ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2095 by gezelter, Wed Mar 9 15:44:59 2005 UTC vs.
Revision 2418 by chrisfen, Tue Nov 8 13:31:36 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 +
58 + #define __FORTRAN90
59 + #include "UseTheForce/DarkSide/fInteractionMap.h"
60 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
62 +
63 +
64 +  !! these prefactors convert the multipole interactions into kcal / mol
65 +  !! all were computed assuming distances are measured in angstroms
66 +  !! Charge-Charge, assuming charges are measured in electrons
67    real(kind=dp), parameter :: pre11 = 332.0637778_dp
68 <  real(kind=dp), parameter :: pre12 = 69.13291783_dp
69 <  real(kind=dp), parameter :: pre22 = 14.39289874_dp
68 >  !! Charge-Dipole, assuming charges are measured in electrons, and
69 >  !! dipoles are measured in debyes
70 >  real(kind=dp), parameter :: pre12 = 69.13373_dp
71 >  !! Dipole-Dipole, assuming dipoles are measured in debyes
72 >  real(kind=dp), parameter :: pre22 = 14.39325_dp
73 >  !! Charge-Quadrupole, assuming charges are measured in electrons, and
74 >  !! quadrupoles are measured in 10^-26 esu cm^2
75 >  !! This unit is also known affectionately as an esu centi-barn.
76 >  real(kind=dp), parameter :: pre14 = 69.13373_dp
77  
78 +  !! variables to handle different summation methods for long-range
79 +  !! electrostatics:
80 +  integer, save :: summationMethod = NONE
81 +  integer, save :: screeningMethod = UNDAMPED
82 +  logical, save :: summationMethodChecked = .false.
83 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
84 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
85 +  logical, save :: haveDefaultCutoff = .false.
86 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
87 +  real(kind=DP), save :: alpha2 = 0.0_DP
88 +  logical, save :: haveDampingAlpha = .false.
89 +  real(kind=DP), save :: dielectric = 1.0_DP
90 +  logical, save :: haveDielectric = .false.
91 +  real(kind=DP), save :: constEXP = 0.0_DP
92 +  real(kind=dp), save :: rcuti = 0.0_DP
93 +  real(kind=dp), save :: rcuti2 = 0.0_DP
94 +  real(kind=dp), save :: rcuti3 = 0.0_DP
95 +  real(kind=dp), save :: rcuti4 = 0.0_DP
96 +  real(kind=dp), save :: alphaPi = 0.0_DP
97 +  real(kind=dp), save :: invRootPi = 0.0_DP
98 +  real(kind=dp), save :: rrf = 1.0_DP
99 +  real(kind=dp), save :: rt = 1.0_DP
100 +  real(kind=dp), save :: rrfsq = 1.0_DP
101 +  real(kind=dp), save :: preRF = 0.0_DP
102 +  real(kind=dp), save :: preRF2 = 0.0_DP
103 +  real(kind=dp), save :: f0 = 1.0_DP
104 +  real(kind=dp), save :: f1 = 1.0_DP
105 +  real(kind=dp), save :: f2 = 0.0_DP
106 +  real(kind=dp), save :: f0c = 1.0_DP
107 +  real(kind=dp), save :: f1c = 1.0_DP
108 +  real(kind=dp), save :: f2c = 0.0_DP
109 +
110 + #ifdef __IFC
111 + ! error function for ifc version > 7.
112 +  double precision, external :: derfc
113 + #endif
114 +  
115 +  public :: setElectrostaticSummationMethod
116 +  public :: setScreeningMethod
117 +  public :: setElectrostaticCutoffRadius
118 +  public :: setDampingAlpha
119 +  public :: setReactionFieldDielectric
120    public :: newElectrostaticType
121    public :: setCharge
122    public :: setDipoleMoment
# Line 66 | Line 125 | module electrostatic_module
125    public :: doElectrostaticPair
126    public :: getCharge
127    public :: getDipoleMoment
128 +  public :: destroyElectrostaticTypes
129 +  public :: self_self
130 +  public :: rf_self_excludes
131  
132    type :: Electrostatic
133       integer :: c_ident
# Line 73 | Line 135 | module electrostatic_module
135       logical :: is_Dipole = .false.
136       logical :: is_SplitDipole = .false.
137       logical :: is_Quadrupole = .false.
138 +     logical :: is_Tap = .false.
139       real(kind=DP) :: charge = 0.0_DP
140       real(kind=DP) :: dipole_moment = 0.0_DP
141       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 83 | Line 146 | contains
146  
147   contains
148  
149 +  subroutine setElectrostaticSummationMethod(the_ESM)
150 +    integer, intent(in) :: the_ESM    
151 +
152 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
153 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
154 +    endif
155 +
156 +    summationMethod = the_ESM
157 +
158 +  end subroutine setElectrostaticSummationMethod
159 +
160 +  subroutine setScreeningMethod(the_SM)
161 +    integer, intent(in) :: the_SM    
162 +    screeningMethod = the_SM
163 +  end subroutine setScreeningMethod
164 +
165 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
166 +    real(kind=dp), intent(in) :: thisRcut
167 +    real(kind=dp), intent(in) :: thisRsw
168 +    defaultCutoff = thisRcut
169 +    rrf = defaultCutoff
170 +    rt = thisRsw
171 +    haveDefaultCutoff = .true.
172 +  end subroutine setElectrostaticCutoffRadius
173 +
174 +  subroutine setDampingAlpha(thisAlpha)
175 +    real(kind=dp), intent(in) :: thisAlpha
176 +    dampingAlpha = thisAlpha
177 +    alpha2 = dampingAlpha*dampingAlpha
178 +    haveDampingAlpha = .true.
179 +  end subroutine setDampingAlpha
180 +  
181 +  subroutine setReactionFieldDielectric(thisDielectric)
182 +    real(kind=dp), intent(in) :: thisDielectric
183 +    dielectric = thisDielectric
184 +    haveDielectric = .true.
185 +  end subroutine setReactionFieldDielectric
186 +
187    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
188 <       is_SplitDipole, is_Quadrupole, status)
189 <    
188 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
189 >
190      integer, intent(in) :: c_ident
191      logical, intent(in) :: is_Charge
192      logical, intent(in) :: is_Dipole
193      logical, intent(in) :: is_SplitDipole
194      logical, intent(in) :: is_Quadrupole
195 +    logical, intent(in) :: is_Tap
196      integer, intent(out) :: status
197      integer :: nAtypes, myATID, i, j
198  
199      status = 0
200      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
201 <    
201 >
202      !! Be simple-minded and assume that we need an ElectrostaticMap that
203      !! is the same size as the total number of atom types
204  
205      if (.not.allocated(ElectrostaticMap)) then
206 <      
206 >
207         nAtypes = getSize(atypes)
208 <    
208 >
209         if (nAtypes == 0) then
210            status = -1
211            return
212         end if
213 <      
213 >
214         if (.not. allocated(ElectrostaticMap)) then
215            allocate(ElectrostaticMap(nAtypes))
216         endif
217 <      
217 >
218      end if
219  
220      if (myATID .gt. size(ElectrostaticMap)) then
221         status = -1
222         return
223      endif
224 <    
224 >
225      ! set the values for ElectrostaticMap for this atom type:
226  
227      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 127 | Line 229 | contains
229      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
230      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
231      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
232 <    
232 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
233 >
234    end subroutine newElectrostaticType
235  
236    subroutine setCharge(c_ident, charge, status)
# Line 155 | Line 258 | contains
258         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
259         status = -1
260         return
261 <    endif      
261 >    endif
262  
263      ElectrostaticMap(myATID)%charge = charge
264    end subroutine setCharge
# Line 246 | Line 349 | contains
349         status = -1
350         return
351      endif
352 <    
352 >
353      do i = 1, 3
354 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 <               quadrupole_moments(i)
356 <       enddo
354 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 >            quadrupole_moments(i)
356 >    enddo
357  
358    end subroutine setQuadrupoleMoments
359  
360 <  
360 >
361    function getCharge(atid) result (c)
362      integer, intent(in) :: atid
363      integer :: localError
364      real(kind=dp) :: c
365 <    
365 >
366      if (.not.allocated(ElectrostaticMap)) then
367         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
368         return
369      end if
370 <    
370 >
371      if (.not.ElectrostaticMap(atid)%is_Charge) then
372         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
373         return
374      endif
375 <    
375 >
376      c = ElectrostaticMap(atid)%charge
377    end function getCharge
378  
# Line 277 | Line 380 | contains
380      integer, intent(in) :: atid
381      integer :: localError
382      real(kind=dp) :: dm
383 <    
383 >
384      if (.not.allocated(ElectrostaticMap)) then
385         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
386         return
387      end if
388 <    
388 >
389      if (.not.ElectrostaticMap(atid)%is_Dipole) then
390         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
391         return
392      endif
393 <    
393 >
394      dm = ElectrostaticMap(atid)%dipole_moment
395    end function getDipoleMoment
396  
397 +  subroutine checkSummationMethod()
398 +
399 +    if (.not.haveDefaultCutoff) then
400 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
401 +    endif
402 +
403 +    rcuti = 1.0d0 / defaultCutoff
404 +    rcuti2 = rcuti*rcuti
405 +    rcuti3 = rcuti2*rcuti
406 +    rcuti4 = rcuti2*rcuti2
407 +
408 +    if (screeningMethod .eq. DAMPED) then
409 +       if (.not.haveDampingAlpha) then
410 +          call handleError("checkSummationMethod", "no Damping Alpha set!")
411 +       endif
412 +      
413 +       if (.not.haveDefaultCutoff) then
414 +          call handleError("checkSummationMethod", "no Default Cutoff set!")
415 +       endif
416 +
417 +       constEXP = exp(-alpha2*defaultCutoff*defaultCutoff)
418 +       invRootPi = 0.56418958354775628695d0
419 +       alphaPi = 2.0d0*dampingAlpha*invRootPi
420 +       f0c = derfc(dampingAlpha*defaultCutoff)
421 +       f1c = alphaPi*defaultCutoff*constEXP + f0c
422 +       f2c = alphaPi*2.0d0*alpha2*constEXP*rcuti2
423 +
424 +    endif
425 +
426 +    if (summationMethod .eq. REACTION_FIELD) then
427 +       if (haveDielectric) then
428 +          defaultCutoff2 = defaultCutoff*defaultCutoff
429 +          preRF = (dielectric-1.0d0) / &
430 +               ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
431 +          preRF2 = 2.0d0*preRF
432 +       else
433 +          call handleError("checkSummationMethod", "Dielectric not set")
434 +       endif
435 +      
436 +    endif
437 +
438 +    summationMethodChecked = .true.
439 +  end subroutine checkSummationMethod
440 +
441 +
442    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
443         vpair, fpair, pot, eFrame, f, t, do_pot)
444 <    
444 >
445      logical, intent(in) :: do_pot
446 <    
446 >
447      integer, intent(in) :: atom1, atom2
448      integer :: localError
449  
450      real(kind=dp), intent(in) :: rij, r2, sw
451      real(kind=dp), intent(in), dimension(3) :: d
452      real(kind=dp), intent(inout) :: vpair
453 <    real(kind=dp), intent(inout), dimension(3) :: fpair
453 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
454  
455      real( kind = dp ) :: pot
456      real( kind = dp ), dimension(9,nLocal) :: eFrame
457      real( kind = dp ), dimension(3,nLocal) :: f
458 +    real( kind = dp ), dimension(3,nLocal) :: felec
459      real( kind = dp ), dimension(3,nLocal) :: t
311    
312    real (kind = dp), dimension(3) :: ul_i
313    real (kind = dp), dimension(3) :: ul_j
460  
461 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
462 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
463 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
464 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
465 +
466      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
467      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
468 +    logical :: i_is_Tap, j_is_Tap
469      integer :: me1, me2, id1, id2
470      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
471 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
472 <    real (kind=dp) :: riji, ri2, ri3, ri4
473 <    real (kind=dp) :: pref, vterm, epot, dudr    
471 >    real (kind=dp) :: qxx_i, qyy_i, qzz_i
472 >    real (kind=dp) :: qxx_j, qyy_j, qzz_j
473 >    real (kind=dp) :: cx_i, cy_i, cz_i
474 >    real (kind=dp) :: cx_j, cy_j, cz_j
475 >    real (kind=dp) :: cx2, cy2, cz2
476 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
477 >    real (kind=dp) :: riji, ri, ri2, ri3, ri4
478 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
479 >    real (kind=dp) :: xhat, yhat, zhat
480      real (kind=dp) :: dudx, dudy, dudz
481 <    real (kind=dp) :: drdxj, drdyj, drdzj
482 <    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
481 >    real (kind=dp) :: scale, sc2, bigR
482 >    real (kind=dp) :: varEXP
483 >    real (kind=dp) :: pot_term
484 >    real (kind=dp) :: preVal, rfVal
485  
326
486      if (.not.allocated(ElectrostaticMap)) then
487         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
488         return
489      end if
490  
491 +    if (.not.summationMethodChecked) then
492 +       call checkSummationMethod()
493 +    endif
494 +
495   #ifdef IS_MPI
496      me1 = atid_Row(atom1)
497      me2 = atid_Col(atom2)
# Line 337 | Line 500 | contains
500      me2 = atid(atom2)
501   #endif
502  
503 + !!$    if (rij .ge. defaultCutoff) then
504 + !!$       write(*,*) 'warning: rij = ', rij, ' rcut = ', defaultCutoff, ' sw = ', sw
505 + !!$    endif
506 +
507      !! some variables we'll need independent of electrostatic type:
508  
509      riji = 1.0d0 / rij
510 +  
511 +    xhat = d(1) * riji
512 +    yhat = d(2) * riji
513 +    zhat = d(3) * riji
514  
344    !! these are also useful as the unit vector of \vec{r}
345    !! \hat{r} = \vec{r} / r =   {(x_j-x_i) / r, (y_j-y_i)/r, (z_j-z_i)/r}
346
347    drdxj = d(1) * riji
348    drdyj = d(2) * riji
349    drdzj = d(3) * riji
350
515      !! logicals
352
516      i_is_Charge = ElectrostaticMap(me1)%is_Charge
517      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
518      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
519      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
520 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
521  
522      j_is_Charge = ElectrostaticMap(me2)%is_Charge
523      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
524      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
525      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
526 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
527  
528      if (i_is_Charge) then
529         q_i = ElectrostaticMap(me1)%charge      
530      endif
531 <    
531 >
532      if (i_is_Dipole) then
533         mu_i = ElectrostaticMap(me1)%dipole_moment
534   #ifdef IS_MPI
535 <       ul_i(1) = eFrame_Row(3,atom1)
536 <       ul_i(2) = eFrame_Row(6,atom1)
537 <       ul_i(3) = eFrame_Row(9,atom1)
535 >       uz_i(1) = eFrame_Row(3,atom1)
536 >       uz_i(2) = eFrame_Row(6,atom1)
537 >       uz_i(3) = eFrame_Row(9,atom1)
538   #else
539 <       ul_i(1) = eFrame(3,atom1)
540 <       ul_i(2) = eFrame(6,atom1)
541 <       ul_i(3) = eFrame(9,atom1)
539 >       uz_i(1) = eFrame(3,atom1)
540 >       uz_i(2) = eFrame(6,atom1)
541 >       uz_i(3) = eFrame(9,atom1)
542   #endif
543 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
543 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
544  
545         if (i_is_SplitDipole) then
546            d_i = ElectrostaticMap(me1)%split_dipole_distance
547         endif
548 <      
548 >
549      endif
550  
551 +    if (i_is_Quadrupole) then
552 +       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
553 +       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
554 +       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
555 + #ifdef IS_MPI
556 +       ux_i(1) = eFrame_Row(1,atom1)
557 +       ux_i(2) = eFrame_Row(4,atom1)
558 +       ux_i(3) = eFrame_Row(7,atom1)
559 +       uy_i(1) = eFrame_Row(2,atom1)
560 +       uy_i(2) = eFrame_Row(5,atom1)
561 +       uy_i(3) = eFrame_Row(8,atom1)
562 +       uz_i(1) = eFrame_Row(3,atom1)
563 +       uz_i(2) = eFrame_Row(6,atom1)
564 +       uz_i(3) = eFrame_Row(9,atom1)
565 + #else
566 +       ux_i(1) = eFrame(1,atom1)
567 +       ux_i(2) = eFrame(4,atom1)
568 +       ux_i(3) = eFrame(7,atom1)
569 +       uy_i(1) = eFrame(2,atom1)
570 +       uy_i(2) = eFrame(5,atom1)
571 +       uy_i(3) = eFrame(8,atom1)
572 +       uz_i(1) = eFrame(3,atom1)
573 +       uz_i(2) = eFrame(6,atom1)
574 +       uz_i(3) = eFrame(9,atom1)
575 + #endif
576 +       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
577 +       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
578 +       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
579 +    endif
580 +
581      if (j_is_Charge) then
582         q_j = ElectrostaticMap(me2)%charge      
583      endif
584 <    
584 >
585      if (j_is_Dipole) then
586         mu_j = ElectrostaticMap(me2)%dipole_moment
587   #ifdef IS_MPI
588 <       ul_j(1) = eFrame_Col(3,atom2)
589 <       ul_j(2) = eFrame_Col(6,atom2)
590 <       ul_j(3) = eFrame_Col(9,atom2)
588 >       uz_j(1) = eFrame_Col(3,atom2)
589 >       uz_j(2) = eFrame_Col(6,atom2)
590 >       uz_j(3) = eFrame_Col(9,atom2)
591   #else
592 <       ul_j(1) = eFrame(3,atom2)
593 <       ul_j(2) = eFrame(6,atom2)
594 <       ul_j(3) = eFrame(9,atom2)
592 >       uz_j(1) = eFrame(3,atom2)
593 >       uz_j(2) = eFrame(6,atom2)
594 >       uz_j(3) = eFrame(9,atom2)
595   #endif
596 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
596 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
597  
598         if (j_is_SplitDipole) then
599            d_j = ElectrostaticMap(me2)%split_dipole_distance
600         endif
601      endif
602  
603 +    if (j_is_Quadrupole) then
604 +       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
605 +       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
606 +       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
607 + #ifdef IS_MPI
608 +       ux_j(1) = eFrame_Col(1,atom2)
609 +       ux_j(2) = eFrame_Col(4,atom2)
610 +       ux_j(3) = eFrame_Col(7,atom2)
611 +       uy_j(1) = eFrame_Col(2,atom2)
612 +       uy_j(2) = eFrame_Col(5,atom2)
613 +       uy_j(3) = eFrame_Col(8,atom2)
614 +       uz_j(1) = eFrame_Col(3,atom2)
615 +       uz_j(2) = eFrame_Col(6,atom2)
616 +       uz_j(3) = eFrame_Col(9,atom2)
617 + #else
618 +       ux_j(1) = eFrame(1,atom2)
619 +       ux_j(2) = eFrame(4,atom2)
620 +       ux_j(3) = eFrame(7,atom2)
621 +       uy_j(1) = eFrame(2,atom2)
622 +       uy_j(2) = eFrame(5,atom2)
623 +       uy_j(3) = eFrame(8,atom2)
624 +       uz_j(1) = eFrame(3,atom2)
625 +       uz_j(2) = eFrame(6,atom2)
626 +       uz_j(3) = eFrame(9,atom2)
627 + #endif
628 +       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
629 +       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
630 +       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
631 +    endif
632 +  
633      epot = 0.0_dp
634      dudx = 0.0_dp
635      dudy = 0.0_dp
636      dudz = 0.0_dp
637  
638 <    duduix = 0.0_dp
639 <    duduiy = 0.0_dp
640 <    duduiz = 0.0_dp
638 >    dudux_i = 0.0_dp
639 >    duduy_i = 0.0_dp
640 >    duduz_i = 0.0_dp
641  
642 <    dudujx = 0.0_dp
643 <    dudujy = 0.0_dp
644 <    dudujz = 0.0_dp
642 >    dudux_j = 0.0_dp
643 >    duduy_j = 0.0_dp
644 >    duduz_j = 0.0_dp
645  
646      if (i_is_Charge) then
647  
648         if (j_is_Charge) then
424          
425          vterm = pre11 * q_i * q_j * riji
426          vpair = vpair + vterm
427          epot = epot + sw*vterm
649  
650 <          dudr  = - sw * vterm * riji
650 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
651 >             if (screeningMethod .eq. DAMPED) then
652 >                f0 = derfc(dampingAlpha*rij)
653 >                varEXP = exp(-alpha2*rij*rij)
654 >                f1 = alphaPi*rij*varEXP + f0c
655 >             endif
656  
657 <          dudx = dudx + dudr * drdxj
658 <          dudy = dudy + dudr * drdyj
659 <          dudz = dudz + dudr * drdzj
660 <      
657 >             vterm = pre11 * q_i * q_j * (riji*f0 - rcuti*f0c)
658 >             vpair = vpair + vterm
659 >             epot = epot + sw*vterm
660 >            
661 >             dudr  = -sw*pre11*q_i*q_j * riji * riji * f1
662 >            
663 >             dudx = dudx + dudr * xhat
664 >             dudy = dudy + dudr * yhat
665 >             dudz = dudz + dudr * zhat
666 >
667 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
668 >             if (screeningMethod .eq. DAMPED) then
669 >                f0 = derfc(dampingAlpha*rij)
670 >                varEXP = exp(-alpha2*rij*rij)
671 >                f1 = alphaPi*rij*varEXP + f0
672 >             endif
673 >
674 >             vterm = pre11 * q_i * q_j * ( riji*f0 - rcuti*f0c + &
675 >                  f1c*rcuti2*(rij-defaultCutoff) )
676 >            
677 >             vpair = vpair + vterm
678 >             epot = epot + sw*vterm
679 >            
680 >             dudr  = -sw*pre11*q_i*q_j * (riji*riji*f1 - rcuti2*f1c)
681 >                          
682 >             dudx = dudx + dudr * xhat
683 >             dudy = dudy + dudr * yhat
684 >             dudz = dudz + dudr * zhat
685 >
686 >          elseif (summationMethod .eq. REACTION_FIELD) then
687 >             preVal = pre11 * q_i * q_j
688 >             rfVal = preRF*rij*rij
689 >             vterm = preVal * ( riji + rfVal )
690 >            
691 >             vpair = vpair + vterm
692 >             epot = epot + sw*vterm
693 >            
694 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
695 >            
696 >             dudx = dudx + dudr * xhat
697 >             dudy = dudy + dudr * yhat
698 >             dudz = dudz + dudr * zhat
699 >
700 >          else
701 >             vterm = pre11 * q_i * q_j * riji
702 >             vpair = vpair + vterm
703 >             epot = epot + sw*vterm
704 >            
705 >             dudr  = - sw * vterm * riji
706 >            
707 >             dudx = dudx + dudr * xhat
708 >             dudy = dudy + dudr * yhat
709 >             dudz = dudz + dudr * zhat
710 >
711 >          endif
712 >
713         endif
714  
715         if (j_is_Dipole) then
716  
439          ri2 = riji * riji
440          ri3 = ri2 * riji
441
717            pref = pre12 * q_i * mu_j
443          vterm = pref * ct_j * riji * riji
444          vpair = vpair + vterm
445          epot = epot + sw * vterm
718  
719 <          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0 * ct_j * drdxj)
720 <          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0 * ct_j * drdyj)
721 <          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0 * ct_j * drdzj)
719 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
720 > !!$             ri2 = riji * riji
721 > !!$             ri3 = ri2 * riji
722 > !!$
723 > !!$             pref = pre12 * q_i * mu_j
724 > !!$             vterm = - pref * ct_j * (ri2 - rcuti2)
725 > !!$             vpair = vpair + vterm
726 > !!$             epot = epot + sw*vterm
727 > !!$            
728 > !!$             !! this has a + sign in the () because the rij vector is
729 > !!$             !! r_j - r_i and the charge-dipole potential takes the origin
730 > !!$             !! as the point dipole, which is atom j in this case.
731 > !!$            
732 > !!$             dudx = dudx - sw*pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
733 > !!$                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
734 > !!$             dudy = dudy - sw*pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
735 > !!$                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
736 > !!$             dudz = dudz - sw*pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
737 > !!$                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
738 > !!$            
739 > !!$             duduz_j(1) = duduz_j(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
740 > !!$             duduz_j(2) = duduz_j(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
741 > !!$             duduz_j(3) = duduz_j(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
742 > !!$
743 > !!$          elseif (summationMethod .eq. REACTION_FIELD) then
744  
745 <          dudujx = dudujx - pref * sw * ri2 * drdxj
746 <          dudujy = dudujy - pref * sw * ri2 * drdyj
747 <          dudujz = dudujz - pref * sw * ri2 * drdzj
748 <          
745 >          if (summationMethod .eq. REACTION_FIELD) then
746 >             ri2 = riji * riji
747 >             ri3 = ri2 * riji
748 >    
749 >             pref = pre12 * q_i * mu_j
750 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
751 >             vpair = vpair + vterm
752 >             epot = epot + sw*vterm
753 >            
754 >             !! this has a + sign in the () because the rij vector is
755 >             !! r_j - r_i and the charge-dipole potential takes the origin
756 >             !! as the point dipole, which is atom j in this case.
757 >            
758 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
759 >                                     preRF2*uz_j(1) )
760 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
761 >                                     preRF2*uz_j(2) )
762 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
763 >                                     preRF2*uz_j(3) )        
764 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
765 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
766 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
767 >
768 >          else
769 >             if (j_is_SplitDipole) then
770 >                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
771 >                ri = 1.0_dp / BigR
772 >                scale = rij * ri
773 >             else
774 >                ri = riji
775 >                scale = 1.0_dp
776 >             endif
777 >            
778 >             ri2 = ri * ri
779 >             ri3 = ri2 * ri
780 >             sc2 = scale * scale
781 >
782 >             pref = pre12 * q_i * mu_j
783 >             vterm = - pref * ct_j * ri2 * scale
784 >             vpair = vpair + vterm
785 >             epot = epot + sw*vterm
786 >            
787 >             !! this has a + sign in the () because the rij vector is
788 >             !! r_j - r_i and the charge-dipole potential takes the origin
789 >             !! as the point dipole, which is atom j in this case.
790 >            
791 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
792 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
793 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
794 >            
795 >             duduz_j(1) = duduz_j(1) - sw*pref * ri2 * xhat * scale
796 >             duduz_j(2) = duduz_j(2) - sw*pref * ri2 * yhat * scale
797 >             duduz_j(3) = duduz_j(3) - sw*pref * ri2 * zhat * scale
798 >
799 >          endif
800         endif
456    endif
457  
458    if (i_is_Dipole) then
459      
460       if (j_is_Charge) then
801  
802 +       if (j_is_Quadrupole) then
803            ri2 = riji * riji
804            ri3 = ri2 * riji
805 +          ri4 = ri2 * ri2
806 +          cx2 = cx_j * cx_j
807 +          cy2 = cy_j * cy_j
808 +          cz2 = cz_j * cz_j
809  
810 <          pref = pre12 * q_j * mu_i
811 <          vterm = pref * ct_i * riji * riji
812 <          vpair = vpair + vterm
813 <          epot = epot + sw * vterm
810 > !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
811 > !!$             pref =  pre14 * q_i / 3.0_dp
812 > !!$             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
813 > !!$                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
814 > !!$                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
815 > !!$             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
816 > !!$                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
817 > !!$                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
818 > !!$             vpair = vpair + ( vterm1 - vterm2 )
819 > !!$             epot = epot + sw*( vterm1 - vterm2 )
820 > !!$            
821 > !!$             dudx = dudx - (5.0_dp * &
822 > !!$                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + sw*pref * ( &
823 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
824 > !!$                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
825 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
826 > !!$                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
827 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
828 > !!$                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
829 > !!$             dudy = dudy - (5.0_dp * &
830 > !!$                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + sw*pref * ( &
831 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
832 > !!$                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
833 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
834 > !!$                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
835 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
836 > !!$                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
837 > !!$             dudz = dudz - (5.0_dp * &
838 > !!$                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + sw*pref * ( &
839 > !!$                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
840 > !!$                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
841 > !!$                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
842 > !!$                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
843 > !!$                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
844 > !!$                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
845 > !!$            
846 > !!$             dudux_j(1) = dudux_j(1) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*xhat) -&
847 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
848 > !!$             dudux_j(2) = dudux_j(2) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*yhat) -&
849 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
850 > !!$             dudux_j(3) = dudux_j(3) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*zhat) -&
851 > !!$                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
852 > !!$            
853 > !!$             duduy_j(1) = duduy_j(1) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*xhat) -&
854 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
855 > !!$             duduy_j(2) = duduy_j(2) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*yhat) -&
856 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
857 > !!$             duduy_j(3) = duduy_j(3) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*zhat) -&
858 > !!$                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
859 > !!$            
860 > !!$             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*xhat) -&
861 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
862 > !!$             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*yhat) -&
863 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
864 > !!$             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*zhat) -&
865 > !!$                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
866 > !!$        
867 > !!$          else
868 >             pref =  pre14 * q_i / 3.0_dp
869 >             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
870 >                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
871 >                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
872 >             vpair = vpair + vterm
873 >             epot = epot + sw*vterm
874 >            
875 >             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
876 >                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
877 >                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
878 >                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
879 >             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
880 >                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
881 >                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
882 >                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
883 >             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
884 >                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
885 >                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
886 >                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
887 >            
888 >             dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
889 >             dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
890 >             dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
891 >            
892 >             duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
893 >             duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
894 >             duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
895 >            
896 >             duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
897 >             duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
898 >             duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
899 >          
900 > !!$          endif
901 >       endif
902 >    endif
903  
904 <          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * drdxj)
471 <          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * drdyj)
472 <          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * drdzj)
904 >    if (i_is_Dipole) then
905  
906 <          duduix = duduix + pref * sw * ri2 * drdxj
907 <          duduiy = duduiy + pref * sw * ri2 * drdyj
908 <          duduiz = duduiz + pref * sw * ri2 * drdzj
909 <       endif
906 >       if (j_is_Charge) then
907 >          
908 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
909 >             ri2 = riji * riji
910 >             ri3 = ri2 * riji
911 >            
912 >             pref = pre12 * q_j * mu_i
913 >             pot_term = ri2 - rcuti2
914 >             vterm = pref * ct_i * pot_term
915 >             vpair = vpair + vterm
916 >             epot = epot + sw*vterm
917 >            
918 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1)-3.0d0*ct_i*xhat) )
919 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2)-3.0d0*ct_i*yhat) )
920 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3)-3.0d0*ct_i*zhat) )
921 >            
922 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
923 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
924 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
925  
926 <       if (j_is_Dipole) then
926 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
927 >             ri2 = riji * riji
928 >             ri3 = ri2 * riji
929  
930 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
930 >             pref = pre12 * q_j * mu_i
931 >             pot_term = ri2 - rcuti2 + 2.0d0*rcuti3*( rij - defaultCutoff )
932 >             vterm = pref * ct_i * pot_term
933 >             vpair = vpair + vterm
934 >             epot = epot + sw*vterm
935 >            
936 >             dudx = dudx + sw*pref * ( (ri3-rcuti3)*(uz_i(1)-3.0d0*ct_i*xhat) )
937 >             dudy = dudy + sw*pref * ( (ri3-rcuti3)*(uz_i(2)-3.0d0*ct_i*yhat) )
938 >             dudz = dudz + sw*pref * ( (ri3-rcuti3)*(uz_i(3)-3.0d0*ct_i*zhat) )
939 >            
940 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
941 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
942 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
943 >
944 >          elseif (summationMethod .eq. REACTION_FIELD) then
945 >             ri2 = riji * riji
946 >             ri3 = ri2 * riji
947 >
948 >             pref = pre12 * q_j * mu_i
949 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
950 >             vpair = vpair + vterm
951 >             epot = epot + sw*vterm
952 >            
953 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
954 >                  preRF2*uz_i(1) )
955 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
956 >                  preRF2*uz_i(2) )
957 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
958 >                  preRF2*uz_i(3) )
959 >            
960 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
961 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
962 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
963 >
964 >          else
965 >             if (i_is_SplitDipole) then
966 >                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
967 >                ri = 1.0_dp / BigR
968 >                scale = rij * ri
969 >             else
970 >                ri = riji
971 >                scale = 1.0_dp
972 >             endif
973 >            
974 >             ri2 = ri * ri
975 >             ri3 = ri2 * ri
976 >             sc2 = scale * scale
977 >
978 >             pref = pre12 * q_j * mu_i
979 >             vterm = pref * ct_i * ri2 * scale
980 >             vpair = vpair + vterm
981 >             epot = epot + sw*vterm
982 >            
983 >             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
984 >             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
985 >             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
986 >            
987 >             duduz_i(1) = duduz_i(1) + sw*pref * ri2 * xhat * scale
988 >             duduz_i(2) = duduz_i(2) + sw*pref * ri2 * yhat * scale
989 >             duduz_i(3) = duduz_i(3) + sw*pref * ri2 * zhat * scale
990 >          endif
991 >       endif
992 >      
993 >       if (j_is_Dipole) then
994 >          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
995 >          
996            ri2 = riji * riji
997            ri3 = ri2 * riji
998            ri4 = ri2 * ri2
485
486          pref = pre22 * mu_i * mu_j
487          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j)
488          vpair = vpair + vterm
489          epot = epot + sw * vterm
999            
1000 <          a1 = 5.0d0 * ct_i * ct_j - ct_ij
1000 >          pref = pre22 * mu_i * mu_j
1001  
1002 <          dudx = dudx + pref*sw*3.0d0*ri4*(a1*drdxj-ct_i*ul_j(1)-ct_j*ul_i(1))
1003 <          dudy = dudy + pref*sw*3.0d0*ri4*(a1*drdyj-ct_i*ul_j(2)-ct_j*ul_i(2))
1004 <          dudz = dudz + pref*sw*3.0d0*ri4*(a1*drdzj-ct_i*ul_j(3)-ct_j*ul_i(3))
1002 > !!$          if (summationMethod .eq. SHIFTED_POTENTIAL) then
1003 > !!$             a0 = ct_ij - 3.0d0 * ct_i * ct_j
1004 > !!$             pot_term = ri3 - rcuti3
1005 > !!$            
1006 > !!$             vterm = pref*pot_term*a0
1007 > !!$             vpair = vpair + vterm
1008 > !!$             epot = epot + sw*vterm
1009 > !!$            
1010 > !!$             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1011 > !!$            
1012 > !!$             dudx = dudx + sw*pref*3.0d0*ri4 &
1013 > !!$                  * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1014 > !!$             dudy = dudy + sw*pref*3.0d0*ri4 &
1015 > !!$                  * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1016 > !!$             dudz = dudz + sw*pref*3.0d0*ri4 &
1017 > !!$                  * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1018 > !!$            
1019 > !!$             duduz_i(1) = duduz_i(1) + sw*pref*( pot_term &
1020 > !!$                  * (uz_j(1) - 3.0d0*ct_j*xhat) )
1021 > !!$             duduz_i(2) = duduz_i(2) + sw*pref*( pot_term &
1022 > !!$                  * (uz_j(2) - 3.0d0*ct_j*yhat) )
1023 > !!$             duduz_i(3) = duduz_i(3) + sw*pref*( pot_term &
1024 > !!$                  * (uz_j(3) - 3.0d0*ct_j*zhat) )
1025 > !!$             duduz_j(1) = duduz_j(1) + sw*pref*( pot_term &
1026 > !!$                  * (uz_i(1) - 3.0d0*ct_i*xhat) )
1027 > !!$             duduz_j(2) = duduz_j(2) + sw*pref*( pot_term &
1028 > !!$                  * (uz_i(2) - 3.0d0*ct_i*yhat) )
1029 > !!$             duduz_j(3) = duduz_j(3) + sw*pref*( pot_term &
1030 > !!$                  * (uz_i(3) - 3.0d0*ct_i*zhat) )
1031 > !!$
1032 > !!$          elseif (summationMethod .eq. SHIFTED_FORCE) then
1033 > !!$             a0 = ct_ij - 3.0d0 * ct_i * ct_j
1034 > !!$             pot_term = ri3 - rcuti3 + 3.0d0*rcuti4*( rij - defaultCutoff )
1035 > !!$            
1036 > !!$             vterm = pref*pot_term*a0
1037 > !!$             vpair = vpair + vterm
1038 > !!$             epot = epot + sw*vterm
1039 > !!$            
1040 > !!$             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1041 > !!$            
1042 > !!$             dudx = dudx + sw*pref*3.0d0*( ri4 - rcuti4 ) &
1043 > !!$                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1044 > !!$             dudy = dudy + sw*pref*3.0d0*( ri4 - rcuti4 ) &
1045 > !!$                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1046 > !!$             dudz = dudz + sw*pref*3.0d0*( ri4 - rcuti4 ) &
1047 > !!$                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1048 > !!$            
1049 > !!$             duduz_i(1) = duduz_i(1) + sw*pref*( pot_term &
1050 > !!$                  * (uz_j(1) - 3.0d0*ct_j*xhat) )
1051 > !!$             duduz_i(2) = duduz_i(2) + sw*pref*( pot_term &
1052 > !!$                  * (uz_j(2) - 3.0d0*ct_j*yhat) )
1053 > !!$             duduz_i(3) = duduz_i(3) + sw*pref*( pot_term &
1054 > !!$                  * (uz_j(3) - 3.0d0*ct_j*zhat) )
1055 > !!$             duduz_j(1) = duduz_j(1) + sw*pref*( pot_term &
1056 > !!$                  * (uz_i(1) - 3.0d0*ct_i*xhat) )
1057 > !!$             duduz_j(2) = duduz_j(2) + sw*pref*( pot_term &
1058 > !!$                  * (uz_i(2) - 3.0d0*ct_i*yhat) )
1059 > !!$             duduz_j(3) = duduz_j(3) + sw*pref*( pot_term &
1060 > !!$                  * (uz_i(3) - 3.0d0*ct_i*zhat) )
1061 > !!$            
1062 > !!$          elseif (summationMethod .eq. REACTION_FIELD) then
1063 >          if (summationMethod .eq. REACTION_FIELD) then
1064 >             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
1065 >                  preRF2*ct_ij )
1066 >             vpair = vpair + vterm
1067 >             epot = epot + sw*vterm
1068 >            
1069 >             a1 = 5.0d0 * ct_i * ct_j - ct_ij
1070 >            
1071 >             dudx = dudx + sw*pref*3.0d0*ri4 &
1072 >                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1073 >             dudy = dudy + sw*pref*3.0d0*ri4 &
1074 >                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1075 >             dudz = dudz + sw*pref*3.0d0*ri4 &
1076 >                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1077 >            
1078 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1079 >                  - preRF2*uz_j(1))
1080 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1081 >                  - preRF2*uz_j(2))
1082 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1083 >                  - preRF2*uz_j(3))
1084 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1085 >                  - preRF2*uz_i(1))
1086 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1087 >                  - preRF2*uz_i(2))
1088 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1089 >                  - preRF2*uz_i(3))
1090  
1091 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*drdxj)
1092 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*drdyj)
1093 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*drdzj)
1091 >          else
1092 >             if (i_is_SplitDipole) then
1093 >                if (j_is_SplitDipole) then
1094 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
1095 >                else
1096 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
1097 >                endif
1098 >                ri = 1.0_dp / BigR
1099 >                scale = rij * ri                
1100 >             else
1101 >                if (j_is_SplitDipole) then
1102 >                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
1103 >                   ri = 1.0_dp / BigR
1104 >                   scale = rij * ri                            
1105 >                else                
1106 >                   ri = riji
1107 >                   scale = 1.0_dp
1108 >                endif
1109 >             endif
1110 >            
1111 >             sc2 = scale * scale
1112  
1113 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*drdxj)
1114 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*drdyj)
1115 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*drdzj)
1113 >             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1114 >             vpair = vpair + vterm
1115 >             epot = epot + sw*vterm
1116 >            
1117 >             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
1118 >            
1119 >             dudx = dudx + sw*pref*3.0d0*ri4*scale &
1120 >                             *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
1121 >             dudy = dudy + sw*pref*3.0d0*ri4*scale &
1122 >                             *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
1123 >             dudz = dudz + sw*pref*3.0d0*ri4*scale &
1124 >                             *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
1125 >            
1126 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3 &
1127 >                                         *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
1128 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3 &
1129 >                                         *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
1130 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3 &
1131 >                                         *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
1132 >            
1133 >             duduz_j(1) = duduz_j(1) + sw*pref*ri3 &
1134 >                                         *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
1135 >             duduz_j(2) = duduz_j(2) + sw*pref*ri3 &
1136 >                                         *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
1137 >             duduz_j(3) = duduz_j(3) + sw*pref*ri3 &
1138 >                                         *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
1139 >          endif
1140         endif
1141 +    endif
1142  
1143 +    if (i_is_Quadrupole) then
1144 +       if (j_is_Charge) then
1145 +
1146 +          ri2 = riji * riji
1147 +          ri3 = ri2 * riji
1148 +          ri4 = ri2 * ri2
1149 +          cx2 = cx_i * cx_i
1150 +          cy2 = cy_i * cy_i
1151 +          cz2 = cz_i * cz_i
1152 +
1153 + !!$          if (summationMethod .eq. UNDAMPED_WOLF) then
1154 + !!$             pref = pre14 * q_j / 3.0_dp
1155 + !!$             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1156 + !!$                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1157 + !!$                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1158 + !!$             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1159 + !!$                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1160 + !!$                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
1161 + !!$             vpair = vpair + ( vterm1 - vterm2 )
1162 + !!$             epot = epot + sw*( vterm1 - vterm2 )
1163 + !!$            
1164 + !!$             dudx = dudx - sw*(5.0_dp*(vterm1*riji*xhat-vterm2*rcuti2*d(1))) +&
1165 + !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
1166 + !!$                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
1167 + !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
1168 + !!$                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
1169 + !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
1170 + !!$                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
1171 + !!$             dudy = dudy - sw*(5.0_dp*(vterm1*riji*yhat-vterm2*rcuti2*d(2))) +&
1172 + !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
1173 + !!$                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
1174 + !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
1175 + !!$                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
1176 + !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
1177 + !!$                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
1178 + !!$             dudz = dudz - sw*(5.0_dp*(vterm1*riji*zhat-vterm2*rcuti2*d(3))) +&
1179 + !!$                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
1180 + !!$                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
1181 + !!$                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
1182 + !!$                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
1183 + !!$                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
1184 + !!$                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
1185 + !!$            
1186 + !!$             dudux_i(1) = dudux_i(1) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*xhat) -&
1187 + !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
1188 + !!$             dudux_i(2) = dudux_i(2) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*yhat) -&
1189 + !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
1190 + !!$             dudux_i(3) = dudux_i(3) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*zhat) -&
1191 + !!$                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
1192 + !!$            
1193 + !!$             duduy_i(1) = duduy_i(1) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*xhat) -&
1194 + !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
1195 + !!$             duduy_i(2) = duduy_i(2) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*yhat) -&
1196 + !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
1197 + !!$             duduy_i(3) = duduy_i(3) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*zhat) -&
1198 + !!$                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
1199 + !!$            
1200 + !!$             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*xhat) -&
1201 + !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
1202 + !!$             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*yhat) -&
1203 + !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1204 + !!$             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*zhat) -&
1205 + !!$                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
1206 + !!$
1207 + !!$          else
1208 +             pref = pre14 * q_j / 3.0_dp
1209 +             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1210 +                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1211 +                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1212 +             vpair = vpair + vterm
1213 +             epot = epot + sw*vterm
1214 +            
1215 +             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
1216 +                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1217 +                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1218 +                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1219 +             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
1220 +                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1221 +                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1222 +                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1223 +             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
1224 +                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1225 +                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1226 +                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1227 +            
1228 +             dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
1229 +             dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
1230 +             dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1231 +            
1232 +             duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1233 +             duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1234 +             duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1235 +            
1236 +             duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1237 +             duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1238 +             duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1239 + !!$          endif
1240 +       endif
1241      endif
1242 <    
1242 >
1243 >
1244      if (do_pot) then
1245   #ifdef IS_MPI
1246 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1247 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1246 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1247 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1248   #else
1249         pot = pot + epot
1250   #endif
1251      endif
1252 <        
1252 >
1253   #ifdef IS_MPI
1254      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1255      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1256      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1257 <    
1257 >
1258      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1259      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1260      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1261 <    
1261 >
1262      if (i_is_Dipole .or. i_is_Quadrupole) then
1263 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1264 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1265 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1263 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1264 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1265 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1266      endif
1267 +    if (i_is_Quadrupole) then
1268 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1269 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1270 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1271  
1272 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1273 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1274 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1275 +    endif
1276 +
1277      if (j_is_Dipole .or. j_is_Quadrupole) then
1278 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1279 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1280 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1278 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1279 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1280 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1281      endif
1282 +    if (j_is_Quadrupole) then
1283 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1284 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1285 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1286  
1287 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1288 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1289 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1290 +    endif
1291 +
1292   #else
1293      f(1,atom1) = f(1,atom1) + dudx
1294      f(2,atom1) = f(2,atom1) + dudy
1295      f(3,atom1) = f(3,atom1) + dudz
1296 <    
1296 >
1297      f(1,atom2) = f(1,atom2) - dudx
1298      f(2,atom2) = f(2,atom2) - dudy
1299      f(3,atom2) = f(3,atom2) - dudz
1300 <    
1300 >
1301      if (i_is_Dipole .or. i_is_Quadrupole) then
1302 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1303 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1304 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1302 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1303 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1304 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1305      endif
1306 <      
1306 >    if (i_is_Quadrupole) then
1307 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1308 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1309 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1310 >
1311 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1312 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1313 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1314 >    endif
1315 >
1316      if (j_is_Dipole .or. j_is_Quadrupole) then
1317 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1318 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1319 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1317 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1318 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1319 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1320      endif
1321 +    if (j_is_Quadrupole) then
1322 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1323 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1324 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1325 +
1326 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1327 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1328 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1329 +    endif
1330 +
1331   #endif
1332 <    
1332 >
1333   #ifdef IS_MPI
1334      id1 = AtomRowToGlobal(atom1)
1335      id2 = AtomColToGlobal(atom2)
# Line 566 | Line 1339 | contains
1339   #endif
1340  
1341      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1342 <      
1342 >
1343         fpair(1) = fpair(1) + dudx
1344         fpair(2) = fpair(2) + dudy
1345         fpair(3) = fpair(3) + dudz
# Line 575 | Line 1348 | contains
1348  
1349      return
1350    end subroutine doElectrostaticPair
578  
579 end module electrostatic_module
1351  
1352 +  subroutine destroyElectrostaticTypes()
1353 +
1354 +    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1355 +
1356 +  end subroutine destroyElectrostaticTypes
1357 +
1358 +  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1359 +    logical, intent(in) :: do_pot
1360 +    integer, intent(in) :: atom1
1361 +    integer :: atid1
1362 +    real(kind=dp), dimension(9,nLocal) :: eFrame
1363 +    real(kind=dp), dimension(3,nLocal) :: t
1364 +    real(kind=dp) :: mu1, c1
1365 +    real(kind=dp) :: preVal, epot, mypot
1366 +    real(kind=dp) :: eix, eiy, eiz
1367 +
1368 +    ! this is a local only array, so we use the local atom type id's:
1369 +    atid1 = atid(atom1)
1370 +
1371 +    if (.not.summationMethodChecked) then
1372 +       call checkSummationMethod()
1373 +    endif
1374 +    
1375 +    if (summationMethod .eq. REACTION_FIELD) then
1376 +       if (ElectrostaticMap(atid1)%is_Dipole) then
1377 +          mu1 = getDipoleMoment(atid1)
1378 +          
1379 +          preVal = pre22 * preRF2 * mu1*mu1
1380 +          mypot = mypot - 0.5d0*preVal
1381 +          
1382 +          ! The self-correction term adds into the reaction field vector
1383 +          
1384 +          eix = preVal * eFrame(3,atom1)
1385 +          eiy = preVal * eFrame(6,atom1)
1386 +          eiz = preVal * eFrame(9,atom1)
1387 +          
1388 +          ! once again, this is self-self, so only the local arrays are needed
1389 +          ! even for MPI jobs:
1390 +          
1391 +          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1392 +               eFrame(9,atom1)*eiy
1393 +          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1394 +               eFrame(3,atom1)*eiz
1395 +          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1396 +               eFrame(6,atom1)*eix
1397 +          
1398 +       endif
1399 +
1400 +    elseif (summationMethod .eq. SHIFTED_FORCE) then
1401 +       if (ElectrostaticMap(atid1)%is_Charge) then
1402 +          c1 = getCharge(atid1)
1403 +          
1404 +          if (screeningMethod .eq. DAMPED) then
1405 +             mypot = mypot - (f0c * rcuti * 0.5_dp + &
1406 +                  dampingAlpha*invRootPi) * c1 * c1    
1407 +            
1408 +          else            
1409 +             mypot = mypot - (rcuti * 0.5_dp * c1 * c1)
1410 +            
1411 +          endif
1412 +       endif
1413 +    endif
1414 +    
1415 +    return
1416 +  end subroutine self_self
1417 +
1418 +  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1419 +       f, t, do_pot)
1420 +    logical, intent(in) :: do_pot
1421 +    integer, intent(in) :: atom1
1422 +    integer, intent(in) :: atom2
1423 +    logical :: i_is_Charge, j_is_Charge
1424 +    logical :: i_is_Dipole, j_is_Dipole
1425 +    integer :: atid1
1426 +    integer :: atid2
1427 +    real(kind=dp), intent(in) :: rij
1428 +    real(kind=dp), intent(in) :: sw
1429 +    real(kind=dp), intent(in), dimension(3) :: d
1430 +    real(kind=dp), intent(inout) :: vpair
1431 +    real(kind=dp), dimension(9,nLocal) :: eFrame
1432 +    real(kind=dp), dimension(3,nLocal) :: f
1433 +    real(kind=dp), dimension(3,nLocal) :: t
1434 +    real (kind = dp), dimension(3) :: duduz_i
1435 +    real (kind = dp), dimension(3) :: duduz_j
1436 +    real (kind = dp), dimension(3) :: uz_i
1437 +    real (kind = dp), dimension(3) :: uz_j
1438 +    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1439 +    real(kind=dp) :: xhat, yhat, zhat
1440 +    real(kind=dp) :: ct_i, ct_j
1441 +    real(kind=dp) :: ri2, ri3, riji, vterm
1442 +    real(kind=dp) :: pref, preVal, rfVal, myPot
1443 +    real(kind=dp) :: dudx, dudy, dudz, dudr
1444 +
1445 +    if (.not.summationMethodChecked) then
1446 +       call checkSummationMethod()
1447 +    endif
1448 +
1449 +    dudx = 0.0d0
1450 +    dudy = 0.0d0
1451 +    dudz = 0.0d0
1452 +
1453 +    riji = 1.0d0/rij
1454 +
1455 +    xhat = d(1) * riji
1456 +    yhat = d(2) * riji
1457 +    zhat = d(3) * riji
1458 +
1459 +    ! this is a local only array, so we use the local atom type id's:
1460 +    atid1 = atid(atom1)
1461 +    atid2 = atid(atom2)
1462 +    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1463 +    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1464 +    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1465 +    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1466 +
1467 +    if (i_is_Charge.and.j_is_Charge) then
1468 +       q_i = ElectrostaticMap(atid1)%charge
1469 +       q_j = ElectrostaticMap(atid2)%charge
1470 +      
1471 +       preVal = pre11 * q_i * q_j
1472 +       rfVal = preRF*rij*rij
1473 +       vterm = preVal * rfVal
1474 +      
1475 +       myPot = myPot + sw*vterm
1476 +      
1477 +       dudr  = sw*preVal * 2.0d0*rfVal*riji
1478 +      
1479 +       dudx = dudx + dudr * xhat
1480 +       dudy = dudy + dudr * yhat
1481 +       dudz = dudz + dudr * zhat
1482 +      
1483 +    elseif (i_is_Charge.and.j_is_Dipole) then
1484 +       q_i = ElectrostaticMap(atid1)%charge
1485 +       mu_j = ElectrostaticMap(atid2)%dipole_moment
1486 +       uz_j(1) = eFrame(3,atom2)
1487 +       uz_j(2) = eFrame(6,atom2)
1488 +       uz_j(3) = eFrame(9,atom2)
1489 +       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1490 +      
1491 +       ri2 = riji * riji
1492 +       ri3 = ri2 * riji
1493 +      
1494 +       pref = pre12 * q_i * mu_j
1495 +       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1496 +       myPot = myPot + sw*vterm
1497 +      
1498 +       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1499 +            - preRF2*uz_j(1) )
1500 +       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1501 +            - preRF2*uz_j(2) )
1502 +       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1503 +            - preRF2*uz_j(3) )
1504 +      
1505 +       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1506 +       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1507 +       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1508 +      
1509 +    elseif (i_is_Dipole.and.j_is_Charge) then
1510 +       mu_i = ElectrostaticMap(atid1)%dipole_moment
1511 +       q_j = ElectrostaticMap(atid2)%charge
1512 +       uz_i(1) = eFrame(3,atom1)
1513 +       uz_i(2) = eFrame(6,atom1)
1514 +       uz_i(3) = eFrame(9,atom1)
1515 +       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1516 +      
1517 +       ri2 = riji * riji
1518 +       ri3 = ri2 * riji
1519 +      
1520 +       pref = pre12 * q_j * mu_i
1521 +       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1522 +       myPot = myPot + sw*vterm
1523 +      
1524 +       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1525 +            - preRF2*uz_i(1) )
1526 +       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1527 +            - preRF2*uz_i(2) )
1528 +       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1529 +            - preRF2*uz_i(3) )
1530 +      
1531 +       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1532 +       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1533 +       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1534 +      
1535 +    endif
1536 +      
1537 +
1538 +    ! accumulate the forces and torques resulting from the self term
1539 +    f(1,atom1) = f(1,atom1) + dudx
1540 +    f(2,atom1) = f(2,atom1) + dudy
1541 +    f(3,atom1) = f(3,atom1) + dudz
1542 +    
1543 +    f(1,atom2) = f(1,atom2) - dudx
1544 +    f(2,atom2) = f(2,atom2) - dudy
1545 +    f(3,atom2) = f(3,atom2) - dudz
1546 +    
1547 +    if (i_is_Dipole) then
1548 +       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1549 +       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1550 +       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1551 +    elseif (j_is_Dipole) then
1552 +       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1553 +       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1554 +       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1555 +    endif
1556 +
1557 +    return
1558 +  end subroutine rf_self_excludes
1559 +
1560 + end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines