ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2309 by chrisfen, Sun Sep 18 20:45:38 2005 UTC vs.
Revision 3013 by chrisfen, Thu Sep 21 18:25:17 2006 UTC

# Line 47 | Line 47 | module electrostatic_module
47    use vector_class
48    use simulation
49    use status
50 +  use interpolation
51   #ifdef IS_MPI
52    use mpiSimulation
53   #endif
# Line 54 | Line 55 | module electrostatic_module
55  
56    PRIVATE
57  
58 +
59   #define __FORTRAN90
60 + #include "UseTheForce/DarkSide/fInteractionMap.h"
61   #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
62 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
63  
64 +
65    !! these prefactors convert the multipole interactions into kcal / mol
66    !! all were computed assuming distances are measured in angstroms
67    !! Charge-Charge, assuming charges are measured in electrons
# Line 71 | Line 76 | module electrostatic_module
76    !! This unit is also known affectionately as an esu centi-barn.
77    real(kind=dp), parameter :: pre14 = 69.13373_dp
78  
79 <  !! variables to handle different summation methods for long-range electrostatics:
79 >  real(kind=dp), parameter :: zero = 0.0_dp
80 >  
81 >  !! conversions for the simulation box dipole moment
82 >  real(kind=dp), parameter :: chargeToC = 1.60217733e-19_dp
83 >  real(kind=dp), parameter :: angstromToM = 1.0e-10_dp
84 >  real(kind=dp), parameter :: debyeToCm = 3.33564095198e-30_dp
85 >
86 >  !! number of points for electrostatic splines
87 >  integer, parameter :: np = 100
88 >
89 >  !! variables to handle different summation methods for long-range
90 >  !! electrostatics:
91    integer, save :: summationMethod = NONE
92 +  integer, save :: screeningMethod = UNDAMPED
93    logical, save :: summationMethodChecked = .false.
94    real(kind=DP), save :: defaultCutoff = 0.0_DP
95 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
96    logical, save :: haveDefaultCutoff = .false.
97    real(kind=DP), save :: dampingAlpha = 0.0_DP
98 +  real(kind=DP), save :: alpha2 = 0.0_DP
99 +  real(kind=DP), save :: alpha4 = 0.0_DP
100 +  real(kind=DP), save :: alpha6 = 0.0_DP
101 +  real(kind=DP), save :: alpha8 = 0.0_DP
102    logical, save :: haveDampingAlpha = .false.
103 <  real(kind=DP), save :: dielectric = 0.0_DP
103 >  real(kind=DP), save :: dielectric = 1.0_DP
104    logical, save :: haveDielectric = .false.
83  real(kind=DP), save :: constERFC = 0.0_DP
105    real(kind=DP), save :: constEXP = 0.0_DP
106 <  logical, save :: haveDWAconstants = .false.
107 <  real(kind=dp), save :: rcuti = 0.0_dp
108 <  real(kind=dp), save :: rcuti2 = 0.0_dp
109 <  real(kind=dp), save :: rcuti3 = 0.0_dp
110 <  real(kind=dp), save :: rcuti4 = 0.0_dp
106 >  real(kind=dp), save :: rcuti = 0.0_DP
107 >  real(kind=dp), save :: rcuti2 = 0.0_DP
108 >  real(kind=dp), save :: rcuti3 = 0.0_DP
109 >  real(kind=dp), save :: rcuti4 = 0.0_DP
110 >  real(kind=dp), save :: alphaPi = 0.0_DP
111 >  real(kind=dp), save :: invRootPi = 0.0_DP
112 >  real(kind=dp), save :: rrf = 1.0_DP
113 >  real(kind=dp), save :: rt = 1.0_DP
114 >  real(kind=dp), save :: rrfsq = 1.0_DP
115 >  real(kind=dp), save :: preRF = 0.0_DP
116 >  real(kind=dp), save :: preRF2 = 0.0_DP
117 >  real(kind=dp), save :: erfcVal = 1.0_DP
118 >  real(kind=dp), save :: derfcVal = 0.0_DP
119 >  type(cubicSpline), save :: erfcSpline
120 >  logical, save :: haveElectroSpline = .false.
121 >  real(kind=dp), save :: c1 = 1.0_DP
122 >  real(kind=dp), save :: c2 = 1.0_DP
123 >  real(kind=dp), save :: c3 = 0.0_DP
124 >  real(kind=dp), save :: c4 = 0.0_DP
125 >  real(kind=dp), save :: c5 = 0.0_DP
126 >  real(kind=dp), save :: c6 = 0.0_DP
127 >  real(kind=dp), save :: c1c = 1.0_DP
128 >  real(kind=dp), save :: c2c = 1.0_DP
129 >  real(kind=dp), save :: c3c = 0.0_DP
130 >  real(kind=dp), save :: c4c = 0.0_DP
131 >  real(kind=dp), save :: c5c = 0.0_DP
132 >  real(kind=dp), save :: c6c = 0.0_DP
133 >  real(kind=dp), save :: one_third = 1.0_DP / 3.0_DP
134  
135 <
135 > #if defined(__IFC) || defined(__PGI)
136 > ! error function for ifc version > 7.
137 >  real(kind=dp), external :: erfc
138 > #endif
139 >  
140    public :: setElectrostaticSummationMethod
141 +  public :: setScreeningMethod
142    public :: setElectrostaticCutoffRadius
143 <  public :: setDampedWolfAlpha
143 >  public :: setDampingAlpha
144    public :: setReactionFieldDielectric
145 +  public :: buildElectroSpline
146    public :: newElectrostaticType
147    public :: setCharge
148    public :: setDipoleMoment
# Line 101 | Line 151 | module electrostatic_module
151    public :: doElectrostaticPair
152    public :: getCharge
153    public :: getDipoleMoment
104  public :: pre22
154    public :: destroyElectrostaticTypes
155 +  public :: self_self
156 +  public :: rf_self_excludes
157 +  public :: accumulate_box_dipole
158  
159    type :: Electrostatic
160       integer :: c_ident
# Line 119 | Line 171 | contains
171  
172    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
173  
174 +  logical, save :: hasElectrostaticMap
175 +
176   contains
177  
178    subroutine setElectrostaticSummationMethod(the_ESM)
# Line 129 | Line 183 | contains
183      endif
184  
185      summationMethod = the_ESM
186 +
187    end subroutine setElectrostaticSummationMethod
188  
189 <  subroutine setElectrostaticCutoffRadius(thisRcut)
189 >  subroutine setScreeningMethod(the_SM)
190 >    integer, intent(in) :: the_SM    
191 >    screeningMethod = the_SM
192 >  end subroutine setScreeningMethod
193 >
194 >  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
195      real(kind=dp), intent(in) :: thisRcut
196 +    real(kind=dp), intent(in) :: thisRsw
197      defaultCutoff = thisRcut
198 +    defaultCutoff2 = defaultCutoff*defaultCutoff
199 +    rrf = defaultCutoff
200 +    rt = thisRsw
201      haveDefaultCutoff = .true.
202    end subroutine setElectrostaticCutoffRadius
203  
204 <  subroutine setDampedWolfAlpha(thisAlpha)
204 >  subroutine setDampingAlpha(thisAlpha)
205      real(kind=dp), intent(in) :: thisAlpha
206      dampingAlpha = thisAlpha
207 +    alpha2 = dampingAlpha*dampingAlpha
208 +    alpha4 = alpha2*alpha2
209 +    alpha6 = alpha4*alpha2
210 +    alpha8 = alpha4*alpha4
211      haveDampingAlpha = .true.
212 <  end subroutine setDampedWolfAlpha
212 >  end subroutine setDampingAlpha
213    
214    subroutine setReactionFieldDielectric(thisDielectric)
215      real(kind=dp), intent(in) :: thisDielectric
# Line 149 | Line 217 | contains
217      haveDielectric = .true.
218    end subroutine setReactionFieldDielectric
219  
220 +  subroutine buildElectroSpline()
221 +    real( kind = dp ), dimension(np) :: xvals, yvals
222 +    real( kind = dp ) :: dx, rmin, rval
223 +    integer :: i
224 +
225 +    rmin = 0.0_dp
226 +
227 +    dx = (defaultCutoff-rmin) / dble(np-1)
228 +    
229 +    do i = 1, np
230 +       rval = rmin + dble(i-1)*dx
231 +       xvals(i) = rval
232 +       yvals(i) = erfc(dampingAlpha*rval)
233 +    enddo
234 +
235 +    call newSpline(erfcSpline, xvals, yvals, .true.)
236 +
237 +    haveElectroSpline = .true.
238 +  end subroutine buildElectroSpline
239 +
240    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
241         is_SplitDipole, is_Quadrupole, is_Tap, status)
242  
# Line 176 | Line 264 | contains
264            return
265         end if
266  
267 <       if (.not. allocated(ElectrostaticMap)) then
180 <          allocate(ElectrostaticMap(nAtypes))
181 <       endif
267 >       allocate(ElectrostaticMap(nAtypes))
268  
269      end if
270  
# Line 196 | Line 282 | contains
282      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
283      ElectrostaticMap(myATID)%is_Tap = is_Tap
284  
285 +    hasElectrostaticMap = .true.
286 +
287    end subroutine newElectrostaticType
288  
289    subroutine setCharge(c_ident, charge, status)
# Line 207 | Line 295 | contains
295      status = 0
296      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
297  
298 <    if (.not.allocated(ElectrostaticMap)) then
298 >    if (.not.hasElectrostaticMap) then
299         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!")
300         status = -1
301         return
# Line 237 | Line 325 | contains
325      status = 0
326      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
327  
328 <    if (.not.allocated(ElectrostaticMap)) then
328 >    if (.not.hasElectrostaticMap) then
329         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!")
330         status = -1
331         return
# Line 267 | Line 355 | contains
355      status = 0
356      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
357  
358 <    if (.not.allocated(ElectrostaticMap)) then
358 >    if (.not.hasElectrostaticMap) then
359         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!")
360         status = -1
361         return
# Line 297 | Line 385 | contains
385      status = 0
386      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
387  
388 <    if (.not.allocated(ElectrostaticMap)) then
388 >    if (.not.hasElectrostaticMap) then
389         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!")
390         status = -1
391         return
# Line 328 | Line 416 | contains
416      integer :: localError
417      real(kind=dp) :: c
418  
419 <    if (.not.allocated(ElectrostaticMap)) then
419 >    if (.not.hasElectrostaticMap) then
420         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
421         return
422      end if
# Line 346 | Line 434 | contains
434      integer :: localError
435      real(kind=dp) :: dm
436  
437 <    if (.not.allocated(ElectrostaticMap)) then
437 >    if (.not.hasElectrostaticMap) then
438         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
439         return
440      end if
# Line 365 | Line 453 | contains
453         call handleError("checkSummationMethod", "no Default Cutoff set!")
454      endif
455  
456 <    rcuti = 1.0d0 / defaultCutoff
456 >    rcuti = 1.0_dp / defaultCutoff
457      rcuti2 = rcuti*rcuti
458      rcuti3 = rcuti2*rcuti
459      rcuti4 = rcuti2*rcuti2
460  
461 <    if (summationMethod .eq. DAMPED_WOLF) then
462 <       if (.not.haveDWAconstants) then
463 <          
376 <          if (.not.haveDampingAlpha) then
377 <             call handleError("checkSummationMethod", "no Damping Alpha set!")
378 <          endif
379 <          
380 <          if (.not.haveDefaultCutoff) then
381 <             call handleError("checkSummationMethod", "no Default Cutoff set!")
382 <          endif
383 <
384 <          constEXP = exp(-dampingAlpha*dampingAlpha*defaultCutoff*defaultCutoff)
385 <          constERFC = erfc(dampingAlpha*defaultCutoff)
386 <          
387 <          haveDWAconstants = .true.
461 >    if (screeningMethod .eq. DAMPED) then
462 >       if (.not.haveDampingAlpha) then
463 >          call handleError("checkSummationMethod", "no Damping Alpha set!")
464         endif
465 +      
466 +       if (.not.haveDefaultCutoff) then
467 +          call handleError("checkSummationMethod", "no Default Cutoff set!")
468 +       endif
469 +
470 +       constEXP = exp(-alpha2*defaultCutoff2)
471 +       invRootPi = 0.56418958354775628695_dp
472 +       alphaPi = 2.0_dp*dampingAlpha*invRootPi
473 +
474 +       c1c = erfc(dampingAlpha*defaultCutoff) * rcuti
475 +       c2c = alphaPi*constEXP*rcuti + c1c*rcuti
476 +       c3c = 2.0_dp*alphaPi*alpha2 + 3.0_dp*c2c*rcuti
477 +       c4c = 4.0_dp*alphaPi*alpha4 + 5.0_dp*c3c*rcuti2
478 +       c5c = 8.0_dp*alphaPi*alpha6 + 7.0_dp*c4c*rcuti2
479 +       c6c = 16.0_dp*alphaPi*alpha8 + 9.0_dp*c5c*rcuti2
480 +    else
481 +       c1c = rcuti
482 +       c2c = c1c*rcuti
483 +       c3c = 3.0_dp*c2c*rcuti
484 +       c4c = 5.0_dp*c3c*rcuti2
485 +       c5c = 7.0_dp*c4c*rcuti2
486 +       c6c = 9.0_dp*c5c*rcuti2
487      endif
488  
489      if (summationMethod .eq. REACTION_FIELD) then
490 <       if (.not.haveDielectric) then
491 <          call handleError("checkSummationMethod", "no reaction field Dielectric set!")
490 >       if (haveDielectric) then
491 >          defaultCutoff2 = defaultCutoff*defaultCutoff
492 >          preRF = (dielectric-1.0_dp) / &
493 >               ((2.0_dp*dielectric+1.0_dp)*defaultCutoff2*defaultCutoff)
494 >          preRF2 = 2.0_dp*preRF
495 >       else
496 >          call handleError("checkSummationMethod", "Dielectric not set")
497         endif
498 +      
499      endif
500  
501 +    if (.not.haveElectroSpline) then
502 +       call buildElectroSpline()
503 +    end if
504 +
505      summationMethodChecked = .true.
506    end subroutine checkSummationMethod
507  
508  
509 <
402 <  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
509 >  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, rcut, sw, &
510         vpair, fpair, pot, eFrame, f, t, do_pot)
511  
512      logical, intent(in) :: do_pot
# Line 407 | Line 514 | contains
514      integer, intent(in) :: atom1, atom2
515      integer :: localError
516  
517 <    real(kind=dp), intent(in) :: rij, r2, sw
517 >    real(kind=dp), intent(in) :: rij, r2, sw, rcut
518      real(kind=dp), intent(in), dimension(3) :: d
519      real(kind=dp), intent(inout) :: vpair
520 <    real(kind=dp), intent(inout), dimension(3) :: fpair
520 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
521  
522 <    real( kind = dp ) :: pot, swi
522 >    real( kind = dp ) :: pot
523      real( kind = dp ), dimension(9,nLocal) :: eFrame
524      real( kind = dp ), dimension(3,nLocal) :: f
525 +    real( kind = dp ), dimension(3,nLocal) :: felec
526      real( kind = dp ), dimension(3,nLocal) :: t
527  
528      real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
# Line 432 | Line 540 | contains
540      real (kind=dp) :: cx_i, cy_i, cz_i
541      real (kind=dp) :: cx_j, cy_j, cz_j
542      real (kind=dp) :: cx2, cy2, cz2
543 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
543 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
544      real (kind=dp) :: riji, ri, ri2, ri3, ri4
545      real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
546      real (kind=dp) :: xhat, yhat, zhat
547      real (kind=dp) :: dudx, dudy, dudz
548 <    real (kind=dp) :: scale, sc2, bigR, switcher, dswitcher
548 >    real (kind=dp) :: scale, sc2, bigR
549 >    real (kind=dp) :: varEXP
550 >    real (kind=dp) :: pot_term
551 >    real (kind=dp) :: preVal, rfVal
552 >    real (kind=dp) :: c2ri, c3ri, c4rij
553 >    real (kind=dp) :: cti3, ctj3, ctidotj
554 >    real (kind=dp) :: preSw, preSwSc
555 >    real (kind=dp) :: xhatdot2, yhatdot2, zhatdot2
556 >    real (kind=dp) :: xhatc4, yhatc4, zhatc4
557  
442    if (.not.allocated(ElectrostaticMap)) then
443       call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
444       return
445    end if
446
558      if (.not.summationMethodChecked) then
559         call checkSummationMethod()
560      endif
561  
451
562   #ifdef IS_MPI
563      me1 = atid_Row(atom1)
564      me2 = atid_Col(atom2)
# Line 459 | Line 569 | contains
569  
570      !! some variables we'll need independent of electrostatic type:
571  
572 <    riji = 1.0d0 / rij
573 <
572 >    riji = 1.0_dp / rij
573 >  
574      xhat = d(1) * riji
575      yhat = d(2) * riji
576      zhat = d(3) * riji
577  
468    swi = 1.0d0 / sw
469
578      !! logicals
579      i_is_Charge = ElectrostaticMap(me1)%is_Charge
580      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
# Line 500 | Line 608 | contains
608         if (i_is_SplitDipole) then
609            d_i = ElectrostaticMap(me1)%split_dipole_distance
610         endif
611 <
611 >       duduz_i = zero
612      endif
613  
614      if (i_is_Quadrupole) then
# Line 531 | Line 639 | contains
639         cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
640         cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
641         cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
642 +       dudux_i = zero
643 +       duduy_i = zero
644 +       duduz_i = zero
645      endif
646  
647      if (j_is_Charge) then
# Line 553 | Line 664 | contains
664         if (j_is_SplitDipole) then
665            d_j = ElectrostaticMap(me2)%split_dipole_distance
666         endif
667 +       duduz_j = zero
668      endif
669  
670      if (j_is_Quadrupole) then
# Line 583 | Line 695 | contains
695         cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
696         cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
697         cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
698 +       dudux_j = zero
699 +       duduy_j = zero
700 +       duduz_j = zero
701      endif
702    
703 < !!$    switcher = 1.0d0
704 < !!$    dswitcher = 0.0d0
705 < !!$    ebalance = 0.0d0
706 < !!$    ! weaken the dipole interaction at close range for TAP water
592 < !!$    if (j_is_Tap .and. i_is_Tap) then
593 < !!$      call calc_switch(rij, mu_i, switcher, dswitcher)
594 < !!$    endif
595 <
596 <    epot = 0.0_dp
597 <    dudx = 0.0_dp
598 <    dudy = 0.0_dp
599 <    dudz = 0.0_dp
703 >    epot = zero
704 >    dudx = zero
705 >    dudy = zero
706 >    dudz = zero  
707  
601    dudux_i = 0.0_dp
602    duduy_i = 0.0_dp
603    duduz_i = 0.0_dp
604
605    dudux_j = 0.0_dp
606    duduy_j = 0.0_dp
607    duduz_j = 0.0_dp
608
708      if (i_is_Charge) then
709  
710         if (j_is_Charge) then
711 +          if (screeningMethod .eq. DAMPED) then
712 +             ! assemble the damping variables
713 +             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
714 +             c1 = erfcVal*riji
715 +             c2 = (-derfcVal + c1)*riji
716 +          else
717 +             c1 = riji
718 +             c2 = c1*riji
719 +          endif
720  
721 <          if (summationMethod .eq. 1) then
614 <             vterm = pre11 * q_i * q_j * (riji - rcuti)
721 >          preVal = pre11 * q_i * q_j
722  
723 <             vpair = vpair + vterm
724 <             epot = epot + sw * vterm
723 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
724 >             vterm = preVal * (c1 - c1c)
725              
726 <             dudr  = - sw * pre11 * q_i * q_j * (riji*riji*riji - rcuti2*rcuti)
726 >             dudr  = -sw * preVal * c2
727 >  
728 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
729 >             vterm = preVal * ( c1 - c1c + c2c*(rij - defaultCutoff) )
730              
731 <             dudx = dudx + dudr * d(1)
732 <             dudy = dudy + dudr * d(2)
733 <             dudz = dudz + dudr * d(3)
734 <
731 >             dudr  = sw * preVal * (c2c - c2)
732 >  
733 >          elseif (summationMethod .eq. REACTION_FIELD) then
734 >             rfVal = preRF*rij*rij
735 >             vterm = preVal * ( riji + rfVal )
736 >            
737 >             dudr  = sw * preVal * ( 2.0_dp*rfVal - riji )*riji
738 >  
739            else
740 <             vterm = pre11 * q_i * q_j * riji
627 <
628 <             vpair = vpair + vterm
629 <             epot = epot + sw * vterm
740 >             vterm = preVal * riji*erfcVal
741              
742 <             dudr  = - sw * vterm * riji
743 <            
633 <             dudx = dudx + dudr * xhat
634 <             dudy = dudy + dudr * yhat
635 <             dudz = dudz + dudr * zhat
636 <
742 >             dudr  = - sw * preVal * c2
743 >  
744            endif
745  
746 +          vpair = vpair + vterm
747 +          epot = epot + sw*vterm
748 +
749 +          dudx = dudx + dudr * xhat
750 +          dudy = dudy + dudr * yhat
751 +          dudz = dudz + dudr * zhat
752 +
753         endif
754  
755         if (j_is_Dipole) then
756 <
757 <          pref = sw * pre12 * q_i * mu_j
756 >          ! pref is used by all the possible methods
757 >          pref = pre12 * q_i * mu_j
758 >          preSw = sw*pref
759  
760 <          if (summationMethod .eq. 1) then
760 >          if (summationMethod .eq. REACTION_FIELD) then
761               ri2 = riji * riji
762               ri3 = ri2 * riji
763 <
764 <             vterm = - pref * ct_j * (ri2 - rcuti2)
765 <             vpair = vpair + swi*vterm
766 <             epot = epot + vterm
763 >    
764 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
765 >             vpair = vpair + vterm
766 >             epot = epot + sw*vterm
767              
768 <             !! this has a + sign in the () because the rij vector is
769 <             !! r_j - r_i and the charge-dipole potential takes the origin
770 <             !! as the point dipole, which is atom j in this case.
771 <            
772 <             dudx = dudx - pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
773 <                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
774 <             dudy = dudy - pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
775 <                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
776 <             dudz = dudz - pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
662 <                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
663 <            
664 <             duduz_j(1) = duduz_j(1) - pref*( ri2*xhat - d(1)*rcuti3 )
665 <             duduz_j(2) = duduz_j(2) - pref*( ri2*yhat - d(2)*rcuti3 )
666 <             duduz_j(3) = duduz_j(3) - pref*( ri2*zhat - d(3)*rcuti3 )
768 >             dudx = dudx - preSw*( ri3*(uz_j(1) - 3.0_dp*ct_j*xhat) - &
769 >                  preRF2*uz_j(1) )
770 >             dudy = dudy - preSw*( ri3*(uz_j(2) - 3.0_dp*ct_j*yhat) - &
771 >                  preRF2*uz_j(2) )
772 >             dudz = dudz - preSw*( ri3*(uz_j(3) - 3.0_dp*ct_j*zhat) - &
773 >                  preRF2*uz_j(3) )        
774 >             duduz_j(1) = duduz_j(1) - preSw * xhat * ( ri2 - preRF2*rij )
775 >             duduz_j(2) = duduz_j(2) - preSw * yhat * ( ri2 - preRF2*rij )
776 >             duduz_j(3) = duduz_j(3) - preSw * zhat * ( ri2 - preRF2*rij )
777  
778            else
779 +             ! determine the inverse r used if we have split dipoles
780               if (j_is_SplitDipole) then
781                  BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
782                  ri = 1.0_dp / BigR
# Line 674 | Line 785 | contains
785                  ri = riji
786                  scale = 1.0_dp
787               endif
788 <            
678 <             ri2 = ri * ri
679 <             ri3 = ri2 * ri
788 >
789               sc2 = scale * scale
790 +
791 +             if (screeningMethod .eq. DAMPED) then
792 +                ! assemble the damping variables
793 +                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
794 +                c1 = erfcVal*ri
795 +                c2 = (-derfcVal + c1)*ri
796 +                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
797 +             else
798 +                c1 = ri
799 +                c2 = c1*ri
800 +                c3 = 3.0_dp*c2*ri
801 +             endif
802              
803 <             vterm = - pref * ct_j * ri2 * scale
804 <             vpair = vpair + swi * vterm
805 <             epot = epot + vterm
803 >             c2ri = c2*ri
804 >
805 >             ! calculate the potential
806 >             pot_term =  scale * c2
807 >             vterm = -pref * ct_j * pot_term
808 >             vpair = vpair + vterm
809 >             epot = epot + sw*vterm
810              
811 <             !! this has a + sign in the () because the rij vector is
812 <             !! r_j - r_i and the charge-dipole potential takes the origin
813 <             !! as the point dipole, which is atom j in this case.
814 <            
815 <             dudx = dudx - pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
816 <             dudy = dudy - pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
817 <             dudz = dudz - pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
818 <            
694 <             duduz_j(1) = duduz_j(1) - pref * ri2 * xhat * scale
695 <             duduz_j(2) = duduz_j(2) - pref * ri2 * yhat * scale
696 <             duduz_j(3) = duduz_j(3) - pref * ri2 * zhat * scale
811 >             ! calculate derivatives for forces and torques
812 >             dudx = dudx - preSw*( uz_j(1)*c2ri - ct_j*xhat*sc2*c3 )
813 >             dudy = dudy - preSw*( uz_j(2)*c2ri - ct_j*yhat*sc2*c3 )
814 >             dudz = dudz - preSw*( uz_j(3)*c2ri - ct_j*zhat*sc2*c3 )
815 >                          
816 >             duduz_j(1) = duduz_j(1) - preSw * pot_term * xhat
817 >             duduz_j(2) = duduz_j(2) - preSw * pot_term * yhat
818 >             duduz_j(3) = duduz_j(3) - preSw * pot_term * zhat
819  
820            endif
821         endif
822  
823         if (j_is_Quadrupole) then
824 <          ri2 = riji * riji
703 <          ri3 = ri2 * riji
704 <          ri4 = ri2 * ri2
824 >          ! first precalculate some necessary variables
825            cx2 = cx_j * cx_j
826            cy2 = cy_j * cy_j
827            cz2 = cz_j * cz_j
828 +          pref =  pre14 * q_i * one_third
829 +          
830 +          if (screeningMethod .eq. DAMPED) then
831 +             ! assemble the damping variables
832 +             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
833 +             c1 = erfcVal*riji
834 +             c2 = (-derfcVal + c1)*riji
835 +             c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*riji
836 +             c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*riji*riji
837 +          else
838 +             c1 = riji
839 +             c2 = c1*riji
840 +             c3 = 3.0_dp*c2*riji
841 +             c4 = 5.0_dp*c3*riji*riji
842 +          endif
843  
844 +          ! precompute variables for convenience
845 +          preSw = sw*pref
846 +          c2ri = c2*riji
847 +          c3ri = c3*riji
848 +          c4rij = c4*rij
849 +          xhatdot2 = 2.0_dp*xhat*c3
850 +          yhatdot2 = 2.0_dp*yhat*c3
851 +          zhatdot2 = 2.0_dp*zhat*c3
852 +          xhatc4 = xhat*c4rij
853 +          yhatc4 = yhat*c4rij
854 +          zhatc4 = zhat*c4rij
855  
856 <          pref =  sw * pre14 * q_i / 3.0_dp
856 >          ! calculate the potential
857 >          pot_term = ( qxx_j*(cx2*c3 - c2ri) + qyy_j*(cy2*c3 - c2ri) + &
858 >               qzz_j*(cz2*c3 - c2ri) )
859 >          vterm = pref * pot_term
860 >          vpair = vpair + vterm
861 >          epot = epot + sw*vterm
862  
863 <          if (summationMethod .eq. 1) then
864 <             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
865 <                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
866 <                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
867 <             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
868 <                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
869 <                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
870 <             vpair = vpair + swi*( vterm1 - vterm2 )
871 <             epot = epot + ( vterm1 - vterm2 )
872 <            
873 <             dudx = dudx - (5.0_dp * &
874 <                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + pref * ( &
875 <                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
725 <                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
726 <                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
727 <                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
728 <                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
729 <                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
730 <             dudy = dudy - (5.0_dp * &
731 <                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + pref * ( &
732 <                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
733 <                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
734 <                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
735 <                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
736 <                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
737 <                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
738 <             dudz = dudz - (5.0_dp * &
739 <                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + pref * ( &
740 <                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
741 <                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
742 <                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
743 <                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
744 <                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
745 <                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
746 <            
747 <             dudux_j(1) = dudux_j(1) + pref * (ri3*(qxx_j*6.0_dp*cx_j*xhat) - &
748 <                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
749 <             dudux_j(2) = dudux_j(2) + pref * (ri3*(qxx_j*6.0_dp*cx_j*yhat) - &
750 <                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
751 <             dudux_j(3) = dudux_j(3) + pref * (ri3*(qxx_j*6.0_dp*cx_j*zhat) - &
752 <                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
753 <            
754 <             duduy_j(1) = duduy_j(1) + pref * (ri3*(qyy_j*6.0_dp*cy_j*xhat) - &
755 <                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
756 <             duduy_j(2) = duduy_j(2) + pref * (ri3*(qyy_j*6.0_dp*cy_j*yhat) - &
757 <                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
758 <             duduy_j(3) = duduy_j(3) + pref * (ri3*(qyy_j*6.0_dp*cy_j*zhat) - &
759 <                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
760 <            
761 <             duduz_j(1) = duduz_j(1) + pref * (ri3*(qzz_j*6.0_dp*cz_j*xhat) - &
762 <                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
763 <             duduz_j(2) = duduz_j(2) + pref * (ri3*(qzz_j*6.0_dp*cz_j*yhat) - &
764 <                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
765 <             duduz_j(3) = duduz_j(3) + pref * (ri3*(qzz_j*6.0_dp*cz_j*zhat) - &
766 <                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
767 <        
768 <          else
769 <             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
770 <                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
771 <                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
772 <             vpair = vpair + swi * vterm
773 <             epot = epot + vterm
774 <            
775 <             dudx = dudx - 5.0_dp*vterm*riji*xhat + pref * ri4 * ( &
776 <                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
777 <                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
778 <                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
779 <             dudy = dudy - 5.0_dp*vterm*riji*yhat + pref * ri4 * ( &
780 <                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
781 <                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
782 <                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
783 <             dudz = dudz - 5.0_dp*vterm*riji*zhat + pref * ri4 * ( &
784 <                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
785 <                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
786 <                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
787 <            
788 <             dudux_j(1) = dudux_j(1) + pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
789 <             dudux_j(2) = dudux_j(2) + pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
790 <             dudux_j(3) = dudux_j(3) + pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
791 <            
792 <             duduy_j(1) = duduy_j(1) + pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
793 <             duduy_j(2) = duduy_j(2) + pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
794 <             duduy_j(3) = duduy_j(3) + pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
795 <            
796 <             duduz_j(1) = duduz_j(1) + pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
797 <             duduz_j(2) = duduz_j(2) + pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
798 <             duduz_j(3) = duduz_j(3) + pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
863 >          ! calculate derivatives for the forces and torques
864 >          dudx = dudx - preSw * ( &
865 >               qxx_j*(cx2*xhatc4 - (2.0_dp*cx_j*ux_j(1) + xhat)*c3ri) + &
866 >               qyy_j*(cy2*xhatc4 - (2.0_dp*cy_j*uy_j(1) + xhat)*c3ri) + &
867 >               qzz_j*(cz2*xhatc4 - (2.0_dp*cz_j*uz_j(1) + xhat)*c3ri) )
868 >          dudy = dudy - preSw * ( &
869 >               qxx_j*(cx2*yhatc4 - (2.0_dp*cx_j*ux_j(2) + yhat)*c3ri) + &
870 >               qyy_j*(cy2*yhatc4 - (2.0_dp*cy_j*uy_j(2) + yhat)*c3ri) + &
871 >               qzz_j*(cz2*yhatc4 - (2.0_dp*cz_j*uz_j(2) + yhat)*c3ri) )
872 >          dudz = dudz - preSw * ( &
873 >               qxx_j*(cx2*zhatc4 - (2.0_dp*cx_j*ux_j(3) + zhat)*c3ri) + &
874 >               qyy_j*(cy2*zhatc4 - (2.0_dp*cy_j*uy_j(3) + zhat)*c3ri) + &
875 >               qzz_j*(cz2*zhatc4 - (2.0_dp*cz_j*uz_j(3) + zhat)*c3ri) )
876            
877 <          endif
877 >          dudux_j(1) = dudux_j(1) + preSw*(qxx_j*cx_j*xhatdot2)
878 >          dudux_j(2) = dudux_j(2) + preSw*(qxx_j*cx_j*yhatdot2)
879 >          dudux_j(3) = dudux_j(3) + preSw*(qxx_j*cx_j*zhatdot2)
880 >          
881 >          duduy_j(1) = duduy_j(1) + preSw*(qyy_j*cy_j*xhatdot2)
882 >          duduy_j(2) = duduy_j(2) + preSw*(qyy_j*cy_j*yhatdot2)
883 >          duduy_j(3) = duduy_j(3) + preSw*(qyy_j*cy_j*zhatdot2)
884 >          
885 >          duduz_j(1) = duduz_j(1) + preSw*(qzz_j*cz_j*xhatdot2)
886 >          duduz_j(2) = duduz_j(2) + preSw*(qzz_j*cz_j*yhatdot2)
887 >          duduz_j(3) = duduz_j(3) + preSw*(qzz_j*cz_j*zhatdot2)
888 >
889 >          
890         endif
891      endif
892 <
892 >    
893      if (i_is_Dipole) then
894  
895         if (j_is_Charge) then
896 +          ! variables used by all the methods
897 +          pref = pre12 * q_j * mu_i                      
898 +          preSw = sw*pref
899  
900 <          pref = sw * pre12 * q_j * mu_i
900 >          if (summationMethod .eq. REACTION_FIELD) then
901  
810          if (summationMethod .eq. 1) then
902               ri2 = riji * riji
903               ri3 = ri2 * riji
904  
905 <             vterm = pref * ct_i * (ri2 - rcuti2)
906 <             vpair = vpair + swi * vterm
907 <             epot = epot + vterm
905 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
906 >             vpair = vpair + vterm
907 >             epot = epot + sw*vterm
908              
909 <             !! this has a + sign in the () because the rij vector is
910 <             !! r_j - r_i and the charge-dipole potential takes the origin
911 <             !! as the point dipole, which is atom j in this case.
909 >             dudx = dudx + preSw * ( ri3*(uz_i(1) - 3.0_dp*ct_i*xhat) - &
910 >                  preRF2*uz_i(1) )
911 >             dudy = dudy + preSw * ( ri3*(uz_i(2) - 3.0_dp*ct_i*yhat) - &
912 >                  preRF2*uz_i(2) )
913 >             dudz = dudz + preSw * ( ri3*(uz_i(3) - 3.0_dp*ct_i*zhat) - &
914 >                  preRF2*uz_i(3) )
915              
916 <             dudx = dudx + pref * ( ri3*( uz_i(1) - 3.0d0*ct_i*xhat) &
917 <                  - rcuti3*( uz_i(1) - 3.0d0*ct_i*d(1)*rcuti ) )
918 <             dudy = dudy + pref * ( ri3*( uz_i(2) - 3.0d0*ct_i*yhat) &
825 <                  - rcuti3*( uz_i(2) - 3.0d0*ct_i*d(2)*rcuti ) )
826 <             dudz = dudz + pref * ( ri3*( uz_i(3) - 3.0d0*ct_i*zhat) &
827 <                  - rcuti3*( uz_i(3) - 3.0d0*ct_i*d(3)*rcuti ) )
828 <            
829 <             duduz_i(1) = duduz_i(1) - pref*( ri2*xhat - d(1)*rcuti3 )
830 <             duduz_i(2) = duduz_i(2) - pref*( ri2*yhat - d(2)*rcuti3 )
831 <             duduz_i(3) = duduz_i(3) - pref*( ri2*zhat - d(3)*rcuti3 )
916 >             duduz_i(1) = duduz_i(1) + preSw * xhat * ( ri2 - preRF2*rij )
917 >             duduz_i(2) = duduz_i(2) + preSw * yhat * ( ri2 - preRF2*rij )
918 >             duduz_i(3) = duduz_i(3) + preSw * zhat * ( ri2 - preRF2*rij )
919  
920            else
921 +             ! determine inverse r if we are using split dipoles
922               if (i_is_SplitDipole) then
923                  BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
924                  ri = 1.0_dp / BigR
# Line 839 | Line 927 | contains
927                  ri = riji
928                  scale = 1.0_dp
929               endif
930 <            
843 <             ri2 = ri * ri
844 <             ri3 = ri2 * ri
930 >
931               sc2 = scale * scale
932 <            
933 <             vterm = pref * ct_i * ri2 * scale
934 <             vpair = vpair + swi * vterm
935 <             epot = epot + vterm
936 <            
937 <             dudx = dudx + pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
938 <             dudy = dudy + pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
939 <             dudz = dudz + pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
932 >              
933 >             if (screeningMethod .eq. DAMPED) then
934 >                ! assemble the damping variables
935 >                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
936 >                c1 = erfcVal*ri
937 >                c2 = (-derfcVal + c1)*ri
938 >                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
939 >             else
940 >                c1 = ri
941 >                c2 = c1*ri
942 >                c3 = 3.0_dp*c2*ri
943 >             endif
944 >            
945 >             c2ri = c2*ri
946 >
947 >             ! calculate the potential
948 >             pot_term = c2 * scale
949 >             vterm = pref * ct_i * pot_term
950 >             vpair = vpair + vterm
951 >             epot = epot + sw*vterm
952 >
953 >             ! calculate derivatives for the forces and torques
954 >             dudx = dudx + preSw * ( uz_i(1)*c2ri - ct_i*xhat*sc2*c3 )
955 >             dudy = dudy + preSw * ( uz_i(2)*c2ri - ct_i*yhat*sc2*c3 )
956 >             dudz = dudz + preSw * ( uz_i(3)*c2ri - ct_i*zhat*sc2*c3 )
957 >
958 >             duduz_i(1) = duduz_i(1) + preSw * pot_term * xhat
959 >             duduz_i(2) = duduz_i(2) + preSw * pot_term * yhat
960 >             duduz_i(3) = duduz_i(3) + preSw * pot_term * zhat
961              
855             duduz_i(1) = duduz_i(1) + pref * ri2 * xhat * scale
856             duduz_i(2) = duduz_i(2) + pref * ri2 * yhat * scale
857             duduz_i(3) = duduz_i(3) + pref * ri2 * zhat * scale
962            endif
963         endif
964 <
964 >      
965         if (j_is_Dipole) then
966 +          ! variables used by all methods
967 +          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
968 +          pref = pre22 * mu_i * mu_j
969 +          preSw = sw*pref
970  
971 <          pref = sw * pre22 * mu_i * mu_j
864 <
865 <          if (summationMethod .eq. 1) then
971 >          if (summationMethod .eq. REACTION_FIELD) then
972               ri2 = riji * riji
973               ri3 = ri2 * riji
974               ri4 = ri2 * ri2
975  
976 <             vterm = pref * (ri3 - rcuti3) * (ct_ij - 3.0d0 * ct_i * ct_j)
977 <             vpair = vpair + swi * vterm
978 <             epot = epot + vterm
976 >             vterm = pref*( ri3*(ct_ij - 3.0_dp * ct_i * ct_j) - &
977 >                  preRF2*ct_ij )
978 >             vpair = vpair + vterm
979 >             epot = epot + sw*vterm
980              
981 <             a1 = 5.0d0 * ct_i * ct_j - ct_ij
981 >             a1 = 5.0_dp * ct_i * ct_j - ct_ij
982              
983 <             dudx = dudx + pref*3.0d0*ri4 &
984 <                  *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) - &
985 <                  pref*3.0d0*rcuti4*(a1*rcuti*d(1)-ct_i*uz_j(1)-ct_j*uz_i(1))
879 <             dudy = dudy + pref*3.0d0*ri4 &
880 <                  *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) - &
881 <                  pref*3.0d0*rcuti4*(a1*rcuti*d(2)-ct_i*uz_j(2)-ct_j*uz_i(2))
882 <             dudz = dudz + pref*3.0d0*ri4 &
883 <                  *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) - &
884 <                  pref*3.0d0*rcuti4*(a1*rcuti*d(3)-ct_i*uz_j(3)-ct_j*uz_i(3))
983 >             dudx = dudx + preSw*3.0_dp*ri4*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
984 >             dudy = dudy + preSw*3.0_dp*ri4*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
985 >             dudz = dudz + preSw*3.0_dp*ri4*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
986              
987 <             duduz_i(1) = duduz_i(1) + pref*(ri3*(uz_j(1) - 3.0d0*ct_j*xhat) &
988 <                  - rcuti3*(uz_j(1) - 3.0d0*ct_j*d(1)*rcuti))
989 <             duduz_i(2) = duduz_i(2) + pref*(ri3*(uz_j(2) - 3.0d0*ct_j*yhat) &
990 <                  - rcuti3*(uz_j(2) - 3.0d0*ct_j*d(2)*rcuti))
991 <             duduz_i(3) = duduz_i(3) + pref*(ri3*(uz_j(3) - 3.0d0*ct_j*zhat) &
992 <                  - rcuti3*(uz_j(3) - 3.0d0*ct_j*d(3)*rcuti))
993 <             duduz_j(1) = duduz_j(1) + pref*(ri3*(uz_i(1) - 3.0d0*ct_i*xhat) &
994 <                  - rcuti3*(uz_i(1) - 3.0d0*ct_i*d(1)*rcuti))
995 <             duduz_j(2) = duduz_j(2) + pref*(ri3*(uz_i(2) - 3.0d0*ct_i*yhat) &
996 <                  - rcuti3*(uz_i(2) - 3.0d0*ct_i*d(2)*rcuti))
997 <             duduz_j(3) = duduz_j(3) + pref*(ri3*(uz_i(3) - 3.0d0*ct_i*zhat) &
998 <                  - rcuti3*(uz_i(3) - 3.0d0*ct_i*d(3)*rcuti))
987 >             duduz_i(1) = duduz_i(1) + preSw*(ri3*(uz_j(1)-3.0_dp*ct_j*xhat) &
988 >                  - preRF2*uz_j(1))
989 >             duduz_i(2) = duduz_i(2) + preSw*(ri3*(uz_j(2)-3.0_dp*ct_j*yhat) &
990 >                  - preRF2*uz_j(2))
991 >             duduz_i(3) = duduz_i(3) + preSw*(ri3*(uz_j(3)-3.0_dp*ct_j*zhat) &
992 >                  - preRF2*uz_j(3))
993 >             duduz_j(1) = duduz_j(1) + preSw*(ri3*(uz_i(1)-3.0_dp*ct_i*xhat) &
994 >                  - preRF2*uz_i(1))
995 >             duduz_j(2) = duduz_j(2) + preSw*(ri3*(uz_i(2)-3.0_dp*ct_i*yhat) &
996 >                  - preRF2*uz_i(2))
997 >             duduz_j(3) = duduz_j(3) + preSw*(ri3*(uz_i(3)-3.0_dp*ct_i*zhat) &
998 >                  - preRF2*uz_i(3))
999 >
1000            else
899            
1001               if (i_is_SplitDipole) then
1002                  if (j_is_SplitDipole) then
1003                     BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
# Line 915 | Line 1016 | contains
1016                     scale = 1.0_dp
1017                  endif
1018               endif
1019 <            
1020 <             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
1021 <            
1022 <             ri2 = ri * ri
1023 <             ri3 = ri2 * ri
1024 <             ri4 = ri2 * ri2
1019 >
1020 >             if (screeningMethod .eq. DAMPED) then
1021 >                ! assemble the damping variables
1022 >                call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
1023 >                c1 = erfcVal*ri
1024 >                c2 = (-derfcVal + c1)*ri
1025 >                c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*ri
1026 >                c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*ri*ri
1027 >             else
1028 >                c1 = ri
1029 >                c2 = c1*ri
1030 >                c3 = 3.0_dp*c2*ri
1031 >                c4 = 5.0_dp*c3*ri*ri
1032 >             endif
1033 >
1034 >             ! precompute variables for convenience
1035               sc2 = scale * scale
1036 +             cti3 = ct_i*sc2*c3
1037 +             ctj3 = ct_j*sc2*c3
1038 +             ctidotj = ct_i * ct_j * sc2        
1039 +             preSwSc = preSw*scale
1040 +             c2ri = c2*ri
1041 +             c3ri = c3*ri
1042 +             c4rij = c4*rij
1043 +
1044 +
1045 +             ! calculate the potential
1046 +             pot_term = (ct_ij*c2ri - ctidotj*c3)
1047 +             vterm = pref * pot_term
1048 +             vpair = vpair + vterm
1049 +             epot = epot + sw*vterm
1050 +
1051 +             ! calculate derivatives for the forces and torques
1052 +             dudx = dudx + preSwSc * ( ctidotj*xhat*c4rij - &
1053 +                  (ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat)*c3ri )
1054 +             dudy = dudy + preSwSc * ( ctidotj*yhat*c4rij - &
1055 +                  (ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat)*c3ri )
1056 +             dudz = dudz + preSwSc * ( ctidotj*zhat*c4rij - &
1057 +                  (ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat)*c3ri )
1058 +
1059 +             duduz_i(1) = duduz_i(1) + preSw * ( uz_j(1)*c2ri - ctj3*xhat )
1060 +             duduz_i(2) = duduz_i(2) + preSw * ( uz_j(2)*c2ri - ctj3*yhat )
1061 +             duduz_i(3) = duduz_i(3) + preSw * ( uz_j(3)*c2ri - ctj3*zhat )
1062              
1063 <             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1064 <             vpair = vpair + swi * vterm
1065 <             epot = epot + vterm
1066 <            
930 <             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
931 <            
932 <             dudx = dudx + pref*3.0d0*ri4*scale &
933 <                  *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
934 <             dudy = dudy + pref*3.0d0*ri4*scale &
935 <                  *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
936 <             dudz = dudz + pref*3.0d0*ri4*scale &
937 <                  *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
938 <            
939 <             duduz_i(1) = duduz_i(1) + pref*ri3 &
940 <                  *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
941 <             duduz_i(2) = duduz_i(2) + pref*ri3 &
942 <                  *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
943 <             duduz_i(3) = duduz_i(3) + pref*ri3 &
944 <                  *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
945 <            
946 <             duduz_j(1) = duduz_j(1) + pref*ri3 &
947 <                  *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
948 <             duduz_j(2) = duduz_j(2) + pref*ri3 &
949 <                  *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
950 <             duduz_j(3) = duduz_j(3) + pref*ri3 &
951 <                  *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1063 >             duduz_j(1) = duduz_j(1) + preSw * ( uz_i(1)*c2ri - cti3*xhat )
1064 >             duduz_j(2) = duduz_j(2) + preSw * ( uz_i(2)*c2ri - cti3*yhat )
1065 >             duduz_j(3) = duduz_j(3) + preSw * ( uz_i(3)*c2ri - cti3*zhat )
1066 >
1067            endif
1068         endif
1069      endif
1070  
1071      if (i_is_Quadrupole) then
1072         if (j_is_Charge) then
1073 <
959 <          ri2 = riji * riji
960 <          ri3 = ri2 * riji
961 <          ri4 = ri2 * ri2
1073 >          ! precompute some necessary variables
1074            cx2 = cx_i * cx_i
1075            cy2 = cy_i * cy_i
1076            cz2 = cz_i * cz_i
1077 +          pref = pre14 * q_j * one_third
1078  
1079 <          pref = sw * pre14 * q_j / 3.0_dp
1080 <
1081 <          if (summationMethod .eq. 1) then
1082 <             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1083 <                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1084 <                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1085 <             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
973 <                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
974 <                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
975 <             vpair = vpair + swi * ( vterm1 - vterm2 )
976 <             epot = epot + ( vterm1 - vterm2 )
977 <            
978 <             dudx = dudx - (5.0_dp*(vterm1*riji*xhat - vterm2*rcuti2*d(1))) + &
979 <                  pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
980 <                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
981 <                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
982 <                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
983 <                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
984 <                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
985 <             dudy = dudy - (5.0_dp*(vterm1*riji*yhat - vterm2*rcuti2*d(2))) + &
986 <                  pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
987 <                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
988 <                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
989 <                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
990 <                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
991 <                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
992 <             dudz = dudz - (5.0_dp*(vterm1*riji*zhat - vterm2*rcuti2*d(3))) + &
993 <                  pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
994 <                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
995 <                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
996 <                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
997 <                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
998 <                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
999 <            
1000 <             dudux_i(1) = dudux_i(1) + pref * (ri3*(qxx_i*6.0_dp*cx_i*xhat) - &
1001 <                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
1002 <             dudux_i(2) = dudux_i(2) + pref * (ri3*(qxx_i*6.0_dp*cx_i*yhat) - &
1003 <                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
1004 <             dudux_i(3) = dudux_i(3) + pref * (ri3*(qxx_i*6.0_dp*cx_i*zhat) - &
1005 <                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
1006 <            
1007 <             duduy_i(1) = duduy_i(1) + pref * (ri3*(qyy_i*6.0_dp*cy_i*xhat) - &
1008 <                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
1009 <             duduy_i(2) = duduy_i(2) + pref * (ri3*(qyy_i*6.0_dp*cy_i*yhat) - &
1010 <                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
1011 <             duduy_i(3) = duduy_i(3) + pref * (ri3*(qyy_i*6.0_dp*cy_i*zhat) - &
1012 <                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
1013 <            
1014 <             duduz_i(1) = duduz_i(1) + pref * (ri3*(qzz_i*6.0_dp*cz_i*xhat) - &
1015 <                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
1016 <             duduz_i(2) = duduz_i(2) + pref * (ri3*(qzz_i*6.0_dp*cz_i*yhat) - &
1017 <                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1018 <             duduz_i(3) = duduz_i(3) + pref * (ri3*(qzz_i*6.0_dp*cz_i*zhat) - &
1019 <                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1020 <
1079 >          if (screeningMethod .eq. DAMPED) then
1080 >             ! assemble the damping variables
1081 >             call lookupUniformSpline1d(erfcSpline, rij, erfcVal, derfcVal)
1082 >             c1 = erfcVal*riji
1083 >             c2 = (-derfcVal + c1)*riji
1084 >             c3 = -2.0_dp*derfcVal*alpha2 + 3.0_dp*c2*riji
1085 >             c4 = -4.0_dp*derfcVal*alpha4 + 5.0_dp*c3*riji*riji
1086            else
1087 <             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1088 <                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1089 <                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1090 <             vpair = vpair + swi * vterm
1026 <             epot = epot + vterm
1027 <            
1028 <             dudx = dudx - 5.0_dp*vterm*riji*xhat + pref * ri4 * ( &
1029 <                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1030 <                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1031 <                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1032 <             dudy = dudy - 5.0_dp*vterm*riji*yhat + pref * ri4 * ( &
1033 <                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1034 <                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1035 <                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1036 <             dudz = dudz - 5.0_dp*vterm*riji*zhat + pref * ri4 * ( &
1037 <                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1038 <                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1039 <                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1040 <            
1041 <             dudux_i(1) = dudux_i(1) + pref * ri3*(qxx_i*6.0_dp*cx_i*xhat)
1042 <             dudux_i(2) = dudux_i(2) + pref * ri3*(qxx_i*6.0_dp*cx_i*yhat)
1043 <             dudux_i(3) = dudux_i(3) + pref * ri3*(qxx_i*6.0_dp*cx_i*zhat)
1044 <            
1045 <             duduy_i(1) = duduy_i(1) + pref * ri3*(qyy_i*6.0_dp*cy_i*xhat)
1046 <             duduy_i(2) = duduy_i(2) + pref * ri3*(qyy_i*6.0_dp*cy_i*yhat)
1047 <             duduy_i(3) = duduy_i(3) + pref * ri3*(qyy_i*6.0_dp*cy_i*zhat)
1048 <            
1049 <             duduz_i(1) = duduz_i(1) + pref * ri3*(qzz_i*6.0_dp*cz_i*xhat)
1050 <             duduz_i(2) = duduz_i(2) + pref * ri3*(qzz_i*6.0_dp*cz_i*yhat)
1051 <             duduz_i(3) = duduz_i(3) + pref * ri3*(qzz_i*6.0_dp*cz_i*zhat)
1087 >             c1 = riji
1088 >             c2 = c1*riji
1089 >             c3 = 3.0_dp*c2*riji
1090 >             c4 = 5.0_dp*c3*riji*riji
1091            endif
1092 +          
1093 +          ! precompute some variables for convenience
1094 +          preSw = sw*pref
1095 +          c2ri = c2*riji
1096 +          c3ri = c3*riji
1097 +          c4rij = c4*rij
1098 +          xhatdot2 = 2.0_dp*xhat*c3
1099 +          yhatdot2 = 2.0_dp*yhat*c3
1100 +          zhatdot2 = 2.0_dp*zhat*c3
1101 +          xhatc4 = xhat*c4rij
1102 +          yhatc4 = yhat*c4rij
1103 +          zhatc4 = zhat*c4rij
1104 +
1105 +          ! calculate the potential
1106 +          pot_term = ( qxx_i * (cx2*c3 - c2ri) + qyy_i * (cy2*c3 - c2ri) + &
1107 +               qzz_i * (cz2*c3 - c2ri) )
1108 +
1109 +          vterm = pref * pot_term
1110 +          vpair = vpair + vterm
1111 +          epot = epot + sw*vterm
1112 +
1113 +          ! calculate the derivatives for the forces and torques
1114 +          dudx = dudx - preSw * ( &
1115 +               qxx_i*(cx2*xhatc4 - (2.0_dp*cx_i*ux_i(1) + xhat)*c3ri) + &
1116 +               qyy_i*(cy2*xhatc4 - (2.0_dp*cy_i*uy_i(1) + xhat)*c3ri) + &
1117 +               qzz_i*(cz2*xhatc4 - (2.0_dp*cz_i*uz_i(1) + xhat)*c3ri) )
1118 +          dudy = dudy - preSw * ( &
1119 +               qxx_i*(cx2*yhatc4 - (2.0_dp*cx_i*ux_i(2) + yhat)*c3ri) + &
1120 +               qyy_i*(cy2*yhatc4 - (2.0_dp*cy_i*uy_i(2) + yhat)*c3ri) + &
1121 +               qzz_i*(cz2*yhatc4 - (2.0_dp*cz_i*uz_i(2) + yhat)*c3ri) )
1122 +          dudz = dudz - preSw * ( &
1123 +               qxx_i*(cx2*zhatc4 - (2.0_dp*cx_i*ux_i(3) + zhat)*c3ri) + &
1124 +               qyy_i*(cy2*zhatc4 - (2.0_dp*cy_i*uy_i(3) + zhat)*c3ri) + &
1125 +               qzz_i*(cz2*zhatc4 - (2.0_dp*cz_i*uz_i(3) + zhat)*c3ri) )
1126 +          
1127 +          dudux_i(1) = dudux_i(1) + preSw*(qxx_i*cx_i*xhatdot2)
1128 +          dudux_i(2) = dudux_i(2) + preSw*(qxx_i*cx_i*yhatdot2)
1129 +          dudux_i(3) = dudux_i(3) + preSw*(qxx_i*cx_i*zhatdot2)
1130 +          
1131 +          duduy_i(1) = duduy_i(1) + preSw*(qyy_i*cy_i*xhatdot2)
1132 +          duduy_i(2) = duduy_i(2) + preSw*(qyy_i*cy_i*yhatdot2)
1133 +          duduy_i(3) = duduy_i(3) + preSw*(qyy_i*cy_i*zhatdot2)
1134 +          
1135 +          duduz_i(1) = duduz_i(1) + preSw*(qzz_i*cz_i*xhatdot2)
1136 +          duduz_i(2) = duduz_i(2) + preSw*(qzz_i*cz_i*yhatdot2)
1137 +          duduz_i(3) = duduz_i(3) + preSw*(qzz_i*cz_i*zhatdot2)
1138         endif
1139      endif
1140  
1141  
1142      if (do_pot) then
1143   #ifdef IS_MPI
1144 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1145 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1144 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5_dp*epot
1145 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5_dp*epot
1146   #else
1147         pot = pot + epot
1148   #endif
# Line 1161 | Line 1246 | contains
1246  
1247      return
1248    end subroutine doElectrostaticPair
1164
1165  !! calculates the switching functions and their derivatives for a given
1166  subroutine calc_switch(r, mu, scale, dscale)
1249  
1250 <    real (kind=dp), intent(in) :: r, mu
1169 <    real (kind=dp), intent(inout) :: scale, dscale
1170 <    real (kind=dp) :: rl, ru, mulow, minRatio, temp, scaleVal
1250 >  subroutine destroyElectrostaticTypes()
1251  
1252 <    ! distances must be in angstroms
1253 <    rl = 2.75d0
1254 <    ru = 3.75d0
1255 <    mulow = 0.0d0 !3.3856d0 ! 1.84 * 1.84
1256 <    minRatio = mulow / (mu*mu)
1257 <    scaleVal = 1.0d0 - minRatio
1252 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1253 >
1254 >  end subroutine destroyElectrostaticTypes
1255 >
1256 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1257 >    logical, intent(in) :: do_pot
1258 >    integer, intent(in) :: atom1
1259 >    integer :: atid1
1260 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1261 >    real(kind=dp), dimension(3,nLocal) :: t
1262 >    real(kind=dp) :: mu1, chg1
1263 >    real(kind=dp) :: preVal, epot, mypot
1264 >    real(kind=dp) :: eix, eiy, eiz
1265 >
1266 >    ! this is a local only array, so we use the local atom type id's:
1267 >    atid1 = atid(atom1)
1268 >
1269 >    if (.not.summationMethodChecked) then
1270 >       call checkSummationMethod()
1271 >    endif
1272      
1273 <    if (r.lt.rl) then
1274 <       scale = minRatio
1275 <       dscale = 0.0d0
1276 <    elseif (r.gt.ru) then
1277 <       scale = 1.0d0
1278 <       dscale = 0.0d0
1279 <    else
1280 <       scale = 1.0d0 - scaleVal*((ru + 2.0d0*r - 3.0d0*rl) * (ru-r)**2) &
1281 <                        / ((ru - rl)**3)
1282 <       dscale = -scaleVal * 6.0d0 * (r-ru)*(r-rl)/((ru - rl)**3)    
1273 >    if (summationMethod .eq. REACTION_FIELD) then
1274 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1275 >          mu1 = getDipoleMoment(atid1)
1276 >          
1277 >          preVal = pre22 * preRF2 * mu1*mu1
1278 >          mypot = mypot - 0.5_dp*preVal
1279 >          
1280 >          ! The self-correction term adds into the reaction field vector
1281 >          
1282 >          eix = preVal * eFrame(3,atom1)
1283 >          eiy = preVal * eFrame(6,atom1)
1284 >          eiz = preVal * eFrame(9,atom1)
1285 >          
1286 >          ! once again, this is self-self, so only the local arrays are needed
1287 >          ! even for MPI jobs:
1288 >          
1289 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1290 >               eFrame(9,atom1)*eiy
1291 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1292 >               eFrame(3,atom1)*eiz
1293 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1294 >               eFrame(6,atom1)*eix
1295 >          
1296 >       endif
1297 >
1298 >    elseif ( (summationMethod .eq. SHIFTED_FORCE) .or. &
1299 >         (summationMethod .eq. SHIFTED_POTENTIAL) ) then
1300 >       if (ElectrostaticMap(atid1)%is_Charge) then
1301 >          chg1 = getCharge(atid1)
1302 >          
1303 >          if (screeningMethod .eq. DAMPED) then
1304 >             mypot = mypot - (c1c + alphaPi) * chg1 * chg1    
1305 >            
1306 >          else            
1307 >             mypot = mypot - (rcuti * chg1 * chg1)
1308 >            
1309 >          endif
1310 >       endif
1311      endif
1312 <        
1312 >    
1313      return
1314 <  end subroutine calc_switch
1314 >  end subroutine self_self
1315  
1316 <  subroutine destroyElectrostaticTypes()
1316 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1317 >       f, t, do_pot)
1318 >    logical, intent(in) :: do_pot
1319 >    integer, intent(in) :: atom1
1320 >    integer, intent(in) :: atom2
1321 >    logical :: i_is_Charge, j_is_Charge
1322 >    logical :: i_is_Dipole, j_is_Dipole
1323 >    integer :: atid1
1324 >    integer :: atid2
1325 >    real(kind=dp), intent(in) :: rij
1326 >    real(kind=dp), intent(in) :: sw
1327 >    real(kind=dp), intent(in), dimension(3) :: d
1328 >    real(kind=dp), intent(inout) :: vpair
1329 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1330 >    real(kind=dp), dimension(3,nLocal) :: f
1331 >    real(kind=dp), dimension(3,nLocal) :: t
1332 >    real (kind = dp), dimension(3) :: duduz_i
1333 >    real (kind = dp), dimension(3) :: duduz_j
1334 >    real (kind = dp), dimension(3) :: uz_i
1335 >    real (kind = dp), dimension(3) :: uz_j
1336 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1337 >    real(kind=dp) :: xhat, yhat, zhat
1338 >    real(kind=dp) :: ct_i, ct_j
1339 >    real(kind=dp) :: ri2, ri3, riji, vterm
1340 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1341 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1342  
1343 <    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1343 >    if (.not.summationMethodChecked) then
1344 >       call checkSummationMethod()
1345 >    endif
1346  
1347 <  end subroutine destroyElectrostaticTypes
1347 >    dudx = zero
1348 >    dudy = zero
1349 >    dudz = zero
1350  
1351 +    riji = 1.0_dp/rij
1352 +
1353 +    xhat = d(1) * riji
1354 +    yhat = d(2) * riji
1355 +    zhat = d(3) * riji
1356 +
1357 +    ! this is a local only array, so we use the local atom type id's:
1358 +    atid1 = atid(atom1)
1359 +    atid2 = atid(atom2)
1360 +    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1361 +    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1362 +    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1363 +    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1364 +
1365 +    if (i_is_Charge.and.j_is_Charge) then
1366 +       q_i = ElectrostaticMap(atid1)%charge
1367 +       q_j = ElectrostaticMap(atid2)%charge
1368 +      
1369 +       preVal = pre11 * q_i * q_j
1370 +       rfVal = preRF*rij*rij
1371 +       vterm = preVal * rfVal
1372 +      
1373 +       myPot = myPot + sw*vterm
1374 +      
1375 +       dudr  = sw*preVal * 2.0_dp*rfVal*riji
1376 +      
1377 +       dudx = dudx + dudr * xhat
1378 +       dudy = dudy + dudr * yhat
1379 +       dudz = dudz + dudr * zhat
1380 +      
1381 +    elseif (i_is_Charge.and.j_is_Dipole) then
1382 +       q_i = ElectrostaticMap(atid1)%charge
1383 +       mu_j = ElectrostaticMap(atid2)%dipole_moment
1384 +       uz_j(1) = eFrame(3,atom2)
1385 +       uz_j(2) = eFrame(6,atom2)
1386 +       uz_j(3) = eFrame(9,atom2)
1387 +       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1388 +      
1389 +       ri2 = riji * riji
1390 +       ri3 = ri2 * riji
1391 +      
1392 +       pref = pre12 * q_i * mu_j
1393 +       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1394 +       myPot = myPot + sw*vterm
1395 +      
1396 +       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0_dp*ct_j*xhat) &
1397 +            - preRF2*uz_j(1) )
1398 +       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0_dp*ct_j*yhat) &
1399 +            - preRF2*uz_j(2) )
1400 +       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0_dp*ct_j*zhat) &
1401 +            - preRF2*uz_j(3) )
1402 +      
1403 +       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1404 +       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1405 +       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1406 +      
1407 +    elseif (i_is_Dipole.and.j_is_Charge) then
1408 +       mu_i = ElectrostaticMap(atid1)%dipole_moment
1409 +       q_j = ElectrostaticMap(atid2)%charge
1410 +       uz_i(1) = eFrame(3,atom1)
1411 +       uz_i(2) = eFrame(6,atom1)
1412 +       uz_i(3) = eFrame(9,atom1)
1413 +       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1414 +      
1415 +       ri2 = riji * riji
1416 +       ri3 = ri2 * riji
1417 +      
1418 +       pref = pre12 * q_j * mu_i
1419 +       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1420 +       myPot = myPot + sw*vterm
1421 +      
1422 +       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0_dp*ct_i*xhat) &
1423 +            - preRF2*uz_i(1) )
1424 +       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0_dp*ct_i*yhat) &
1425 +            - preRF2*uz_i(2) )
1426 +       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0_dp*ct_i*zhat) &
1427 +            - preRF2*uz_i(3) )
1428 +      
1429 +       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1430 +       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1431 +       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1432 +      
1433 +    endif
1434 +      
1435 +
1436 +    ! accumulate the forces and torques resulting from the self term
1437 +    f(1,atom1) = f(1,atom1) + dudx
1438 +    f(2,atom1) = f(2,atom1) + dudy
1439 +    f(3,atom1) = f(3,atom1) + dudz
1440 +    
1441 +    f(1,atom2) = f(1,atom2) - dudx
1442 +    f(2,atom2) = f(2,atom2) - dudy
1443 +    f(3,atom2) = f(3,atom2) - dudz
1444 +    
1445 +    if (i_is_Dipole) then
1446 +       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1447 +       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1448 +       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1449 +    elseif (j_is_Dipole) then
1450 +       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1451 +       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1452 +       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1453 +    endif
1454 +
1455 +    return
1456 +  end subroutine rf_self_excludes
1457 +
1458 +  subroutine accumulate_box_dipole(atom1, eFrame, d, pChg, nChg, pChgPos, &
1459 +       nChgPos, dipVec, pChgCount, nChgCount)
1460 +    integer, intent(in) :: atom1
1461 +    logical :: i_is_Charge
1462 +    logical :: i_is_Dipole
1463 +    integer :: atid1
1464 +    integer :: pChgCount
1465 +    integer :: nChgCount
1466 +    real(kind=dp), intent(in), dimension(3) :: d
1467 +    real(kind=dp), dimension(9,nLocal) :: eFrame
1468 +    real(kind=dp) :: pChg
1469 +    real(kind=dp) :: nChg
1470 +    real(kind=dp), dimension(3) :: pChgPos
1471 +    real(kind=dp), dimension(3) :: nChgPos
1472 +    real(kind=dp), dimension(3) :: dipVec
1473 +    real(kind=dp), dimension(3) :: uz_i
1474 +    real(kind=dp), dimension(3) :: pos
1475 +    real(kind=dp) :: q_i, mu_i
1476 +    real(kind=dp) :: pref, preVal
1477 +
1478 +    if (.not.summationMethodChecked) then
1479 +       call checkSummationMethod()
1480 +    endif
1481 +
1482 +    ! this is a local only array, so we use the local atom type id's:
1483 +    atid1 = atid(atom1)
1484 +    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1485 +    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1486 +    
1487 +    if (i_is_Charge) then
1488 +       q_i = ElectrostaticMap(atid1)%charge
1489 +       ! convert to the proper units
1490 +       q_i = q_i * chargeToC
1491 +       pos = d * angstromToM
1492 +
1493 +       if (q_i.le.0.0_dp) then
1494 +          nChg = nChg - q_i
1495 +          nChgPos(1) = nChgPos(1) + pos(1)
1496 +          nChgPos(2) = nChgPos(2) + pos(2)
1497 +          nChgPos(3) = nChgPos(3) + pos(3)
1498 +          nChgCount = nChgCount + 1
1499 +
1500 +       else
1501 +          pChg = pChg + q_i
1502 +          pChgPos(1) = pChgPos(1) + pos(1)
1503 +          pChgPos(2) = pChgPos(2) + pos(2)
1504 +          pChgPos(3) = pChgPos(3) + pos(3)
1505 +          pChgCount = pChgCount + 1
1506 +
1507 +       endif
1508 +
1509 +    endif
1510 +    
1511 +    if (i_is_Dipole) then
1512 +       mu_i = ElectrostaticMap(atid1)%dipole_moment
1513 +       uz_i(1) = eFrame(3,atom1)
1514 +       uz_i(2) = eFrame(6,atom1)
1515 +       uz_i(3) = eFrame(9,atom1)
1516 +       ! convert to the proper units
1517 +       mu_i = mu_i * debyeToCm
1518 +
1519 +       dipVec(1) = dipVec(1) + uz_i(1)*mu_i
1520 +       dipVec(2) = dipVec(2) + uz_i(2)*mu_i
1521 +       dipVec(3) = dipVec(3) + uz_i(3)*mu_i
1522 +
1523 +    endif
1524 +  
1525 +    return
1526 +  end subroutine accumulate_box_dipole
1527 +
1528   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines