ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2162 by chrisfen, Mon Apr 11 20:19:22 2005 UTC vs.
Revision 2755 by chrisfen, Wed May 17 14:03:15 2006 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
47    use vector_class
48    use simulation
49    use status
50 +  use interpolation
51   #ifdef IS_MPI
52    use mpiSimulation
53   #endif
# Line 54 | Line 55 | module electrostatic_module
55  
56    PRIVATE
57  
58 +
59 + #define __FORTRAN90
60 + #include "UseTheForce/DarkSide/fInteractionMap.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
62 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
63 +
64 +
65    !! these prefactors convert the multipole interactions into kcal / mol
66    !! all were computed assuming distances are measured in angstroms
67    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 76 | module electrostatic_module
76    !! This unit is also known affectionately as an esu centi-barn.
77    real(kind=dp), parameter :: pre14 = 69.13373_dp
78  
79 +  real(kind=dp), parameter :: zero = 0.0_dp
80 +  
81 +  !! number of points for electrostatic splines
82 +  integer, parameter :: np = 100
83 +
84 +  !! variables to handle different summation methods for long-range
85 +  !! electrostatics:
86 +  integer, save :: summationMethod = NONE
87 +  integer, save :: screeningMethod = UNDAMPED
88 +  logical, save :: summationMethodChecked = .false.
89 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
90 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
91 +  logical, save :: haveDefaultCutoff = .false.
92 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
93 +  real(kind=DP), save :: alpha2 = 0.0_DP
94 +  logical, save :: haveDampingAlpha = .false.
95 +  real(kind=DP), save :: dielectric = 1.0_DP
96 +  logical, save :: haveDielectric = .false.
97 +  real(kind=DP), save :: constEXP = 0.0_DP
98 +  real(kind=dp), save :: rcuti = 0.0_DP
99 +  real(kind=dp), save :: rcuti2 = 0.0_DP
100 +  real(kind=dp), save :: rcuti3 = 0.0_DP
101 +  real(kind=dp), save :: rcuti4 = 0.0_DP
102 +  real(kind=dp), save :: alphaPi = 0.0_DP
103 +  real(kind=dp), save :: invRootPi = 0.0_DP
104 +  real(kind=dp), save :: rrf = 1.0_DP
105 +  real(kind=dp), save :: rt = 1.0_DP
106 +  real(kind=dp), save :: rrfsq = 1.0_DP
107 +  real(kind=dp), save :: preRF = 0.0_DP
108 +  real(kind=dp), save :: preRF2 = 0.0_DP
109 +  real(kind=dp), save :: f0 = 1.0_DP
110 +  real(kind=dp), save :: f1 = 1.0_DP
111 +  real(kind=dp), save :: f2 = 0.0_DP
112 +  real(kind=dp), save :: f3 = 0.0_DP
113 +  real(kind=dp), save :: f4 = 0.0_DP
114 +  real(kind=dp), save :: f0c = 1.0_DP
115 +  real(kind=dp), save :: f1c = 1.0_DP
116 +  real(kind=dp), save :: f2c = 0.0_DP
117 +  real(kind=dp), save :: f3c = 0.0_DP
118 +  real(kind=dp), save :: f4c = 0.0_DP
119 +  real(kind=dp), save :: df0 = 0.0_DP
120 +  type(cubicSpline), save :: f0spline
121 +  logical, save :: haveElectroSpline = .false.
122 +  real(kind=dp), save :: one_third = 1.0_DP / 3.0_DP
123 +
124 + #if defined(__IFC) || defined(__PGI)
125 + ! error function for ifc version > 7.
126 +  double precision, external :: derfc
127 + #endif
128 +  
129 +  public :: setElectrostaticSummationMethod
130 +  public :: setScreeningMethod
131 +  public :: setElectrostaticCutoffRadius
132 +  public :: setDampingAlpha
133 +  public :: setReactionFieldDielectric
134 +  public :: buildElectroSpline
135    public :: newElectrostaticType
136    public :: setCharge
137    public :: setDipoleMoment
# Line 76 | Line 140 | module electrostatic_module
140    public :: doElectrostaticPair
141    public :: getCharge
142    public :: getDipoleMoment
143 <  public :: pre22
143 >  public :: destroyElectrostaticTypes
144 >  public :: self_self
145 >  public :: rf_self_excludes
146  
147 +
148    type :: Electrostatic
149       integer :: c_ident
150       logical :: is_Charge = .false.
151       logical :: is_Dipole = .false.
152       logical :: is_SplitDipole = .false.
153       logical :: is_Quadrupole = .false.
154 +     logical :: is_Tap = .false.
155       real(kind=DP) :: charge = 0.0_DP
156       real(kind=DP) :: dipole_moment = 0.0_DP
157       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 92 | Line 160 | contains
160  
161    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
162  
163 +  logical, save :: hasElectrostaticMap
164 +
165   contains
166  
167 <  subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
168 <       is_SplitDipole, is_Quadrupole, status)
167 >  subroutine setElectrostaticSummationMethod(the_ESM)
168 >    integer, intent(in) :: the_ESM    
169 >
170 >    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
171 >       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
172 >    endif
173 >
174 >    summationMethod = the_ESM
175 >
176 >  end subroutine setElectrostaticSummationMethod
177 >
178 >  subroutine setScreeningMethod(the_SM)
179 >    integer, intent(in) :: the_SM    
180 >    screeningMethod = the_SM
181 >  end subroutine setScreeningMethod
182 >
183 >  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
184 >    real(kind=dp), intent(in) :: thisRcut
185 >    real(kind=dp), intent(in) :: thisRsw
186 >    defaultCutoff = thisRcut
187 >    defaultCutoff2 = defaultCutoff*defaultCutoff
188 >    rrf = defaultCutoff
189 >    rt = thisRsw
190 >    haveDefaultCutoff = .true.
191 >  end subroutine setElectrostaticCutoffRadius
192 >
193 >  subroutine setDampingAlpha(thisAlpha)
194 >    real(kind=dp), intent(in) :: thisAlpha
195 >    dampingAlpha = thisAlpha
196 >    alpha2 = dampingAlpha*dampingAlpha
197 >    haveDampingAlpha = .true.
198 >  end subroutine setDampingAlpha
199 >  
200 >  subroutine setReactionFieldDielectric(thisDielectric)
201 >    real(kind=dp), intent(in) :: thisDielectric
202 >    dielectric = thisDielectric
203 >    haveDielectric = .true.
204 >  end subroutine setReactionFieldDielectric
205 >
206 >  subroutine buildElectroSpline()
207 >    real( kind = dp ), dimension(np) :: xvals, yvals
208 >    real( kind = dp ) :: dx, rmin, rval
209 >    integer :: i
210 >
211 >    rmin = 0.0_dp
212 >
213 >    dx = (defaultCutoff-rmin) / dble(np-1)
214      
215 +    do i = 1, np
216 +       rval = rmin + dble(i-1)*dx
217 +       xvals(i) = rval
218 +       yvals(i) = derfc(dampingAlpha*rval)
219 +    enddo
220 +
221 +    call newSpline(f0spline, xvals, yvals, .true.)
222 +
223 +    haveElectroSpline = .true.
224 +  end subroutine buildElectroSpline
225 +
226 +  subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
227 +       is_SplitDipole, is_Quadrupole, is_Tap, status)
228 +
229      integer, intent(in) :: c_ident
230      logical, intent(in) :: is_Charge
231      logical, intent(in) :: is_Dipole
232      logical, intent(in) :: is_SplitDipole
233      logical, intent(in) :: is_Quadrupole
234 +    logical, intent(in) :: is_Tap
235      integer, intent(out) :: status
236      integer :: nAtypes, myATID, i, j
237  
238      status = 0
239      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
240 <    
240 >
241      !! Be simple-minded and assume that we need an ElectrostaticMap that
242      !! is the same size as the total number of atom types
243  
244      if (.not.allocated(ElectrostaticMap)) then
245 <      
245 >
246         nAtypes = getSize(atypes)
247 <    
247 >
248         if (nAtypes == 0) then
249            status = -1
250            return
251         end if
252 <      
253 <       if (.not. allocated(ElectrostaticMap)) then
254 <          allocate(ElectrostaticMap(nAtypes))
125 <       endif
126 <      
252 >
253 >       allocate(ElectrostaticMap(nAtypes))
254 >
255      end if
256  
257      if (myATID .gt. size(ElectrostaticMap)) then
258         status = -1
259         return
260      endif
261 <    
261 >
262      ! set the values for ElectrostaticMap for this atom type:
263  
264      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 138 | Line 266 | contains
266      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
267      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
268      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
269 <    
269 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
270 >
271 >    hasElectrostaticMap = .true.
272 >
273    end subroutine newElectrostaticType
274  
275    subroutine setCharge(c_ident, charge, status)
# Line 150 | Line 281 | contains
281      status = 0
282      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
283  
284 <    if (.not.allocated(ElectrostaticMap)) then
284 >    if (.not.hasElectrostaticMap) then
285         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!")
286         status = -1
287         return
# Line 166 | Line 297 | contains
297         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
298         status = -1
299         return
300 <    endif      
300 >    endif
301  
302      ElectrostaticMap(myATID)%charge = charge
303    end subroutine setCharge
# Line 180 | Line 311 | contains
311      status = 0
312      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
313  
314 <    if (.not.allocated(ElectrostaticMap)) then
314 >    if (.not.hasElectrostaticMap) then
315         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!")
316         status = -1
317         return
# Line 210 | Line 341 | contains
341      status = 0
342      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
343  
344 <    if (.not.allocated(ElectrostaticMap)) then
344 >    if (.not.hasElectrostaticMap) then
345         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!")
346         status = -1
347         return
# Line 240 | Line 371 | contains
371      status = 0
372      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
373  
374 <    if (.not.allocated(ElectrostaticMap)) then
374 >    if (.not.hasElectrostaticMap) then
375         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!")
376         status = -1
377         return
# Line 257 | Line 388 | contains
388         status = -1
389         return
390      endif
391 <    
391 >
392      do i = 1, 3
393 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
394 <               quadrupole_moments(i)
395 <       enddo
393 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
394 >            quadrupole_moments(i)
395 >    enddo
396  
397    end subroutine setQuadrupoleMoments
398  
399 <  
399 >
400    function getCharge(atid) result (c)
401      integer, intent(in) :: atid
402      integer :: localError
403      real(kind=dp) :: c
404 <    
405 <    if (.not.allocated(ElectrostaticMap)) then
404 >
405 >    if (.not.hasElectrostaticMap) then
406         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
407         return
408      end if
409 <    
409 >
410      if (.not.ElectrostaticMap(atid)%is_Charge) then
411         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
412         return
413      endif
414 <    
414 >
415      c = ElectrostaticMap(atid)%charge
416    end function getCharge
417  
# Line 288 | Line 419 | contains
419      integer, intent(in) :: atid
420      integer :: localError
421      real(kind=dp) :: dm
422 <    
423 <    if (.not.allocated(ElectrostaticMap)) then
422 >
423 >    if (.not.hasElectrostaticMap) then
424         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
425         return
426      end if
427 <    
427 >
428      if (.not.ElectrostaticMap(atid)%is_Dipole) then
429         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
430         return
431      endif
432 <    
432 >
433      dm = ElectrostaticMap(atid)%dipole_moment
434    end function getDipoleMoment
435  
436 <  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
437 <       vpair, fpair, pot, eFrame, f, t, do_pot)
438 <    
436 >  subroutine checkSummationMethod()
437 >
438 >    if (.not.haveDefaultCutoff) then
439 >       call handleError("checkSummationMethod", "no Default Cutoff set!")
440 >    endif
441 >
442 >    rcuti = 1.0_dp / defaultCutoff
443 >    rcuti2 = rcuti*rcuti
444 >    rcuti3 = rcuti2*rcuti
445 >    rcuti4 = rcuti2*rcuti2
446 >
447 >    if (screeningMethod .eq. DAMPED) then
448 >       if (.not.haveDampingAlpha) then
449 >          call handleError("checkSummationMethod", "no Damping Alpha set!")
450 >       endif
451 >      
452 >       if (.not.haveDefaultCutoff) then
453 >          call handleError("checkSummationMethod", "no Default Cutoff set!")
454 >       endif
455 >
456 >       constEXP = exp(-alpha2*defaultCutoff2)
457 >       invRootPi = 0.56418958354775628695_dp
458 >       alphaPi = 2.0_dp*dampingAlpha*invRootPi
459 >       f0c = derfc(dampingAlpha*defaultCutoff)
460 >       f1c = alphaPi*defaultCutoff*constEXP + f0c
461 >       f2c = alphaPi*2.0_dp*alpha2*constEXP
462 >       f3c = alphaPi*2.0_dp*alpha2*constEXP*defaultCutoff2*defaultCutoff
463 >    endif
464 >
465 >    if (summationMethod .eq. REACTION_FIELD) then
466 >       if (haveDielectric) then
467 >          defaultCutoff2 = defaultCutoff*defaultCutoff
468 >          preRF = (dielectric-1.0_dp) / &
469 >               ((2.0_dp*dielectric+1.0_dp)*defaultCutoff2*defaultCutoff)
470 >          preRF2 = 2.0_dp*preRF
471 >       else
472 >          call handleError("checkSummationMethod", "Dielectric not set")
473 >       endif
474 >      
475 >    endif
476 >
477 >    if (.not.haveElectroSpline) then
478 >       call buildElectroSpline()
479 >    end if
480 >
481 >    summationMethodChecked = .true.
482 >  end subroutine checkSummationMethod
483 >
484 >
485 >  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, rcut, sw, &
486 >       vpair, fpair, pot, eFrame, f, t, do_pot)
487 >
488      logical, intent(in) :: do_pot
489 <    
489 >
490      integer, intent(in) :: atom1, atom2
491      integer :: localError
492  
493 <    real(kind=dp), intent(in) :: rij, r2, sw
493 >    real(kind=dp), intent(in) :: rij, r2, sw, rcut
494      real(kind=dp), intent(in), dimension(3) :: d
495      real(kind=dp), intent(inout) :: vpair
496 <    real(kind=dp), intent(inout), dimension(3) :: fpair
496 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
497  
498      real( kind = dp ) :: pot
499      real( kind = dp ), dimension(9,nLocal) :: eFrame
500      real( kind = dp ), dimension(3,nLocal) :: f
501 +    real( kind = dp ), dimension(3,nLocal) :: felec
502      real( kind = dp ), dimension(3,nLocal) :: t
503 <    
503 >
504      real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
505      real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
506      real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
# Line 327 | Line 508 | contains
508  
509      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
510      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
511 +    logical :: i_is_Tap, j_is_Tap
512      integer :: me1, me2, id1, id2
513      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
514      real (kind=dp) :: qxx_i, qyy_i, qzz_i
# Line 334 | Line 516 | contains
516      real (kind=dp) :: cx_i, cy_i, cz_i
517      real (kind=dp) :: cx_j, cy_j, cz_j
518      real (kind=dp) :: cx2, cy2, cz2
519 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
519 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
520      real (kind=dp) :: riji, ri, ri2, ri3, ri4
521 <    real (kind=dp) :: pref, vterm, epot, dudr    
521 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
522      real (kind=dp) :: xhat, yhat, zhat
523      real (kind=dp) :: dudx, dudy, dudz
524      real (kind=dp) :: scale, sc2, bigR
525 +    real (kind=dp) :: varEXP
526 +    real (kind=dp) :: pot_term
527 +    real (kind=dp) :: preVal, rfVal
528 +    real (kind=dp) :: cti3, ctj3, ctidotj
529 +    real (kind=dp) :: ri7damp, ri5damp, prei3, prei4
530 +    real (kind=dp) :: xhatdot2, yhatdot2, zhatdot2
531 +    real (kind=dp) :: xhatdot5, yhatdot5, zhatdot5
532  
533 <    if (.not.allocated(ElectrostaticMap)) then
534 <       call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
535 <       return
347 <    end if
533 >    if (.not.summationMethodChecked) then
534 >       call checkSummationMethod()
535 >    endif
536  
537   #ifdef IS_MPI
538      me1 = atid_Row(atom1)
# Line 356 | Line 544 | contains
544  
545      !! some variables we'll need independent of electrostatic type:
546  
547 <    riji = 1.0d0 / rij
548 <
547 >    riji = 1.0_dp / rij
548 >  
549      xhat = d(1) * riji
550      yhat = d(2) * riji
551      zhat = d(3) * riji
552  
553      !! logicals
366
554      i_is_Charge = ElectrostaticMap(me1)%is_Charge
555      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
556      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
557      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
558 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
559  
560      j_is_Charge = ElectrostaticMap(me2)%is_Charge
561      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
562      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
563      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
564 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
565  
566      if (i_is_Charge) then
567         q_i = ElectrostaticMap(me1)%charge      
568      endif
569 <    
569 >
570      if (i_is_Dipole) then
571         mu_i = ElectrostaticMap(me1)%dipole_moment
572   #ifdef IS_MPI
# Line 394 | Line 583 | contains
583         if (i_is_SplitDipole) then
584            d_i = ElectrostaticMap(me1)%split_dipole_distance
585         endif
586 <      
586 >       duduz_i = zero
587      endif
588  
589      if (i_is_Quadrupole) then
# Line 425 | Line 614 | contains
614         cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
615         cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
616         cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
617 +       dudux_i = zero
618 +       duduy_i = zero
619 +       duduz_i = zero
620      endif
621  
430
622      if (j_is_Charge) then
623         q_j = ElectrostaticMap(me2)%charge      
624      endif
625 <    
625 >
626      if (j_is_Dipole) then
627         mu_j = ElectrostaticMap(me2)%dipole_moment
628   #ifdef IS_MPI
# Line 448 | Line 639 | contains
639         if (j_is_SplitDipole) then
640            d_j = ElectrostaticMap(me2)%split_dipole_distance
641         endif
642 +       duduz_j = zero
643      endif
644  
645      if (j_is_Quadrupole) then
# Line 478 | Line 670 | contains
670         cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
671         cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
672         cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
673 +       dudux_j = zero
674 +       duduy_j = zero
675 +       duduz_j = zero
676      endif
677 +  
678 +    epot = zero
679 +    dudx = zero
680 +    dudy = zero
681 +    dudz = zero  
682  
683 <    epot = 0.0_dp
484 <    dudx = 0.0_dp
485 <    dudy = 0.0_dp
486 <    dudz = 0.0_dp
683 >    if (i_is_Charge) then
684  
685 <    dudux_i = 0.0_dp
686 <    duduy_i = 0.0_dp
687 <    duduz_i = 0.0_dp
685 >       if (j_is_Charge) then
686 >          if (screeningMethod .eq. DAMPED) then
687 >             ! assemble the damping variables
688 >             call lookupUniformSpline1d(f0spline, rij, f0, df0)
689 >             f1 = -rij * df0 + f0
690 >          endif
691  
692 <    dudux_j = 0.0_dp
493 <    duduy_j = 0.0_dp
494 <    duduz_j = 0.0_dp
692 >          preVal = pre11 * q_i * q_j
693  
694 <    if (i_is_Charge) then
694 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
695 >             vterm = preVal * (riji*f0 - rcuti*f0c)
696 >            
697 >             dudr  = -sw * preVal * riji * riji * f1
698 >  
699 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
700 >             vterm = preVal * ( riji*f0 - rcuti*f0c + &
701 >                  f1c*rcuti2*(rij-defaultCutoff) )
702 >            
703 >             dudr  = -sw*preVal * (riji*riji*f1 - rcuti2*f1c)
704 >  
705 >          elseif (summationMethod .eq. REACTION_FIELD) then
706 >             rfVal = preRF*rij*rij
707 >             vterm = preVal * ( riji + rfVal )
708 >            
709 >             dudr  = sw * preVal * ( 2.0_dp*rfVal - riji )*riji
710 >  
711 >          else
712 >             vterm = preVal * riji*f0
713 >            
714 >             dudr  = - sw * preVal * riji*riji*f1
715 >  
716 >          endif
717  
498       if (j_is_Charge) then
499          
500          vterm = pre11 * q_i * q_j * riji
718            vpair = vpair + vterm
719            epot = epot + sw*vterm
720  
504          dudr  = - sw * vterm * riji
505
721            dudx = dudx + dudr * xhat
722            dudy = dudy + dudr * yhat
723            dudz = dudz + dudr * zhat
724 <      
724 >
725         endif
726  
727         if (j_is_Dipole) then
728 <
729 <          if (j_is_SplitDipole) then
730 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
731 <             ri = 1.0_dp / BigR
732 <             scale = rij * ri
518 <          else
519 <             ri = riji
520 <             scale = 1.0_dp
728 >          if (screeningMethod .eq. DAMPED) then
729 >             ! assemble the damping variables
730 >             call lookupUniformSpline1d(f0spline, rij, f0, df0)
731 >             f1 = -rij * df0 + f0
732 >             f3 = -2.0_dp*alpha2*df0*rij*rij*rij
733            endif
734  
523          ri2 = ri * ri
524          ri3 = ri2 * ri
525          sc2 = scale * scale
526            
735            pref = pre12 * q_i * mu_j
528          vterm = - pref * ct_j * ri2 * scale
529          vpair = vpair + vterm
530          epot = epot + sw * vterm
736  
737 <          !! this has a + sign in the () because the rij vector is
738 <          !! r_j - r_i and the charge-dipole potential takes the origin
739 <          !! as the point dipole, which is atom j in this case.
737 >          if (summationMethod .eq. REACTION_FIELD) then
738 >             ri2 = riji * riji
739 >             ri3 = ri2 * riji
740 >    
741 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
742 >             vpair = vpair + vterm
743 >             epot = epot + sw*vterm
744 >            
745 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0_dp*ct_j*xhat) - &
746 >                                     preRF2*uz_j(1) )
747 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0_dp*ct_j*yhat) - &
748 >                                     preRF2*uz_j(2) )
749 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0_dp*ct_j*zhat) - &
750 >                                     preRF2*uz_j(3) )        
751 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
752 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
753 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
754  
755 <          dudx = dudx - pref * sw * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
756 <          dudy = dudy - pref * sw * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
757 <          dudz = dudz - pref * sw * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
755 >          else
756 >             if (j_is_SplitDipole) then
757 >                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
758 >                ri = 1.0_dp / BigR
759 >                scale = rij * ri
760 >             else
761 >                ri = riji
762 >                scale = 1.0_dp
763 >             endif
764 >            
765 >             ri2 = ri * ri
766 >             ri3 = ri2 * ri
767 >             sc2 = scale * scale
768  
769 <          duduz_j(1) = duduz_j(1) - pref * sw * ri2 * xhat * scale
770 <          duduz_j(2) = duduz_j(2) - pref * sw * ri2 * yhat * scale
771 <          duduz_j(3) = duduz_j(3) - pref * sw * ri2 * zhat * scale
772 <          
769 >             pot_term =  ri2 * scale * f1
770 >             vterm = -pref * ct_j * pot_term
771 >             vpair = vpair + vterm
772 >             epot = epot + sw*vterm
773 >            
774 >             prei3 = sw*pref*ri3
775 >             ri5damp = 3.0_dp*f1 + f3
776 >            
777 >             dudx = dudx - prei3 * ( uz_j(1)*f1 - ct_j*xhat*sc2*ri5damp )
778 >             dudy = dudy - prei3 * ( uz_j(2)*f1 - ct_j*yhat*sc2*ri5damp )
779 >             dudz = dudz - prei3 * ( uz_j(3)*f1 - ct_j*zhat*sc2*ri5damp )
780 >                          
781 >             duduz_j(1) = duduz_j(1) - sw*pref * pot_term * xhat
782 >             duduz_j(2) = duduz_j(2) - sw*pref * pot_term * yhat
783 >             duduz_j(3) = duduz_j(3) - sw*pref * pot_term * zhat
784 >
785 >          endif
786         endif
787  
788         if (j_is_Quadrupole) then
789 +          if (screeningMethod .eq. DAMPED) then
790 +             ! assemble the damping variables
791 +             call lookupUniformSpline1d(f0spline, rij, f0, df0)
792 +             f1 = -rij * df0 + f0
793 +             f2 = -2.0_dp*alpha2*df0
794 +             f3 = f2*r2*rij
795 +             f4 = 0.4_dp*alpha2*f3*r2
796 +          endif
797 +          ri5damp = f1 + f3*one_third
798 +          ri7damp = ri5damp + f4
799 +
800            ri2 = riji * riji
801            ri3 = ri2 * riji
549          ri4 = ri2 * ri2
802            cx2 = cx_j * cx_j
803            cy2 = cy_j * cy_j
804            cz2 = cz_j * cz_j
805  
806 +          pref =  pre14 * q_i * one_third
807  
808 <          pref =  pre14 * q_i / 3.0_dp
809 <          vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
810 <               qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
811 <               qzz_j * (3.0_dp*cz2 - 1.0_dp))
808 >          pot_term = ri3*( qxx_j*(3.0_dp*cx2*ri5damp - f1) + &
809 >               qyy_j*(3.0_dp*cy2*ri5damp - f1) + &
810 >               qzz_j*(3.0_dp*cz2*ri5damp - f1) )
811 >          vterm = pref * pot_term
812            vpair = vpair + vterm
813 <          epot = epot + sw * vterm
813 >          epot = epot + sw*vterm
814  
815 <          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + pref * sw * ri4 * ( &
816 <               qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
817 <               qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
818 <               qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
819 <          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + pref * sw * ri4 * ( &
820 <               qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
821 <               qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
822 <               qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
823 <          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + pref * sw * ri4 * ( &
824 <               qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
825 <               qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
826 <               qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
815 >          ! precompute variables for convenience (and obfuscation unfortunatly)
816 >          prei3 = 3.0_dp*sw*pref*ri3
817 >          prei4 = prei3*riji
818 >          xhatdot2 = xhat*2.0_dp * ri5damp
819 >          yhatdot2 = yhat*2.0_dp * ri5damp
820 >          zhatdot2 = zhat*2.0_dp * ri5damp
821 >          xhatdot5 = xhat*5.0_dp * ri7damp
822 >          yhatdot5 = yhat*5.0_dp * ri7damp
823 >          zhatdot5 = zhat*5.0_dp * ri7damp
824 >
825 >          dudx = dudx - prei4 * ( &
826 >               qxx_j*(cx2*xhatdot5 - (2.0_dp*cx_j*ux_j(1) + xhat)*ri5damp) + &
827 >               qyy_j*(cy2*xhatdot5 - (2.0_dp*cy_j*uy_j(1) + xhat)*ri5damp) + &
828 >               qzz_j*(cz2*xhatdot5 - (2.0_dp*cz_j*uz_j(1) + xhat)*ri5damp) )
829 >          dudy = dudy - prei4 * ( &
830 >               qxx_j*(cx2*yhatdot5 - (2.0_dp*cx_j*ux_j(2) + yhat)*ri5damp) + &
831 >               qyy_j*(cy2*yhatdot5 - (2.0_dp*cy_j*uy_j(2) + yhat)*ri5damp) + &
832 >               qzz_j*(cz2*yhatdot5 - (2.0_dp*cz_j*uz_j(2) + yhat)*ri5damp) )
833 >          dudz = dudz - prei4 * ( &
834 >               qxx_j*(cx2*zhatdot5 - (2.0_dp*cx_j*ux_j(3) + zhat)*ri5damp) + &
835 >               qyy_j*(cy2*zhatdot5 - (2.0_dp*cy_j*uy_j(3) + zhat)*ri5damp) + &
836 >               qzz_j*(cz2*zhatdot5 - (2.0_dp*cz_j*uz_j(3) + zhat)*ri5damp) )
837            
838 <          dudux_j(1) = dudux_j(1) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*xhat)
839 <          dudux_j(2) = dudux_j(2) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*yhat)
840 <          dudux_j(3) = dudux_j(3) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*zhat)
838 >          dudux_j(1) = dudux_j(1) + prei3*(qxx_j*cx_j*xhatdot2)
839 >          dudux_j(2) = dudux_j(2) + prei3*(qxx_j*cx_j*yhatdot2)
840 >          dudux_j(3) = dudux_j(3) + prei3*(qxx_j*cx_j*zhatdot2)
841 >          
842 >          duduy_j(1) = duduy_j(1) + prei3*(qyy_j*cy_j*xhatdot2)
843 >          duduy_j(2) = duduy_j(2) + prei3*(qyy_j*cy_j*yhatdot2)
844 >          duduy_j(3) = duduy_j(3) + prei3*(qyy_j*cy_j*zhatdot2)
845 >          
846 >          duduz_j(1) = duduz_j(1) + prei3*(qzz_j*cz_j*xhatdot2)
847 >          duduz_j(2) = duduz_j(2) + prei3*(qzz_j*cz_j*yhatdot2)
848 >          duduz_j(3) = duduz_j(3) + prei3*(qzz_j*cz_j*zhatdot2)
849  
850 <          duduy_j(1) = duduy_j(1) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*xhat)
580 <          duduy_j(2) = duduy_j(2) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*yhat)
581 <          duduy_j(3) = duduy_j(3) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*zhat)
582 <
583 <          duduz_j(1) = duduz_j(1) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*xhat)
584 <          duduz_j(2) = duduz_j(2) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*yhat)
585 <          duduz_j(3) = duduz_j(3) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*zhat)
850 >          
851         endif
587
852      endif
853 <  
853 >    
854      if (i_is_Dipole) then
591      
592       if (j_is_Charge) then
855  
856 <          if (i_is_SplitDipole) then
857 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
858 <             ri = 1.0_dp / BigR
859 <             scale = rij * ri
860 <          else
861 <             ri = riji
600 <             scale = 1.0_dp
856 >       if (j_is_Charge) then
857 >          if (screeningMethod .eq. DAMPED) then
858 >             ! assemble the damping variables
859 >             call lookupUniformSpline1d(f0spline, rij, f0, df0)
860 >             f1 = -rij * df0 + f0
861 >             f3 = -2.0_dp*alpha2*df0*r2*rij
862            endif
863 +          
864 +          pref = pre12 * q_j * mu_i
865 +          
866 +          if (summationMethod .eq. REACTION_FIELD) then
867  
868 <          ri2 = ri * ri
869 <          ri3 = ri2 * ri
870 <          sc2 = scale * scale
868 >             ri2 = riji * riji
869 >             ri3 = ri2 * riji
870 >
871 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
872 >             vpair = vpair + vterm
873 >             epot = epot + sw*vterm
874              
875 <          pref = pre12 * q_j * mu_i
876 <          vterm = pref * ct_i * ri2 * scale
877 <          vpair = vpair + vterm
878 <          epot = epot + sw * vterm
875 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0_dp*ct_i*xhat) - &
876 >                  preRF2*uz_i(1) )
877 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0_dp*ct_i*yhat) - &
878 >                  preRF2*uz_i(2) )
879 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0_dp*ct_i*zhat) - &
880 >                  preRF2*uz_i(3) )
881 >            
882 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
883 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
884 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
885  
612          dudx = dudx + pref * sw * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
613          dudy = dudy + pref * sw * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
614          dudz = dudz + pref * sw * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
615
616          duduz_i(1) = duduz_i(1) + pref * sw * ri2 * xhat * scale
617          duduz_i(2) = duduz_i(2) + pref * sw * ri2 * yhat * scale
618          duduz_i(3) = duduz_i(3) + pref * sw * ri2 * zhat * scale
619       endif
620
621       if (j_is_Dipole) then
622
623          if (i_is_SplitDipole) then
624             if (j_is_SplitDipole) then
625                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
626             else
627                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
628             endif
629             ri = 1.0_dp / BigR
630             scale = rij * ri                
886            else
887 <             if (j_is_SplitDipole) then
888 <                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
887 >             if (i_is_SplitDipole) then
888 >                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
889                  ri = 1.0_dp / BigR
890 <                scale = rij * ri                            
891 <             else                
890 >                scale = rij * ri
891 >             else
892                  ri = riji
893                  scale = 1.0_dp
894               endif
895 +            
896 +             ri2 = ri * ri
897 +             ri3 = ri2 * ri
898 +             sc2 = scale * scale
899 +
900 +             pot_term = ri2 * f1 * scale
901 +             vterm = pref * ct_i * pot_term
902 +             vpair = vpair + vterm
903 +             epot = epot + sw*vterm
904 +            
905 +             prei3 = sw*pref*ri3
906 +             ri5damp = 3.0_dp*f1 + f3
907 +            
908 +             dudx = dudx + prei3 * ( uz_i(1)*f1 - ct_i*xhat*sc2*ri5damp )
909 +             dudy = dudy + prei3 * ( uz_i(2)*f1 - ct_i*yhat*sc2*ri5damp )
910 +             dudz = dudz + prei3 * ( uz_i(3)*f1 - ct_i*zhat*sc2*ri5damp )
911 +
912 +             duduz_i(1) = duduz_i(1) + sw*pref * pot_term * xhat
913 +             duduz_i(2) = duduz_i(2) + sw*pref * pot_term * yhat
914 +             duduz_i(3) = duduz_i(3) + sw*pref * pot_term * zhat
915 +            
916            endif
917 +       endif
918 +      
919 +       if (j_is_Dipole) then
920 + !!$          if (screeningMethod .eq. DAMPED) then
921 + !!$             ! assemble the damping variables
922 + !!$             call lookupUniformSpline1d(f0spline, rij, f0, df0)
923 + !!$             f1 = -rij * df0 + f0
924 + !!$             f2 = -2.0_dp*alpha2*df0
925 + !!$             f3 = f2*r2*rij
926 + !!$             f4 = 0.4_dp*alpha2*f3*r2
927 + !!$          endif
928  
929            ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
930 <
931 <          ri2 = ri * ri
932 <          ri3 = ri2 * ri
930 >          
931 >          ri2 = riji * riji
932 >          ri3 = ri2 * riji
933            ri4 = ri2 * ri2
647          sc2 = scale * scale
648
649          pref = pre22 * mu_i * mu_j
650          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
651          vpair = vpair + vterm
652          epot = epot + sw * vterm
934            
935 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
935 >          pref = pre22 * mu_i * mu_j
936  
937 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
938 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
939 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
937 >          if (summationMethod .eq. REACTION_FIELD) then
938 >             vterm = pref*( ri3*(ct_ij - 3.0_dp * ct_i * ct_j) - &
939 >                  preRF2*ct_ij )
940 >             vpair = vpair + vterm
941 >             epot = epot + sw*vterm
942 >            
943 >             a1 = 5.0_dp * ct_i * ct_j - ct_ij
944 >            
945 >             dudx = dudx + sw*pref*3.0_dp*ri4 &
946 >                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
947 >             dudy = dudy + sw*pref*3.0_dp*ri4 &
948 >                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
949 >             dudz = dudz + sw*pref*3.0_dp*ri4 &
950 >                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
951 >            
952 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0_dp*ct_j*xhat) &
953 >                  - preRF2*uz_j(1))
954 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0_dp*ct_j*yhat) &
955 >                  - preRF2*uz_j(2))
956 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0_dp*ct_j*zhat) &
957 >                  - preRF2*uz_j(3))
958 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0_dp*ct_i*xhat) &
959 >                  - preRF2*uz_i(1))
960 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0_dp*ct_i*yhat) &
961 >                  - preRF2*uz_i(2))
962 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0_dp*ct_i*zhat) &
963 >                  - preRF2*uz_i(3))
964  
965 <          duduz_i(1) = duduz_i(1) + pref*sw*ri3*(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
966 <          duduz_i(2) = duduz_i(2) + pref*sw*ri3*(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
967 <          duduz_i(3) = duduz_i(3) + pref*sw*ri3*(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
965 >          else
966 >             if (i_is_SplitDipole) then
967 >                if (j_is_SplitDipole) then
968 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
969 >                else
970 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
971 >                endif
972 >                ri = 1.0_dp / BigR
973 >                scale = rij * ri                
974 >             else
975 >                if (j_is_SplitDipole) then
976 >                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
977 >                   ri = 1.0_dp / BigR
978 >                   scale = rij * ri                            
979 >                else                
980 >                   ri = riji
981 >                   scale = 1.0_dp
982 >                endif
983 >             endif
984 >            
985 >             sc2 = scale * scale
986  
987 <          duduz_j(1) = duduz_j(1) + pref*sw*ri3*(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
988 <          duduz_j(2) = duduz_j(2) + pref*sw*ri3*(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
989 <          duduz_j(3) = duduz_j(3) + pref*sw*ri3*(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
990 <       endif
987 >             pot_term = (ct_ij - 3.0_dp * ct_i * ct_j * sc2)
988 > !!$             vterm = pref * ( ri3*pot_term*f1 + (ct_i * ct_j * sc2)*f2 )
989 >             vterm = pref * ri3 * pot_term
990 >             vpair = vpair + vterm
991 >             epot = epot + sw*vterm
992 >            
993 >             ! precompute variables for convenience (and obfuscation
994 >             ! unfortunatly)
995 > !!$             ri5damp = f1 + f3*one_third
996 > !!$             ri7damp = 5.0_dp*(ri5damp + f4)
997 >             prei3 = sw*pref*ri3
998 >             prei4 = 3.0_dp*sw*pref*ri4*scale
999 > !!$             cti3 = 3.0_dp*ct_i*sc2*ri5damp
1000 > !!$             ctj3 = 3.0_dp*ct_j*sc2*ri5damp
1001 >             cti3 = 3.0_dp*ct_i*sc2
1002 >             ctj3 = 3.0_dp*ct_j*sc2
1003 >             ctidotj = ct_i * ct_j * sc2
1004  
1005 +             dudx = dudx + prei4 * ( 5.0_dp*ctidotj*xhat - &
1006 +                  (ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat) )
1007 +             dudy = dudy + prei4 * ( 5.0_dp*ctidotj*yhat - &
1008 +                  (ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat) )
1009 +             dudz = dudz + prei4 * ( 5.0_dp*ctidotj*zhat - &
1010 +                  (ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat) )
1011 +
1012 +             duduz_i(1) = duduz_i(1) + prei3 * ( uz_j(1) - ctj3*xhat )
1013 +             duduz_i(2) = duduz_i(2) + prei3 * ( uz_j(2) - ctj3*yhat )
1014 +             duduz_i(3) = duduz_i(3) + prei3 * ( uz_j(3) - ctj3*zhat )
1015 +            
1016 +             duduz_j(1) = duduz_j(1) + prei3 * ( uz_i(1) - cti3*xhat )
1017 +             duduz_j(2) = duduz_j(2) + prei3 * ( uz_i(2) - cti3*yhat )
1018 +             duduz_j(3) = duduz_j(3) + prei3 * ( uz_i(3) - cti3*zhat )
1019 +
1020 + !!$             dudx = dudx + prei4 * ( ctidotj*xhat*ri7damp - &
1021 + !!$                  (ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat)*ri5damp )
1022 + !!$             dudy = dudy + prei4 * ( ctidotj*yhat*ri7damp - &
1023 + !!$                  (ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat)*ri5damp )
1024 + !!$             dudz = dudz + prei4 * ( ctidotj*zhat*ri7damp - &
1025 + !!$                  (ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat)*ri5damp )
1026 + !!$
1027 + !!$             duduz_i(1) = duduz_i(1) + prei3 * ( uz_j(1)*f1 - ctj3*xhat )
1028 + !!$             duduz_i(2) = duduz_i(2) + prei3 * ( uz_j(2)*f1 - ctj3*yhat )
1029 + !!$             duduz_i(3) = duduz_i(3) + prei3 * ( uz_j(3)*f1 - ctj3*zhat )
1030 + !!$            
1031 + !!$             duduz_j(1) = duduz_j(1) + prei3 * ( uz_i(1)*f1 - cti3*xhat )
1032 + !!$             duduz_j(2) = duduz_j(2) + prei3 * ( uz_i(2)*f1 - cti3*yhat )
1033 + !!$             duduz_j(3) = duduz_j(3) + prei3 * ( uz_i(3)*f1 - cti3*zhat )
1034 +
1035 +          endif
1036 +       endif
1037      endif
1038  
1039      if (i_is_Quadrupole) then
1040         if (j_is_Charge) then
1041 <          
1041 >          if (screeningMethod .eq. DAMPED) then
1042 >             ! assemble the damping variables
1043 >             call lookupUniformSpline1d(f0spline, rij, f0, df0)
1044 >             f1 = -rij * df0 + f0
1045 >             f2 = -2.0_dp*alpha2*df0
1046 >             f3 = f2*r2*rij
1047 >             f4 = 0.4_dp*alpha2*f3*r2
1048 >          endif
1049 >          ri5damp = f1 + f3*one_third
1050 >          ri7damp = ri5damp + f4
1051 >
1052            ri2 = riji * riji
1053            ri3 = ri2 * riji
1054            ri4 = ri2 * ri2
1055            cx2 = cx_i * cx_i
1056            cy2 = cy_i * cy_i
1057            cz2 = cz_i * cz_i
1058 <          
1059 <          pref = pre14 * q_j / 3.0_dp
1060 <          vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1061 <               qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1062 <               qzz_i * (3.0_dp*cz2 - 1.0_dp))
1058 >
1059 >          pref = pre14 * q_j * one_third
1060 >
1061 >          pot_term = ri3 * ( qxx_i * (3.0_dp*cx2*ri5damp - f1) + &
1062 >                             qyy_i * (3.0_dp*cy2*ri5damp - f1) + &
1063 >                             qzz_i * (3.0_dp*cz2*ri5damp - f1) )
1064 >
1065 >          vterm = pref * pot_term
1066            vpair = vpair + vterm
1067 <          epot = epot + sw * vterm
1068 <          
1069 <          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + pref * sw * ri4 * ( &
1070 <               qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1071 <               qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1072 <               qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1073 <          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + pref * sw * ri4 * ( &
1074 <               qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1075 <               qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1076 <               qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1077 <          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + pref * sw * ri4 * ( &
1078 <               qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1079 <               qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1080 <               qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1081 <          
1082 <          dudux_i(1) = dudux_i(1) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*xhat)
1083 <          dudux_i(2) = dudux_i(2) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*yhat)
1084 <          dudux_i(3) = dudux_i(3) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*zhat)
1085 <          
1086 <          duduy_i(1) = duduy_i(1) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*xhat)
1087 <          duduy_i(2) = duduy_i(2) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*yhat)
1088 <          duduy_i(3) = duduy_i(3) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*zhat)
1067 >          epot = epot + sw*vterm
1068 >
1069 >          ! precompute variables for convenience (and obfuscation unfortunatly)
1070 >          prei3 = 3.0_dp*sw*pref*ri3
1071 >          prei4 = prei3*riji
1072 >          xhatdot2 = xhat*2.0_dp * ri5damp
1073 >          yhatdot2 = yhat*2.0_dp * ri5damp
1074 >          zhatdot2 = zhat*2.0_dp * ri5damp
1075 >          xhatdot5 = xhat*5.0_dp * ri7damp
1076 >          yhatdot5 = yhat*5.0_dp * ri7damp
1077 >          zhatdot5 = zhat*5.0_dp * ri7damp
1078 >
1079 >          dudx = dudx - prei4 * ( &
1080 >               qxx_i*(cx2*xhatdot5 - (2.0_dp*cx_i*ux_i(1) + xhat)*ri5damp) + &
1081 >               qyy_i*(cy2*xhatdot5 - (2.0_dp*cy_i*uy_i(1) + xhat)*ri5damp) + &
1082 >               qzz_i*(cz2*xhatdot5 - (2.0_dp*cz_i*uz_i(1) + xhat)*ri5damp) )
1083 >          dudy = dudy - prei4 * ( &
1084 >               qxx_i*(cx2*yhatdot5 - (2.0_dp*cx_i*ux_i(2) + yhat)*ri5damp) + &
1085 >               qyy_i*(cy2*yhatdot5 - (2.0_dp*cy_i*uy_i(2) + yhat)*ri5damp) + &
1086 >               qzz_i*(cz2*yhatdot5 - (2.0_dp*cz_i*uz_i(2) + yhat)*ri5damp) )
1087 >          dudz = dudz - prei4 * ( &
1088 >               qxx_i*(cx2*zhatdot5 - (2.0_dp*cx_i*ux_i(3) + zhat)*ri5damp) + &
1089 >               qyy_i*(cy2*zhatdot5 - (2.0_dp*cy_i*uy_i(3) + zhat)*ri5damp) + &
1090 >               qzz_i*(cz2*zhatdot5 - (2.0_dp*cz_i*uz_i(3) + zhat)*ri5damp) )
1091            
1092 <          duduz_i(1) = duduz_i(1) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*xhat)
1093 <          duduz_i(2) = duduz_i(2) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*yhat)
1094 <          duduz_i(3) = duduz_i(3) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*zhat)
1092 >          dudux_i(1) = dudux_i(1) + prei3*(qxx_i*cx_i*xhatdot2)
1093 >          dudux_i(2) = dudux_i(2) + prei3*(qxx_i*cx_i*yhatdot2)
1094 >          dudux_i(3) = dudux_i(3) + prei3*(qxx_i*cx_i*zhatdot2)
1095 >          
1096 >          duduy_i(1) = duduy_i(1) + prei3*(qyy_i*cy_i*xhatdot2)
1097 >          duduy_i(2) = duduy_i(2) + prei3*(qyy_i*cy_i*yhatdot2)
1098 >          duduy_i(3) = duduy_i(3) + prei3*(qyy_i*cy_i*zhatdot2)
1099 >          
1100 >          duduz_i(1) = duduz_i(1) + prei3*(qzz_i*cz_i*xhatdot2)
1101 >          duduz_i(2) = duduz_i(2) + prei3*(qzz_i*cz_i*yhatdot2)
1102 >          duduz_i(3) = duduz_i(3) + prei3*(qzz_i*cz_i*zhatdot2)
1103         endif
1104      endif
1105 <      
1106 <    
1105 >
1106 >
1107      if (do_pot) then
1108   #ifdef IS_MPI
1109 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1110 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1109 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5_dp*epot
1110 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5_dp*epot
1111   #else
1112         pot = pot + epot
1113   #endif
1114      endif
1115 <        
1115 >
1116   #ifdef IS_MPI
1117      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1118      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1119      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1120 <    
1120 >
1121      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1122      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1123      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1124 <    
1124 >
1125      if (i_is_Dipole .or. i_is_Quadrupole) then
1126         t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1127         t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
# Line 765 | Line 1156 | contains
1156      f(1,atom1) = f(1,atom1) + dudx
1157      f(2,atom1) = f(2,atom1) + dudy
1158      f(3,atom1) = f(3,atom1) + dudz
1159 <    
1159 >
1160      f(1,atom2) = f(1,atom2) - dudx
1161      f(2,atom2) = f(2,atom2) - dudy
1162      f(3,atom2) = f(3,atom2) - dudz
1163 <    
1163 >
1164      if (i_is_Dipole .or. i_is_Quadrupole) then
1165         t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1166         t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
# Line 801 | Line 1192 | contains
1192      endif
1193  
1194   #endif
1195 <    
1195 >
1196   #ifdef IS_MPI
1197      id1 = AtomRowToGlobal(atom1)
1198      id2 = AtomColToGlobal(atom2)
# Line 811 | Line 1202 | contains
1202   #endif
1203  
1204      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1205 <      
1205 >
1206         fpair(1) = fpair(1) + dudx
1207         fpair(2) = fpair(2) + dudy
1208         fpair(3) = fpair(3) + dudz
# Line 820 | Line 1211 | contains
1211  
1212      return
1213    end subroutine doElectrostaticPair
1214 <  
1214 >
1215 >  subroutine destroyElectrostaticTypes()
1216 >
1217 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1218 >
1219 >  end subroutine destroyElectrostaticTypes
1220 >
1221 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1222 >    logical, intent(in) :: do_pot
1223 >    integer, intent(in) :: atom1
1224 >    integer :: atid1
1225 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1226 >    real(kind=dp), dimension(3,nLocal) :: t
1227 >    real(kind=dp) :: mu1, c1
1228 >    real(kind=dp) :: preVal, epot, mypot
1229 >    real(kind=dp) :: eix, eiy, eiz
1230 >
1231 >    ! this is a local only array, so we use the local atom type id's:
1232 >    atid1 = atid(atom1)
1233 >
1234 >    if (.not.summationMethodChecked) then
1235 >       call checkSummationMethod()
1236 >    endif
1237 >    
1238 >    if (summationMethod .eq. REACTION_FIELD) then
1239 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1240 >          mu1 = getDipoleMoment(atid1)
1241 >          
1242 >          preVal = pre22 * preRF2 * mu1*mu1
1243 >          mypot = mypot - 0.5_dp*preVal
1244 >          
1245 >          ! The self-correction term adds into the reaction field vector
1246 >          
1247 >          eix = preVal * eFrame(3,atom1)
1248 >          eiy = preVal * eFrame(6,atom1)
1249 >          eiz = preVal * eFrame(9,atom1)
1250 >          
1251 >          ! once again, this is self-self, so only the local arrays are needed
1252 >          ! even for MPI jobs:
1253 >          
1254 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1255 >               eFrame(9,atom1)*eiy
1256 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1257 >               eFrame(3,atom1)*eiz
1258 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1259 >               eFrame(6,atom1)*eix
1260 >          
1261 >       endif
1262 >
1263 >    elseif ( (summationMethod .eq. SHIFTED_FORCE) .or. &
1264 >         (summationMethod .eq. SHIFTED_POTENTIAL) ) then
1265 >       if (ElectrostaticMap(atid1)%is_Charge) then
1266 >          c1 = getCharge(atid1)
1267 >          
1268 >          if (screeningMethod .eq. DAMPED) then
1269 >             mypot = mypot - (f0c * rcuti * 0.5_dp + &
1270 >                  dampingAlpha*invRootPi) * c1 * c1    
1271 >            
1272 >          else            
1273 >             mypot = mypot - (rcuti * 0.5_dp * c1 * c1)
1274 >            
1275 >          endif
1276 >       endif
1277 >    endif
1278 >    
1279 >    return
1280 >  end subroutine self_self
1281 >
1282 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1283 >       f, t, do_pot)
1284 >    logical, intent(in) :: do_pot
1285 >    integer, intent(in) :: atom1
1286 >    integer, intent(in) :: atom2
1287 >    logical :: i_is_Charge, j_is_Charge
1288 >    logical :: i_is_Dipole, j_is_Dipole
1289 >    integer :: atid1
1290 >    integer :: atid2
1291 >    real(kind=dp), intent(in) :: rij
1292 >    real(kind=dp), intent(in) :: sw
1293 >    real(kind=dp), intent(in), dimension(3) :: d
1294 >    real(kind=dp), intent(inout) :: vpair
1295 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1296 >    real(kind=dp), dimension(3,nLocal) :: f
1297 >    real(kind=dp), dimension(3,nLocal) :: t
1298 >    real (kind = dp), dimension(3) :: duduz_i
1299 >    real (kind = dp), dimension(3) :: duduz_j
1300 >    real (kind = dp), dimension(3) :: uz_i
1301 >    real (kind = dp), dimension(3) :: uz_j
1302 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1303 >    real(kind=dp) :: xhat, yhat, zhat
1304 >    real(kind=dp) :: ct_i, ct_j
1305 >    real(kind=dp) :: ri2, ri3, riji, vterm
1306 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1307 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1308 >
1309 >    if (.not.summationMethodChecked) then
1310 >       call checkSummationMethod()
1311 >    endif
1312 >
1313 >    dudx = zero
1314 >    dudy = zero
1315 >    dudz = zero
1316 >
1317 >    riji = 1.0_dp/rij
1318 >
1319 >    xhat = d(1) * riji
1320 >    yhat = d(2) * riji
1321 >    zhat = d(3) * riji
1322 >
1323 >    ! this is a local only array, so we use the local atom type id's:
1324 >    atid1 = atid(atom1)
1325 >    atid2 = atid(atom2)
1326 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1327 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1328 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1329 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1330 >
1331 >    if (i_is_Charge.and.j_is_Charge) then
1332 >       q_i = ElectrostaticMap(atid1)%charge
1333 >       q_j = ElectrostaticMap(atid2)%charge
1334 >      
1335 >       preVal = pre11 * q_i * q_j
1336 >       rfVal = preRF*rij*rij
1337 >       vterm = preVal * rfVal
1338 >      
1339 >       myPot = myPot + sw*vterm
1340 >      
1341 >       dudr  = sw*preVal * 2.0_dp*rfVal*riji
1342 >      
1343 >       dudx = dudx + dudr * xhat
1344 >       dudy = dudy + dudr * yhat
1345 >       dudz = dudz + dudr * zhat
1346 >      
1347 >    elseif (i_is_Charge.and.j_is_Dipole) then
1348 >       q_i = ElectrostaticMap(atid1)%charge
1349 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1350 >       uz_j(1) = eFrame(3,atom2)
1351 >       uz_j(2) = eFrame(6,atom2)
1352 >       uz_j(3) = eFrame(9,atom2)
1353 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1354 >      
1355 >       ri2 = riji * riji
1356 >       ri3 = ri2 * riji
1357 >      
1358 >       pref = pre12 * q_i * mu_j
1359 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1360 >       myPot = myPot + sw*vterm
1361 >      
1362 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0_dp*ct_j*xhat) &
1363 >            - preRF2*uz_j(1) )
1364 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0_dp*ct_j*yhat) &
1365 >            - preRF2*uz_j(2) )
1366 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0_dp*ct_j*zhat) &
1367 >            - preRF2*uz_j(3) )
1368 >      
1369 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1370 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1371 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1372 >      
1373 >    elseif (i_is_Dipole.and.j_is_Charge) then
1374 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1375 >       q_j = ElectrostaticMap(atid2)%charge
1376 >       uz_i(1) = eFrame(3,atom1)
1377 >       uz_i(2) = eFrame(6,atom1)
1378 >       uz_i(3) = eFrame(9,atom1)
1379 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1380 >      
1381 >       ri2 = riji * riji
1382 >       ri3 = ri2 * riji
1383 >      
1384 >       pref = pre12 * q_j * mu_i
1385 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1386 >       myPot = myPot + sw*vterm
1387 >      
1388 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0_dp*ct_i*xhat) &
1389 >            - preRF2*uz_i(1) )
1390 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0_dp*ct_i*yhat) &
1391 >            - preRF2*uz_i(2) )
1392 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0_dp*ct_i*zhat) &
1393 >            - preRF2*uz_i(3) )
1394 >      
1395 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1396 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1397 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1398 >      
1399 >    endif
1400 >      
1401 >
1402 >    ! accumulate the forces and torques resulting from the self term
1403 >    f(1,atom1) = f(1,atom1) + dudx
1404 >    f(2,atom1) = f(2,atom1) + dudy
1405 >    f(3,atom1) = f(3,atom1) + dudz
1406 >    
1407 >    f(1,atom2) = f(1,atom2) - dudx
1408 >    f(2,atom2) = f(2,atom2) - dudy
1409 >    f(3,atom2) = f(3,atom2) - dudz
1410 >    
1411 >    if (i_is_Dipole) then
1412 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1413 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1414 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1415 >    elseif (j_is_Dipole) then
1416 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1417 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1418 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1419 >    endif
1420 >
1421 >    return
1422 >  end subroutine rf_self_excludes
1423 >
1424   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines