ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2296 by chrisfen, Thu Sep 15 00:13:56 2005 UTC vs.
Revision 2843 by chrisfen, Fri Jun 9 18:26:18 2006 UTC

# Line 47 | Line 47 | module electrostatic_module
47    use vector_class
48    use simulation
49    use status
50 +  use interpolation
51   #ifdef IS_MPI
52    use mpiSimulation
53   #endif
# Line 54 | Line 55 | module electrostatic_module
55  
56    PRIVATE
57  
58 +
59 + #define __FORTRAN90
60 + #include "UseTheForce/DarkSide/fInteractionMap.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
62 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
63 +
64 +
65    !! these prefactors convert the multipole interactions into kcal / mol
66    !! all were computed assuming distances are measured in angstroms
67    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 76 | module electrostatic_module
76    !! This unit is also known affectionately as an esu centi-barn.
77    real(kind=dp), parameter :: pre14 = 69.13373_dp
78  
79 +  real(kind=dp), parameter :: zero = 0.0_dp
80 +  
81 +  !! number of points for electrostatic splines
82 +  integer, parameter :: np = 100
83 +
84 +  !! variables to handle different summation methods for long-range
85 +  !! electrostatics:
86 +  integer, save :: summationMethod = NONE
87 +  integer, save :: screeningMethod = UNDAMPED
88 +  logical, save :: summationMethodChecked = .false.
89 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
90 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
91 +  logical, save :: haveDefaultCutoff = .false.
92 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
93 +  real(kind=DP), save :: alpha2 = 0.0_DP
94 +  real(kind=DP), save :: alpha4 = 0.0_DP
95 +  real(kind=DP), save :: alpha6 = 0.0_DP
96 +  real(kind=DP), save :: alpha8 = 0.0_DP
97 +  logical, save :: haveDampingAlpha = .false.
98 +  real(kind=DP), save :: dielectric = 1.0_DP
99 +  logical, save :: haveDielectric = .false.
100 +  real(kind=DP), save :: constEXP = 0.0_DP
101 +  real(kind=dp), save :: rcuti = 0.0_DP
102 +  real(kind=dp), save :: rcuti2 = 0.0_DP
103 +  real(kind=dp), save :: rcuti3 = 0.0_DP
104 +  real(kind=dp), save :: rcuti4 = 0.0_DP
105 +  real(kind=dp), save :: alphaPi = 0.0_DP
106 +  real(kind=dp), save :: invRootPi = 0.0_DP
107 +  real(kind=dp), save :: rrf = 1.0_DP
108 +  real(kind=dp), save :: rt = 1.0_DP
109 +  real(kind=dp), save :: rrfsq = 1.0_DP
110 +  real(kind=dp), save :: preRF = 0.0_DP
111 +  real(kind=dp), save :: preRF2 = 0.0_DP
112 +  real(kind=dp), save :: erfcVal = 1.0_DP
113 +  real(kind=dp), save :: derfcVal = 0.0_DP
114 +  type(cubicSpline), save :: erfcSpline
115 +  logical, save :: haveElectroSpline = .false.
116 +  real(kind=dp), save :: c1 = 1.0_DP
117 +  real(kind=dp), save :: c2 = 1.0_DP
118 +  real(kind=dp), save :: c3 = 0.0_DP
119 +  real(kind=dp), save :: c4 = 0.0_DP
120 +  real(kind=dp), save :: c5 = 0.0_DP
121 +  real(kind=dp), save :: c6 = 0.0_DP
122 +  real(kind=dp), save :: c1c = 1.0_DP
123 +  real(kind=dp), save :: c2c = 1.0_DP
124 +  real(kind=dp), save :: c3c = 0.0_DP
125 +  real(kind=dp), save :: c4c = 0.0_DP
126 +  real(kind=dp), save :: c5c = 0.0_DP
127 +  real(kind=dp), save :: c6c = 0.0_DP
128 +  real(kind=dp), save :: one_third = 1.0_DP / 3.0_DP
129 +
130 + #if defined(__IFC) || defined(__PGI)
131 + ! error function for ifc version > 7.
132 +  real(kind=dp), external :: erfc
133 + #endif
134 +  
135 +  public :: setElectrostaticSummationMethod
136 +  public :: setScreeningMethod
137 +  public :: setElectrostaticCutoffRadius
138 +  public :: setDampingAlpha
139 +  public :: setReactionFieldDielectric
140 +  public :: buildElectroSpline
141    public :: newElectrostaticType
142    public :: setCharge
143    public :: setDipoleMoment
# Line 76 | Line 146 | module electrostatic_module
146    public :: doElectrostaticPair
147    public :: getCharge
148    public :: getDipoleMoment
79  public :: pre22
149    public :: destroyElectrostaticTypes
150 +  public :: self_self
151 +  public :: rf_self_excludes
152  
153 +
154    type :: Electrostatic
155       integer :: c_ident
156       logical :: is_Charge = .false.
# Line 94 | Line 166 | contains
166  
167    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
168  
169 +  logical, save :: hasElectrostaticMap
170 +
171   contains
172  
173 +  subroutine setElectrostaticSummationMethod(the_ESM)
174 +    integer, intent(in) :: the_ESM    
175 +
176 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
177 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
178 +    endif
179 +
180 +    summationMethod = the_ESM
181 +
182 +  end subroutine setElectrostaticSummationMethod
183 +
184 +  subroutine setScreeningMethod(the_SM)
185 +    integer, intent(in) :: the_SM    
186 +    screeningMethod = the_SM
187 +  end subroutine setScreeningMethod
188 +
189 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
190 +    real(kind=dp), intent(in) :: thisRcut
191 +    real(kind=dp), intent(in) :: thisRsw
192 +    defaultCutoff = thisRcut
193 +    defaultCutoff2 = defaultCutoff*defaultCutoff
194 +    rrf = defaultCutoff
195 +    rt = thisRsw
196 +    haveDefaultCutoff = .true.
197 +  end subroutine setElectrostaticCutoffRadius
198 +
199 +  subroutine setDampingAlpha(thisAlpha)
200 +    real(kind=dp), intent(in) :: thisAlpha
201 +    dampingAlpha = thisAlpha
202 +    alpha2 = dampingAlpha*dampingAlpha
203 +    alpha4 = alpha2*alpha2
204 +    alpha6 = alpha4*alpha2
205 +    alpha8 = alpha4*alpha4
206 +    haveDampingAlpha = .true.
207 +  end subroutine setDampingAlpha
208 +  
209 +  subroutine setReactionFieldDielectric(thisDielectric)
210 +    real(kind=dp), intent(in) :: thisDielectric
211 +    dielectric = thisDielectric
212 +    haveDielectric = .true.
213 +  end subroutine setReactionFieldDielectric
214 +
215 +  subroutine buildElectroSpline()
216 +    real( kind = dp ), dimension(np) :: xvals, yvals
217 +    real( kind = dp ) :: dx, rmin, rval
218 +    integer :: i
219 +
220 +    rmin = 0.0_dp
221 +
222 +    dx = (defaultCutoff-rmin) / dble(np-1)
223 +    
224 +    do i = 1, np
225 +       rval = rmin + dble(i-1)*dx
226 +       xvals(i) = rval
227 +       yvals(i) = erfc(dampingAlpha*rval)
228 +    enddo
229 +
230 +    call newSpline(erfcSpline, xvals, yvals, .true.)
231 +
232 +    haveElectroSpline = .true.
233 +  end subroutine buildElectroSpline
234 +
235    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
236         is_SplitDipole, is_Quadrupole, is_Tap, status)
237  
# Line 123 | Line 259 | contains
259            return
260         end if
261  
262 <       if (.not. allocated(ElectrostaticMap)) then
127 <          allocate(ElectrostaticMap(nAtypes))
128 <       endif
262 >       allocate(ElectrostaticMap(nAtypes))
263  
264      end if
265  
# Line 143 | Line 277 | contains
277      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
278      ElectrostaticMap(myATID)%is_Tap = is_Tap
279  
280 +    hasElectrostaticMap = .true.
281 +
282    end subroutine newElectrostaticType
283  
284    subroutine setCharge(c_ident, charge, status)
# Line 154 | Line 290 | contains
290      status = 0
291      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
292  
293 <    if (.not.allocated(ElectrostaticMap)) then
293 >    if (.not.hasElectrostaticMap) then
294         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!")
295         status = -1
296         return
# Line 184 | Line 320 | contains
320      status = 0
321      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
322  
323 <    if (.not.allocated(ElectrostaticMap)) then
323 >    if (.not.hasElectrostaticMap) then
324         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!")
325         status = -1
326         return
# Line 214 | Line 350 | contains
350      status = 0
351      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
352  
353 <    if (.not.allocated(ElectrostaticMap)) then
353 >    if (.not.hasElectrostaticMap) then
354         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!")
355         status = -1
356         return
# Line 244 | Line 380 | contains
380      status = 0
381      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
382  
383 <    if (.not.allocated(ElectrostaticMap)) then
383 >    if (.not.hasElectrostaticMap) then
384         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!")
385         status = -1
386         return
# Line 275 | Line 411 | contains
411      integer :: localError
412      real(kind=dp) :: c
413  
414 <    if (.not.allocated(ElectrostaticMap)) then
414 >    if (.not.hasElectrostaticMap) then
415         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
416         return
417      end if
# Line 293 | Line 429 | contains
429      integer :: localError
430      real(kind=dp) :: dm
431  
432 <    if (.not.allocated(ElectrostaticMap)) then
432 >    if (.not.hasElectrostaticMap) then
433         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
434         return
435      end if
# Line 306 | Line 442 | contains
442      dm = ElectrostaticMap(atid)%dipole_moment
443    end function getDipoleMoment
444  
445 <  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
310 <       vpair, fpair, pot, eFrame, f, t, do_pot, corrMethod, rcuti)
445 >  subroutine checkSummationMethod()
446  
447 +    if (.not.haveDefaultCutoff) then
448 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
449 +    endif
450 +
451 +    rcuti = 1.0_dp / defaultCutoff
452 +    rcuti2 = rcuti*rcuti
453 +    rcuti3 = rcuti2*rcuti
454 +    rcuti4 = rcuti2*rcuti2
455 +
456 +    if (screeningMethod .eq. DAMPED) then
457 +       if (.not.haveDampingAlpha) then
458 +          call handleError("checkSummationMethod", "no Damping Alpha set!")
459 +       endif
460 +      
461 +       if (.not.haveDefaultCutoff) then
462 +          call handleError("checkSummationMethod", "no Default Cutoff set!")
463 +       endif
464 +
465 +       constEXP = exp(-alpha2*defaultCutoff2)
466 +       invRootPi = 0.56418958354775628695_dp
467 +       alphaPi = 2.0_dp*dampingAlpha*invRootPi
468 +
469 +       c1c = erfc(dampingAlpha*defaultCutoff) * rcuti
470 +       c2c = alphaPi*constEXP*rcuti + c1c*rcuti
471 +       c3c = 2.0_dp*alphaPi*alpha2 + 3.0_dp*c2c*rcuti
472 +       c4c = 4.0_dp*alphaPi*alpha4 + 5.0_dp*c3c*rcuti2
473 +       c5c = 8.0_dp*alphaPi*alpha6 + 7.0_dp*c4c*rcuti2
474 +       c6c = 16.0_dp*alphaPi*alpha8 + 9.0_dp*c5c*rcuti2
475 +    else
476 +       c1c = rcuti
477 +       c2c = c1c*rcuti
478 +       c3c = 3.0_dp*c2c*rcuti
479 +       c4c = 5.0_dp*c3c*rcuti2
480 +       c5c = 7.0_dp*c4c*rcuti2
481 +       c6c = 9.0_dp*c5c*rcuti2
482 +    endif
483 +
484 +    if (summationMethod .eq. REACTION_FIELD) then
485 +       if (haveDielectric) then
486 +          defaultCutoff2 = defaultCutoff*defaultCutoff
487 +          preRF = (dielectric-1.0_dp) / &
488 +               ((2.0_dp*dielectric+1.0_dp)*defaultCutoff2*defaultCutoff)
489 +          preRF2 = 2.0_dp*preRF
490 +       else
491 +          call handleError("checkSummationMethod", "Dielectric not set")
492 +       endif
493 +      
494 +    endif
495 +
496 +    if (.not.haveElectroSpline) then
497 +       call buildElectroSpline()
498 +    end if
499 +
500 +    summationMethodChecked = .true.
501 +  end subroutine checkSummationMethod
502 +
503 +
504 +  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, rcut, sw, &
505 +       vpair, fpair, pot, eFrame, f, t, do_pot)
506 +
507      logical, intent(in) :: do_pot
508  
509      integer, intent(in) :: atom1, atom2
510      integer :: localError
316    integer, intent(in) :: corrMethod
511  
512 <    real(kind=dp), intent(in) :: rij, r2, sw, rcuti
512 >    real(kind=dp), intent(in) :: rij, r2, sw, rcut
513      real(kind=dp), intent(in), dimension(3) :: d
514      real(kind=dp), intent(inout) :: vpair
515 <    real(kind=dp), intent(inout), dimension(3) :: fpair
515 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
516  
517 <    real( kind = dp ) :: pot, swi
517 >    real( kind = dp ) :: pot
518      real( kind = dp ), dimension(9,nLocal) :: eFrame
519      real( kind = dp ), dimension(3,nLocal) :: f
520 +    real( kind = dp ), dimension(3,nLocal) :: felec
521      real( kind = dp ), dimension(3,nLocal) :: t
522  
523      real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
# Line 340 | Line 535 | contains
535      real (kind=dp) :: cx_i, cy_i, cz_i
536      real (kind=dp) :: cx_j, cy_j, cz_j
537      real (kind=dp) :: cx2, cy2, cz2
538 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
538 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
539      real (kind=dp) :: riji, ri, ri2, ri3, ri4
540      real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
541      real (kind=dp) :: xhat, yhat, zhat
542      real (kind=dp) :: dudx, dudy, dudz
543 <    real (kind=dp) :: scale, sc2, bigR, switcher, dswitcher
544 <    real (kind=dp) :: rcuti2, rcuti3, rcuti4
543 >    real (kind=dp) :: scale, sc2, bigR
544 >    real (kind=dp) :: varEXP
545 >    real (kind=dp) :: pot_term
546 >    real (kind=dp) :: preVal, rfVal
547 >    real (kind=dp) :: c2ri, c3ri, c4rij
548 >    real (kind=dp) :: cti3, ctj3, ctidotj
549 >    real (kind=dp) :: preSw, preSwSc
550 >    real (kind=dp) :: xhatdot2, yhatdot2, zhatdot2
551 >    real (kind=dp) :: xhatc4, yhatc4, zhatc4
552  
553 <    if (.not.allocated(ElectrostaticMap)) then
554 <       call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
555 <       return
354 <    end if
553 >    if (.not.summationMethodChecked) then
554 >       call checkSummationMethod()
555 >    endif
556  
557   #ifdef IS_MPI
558      me1 = atid_Row(atom1)
# Line 363 | Line 564 | contains
564  
565      !! some variables we'll need independent of electrostatic type:
566  
567 <    riji = 1.0d0 / rij
568 <
567 >    riji = 1.0_dp / rij
568 >  
569      xhat = d(1) * riji
570      yhat = d(2) * riji
571      zhat = d(3) * riji
572  
372    rcuti2 = rcuti*rcuti
373    rcuti3 = rcuti2*rcuti
374    rcuti4 = rcuti2*rcuti2
375
376    swi = 1.0d0 / sw
377
573      !! logicals
574      i_is_Charge = ElectrostaticMap(me1)%is_Charge
575      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
# Line 408 | Line 603 | contains
603         if (i_is_SplitDipole) then
604            d_i = ElectrostaticMap(me1)%split_dipole_distance
605         endif
606 <
606 >       duduz_i = zero
607      endif
608  
609      if (i_is_Quadrupole) then
# Line 439 | Line 634 | contains
634         cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
635         cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
636         cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
637 +       dudux_i = zero
638 +       duduy_i = zero
639 +       duduz_i = zero
640      endif
641  
642      if (j_is_Charge) then
# Line 461 | Line 659 | contains
659         if (j_is_SplitDipole) then
660            d_j = ElectrostaticMap(me2)%split_dipole_distance
661         endif
662 +       duduz_j = zero
663      endif
664  
665      if (j_is_Quadrupole) then
# Line 491 | Line 690 | contains
690         cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
691         cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
692         cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
693 +       dudux_j = zero
694 +       duduy_j = zero
695 +       duduz_j = zero
696      endif
697    
698 < !!$    switcher = 1.0d0
699 < !!$    dswitcher = 0.0d0
700 < !!$    ebalance = 0.0d0
701 < !!$    ! weaken the dipole interaction at close range for TAP water
500 < !!$    if (j_is_Tap .and. i_is_Tap) then
501 < !!$      call calc_switch(rij, mu_i, switcher, dswitcher)
502 < !!$    endif
698 >    epot = zero
699 >    dudx = zero
700 >    dudy = zero
701 >    dudz = zero  
702  
504    epot = 0.0_dp
505    dudx = 0.0_dp
506    dudy = 0.0_dp
507    dudz = 0.0_dp
508
509    dudux_i = 0.0_dp
510    duduy_i = 0.0_dp
511    duduz_i = 0.0_dp
512
513    dudux_j = 0.0_dp
514    duduy_j = 0.0_dp
515    duduz_j = 0.0_dp
516
703      if (i_is_Charge) then
704  
705         if (j_is_Charge) then
706 +          if (screeningMethod .eq. DAMPED) then
707 +             ! assemble the damping variables
708 +             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
709 +             c1 = erfcVal*riji
710 +             c2 = (-derfcVal + c1)*riji
711 +          else
712 +             c1 = riji
713 +             c2 = c1*riji
714 +          endif
715  
716 <          if (corrMethod .eq. 1) then
522 <             vterm = pre11 * q_i * q_j * (riji - rcuti)
716 >          preVal = pre11 * q_i * q_j
717  
718 <             vpair = vpair + vterm
719 <             epot = epot + sw * vterm
526 <            
527 <             dudr  = - sw * pre11 * q_i * q_j * (riji*riji*riji - rcuti2*rcuti)
718 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
719 >             vterm = preVal * (c1 - c1c)
720              
721 <             dudx = dudx + dudr * d(1)
722 <             dudy = dudy + dudr * d(2)
723 <             dudz = dudz + dudr * d(3)
724 <
533 <          else
534 <             vterm = pre11 * q_i * q_j * riji
535 <
536 <             vpair = vpair + vterm
537 <             epot = epot + sw * vterm
721 >             dudr  = -sw * preVal * c2
722 >  
723 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
724 >             vterm = preVal * ( c1 - c1c + c2c*(rij - defaultCutoff) )
725              
726 <             dudr  = - sw * vterm * riji
726 >             dudr  = sw * preVal * (c2c - c2)
727 >  
728 >          elseif (summationMethod .eq. REACTION_FIELD) then
729 >             rfVal = preRF*rij*rij
730 >             vterm = preVal * ( riji + rfVal )
731              
732 <             dudx = dudx + dudr * xhat
733 <             dudy = dudy + dudr * yhat
734 <             dudz = dudz + dudr * zhat
735 <
732 >             dudr  = sw * preVal * ( 2.0_dp*rfVal - riji )*riji
733 >  
734 >          else
735 >             vterm = preVal * riji*erfcVal
736 >            
737 >             dudr  = - sw * preVal * c2
738 >  
739            endif
740  
741 +          vpair = vpair + vterm
742 +          epot = epot + sw*vterm
743 +
744 +          dudx = dudx + dudr * xhat
745 +          dudy = dudy + dudr * yhat
746 +          dudz = dudz + dudr * zhat
747 +
748         endif
749  
750         if (j_is_Dipole) then
751 +          ! pref is used by all the possible methods
752 +          pref = pre12 * q_i * mu_j
753 +          preSw = sw*pref
754  
755 <          pref = sw * pre12 * q_i * mu_j
552 <
553 <          if (corrMethod .eq. 1) then
755 >          if (summationMethod .eq. REACTION_FIELD) then
756               ri2 = riji * riji
757               ri3 = ri2 * riji
758 <
759 <             vterm = - pref * ct_j * (ri2 - rcuti2)
760 <             vpair = vpair + swi*vterm
761 <             epot = epot + vterm
758 >    
759 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
760 >             vpair = vpair + vterm
761 >             epot = epot + sw*vterm
762              
763 <             !! this has a + sign in the () because the rij vector is
764 <             !! r_j - r_i and the charge-dipole potential takes the origin
765 <             !! as the point dipole, which is atom j in this case.
766 <            
767 <             dudx = dudx - pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
768 <                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
769 <             dudy = dudy - pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
770 <                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
771 <             dudz = dudz - pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
570 <                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
571 <            
572 <             duduz_j(1) = duduz_j(1) - pref*( ri2*xhat - d(1)*rcuti3 )
573 <             duduz_j(2) = duduz_j(2) - pref*( ri2*yhat - d(2)*rcuti3 )
574 <             duduz_j(3) = duduz_j(3) - pref*( ri2*zhat - d(3)*rcuti3 )
763 >             dudx = dudx - preSw*( ri3*(uz_j(1) - 3.0_dp*ct_j*xhat) - &
764 >                  preRF2*uz_j(1) )
765 >             dudy = dudy - preSw*( ri3*(uz_j(2) - 3.0_dp*ct_j*yhat) - &
766 >                  preRF2*uz_j(2) )
767 >             dudz = dudz - preSw*( ri3*(uz_j(3) - 3.0_dp*ct_j*zhat) - &
768 >                  preRF2*uz_j(3) )        
769 >             duduz_j(1) = duduz_j(1) - preSw * xhat * ( ri2 - preRF2*rij )
770 >             duduz_j(2) = duduz_j(2) - preSw * yhat * ( ri2 - preRF2*rij )
771 >             duduz_j(3) = duduz_j(3) - preSw * zhat * ( ri2 - preRF2*rij )
772  
773            else
774 +             ! determine the inverse r used if we have split dipoles
775               if (j_is_SplitDipole) then
776                  BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
777                  ri = 1.0_dp / BigR
# Line 582 | Line 780 | contains
780                  ri = riji
781                  scale = 1.0_dp
782               endif
783 <            
586 <             ri2 = ri * ri
587 <             ri3 = ri2 * ri
783 >
784               sc2 = scale * scale
785 +
786 +             if (screeningMethod .eq. DAMPED) then
787 +                ! assemble the damping variables
788 +                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
789 +                c1 = erfcVal*ri
790 +                c2 = (-derfcVal + c1)*ri
791 +                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
792 +             else
793 +                c1 = ri
794 +                c2 = c1*ri
795 +                c3 = 3.0_dp*c2*ri
796 +             endif
797              
798 <             vterm = - pref * ct_j * ri2 * scale
799 <             vpair = vpair + swi * vterm
800 <             epot = epot + vterm
798 >             c2ri = c2*ri
799 >
800 >             ! calculate the potential
801 >             pot_term =  scale * c2
802 >             vterm = -pref * ct_j * pot_term
803 >             vpair = vpair + vterm
804 >             epot = epot + sw*vterm
805              
806 <             !! this has a + sign in the () because the rij vector is
807 <             !! r_j - r_i and the charge-dipole potential takes the origin
808 <             !! as the point dipole, which is atom j in this case.
809 <            
810 <             dudx = dudx - pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
811 <             dudy = dudy - pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
812 <             dudz = dudz - pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
813 <            
602 <             duduz_j(1) = duduz_j(1) - pref * ri2 * xhat * scale
603 <             duduz_j(2) = duduz_j(2) - pref * ri2 * yhat * scale
604 <             duduz_j(3) = duduz_j(3) - pref * ri2 * zhat * scale
806 >             ! calculate derivatives for forces and torques
807 >             dudx = dudx - preSw*( uz_j(1)*c2ri - ct_j*xhat*sc2*c3 )
808 >             dudy = dudy - preSw*( uz_j(2)*c2ri - ct_j*yhat*sc2*c3 )
809 >             dudz = dudz - preSw*( uz_j(3)*c2ri - ct_j*zhat*sc2*c3 )
810 >                          
811 >             duduz_j(1) = duduz_j(1) - preSw * pot_term * xhat
812 >             duduz_j(2) = duduz_j(2) - preSw * pot_term * yhat
813 >             duduz_j(3) = duduz_j(3) - preSw * pot_term * zhat
814  
815            endif
816         endif
817  
818         if (j_is_Quadrupole) then
819 <          ri2 = riji * riji
611 <          ri3 = ri2 * riji
612 <          ri4 = ri2 * ri2
819 >          ! first precalculate some necessary variables
820            cx2 = cx_j * cx_j
821            cy2 = cy_j * cy_j
822            cz2 = cz_j * cz_j
823 +          pref =  pre14 * q_i * one_third
824 +          
825 +          if (screeningMethod .eq. DAMPED) then
826 +             ! assemble the damping variables
827 +             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
828 +             c1 = erfcVal*riji
829 +             c2 = (-derfcVal + c1)*riji
830 +             c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*riji
831 +             c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*riji*riji
832 +          else
833 +             c1 = riji
834 +             c2 = c1*riji
835 +             c3 = 3.0_dp*c2*riji
836 +             c4 = 5.0_dp*c3*riji*riji
837 +          endif
838  
839 +          ! precompute variables for convenience
840 +          preSw = sw*pref
841 +          c2ri = c2*riji
842 +          c3ri = c3*riji
843 +          c4rij = c4*rij
844 +          xhatdot2 = 2.0_dp*xhat*c3
845 +          yhatdot2 = 2.0_dp*yhat*c3
846 +          zhatdot2 = 2.0_dp*zhat*c3
847 +          xhatc4 = xhat*c4rij
848 +          yhatc4 = yhat*c4rij
849 +          zhatc4 = zhat*c4rij
850  
851 <          pref =  sw * pre14 * q_i / 3.0_dp
851 >          ! calculate the potential
852 >          pot_term = ( qxx_j*(cx2*c3 - c2ri) + qyy_j*(cy2*c3 - c2ri) + &
853 >               qzz_j*(cz2*c3 - c2ri) )
854 >          vterm = pref * pot_term
855 >          vpair = vpair + vterm
856 >          epot = epot + sw*vterm
857  
858 <          if (corrMethod .eq. 1) then
859 <             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
860 <                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
861 <                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
862 <             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
863 <                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
864 <                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
865 <             vpair = vpair + swi*( vterm1 - vterm2 )
866 <             epot = epot + ( vterm1 - vterm2 )
867 <            
868 <             dudx = dudx - (5.0_dp * &
869 <                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + pref * ( &
870 <                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
633 <                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
634 <                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
635 <                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
636 <                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
637 <                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
638 <             dudy = dudy - (5.0_dp * &
639 <                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + pref * ( &
640 <                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
641 <                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
642 <                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
643 <                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
644 <                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
645 <                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
646 <             dudz = dudz - (5.0_dp * &
647 <                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + pref * ( &
648 <                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
649 <                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
650 <                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
651 <                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
652 <                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
653 <                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
654 <            
655 <             dudux_j(1) = dudux_j(1) + pref * (ri3*(qxx_j*6.0_dp*cx_j*xhat) - &
656 <                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
657 <             dudux_j(2) = dudux_j(2) + pref * (ri3*(qxx_j*6.0_dp*cx_j*yhat) - &
658 <                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
659 <             dudux_j(3) = dudux_j(3) + pref * (ri3*(qxx_j*6.0_dp*cx_j*zhat) - &
660 <                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
661 <            
662 <             duduy_j(1) = duduy_j(1) + pref * (ri3*(qyy_j*6.0_dp*cy_j*xhat) - &
663 <                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
664 <             duduy_j(2) = duduy_j(2) + pref * (ri3*(qyy_j*6.0_dp*cy_j*yhat) - &
665 <                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
666 <             duduy_j(3) = duduy_j(3) + pref * (ri3*(qyy_j*6.0_dp*cy_j*zhat) - &
667 <                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
668 <            
669 <             duduz_j(1) = duduz_j(1) + pref * (ri3*(qzz_j*6.0_dp*cz_j*xhat) - &
670 <                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
671 <             duduz_j(2) = duduz_j(2) + pref * (ri3*(qzz_j*6.0_dp*cz_j*yhat) - &
672 <                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
673 <             duduz_j(3) = duduz_j(3) + pref * (ri3*(qzz_j*6.0_dp*cz_j*zhat) - &
674 <                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
675 <        
676 <          else
677 <             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
678 <                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
679 <                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
680 <             vpair = vpair + swi * vterm
681 <             epot = epot + vterm
682 <            
683 <             dudx = dudx - 5.0_dp*vterm*riji*xhat + pref * ri4 * ( &
684 <                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
685 <                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
686 <                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
687 <             dudy = dudy - 5.0_dp*vterm*riji*yhat + pref * ri4 * ( &
688 <                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
689 <                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
690 <                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
691 <             dudz = dudz - 5.0_dp*vterm*riji*zhat + pref * ri4 * ( &
692 <                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
693 <                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
694 <                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
695 <            
696 <             dudux_j(1) = dudux_j(1) + pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
697 <             dudux_j(2) = dudux_j(2) + pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
698 <             dudux_j(3) = dudux_j(3) + pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
699 <            
700 <             duduy_j(1) = duduy_j(1) + pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
701 <             duduy_j(2) = duduy_j(2) + pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
702 <             duduy_j(3) = duduy_j(3) + pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
703 <            
704 <             duduz_j(1) = duduz_j(1) + pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
705 <             duduz_j(2) = duduz_j(2) + pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
706 <             duduz_j(3) = duduz_j(3) + pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
858 >          ! calculate derivatives for the forces and torques
859 >          dudx = dudx - preSw * ( &
860 >               qxx_j*(cx2*xhatc4 - (2.0_dp*cx_j*ux_j(1) + xhat)*c3ri) + &
861 >               qyy_j*(cy2*xhatc4 - (2.0_dp*cy_j*uy_j(1) + xhat)*c3ri) + &
862 >               qzz_j*(cz2*xhatc4 - (2.0_dp*cz_j*uz_j(1) + xhat)*c3ri) )
863 >          dudy = dudy - preSw * ( &
864 >               qxx_j*(cx2*yhatc4 - (2.0_dp*cx_j*ux_j(2) + yhat)*c3ri) + &
865 >               qyy_j*(cy2*yhatc4 - (2.0_dp*cy_j*uy_j(2) + yhat)*c3ri) + &
866 >               qzz_j*(cz2*yhatc4 - (2.0_dp*cz_j*uz_j(2) + yhat)*c3ri) )
867 >          dudz = dudz - preSw * ( &
868 >               qxx_j*(cx2*zhatc4 - (2.0_dp*cx_j*ux_j(3) + zhat)*c3ri) + &
869 >               qyy_j*(cy2*zhatc4 - (2.0_dp*cy_j*uy_j(3) + zhat)*c3ri) + &
870 >               qzz_j*(cz2*zhatc4 - (2.0_dp*cz_j*uz_j(3) + zhat)*c3ri) )
871            
872 <          endif
872 >          dudux_j(1) = dudux_j(1) + preSw*(qxx_j*cx_j*xhatdot2)
873 >          dudux_j(2) = dudux_j(2) + preSw*(qxx_j*cx_j*yhatdot2)
874 >          dudux_j(3) = dudux_j(3) + preSw*(qxx_j*cx_j*zhatdot2)
875 >          
876 >          duduy_j(1) = duduy_j(1) + preSw*(qyy_j*cy_j*xhatdot2)
877 >          duduy_j(2) = duduy_j(2) + preSw*(qyy_j*cy_j*yhatdot2)
878 >          duduy_j(3) = duduy_j(3) + preSw*(qyy_j*cy_j*zhatdot2)
879 >          
880 >          duduz_j(1) = duduz_j(1) + preSw*(qzz_j*cz_j*xhatdot2)
881 >          duduz_j(2) = duduz_j(2) + preSw*(qzz_j*cz_j*yhatdot2)
882 >          duduz_j(3) = duduz_j(3) + preSw*(qzz_j*cz_j*zhatdot2)
883 >
884 >          
885         endif
886      endif
887 <
887 >    
888      if (i_is_Dipole) then
889  
890         if (j_is_Charge) then
891 +          ! variables used by all the methods
892 +          pref = pre12 * q_j * mu_i                      
893 +          preSw = sw*pref
894  
895 <          pref = sw * pre12 * q_j * mu_i
895 >          if (summationMethod .eq. REACTION_FIELD) then
896  
718          if (corrMethod .eq. 1) then
897               ri2 = riji * riji
898               ri3 = ri2 * riji
899  
900 <             vterm = pref * ct_i * (ri2 - rcuti2)
901 <             vpair = vpair + swi * vterm
902 <             epot = epot + vterm
900 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
901 >             vpair = vpair + vterm
902 >             epot = epot + sw*vterm
903              
904 <             !! this has a + sign in the () because the rij vector is
905 <             !! r_j - r_i and the charge-dipole potential takes the origin
906 <             !! as the point dipole, which is atom j in this case.
904 >             dudx = dudx + preSw * ( ri3*(uz_i(1) - 3.0_dp*ct_i*xhat) - &
905 >                  preRF2*uz_i(1) )
906 >             dudy = dudy + preSw * ( ri3*(uz_i(2) - 3.0_dp*ct_i*yhat) - &
907 >                  preRF2*uz_i(2) )
908 >             dudz = dudz + preSw * ( ri3*(uz_i(3) - 3.0_dp*ct_i*zhat) - &
909 >                  preRF2*uz_i(3) )
910              
911 <             dudx = dudx + pref * ( ri3*( uz_i(1) - 3.0d0*ct_i*xhat) &
912 <                  - rcuti3*( uz_i(1) - 3.0d0*ct_i*d(1)*rcuti ) )
913 <             dudy = dudy + pref * ( ri3*( uz_i(2) - 3.0d0*ct_i*yhat) &
733 <                  - rcuti3*( uz_i(2) - 3.0d0*ct_i*d(2)*rcuti ) )
734 <             dudz = dudz + pref * ( ri3*( uz_i(3) - 3.0d0*ct_i*zhat) &
735 <                  - rcuti3*( uz_i(3) - 3.0d0*ct_i*d(3)*rcuti ) )
736 <            
737 <             duduz_i(1) = duduz_i(1) - pref*( ri2*xhat - d(1)*rcuti3 )
738 <             duduz_i(2) = duduz_i(2) - pref*( ri2*yhat - d(2)*rcuti3 )
739 <             duduz_i(3) = duduz_i(3) - pref*( ri2*zhat - d(3)*rcuti3 )
911 >             duduz_i(1) = duduz_i(1) + preSw * xhat * ( ri2 - preRF2*rij )
912 >             duduz_i(2) = duduz_i(2) + preSw * yhat * ( ri2 - preRF2*rij )
913 >             duduz_i(3) = duduz_i(3) + preSw * zhat * ( ri2 - preRF2*rij )
914  
915            else
916 +             ! determine inverse r if we are using split dipoles
917               if (i_is_SplitDipole) then
918                  BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
919                  ri = 1.0_dp / BigR
# Line 747 | Line 922 | contains
922                  ri = riji
923                  scale = 1.0_dp
924               endif
925 <            
751 <             ri2 = ri * ri
752 <             ri3 = ri2 * ri
925 >
926               sc2 = scale * scale
927 +              
928 +             if (screeningMethod .eq. DAMPED) then
929 +                ! assemble the damping variables
930 +                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
931 +                c1 = erfcVal*ri
932 +                c2 = (-derfcVal + c1)*ri
933 +                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
934 +             else
935 +                c1 = ri
936 +                c2 = c1*ri
937 +                c3 = 3.0_dp*c2*ri
938 +             endif
939 +            
940 +             c2ri = c2*ri
941 +
942 +             ! calculate the potential
943 +             pot_term = c2 * scale
944 +             vterm = pref * ct_i * pot_term
945 +             vpair = vpair + vterm
946 +             epot = epot + sw*vterm
947 +
948 +             ! calculate derivatives for the forces and torques
949 +             dudx = dudx + preSw * ( uz_i(1)*c2ri - ct_i*xhat*sc2*c3 )
950 +             dudy = dudy + preSw * ( uz_i(2)*c2ri - ct_i*yhat*sc2*c3 )
951 +             dudz = dudz + preSw * ( uz_i(3)*c2ri - ct_i*zhat*sc2*c3 )
952 +
953 +             duduz_i(1) = duduz_i(1) + preSw * pot_term * xhat
954 +             duduz_i(2) = duduz_i(2) + preSw * pot_term * yhat
955 +             duduz_i(3) = duduz_i(3) + preSw * pot_term * zhat
956              
755             vterm = pref * ct_i * ri2 * scale
756             vpair = vpair + swi * vterm
757             epot = epot + vterm
758            
759             dudx = dudx + pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
760             dudy = dudy + pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
761             dudz = dudz + pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
762            
763             duduz_i(1) = duduz_i(1) + pref * ri2 * xhat * scale
764             duduz_i(2) = duduz_i(2) + pref * ri2 * yhat * scale
765             duduz_i(3) = duduz_i(3) + pref * ri2 * zhat * scale
957            endif
958         endif
959 <
959 >      
960         if (j_is_Dipole) then
961 +          ! variables used by all methods
962 +          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
963 +          pref = pre22 * mu_i * mu_j
964 +          preSw = sw*pref
965  
966 <          pref = sw * pre22 * mu_i * mu_j
772 <
773 <          if (corrMethod .eq. 1) then
966 >          if (summationMethod .eq. REACTION_FIELD) then
967               ri2 = riji * riji
968               ri3 = ri2 * riji
969               ri4 = ri2 * ri2
970  
971 <             vterm = pref * (ri3 - rcuti3) * (ct_ij - 3.0d0 * ct_i * ct_j)
972 <             vpair = vpair + swi * vterm
973 <             epot = epot + vterm
971 >             vterm = pref*( ri3*(ct_ij - 3.0_dp * ct_i * ct_j) - &
972 >                  preRF2*ct_ij )
973 >             vpair = vpair + vterm
974 >             epot = epot + sw*vterm
975              
976 <             a1 = 5.0d0 * ct_i * ct_j - ct_ij
976 >             a1 = 5.0_dp * ct_i * ct_j - ct_ij
977              
978 <             dudx = dudx + pref*3.0d0*ri4 &
979 <                  *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) - &
980 <                  pref*3.0d0*rcuti4*(a1*rcuti*d(1)-ct_i*uz_j(1)-ct_j*uz_i(1))
787 <             dudy = dudy + pref*3.0d0*ri4 &
788 <                  *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) - &
789 <                  pref*3.0d0*rcuti4*(a1*rcuti*d(2)-ct_i*uz_j(2)-ct_j*uz_i(2))
790 <             dudz = dudz + pref*3.0d0*ri4 &
791 <                  *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) - &
792 <                  pref*3.0d0*rcuti4*(a1*rcuti*d(3)-ct_i*uz_j(3)-ct_j*uz_i(3))
978 >             dudx = dudx + preSw*3.0_dp*ri4*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
979 >             dudy = dudy + preSw*3.0_dp*ri4*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
980 >             dudz = dudz + preSw*3.0_dp*ri4*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
981              
982 <             duduz_i(1) = duduz_i(1) + pref*(ri3*(uz_j(1) - 3.0d0*ct_j*xhat) &
983 <                  - rcuti3*(uz_j(1) - 3.0d0*ct_j*d(1)*rcuti))
984 <             duduz_i(2) = duduz_i(2) + pref*(ri3*(uz_j(2) - 3.0d0*ct_j*yhat) &
985 <                  - rcuti3*(uz_j(2) - 3.0d0*ct_j*d(2)*rcuti))
986 <             duduz_i(3) = duduz_i(3) + pref*(ri3*(uz_j(3) - 3.0d0*ct_j*zhat) &
987 <                  - rcuti3*(uz_j(3) - 3.0d0*ct_j*d(3)*rcuti))
988 <             duduz_j(1) = duduz_j(1) + pref*(ri3*(uz_i(1) - 3.0d0*ct_i*xhat) &
989 <                  - rcuti3*(uz_i(1) - 3.0d0*ct_i*d(1)*rcuti))
990 <             duduz_j(2) = duduz_j(2) + pref*(ri3*(uz_i(2) - 3.0d0*ct_i*yhat) &
991 <                  - rcuti3*(uz_i(2) - 3.0d0*ct_i*d(2)*rcuti))
992 <             duduz_j(3) = duduz_j(3) + pref*(ri3*(uz_i(3) - 3.0d0*ct_i*zhat) &
993 <                  - rcuti3*(uz_i(3) - 3.0d0*ct_i*d(3)*rcuti))
982 >             duduz_i(1) = duduz_i(1) + preSw*(ri3*(uz_j(1)-3.0_dp*ct_j*xhat) &
983 >                  - preRF2*uz_j(1))
984 >             duduz_i(2) = duduz_i(2) + preSw*(ri3*(uz_j(2)-3.0_dp*ct_j*yhat) &
985 >                  - preRF2*uz_j(2))
986 >             duduz_i(3) = duduz_i(3) + preSw*(ri3*(uz_j(3)-3.0_dp*ct_j*zhat) &
987 >                  - preRF2*uz_j(3))
988 >             duduz_j(1) = duduz_j(1) + preSw*(ri3*(uz_i(1)-3.0_dp*ct_i*xhat) &
989 >                  - preRF2*uz_i(1))
990 >             duduz_j(2) = duduz_j(2) + preSw*(ri3*(uz_i(2)-3.0_dp*ct_i*yhat) &
991 >                  - preRF2*uz_i(2))
992 >             duduz_j(3) = duduz_j(3) + preSw*(ri3*(uz_i(3)-3.0_dp*ct_i*zhat) &
993 >                  - preRF2*uz_i(3))
994 >
995            else
807            
996               if (i_is_SplitDipole) then
997                  if (j_is_SplitDipole) then
998                     BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
# Line 823 | Line 1011 | contains
1011                     scale = 1.0_dp
1012                  endif
1013               endif
1014 <            
1015 <             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
1016 <            
1017 <             ri2 = ri * ri
1018 <             ri3 = ri2 * ri
1019 <             ri4 = ri2 * ri2
1014 >
1015 >             if (screeningMethod .eq. DAMPED) then
1016 >                ! assemble the damping variables
1017 >                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
1018 >                c1 = erfcVal*ri
1019 >                c2 = (-derfcVal + c1)*ri
1020 >                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
1021 >                c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*ri*ri
1022 >             else
1023 >                c1 = ri
1024 >                c2 = c1*ri
1025 >                c3 = 3.0_dp*c2*ri
1026 >                c4 = 5.0_dp*c3*ri*ri
1027 >             endif
1028 >
1029 >             ! precompute variables for convenience
1030               sc2 = scale * scale
1031 +             cti3 = ct_i*sc2*c3
1032 +             ctj3 = ct_j*sc2*c3
1033 +             ctidotj = ct_i * ct_j * sc2        
1034 +             preSwSc = preSw*scale
1035 +             c2ri = c2*ri
1036 +             c3ri = c3*ri
1037 +             c4rij = c4*rij
1038 +
1039 +
1040 +             ! calculate the potential
1041 +             pot_term = (ct_ij*c2ri - ctidotj*c3)
1042 +             vterm = pref * pot_term
1043 +             vpair = vpair + vterm
1044 +             epot = epot + sw*vterm
1045 +
1046 +             ! calculate derivatives for the forces and torques
1047 +             dudx = dudx + preSwSc * ( ctidotj*xhat*c4rij - &
1048 +                  (ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat)*c3ri )
1049 +             dudy = dudy + preSwSc * ( ctidotj*yhat*c4rij - &
1050 +                  (ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat)*c3ri )
1051 +             dudz = dudz + preSwSc * ( ctidotj*zhat*c4rij - &
1052 +                  (ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat)*c3ri )
1053 +
1054 +             duduz_i(1) = duduz_i(1) + preSw * ( uz_j(1)*c2ri - ctj3*xhat )
1055 +             duduz_i(2) = duduz_i(2) + preSw * ( uz_j(2)*c2ri - ctj3*yhat )
1056 +             duduz_i(3) = duduz_i(3) + preSw * ( uz_j(3)*c2ri - ctj3*zhat )
1057              
1058 <             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1059 <             vpair = vpair + swi * vterm
1060 <             epot = epot + vterm
1061 <            
838 <             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
839 <            
840 <             dudx = dudx + pref*3.0d0*ri4*scale &
841 <                  *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
842 <             dudy = dudy + pref*3.0d0*ri4*scale &
843 <                  *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
844 <             dudz = dudz + pref*3.0d0*ri4*scale &
845 <                  *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
846 <            
847 <             duduz_i(1) = duduz_i(1) + pref*ri3 &
848 <                  *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
849 <             duduz_i(2) = duduz_i(2) + pref*ri3 &
850 <                  *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
851 <             duduz_i(3) = duduz_i(3) + pref*ri3 &
852 <                  *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
853 <            
854 <             duduz_j(1) = duduz_j(1) + pref*ri3 &
855 <                  *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
856 <             duduz_j(2) = duduz_j(2) + pref*ri3 &
857 <                  *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
858 <             duduz_j(3) = duduz_j(3) + pref*ri3 &
859 <                  *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1058 >             duduz_j(1) = duduz_j(1) + preSw * ( uz_i(1)*c2ri - cti3*xhat )
1059 >             duduz_j(2) = duduz_j(2) + preSw * ( uz_i(2)*c2ri - cti3*yhat )
1060 >             duduz_j(3) = duduz_j(3) + preSw * ( uz_i(3)*c2ri - cti3*zhat )
1061 >
1062            endif
1063         endif
1064      endif
1065  
1066      if (i_is_Quadrupole) then
1067         if (j_is_Charge) then
1068 <
1069 <          ri2 = riji * riji
1070 <          ri3 = ri2 * riji
1071 <          ri4 = ri2 * ri2
1068 >          if (screeningMethod .eq. DAMPED) then
1069 >             ! assemble the damping variables
1070 >             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
1071 >             c1 = erfcVal*riji
1072 >             c2 = (-derfcVal + c1)*riji
1073 >             c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*riji
1074 >             c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*riji*riji
1075 >          else
1076 >             c1 = riji
1077 >             c2 = c1*riji
1078 >             c3 = 3.0_dp*c2*riji
1079 >             c4 = 5.0_dp*c3*riji*riji
1080 >          endif
1081 >          
1082 >          ! precompute some variables
1083            cx2 = cx_i * cx_i
1084            cy2 = cy_i * cy_i
1085            cz2 = cz_i * cz_i
1086 +          pref = pre14 * q_j * one_third
1087  
1088 <          pref = sw * pre14 * q_j / 3.0_dp
1088 >          ! calculate the potential
1089 >          pot_term = ( qxx_i * (cx2*c3 - c2ri) + qyy_i * (cy2*c3 - c2ri) + &
1090 >               qzz_i * (cz2*c3 - c2ri) )
1091  
1092 <          if (corrMethod .eq. 1) then
1093 <             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1094 <                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1095 <                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1096 <             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1097 <                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1098 <                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1099 <             vpair = vpair + swi * ( vterm1 - vterm2 )
1100 <             epot = epot + ( vterm1 - vterm2 )
1101 <            
1102 <             dudx = dudx - (5.0_dp*(vterm1*riji*xhat - vterm2*rcuti2*d(1))) + &
1103 <                  pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
1104 <                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
1105 <                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
1106 <                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
891 <                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
892 <                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
893 <             dudy = dudy - (5.0_dp*(vterm1*riji*yhat - vterm2*rcuti2*d(2))) + &
894 <                  pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
895 <                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
896 <                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
897 <                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
898 <                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
899 <                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
900 <             dudz = dudz - (5.0_dp*(vterm1*riji*zhat - vterm2*rcuti2*d(3))) + &
901 <                  pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
902 <                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
903 <                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
904 <                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
905 <                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
906 <                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
907 <            
908 <             dudux_i(1) = dudux_i(1) + pref * (ri3*(qxx_i*6.0_dp*cx_i*xhat) - &
909 <                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
910 <             dudux_i(2) = dudux_i(2) + pref * (ri3*(qxx_i*6.0_dp*cx_i*yhat) - &
911 <                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
912 <             dudux_i(3) = dudux_i(3) + pref * (ri3*(qxx_i*6.0_dp*cx_i*zhat) - &
913 <                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
914 <            
915 <             duduy_i(1) = duduy_i(1) + pref * (ri3*(qyy_i*6.0_dp*cy_i*xhat) - &
916 <                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
917 <             duduy_i(2) = duduy_i(2) + pref * (ri3*(qyy_i*6.0_dp*cy_i*yhat) - &
918 <                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
919 <             duduy_i(3) = duduy_i(3) + pref * (ri3*(qyy_i*6.0_dp*cy_i*zhat) - &
920 <                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
921 <            
922 <             duduz_i(1) = duduz_i(1) + pref * (ri3*(qzz_i*6.0_dp*cz_i*xhat) - &
923 <                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
924 <             duduz_i(2) = duduz_i(2) + pref * (ri3*(qzz_i*6.0_dp*cz_i*yhat) - &
925 <                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
926 <             duduz_i(3) = duduz_i(3) + pref * (ri3*(qzz_i*6.0_dp*cz_i*zhat) - &
927 <                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1092 >          vterm = pref * pot_term
1093 >          vpair = vpair + vterm
1094 >          epot = epot + sw*vterm
1095 >
1096 >          ! precompute variables for convenience
1097 >          preSw = sw*pref
1098 >          c2ri = c2*riji
1099 >          c3ri = c3*riji
1100 >          c4rij = c4*rij
1101 >          xhatdot2 = 2.0_dp*xhat*c3
1102 >          yhatdot2 = 2.0_dp*yhat*c3
1103 >          zhatdot2 = 2.0_dp*zhat*c3
1104 >          xhatc4 = xhat*c4rij
1105 >          yhatc4 = yhat*c4rij
1106 >          zhatc4 = zhat*c4rij
1107  
1108 <          else
1109 <             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1110 <                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1111 <                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1112 <             vpair = vpair + swi * vterm
1113 <             epot = epot + vterm
1114 <            
1115 <             dudx = dudx - 5.0_dp*vterm*riji*xhat + pref * ri4 * ( &
1116 <                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1117 <                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1118 <                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1119 <             dudy = dudy - 5.0_dp*vterm*riji*yhat + pref * ri4 * ( &
1120 <                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1121 <                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1122 <                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1123 <             dudz = dudz - 5.0_dp*vterm*riji*zhat + pref * ri4 * ( &
1124 <                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1125 <                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1126 <                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1127 <            
1128 <             dudux_i(1) = dudux_i(1) + pref * ri3*(qxx_i*6.0_dp*cx_i*xhat)
1129 <             dudux_i(2) = dudux_i(2) + pref * ri3*(qxx_i*6.0_dp*cx_i*yhat)
1130 <             dudux_i(3) = dudux_i(3) + pref * ri3*(qxx_i*6.0_dp*cx_i*zhat)
1131 <            
1132 <             duduy_i(1) = duduy_i(1) + pref * ri3*(qyy_i*6.0_dp*cy_i*xhat)
954 <             duduy_i(2) = duduy_i(2) + pref * ri3*(qyy_i*6.0_dp*cy_i*yhat)
955 <             duduy_i(3) = duduy_i(3) + pref * ri3*(qyy_i*6.0_dp*cy_i*zhat)
956 <            
957 <             duduz_i(1) = duduz_i(1) + pref * ri3*(qzz_i*6.0_dp*cz_i*xhat)
958 <             duduz_i(2) = duduz_i(2) + pref * ri3*(qzz_i*6.0_dp*cz_i*yhat)
959 <             duduz_i(3) = duduz_i(3) + pref * ri3*(qzz_i*6.0_dp*cz_i*zhat)
960 <          endif
1108 >          ! calculate the derivatives for the forces and torques
1109 >          dudx = dudx - preSw * ( &
1110 >               qxx_i*(cx2*xhatc4 - (2.0_dp*cx_i*ux_i(1) + xhat)*c3ri) + &
1111 >               qyy_i*(cy2*xhatc4 - (2.0_dp*cy_i*uy_i(1) + xhat)*c3ri) + &
1112 >               qzz_i*(cz2*xhatc4 - (2.0_dp*cz_i*uz_i(1) + xhat)*c3ri) )
1113 >          dudy = dudy - preSw * ( &
1114 >               qxx_i*(cx2*yhatc4 - (2.0_dp*cx_i*ux_i(2) + yhat)*c3ri) + &
1115 >               qyy_i*(cy2*yhatc4 - (2.0_dp*cy_i*uy_i(2) + yhat)*c3ri) + &
1116 >               qzz_i*(cz2*yhatc4 - (2.0_dp*cz_i*uz_i(2) + yhat)*c3ri) )
1117 >          dudz = dudz - preSw * ( &
1118 >               qxx_i*(cx2*zhatc4 - (2.0_dp*cx_i*ux_i(3) + zhat)*c3ri) + &
1119 >               qyy_i*(cy2*zhatc4 - (2.0_dp*cy_i*uy_i(3) + zhat)*c3ri) + &
1120 >               qzz_i*(cz2*zhatc4 - (2.0_dp*cz_i*uz_i(3) + zhat)*c3ri) )
1121 >          
1122 >          dudux_i(1) = dudux_i(1) + preSw*(qxx_i*cx_i*xhatdot2)
1123 >          dudux_i(2) = dudux_i(2) + preSw*(qxx_i*cx_i*yhatdot2)
1124 >          dudux_i(3) = dudux_i(3) + preSw*(qxx_i*cx_i*zhatdot2)
1125 >          
1126 >          duduy_i(1) = duduy_i(1) + preSw*(qyy_i*cy_i*xhatdot2)
1127 >          duduy_i(2) = duduy_i(2) + preSw*(qyy_i*cy_i*yhatdot2)
1128 >          duduy_i(3) = duduy_i(3) + preSw*(qyy_i*cy_i*zhatdot2)
1129 >          
1130 >          duduz_i(1) = duduz_i(1) + preSw*(qzz_i*cz_i*xhatdot2)
1131 >          duduz_i(2) = duduz_i(2) + preSw*(qzz_i*cz_i*yhatdot2)
1132 >          duduz_i(3) = duduz_i(3) + preSw*(qzz_i*cz_i*zhatdot2)
1133         endif
1134      endif
1135  
1136  
1137      if (do_pot) then
1138   #ifdef IS_MPI
1139 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1140 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1139 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5_dp*epot
1140 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5_dp*epot
1141   #else
1142         pot = pot + epot
1143   #endif
# Line 1070 | Line 1242 | contains
1242      return
1243    end subroutine doElectrostaticPair
1244  
1245 <  !! calculates the switching functions and their derivatives for a given
1074 <  subroutine calc_switch(r, mu, scale, dscale)
1245 >  subroutine destroyElectrostaticTypes()
1246  
1247 <    real (kind=dp), intent(in) :: r, mu
1077 <    real (kind=dp), intent(inout) :: scale, dscale
1078 <    real (kind=dp) :: rl, ru, mulow, minRatio, temp, scaleVal
1247 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1248  
1249 <    ! distances must be in angstroms
1250 <    rl = 2.75d0
1251 <    ru = 3.75d0
1252 <    mulow = 0.0d0 !3.3856d0 ! 1.84 * 1.84
1253 <    minRatio = mulow / (mu*mu)
1254 <    scaleVal = 1.0d0 - minRatio
1249 >  end subroutine destroyElectrostaticTypes
1250 >
1251 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1252 >    logical, intent(in) :: do_pot
1253 >    integer, intent(in) :: atom1
1254 >    integer :: atid1
1255 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1256 >    real(kind=dp), dimension(3,nLocal) :: t
1257 >    real(kind=dp) :: mu1, chg1
1258 >    real(kind=dp) :: preVal, epot, mypot
1259 >    real(kind=dp) :: eix, eiy, eiz
1260 >
1261 >    ! this is a local only array, so we use the local atom type id's:
1262 >    atid1 = atid(atom1)
1263 >
1264 >    if (.not.summationMethodChecked) then
1265 >       call checkSummationMethod()
1266 >    endif
1267      
1268 <    if (r.lt.rl) then
1269 <       scale = minRatio
1270 <       dscale = 0.0d0
1271 <    elseif (r.gt.ru) then
1272 <       scale = 1.0d0
1273 <       dscale = 0.0d0
1274 <    else
1275 <       scale = 1.0d0 - scaleVal*((ru + 2.0d0*r - 3.0d0*rl) * (ru-r)**2) &
1276 <                        / ((ru - rl)**3)
1277 <       dscale = -scaleVal * 6.0d0 * (r-ru)*(r-rl)/((ru - rl)**3)    
1268 >    if (summationMethod .eq. REACTION_FIELD) then
1269 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1270 >          mu1 = getDipoleMoment(atid1)
1271 >          
1272 >          preVal = pre22 * preRF2 * mu1*mu1
1273 >          mypot = mypot - 0.5_dp*preVal
1274 >          
1275 >          ! The self-correction term adds into the reaction field vector
1276 >          
1277 >          eix = preVal * eFrame(3,atom1)
1278 >          eiy = preVal * eFrame(6,atom1)
1279 >          eiz = preVal * eFrame(9,atom1)
1280 >          
1281 >          ! once again, this is self-self, so only the local arrays are needed
1282 >          ! even for MPI jobs:
1283 >          
1284 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1285 >               eFrame(9,atom1)*eiy
1286 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1287 >               eFrame(3,atom1)*eiz
1288 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1289 >               eFrame(6,atom1)*eix
1290 >          
1291 >       endif
1292 >
1293 >    elseif ( (summationMethod .eq. SHIFTED_FORCE) .or. &
1294 >         (summationMethod .eq. SHIFTED_POTENTIAL) ) then
1295 >       if (ElectrostaticMap(atid1)%is_Charge) then
1296 >          chg1 = getCharge(atid1)
1297 >          
1298 >          if (screeningMethod .eq. DAMPED) then
1299 >             mypot = mypot - (c1c * 0.5_dp + &
1300 >                  dampingAlpha*invRootPi) * chg1 * chg1    
1301 >            
1302 >          else            
1303 >             mypot = mypot - (rcuti * 0.5_dp * chg1 * chg1)
1304 >            
1305 >          endif
1306 >       endif
1307      endif
1308 <        
1308 >    
1309      return
1310 <  end subroutine calc_switch
1310 >  end subroutine self_self
1311  
1312 <  subroutine destroyElectrostaticTypes()
1312 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1313 >       f, t, do_pot)
1314 >    logical, intent(in) :: do_pot
1315 >    integer, intent(in) :: atom1
1316 >    integer, intent(in) :: atom2
1317 >    logical :: i_is_Charge, j_is_Charge
1318 >    logical :: i_is_Dipole, j_is_Dipole
1319 >    integer :: atid1
1320 >    integer :: atid2
1321 >    real(kind=dp), intent(in) :: rij
1322 >    real(kind=dp), intent(in) :: sw
1323 >    real(kind=dp), intent(in), dimension(3) :: d
1324 >    real(kind=dp), intent(inout) :: vpair
1325 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1326 >    real(kind=dp), dimension(3,nLocal) :: f
1327 >    real(kind=dp), dimension(3,nLocal) :: t
1328 >    real (kind = dp), dimension(3) :: duduz_i
1329 >    real (kind = dp), dimension(3) :: duduz_j
1330 >    real (kind = dp), dimension(3) :: uz_i
1331 >    real (kind = dp), dimension(3) :: uz_j
1332 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1333 >    real(kind=dp) :: xhat, yhat, zhat
1334 >    real(kind=dp) :: ct_i, ct_j
1335 >    real(kind=dp) :: ri2, ri3, riji, vterm
1336 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1337 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1338  
1339 <    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1339 >    if (.not.summationMethodChecked) then
1340 >       call checkSummationMethod()
1341 >    endif
1342  
1343 <  end subroutine destroyElectrostaticTypes
1343 >    dudx = zero
1344 >    dudy = zero
1345 >    dudz = zero
1346  
1347 +    riji = 1.0_dp/rij
1348 +
1349 +    xhat = d(1) * riji
1350 +    yhat = d(2) * riji
1351 +    zhat = d(3) * riji
1352 +
1353 +    ! this is a local only array, so we use the local atom type id's:
1354 +    atid1 = atid(atom1)
1355 +    atid2 = atid(atom2)
1356 +    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1357 +    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1358 +    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1359 +    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1360 +
1361 +    if (i_is_Charge.and.j_is_Charge) then
1362 +       q_i = ElectrostaticMap(atid1)%charge
1363 +       q_j = ElectrostaticMap(atid2)%charge
1364 +      
1365 +       preVal = pre11 * q_i * q_j
1366 +       rfVal = preRF*rij*rij
1367 +       vterm = preVal * rfVal
1368 +      
1369 +       myPot = myPot + sw*vterm
1370 +      
1371 +       dudr  = sw*preVal * 2.0_dp*rfVal*riji
1372 +      
1373 +       dudx = dudx + dudr * xhat
1374 +       dudy = dudy + dudr * yhat
1375 +       dudz = dudz + dudr * zhat
1376 +      
1377 +    elseif (i_is_Charge.and.j_is_Dipole) then
1378 +       q_i = ElectrostaticMap(atid1)%charge
1379 +       mu_j = ElectrostaticMap(atid2)%dipole_moment
1380 +       uz_j(1) = eFrame(3,atom2)
1381 +       uz_j(2) = eFrame(6,atom2)
1382 +       uz_j(3) = eFrame(9,atom2)
1383 +       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1384 +      
1385 +       ri2 = riji * riji
1386 +       ri3 = ri2 * riji
1387 +      
1388 +       pref = pre12 * q_i * mu_j
1389 +       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1390 +       myPot = myPot + sw*vterm
1391 +      
1392 +       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0_dp*ct_j*xhat) &
1393 +            - preRF2*uz_j(1) )
1394 +       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0_dp*ct_j*yhat) &
1395 +            - preRF2*uz_j(2) )
1396 +       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0_dp*ct_j*zhat) &
1397 +            - preRF2*uz_j(3) )
1398 +      
1399 +       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1400 +       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1401 +       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1402 +      
1403 +    elseif (i_is_Dipole.and.j_is_Charge) then
1404 +       mu_i = ElectrostaticMap(atid1)%dipole_moment
1405 +       q_j = ElectrostaticMap(atid2)%charge
1406 +       uz_i(1) = eFrame(3,atom1)
1407 +       uz_i(2) = eFrame(6,atom1)
1408 +       uz_i(3) = eFrame(9,atom1)
1409 +       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1410 +      
1411 +       ri2 = riji * riji
1412 +       ri3 = ri2 * riji
1413 +      
1414 +       pref = pre12 * q_j * mu_i
1415 +       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1416 +       myPot = myPot + sw*vterm
1417 +      
1418 +       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0_dp*ct_i*xhat) &
1419 +            - preRF2*uz_i(1) )
1420 +       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0_dp*ct_i*yhat) &
1421 +            - preRF2*uz_i(2) )
1422 +       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0_dp*ct_i*zhat) &
1423 +            - preRF2*uz_i(3) )
1424 +      
1425 +       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1426 +       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1427 +       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1428 +      
1429 +    endif
1430 +      
1431 +
1432 +    ! accumulate the forces and torques resulting from the self term
1433 +    f(1,atom1) = f(1,atom1) + dudx
1434 +    f(2,atom1) = f(2,atom1) + dudy
1435 +    f(3,atom1) = f(3,atom1) + dudz
1436 +    
1437 +    f(1,atom2) = f(1,atom2) - dudx
1438 +    f(2,atom2) = f(2,atom2) - dudy
1439 +    f(3,atom2) = f(3,atom2) - dudz
1440 +    
1441 +    if (i_is_Dipole) then
1442 +       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1443 +       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1444 +       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1445 +    elseif (j_is_Dipole) then
1446 +       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1447 +       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1448 +       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1449 +    endif
1450 +
1451 +    return
1452 +  end subroutine rf_self_excludes
1453 +
1454   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines