i
1331 >    real (kind = dp), dimension(3) :: uz_j
1332 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1333 >    real(kind=dp) :: xhat, yhat, zhat
1334 >    real(kind=dp) :: ct_i, ct_j
1335 >    real(kind=dp) :: ri2, ri3, riji, vterm
1336 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1337 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1338 >
1339 >    if (.not.summationMethodChecked) then
1340 >       call checkSummationMethod()
1341 >    endif
1342 >
1343 >    dudx = zero
1344 >    dudy = zero
1345 >    dudz = zero
1346 >
1347 >    riji = 1.0_dp/rij
1348 >
1349 >    xhat = d(1) * riji
1350 >    yhat = d(2) * riji
1351 >    zhat = d(3) * riji
1352 >
1353 >    ! this is a local only array, so we use the local atom type id's:
1354 >    atid1 = atid(atom1)
1355 >    atid2 = atid(atom2)
1356 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1357 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1358 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1359 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1360 >
1361 >    if (i_is_Charge.and.j_is_Charge) then
1362 >       q_i = ElectrostaticMap(atid1)%charge
1363 >       q_j = ElectrostaticMap(atid2)%charge
1364 >      
1365 >       preVal = pre11 * q_i * q_j
1366 >       rfVal = preRF*rij*rij
1367 >       vterm = preVal * rfVal
1368 >      
1369 >       myPot = myPot + sw*vterm
1370 >      
1371 >       dudr  = sw*preVal * 2.0_dp*rfVal*riji
1372 >      
1373 >       dudx = dudx + dudr * xhat
1374 >       dudy = dudy + dudr * yhat
1375 >       dudz = dudz + dudr * zhat
1376 >      
1377 >    elseif (i_is_Charge.and.j_is_Dipole) then
1378 >       q_i = ElectrostaticMap(atid1)%charge
1379 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1380 >       uz_j(1) = eFrame(3,atom2)
1381 >       uz_j(2) = eFrame(6,atom2)
1382 >       uz_j(3) = eFrame(9,atom2)
1383 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1384 >      
1385 >       ri2 = riji * riji
1386 >       ri3 = ri2 * riji
1387 >      
1388 >       pref = pre12 * q_i * mu_j
1389 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1390 >       myPot = myPot + sw*vterm
1391 >      
1392 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0_dp*ct_j*xhat) &
1393 >            - preRF2*uz_j(1) )
1394 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0_dp*ct_j*yhat) &
1395 >            - preRF2*uz_j(2) )
1396 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0_dp*ct_j*zhat) &
1397 >            - preRF2*uz_j(3) )
1398 >      
1399 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1400 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1401 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1402 >      
1403 >    elseif (i_is_Dipole.and.j_is_Charge) then
1404 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1405 >       q_j = ElectrostaticMap(atid2)%charge
1406 >       uz_i(1) = eFrame(3,atom1)
1407 >       uz_i(2) = eFrame(6,atom1)
1408 >       uz_i(3) = eFrame(9,atom1)
1409 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1410 >      
1411 >       ri2 = riji * riji
1412 >       ri3 = ri2 * riji
1413 >      
1414 >       pref = pre12 * q_j * mu_i
1415 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1416 >       myPot = myPot + sw*vterm
1417 >      
1418 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0_dp*ct_i*xhat) &
1419 >            - preRF2*uz_i(1) )
1420 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0_dp*ct_i*yhat) &
1421 >            - preRF2*uz_i(2) )
1422 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0_dp*ct_i*zhat) &
1423 >            - preRF2*uz_i(3) )
1424 >      
1425 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1426 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1427 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1428 >      
1429 >    endif
1430 >      
1431 >
1432 >    ! accumulate the forces and torques resulting from the self term
1433 >    f(1,atom1) = f(1,atom1) + dudx
1434 >    f(2,atom1) = f(2,atom1) + dudy
1435 >    f(3,atom1) = f(3,atom1) + dudz
1436 >    
1437 >    f(1,atom2) = f(1,atom2) - dudx
1438 >    f(2,atom2) = f(2,atom2) - dudy
1439 >    f(3,atom2) = f(3,atom2) - dudz
1440 >    
1441 >    if (i_is_Dipole) then
1442 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1443 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1444 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1445 >    elseif (j_is_Dipole) then
1446 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1447 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1448 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1449 >    endif
1450 >
1451 >    return
1452 >  end subroutine rf_self_excludes
1453 >
1454   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines