ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2095 by gezelter, Wed Mar 9 15:44:59 2005 UTC vs.
Revision 2439 by chrisfen, Tue Nov 15 19:42:22 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 +
58 + #define __FORTRAN90
59 + #include "UseTheForce/DarkSide/fInteractionMap.h"
60 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
62 +
63 +
64 +  !! these prefactors convert the multipole interactions into kcal / mol
65 +  !! all were computed assuming distances are measured in angstroms
66 +  !! Charge-Charge, assuming charges are measured in electrons
67    real(kind=dp), parameter :: pre11 = 332.0637778_dp
68 <  real(kind=dp), parameter :: pre12 = 69.13291783_dp
69 <  real(kind=dp), parameter :: pre22 = 14.39289874_dp
68 >  !! Charge-Dipole, assuming charges are measured in electrons, and
69 >  !! dipoles are measured in debyes
70 >  real(kind=dp), parameter :: pre12 = 69.13373_dp
71 >  !! Dipole-Dipole, assuming dipoles are measured in debyes
72 >  real(kind=dp), parameter :: pre22 = 14.39325_dp
73 >  !! Charge-Quadrupole, assuming charges are measured in electrons, and
74 >  !! quadrupoles are measured in 10^-26 esu cm^2
75 >  !! This unit is also known affectionately as an esu centi-barn.
76 >  real(kind=dp), parameter :: pre14 = 69.13373_dp
77  
78 +  !! variables to handle different summation methods for long-range
79 +  !! electrostatics:
80 +  integer, save :: summationMethod = NONE
81 +  integer, save :: screeningMethod = UNDAMPED
82 +  logical, save :: summationMethodChecked = .false.
83 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
84 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
85 +  logical, save :: haveDefaultCutoff = .false.
86 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
87 +  real(kind=DP), save :: alpha2 = 0.0_DP
88 +  logical, save :: haveDampingAlpha = .false.
89 +  real(kind=DP), save :: dielectric = 1.0_DP
90 +  logical, save :: haveDielectric = .false.
91 +  real(kind=DP), save :: constEXP = 0.0_DP
92 +  real(kind=dp), save :: rcuti = 0.0_DP
93 +  real(kind=dp), save :: rcuti2 = 0.0_DP
94 +  real(kind=dp), save :: rcuti3 = 0.0_DP
95 +  real(kind=dp), save :: rcuti4 = 0.0_DP
96 +  real(kind=dp), save :: alphaPi = 0.0_DP
97 +  real(kind=dp), save :: invRootPi = 0.0_DP
98 +  real(kind=dp), save :: rrf = 1.0_DP
99 +  real(kind=dp), save :: rt = 1.0_DP
100 +  real(kind=dp), save :: rrfsq = 1.0_DP
101 +  real(kind=dp), save :: preRF = 0.0_DP
102 +  real(kind=dp), save :: preRF2 = 0.0_DP
103 +  real(kind=dp), save :: f0 = 1.0_DP
104 +  real(kind=dp), save :: f1 = 1.0_DP
105 +  real(kind=dp), save :: f2 = 0.0_DP
106 +  real(kind=dp), save :: f0c = 1.0_DP
107 +  real(kind=dp), save :: f1c = 1.0_DP
108 +  real(kind=dp), save :: f2c = 0.0_DP
109 +
110 + #ifdef __IFC
111 + ! error function for ifc version > 7.
112 +  double precision, external :: derfc
113 + #endif
114 +  
115 +  public :: setElectrostaticSummationMethod
116 +  public :: setScreeningMethod
117 +  public :: setElectrostaticCutoffRadius
118 +  public :: setDampingAlpha
119 +  public :: setReactionFieldDielectric
120    public :: newElectrostaticType
121    public :: setCharge
122    public :: setDipoleMoment
# Line 66 | Line 125 | module electrostatic_module
125    public :: doElectrostaticPair
126    public :: getCharge
127    public :: getDipoleMoment
128 +  public :: destroyElectrostaticTypes
129 +  public :: self_self
130 +  public :: rf_self_excludes
131  
132    type :: Electrostatic
133       integer :: c_ident
# Line 73 | Line 135 | module electrostatic_module
135       logical :: is_Dipole = .false.
136       logical :: is_SplitDipole = .false.
137       logical :: is_Quadrupole = .false.
138 +     logical :: is_Tap = .false.
139       real(kind=DP) :: charge = 0.0_DP
140       real(kind=DP) :: dipole_moment = 0.0_DP
141       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 83 | Line 146 | contains
146  
147   contains
148  
149 +  subroutine setElectrostaticSummationMethod(the_ESM)
150 +    integer, intent(in) :: the_ESM    
151 +
152 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
153 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
154 +    endif
155 +
156 +    summationMethod = the_ESM
157 +
158 +  end subroutine setElectrostaticSummationMethod
159 +
160 +  subroutine setScreeningMethod(the_SM)
161 +    integer, intent(in) :: the_SM    
162 +    screeningMethod = the_SM
163 +  end subroutine setScreeningMethod
164 +
165 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
166 +    real(kind=dp), intent(in) :: thisRcut
167 +    real(kind=dp), intent(in) :: thisRsw
168 +    defaultCutoff = thisRcut
169 +    rrf = defaultCutoff
170 +    rt = thisRsw
171 +    haveDefaultCutoff = .true.
172 +  end subroutine setElectrostaticCutoffRadius
173 +
174 +  subroutine setDampingAlpha(thisAlpha)
175 +    real(kind=dp), intent(in) :: thisAlpha
176 +    dampingAlpha = thisAlpha
177 +    alpha2 = dampingAlpha*dampingAlpha
178 +    haveDampingAlpha = .true.
179 +  end subroutine setDampingAlpha
180 +  
181 +  subroutine setReactionFieldDielectric(thisDielectric)
182 +    real(kind=dp), intent(in) :: thisDielectric
183 +    dielectric = thisDielectric
184 +    haveDielectric = .true.
185 +  end subroutine setReactionFieldDielectric
186 +
187    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
188 <       is_SplitDipole, is_Quadrupole, status)
189 <    
188 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
189 >
190      integer, intent(in) :: c_ident
191      logical, intent(in) :: is_Charge
192      logical, intent(in) :: is_Dipole
193      logical, intent(in) :: is_SplitDipole
194      logical, intent(in) :: is_Quadrupole
195 +    logical, intent(in) :: is_Tap
196      integer, intent(out) :: status
197      integer :: nAtypes, myATID, i, j
198  
199      status = 0
200      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
201 <    
201 >
202      !! Be simple-minded and assume that we need an ElectrostaticMap that
203      !! is the same size as the total number of atom types
204  
205      if (.not.allocated(ElectrostaticMap)) then
206 <      
206 >
207         nAtypes = getSize(atypes)
208 <    
208 >
209         if (nAtypes == 0) then
210            status = -1
211            return
212         end if
213 <      
213 >
214         if (.not. allocated(ElectrostaticMap)) then
215            allocate(ElectrostaticMap(nAtypes))
216         endif
217 <      
217 >
218      end if
219  
220      if (myATID .gt. size(ElectrostaticMap)) then
221         status = -1
222         return
223      endif
224 <    
224 >
225      ! set the values for ElectrostaticMap for this atom type:
226  
227      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 127 | Line 229 | contains
229      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
230      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
231      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
232 <    
232 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
233 >
234    end subroutine newElectrostaticType
235  
236    subroutine setCharge(c_ident, charge, status)
# Line 155 | Line 258 | contains
258         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
259         status = -1
260         return
261 <    endif      
261 >    endif
262  
263      ElectrostaticMap(myATID)%charge = charge
264    end subroutine setCharge
# Line 246 | Line 349 | contains
349         status = -1
350         return
351      endif
352 <    
352 >
353      do i = 1, 3
354 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 <               quadrupole_moments(i)
356 <       enddo
354 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 >            quadrupole_moments(i)
356 >    enddo
357  
358    end subroutine setQuadrupoleMoments
359  
360 <  
360 >
361    function getCharge(atid) result (c)
362      integer, intent(in) :: atid
363      integer :: localError
364      real(kind=dp) :: c
365 <    
365 >
366      if (.not.allocated(ElectrostaticMap)) then
367         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
368         return
369      end if
370 <    
370 >
371      if (.not.ElectrostaticMap(atid)%is_Charge) then
372         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
373         return
374      endif
375 <    
375 >
376      c = ElectrostaticMap(atid)%charge
377    end function getCharge
378  
# Line 277 | Line 380 | contains
380      integer, intent(in) :: atid
381      integer :: localError
382      real(kind=dp) :: dm
383 <    
383 >
384      if (.not.allocated(ElectrostaticMap)) then
385         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
386         return
387      end if
388 <    
388 >
389      if (.not.ElectrostaticMap(atid)%is_Dipole) then
390         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
391         return
392      endif
393 <    
393 >
394      dm = ElectrostaticMap(atid)%dipole_moment
395    end function getDipoleMoment
396  
397 +  subroutine checkSummationMethod()
398 +
399 +    if (.not.haveDefaultCutoff) then
400 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
401 +    endif
402 +
403 +    rcuti = 1.0d0 / defaultCutoff
404 +    rcuti2 = rcuti*rcuti
405 +    rcuti3 = rcuti2*rcuti
406 +    rcuti4 = rcuti2*rcuti2
407 +
408 +    if (screeningMethod .eq. DAMPED) then
409 +       if (.not.haveDampingAlpha) then
410 +          call handleError("checkSummationMethod", "no Damping Alpha set!")
411 +       endif
412 +      
413 +       if (.not.haveDefaultCutoff) then
414 +          call handleError("checkSummationMethod", "no Default Cutoff set!")
415 +       endif
416 +
417 +       constEXP = exp(-alpha2*defaultCutoff*defaultCutoff)
418 +       invRootPi = 0.56418958354775628695d0
419 +       alphaPi = 2.0d0*dampingAlpha*invRootPi
420 +       f0c = derfc(dampingAlpha*defaultCutoff)
421 +       f1c = alphaPi*defaultCutoff*constEXP + f0c
422 +       f2c = alphaPi*2.0d0*alpha2*constEXP*rcuti2
423 +
424 +    endif
425 +
426 +    if (summationMethod .eq. REACTION_FIELD) then
427 +       if (haveDielectric) then
428 +          defaultCutoff2 = defaultCutoff*defaultCutoff
429 +          preRF = (dielectric-1.0d0) / &
430 +               ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
431 +          preRF2 = 2.0d0*preRF
432 +       else
433 +          call handleError("checkSummationMethod", "Dielectric not set")
434 +       endif
435 +      
436 +    endif
437 +
438 +    summationMethodChecked = .true.
439 +  end subroutine checkSummationMethod
440 +
441 +
442    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
443         vpair, fpair, pot, eFrame, f, t, do_pot)
444 <    
444 >
445      logical, intent(in) :: do_pot
446 <    
446 >
447      integer, intent(in) :: atom1, atom2
448      integer :: localError
449  
450      real(kind=dp), intent(in) :: rij, r2, sw
451      real(kind=dp), intent(in), dimension(3) :: d
452      real(kind=dp), intent(inout) :: vpair
453 <    real(kind=dp), intent(inout), dimension(3) :: fpair
453 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
454  
455      real( kind = dp ) :: pot
456      real( kind = dp ), dimension(9,nLocal) :: eFrame
457      real( kind = dp ), dimension(3,nLocal) :: f
458 +    real( kind = dp ), dimension(3,nLocal) :: felec
459      real( kind = dp ), dimension(3,nLocal) :: t
311    
312    real (kind = dp), dimension(3) :: ul_i
313    real (kind = dp), dimension(3) :: ul_j
460  
461 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
462 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
463 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
464 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
465 +
466      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
467      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
468 +    logical :: i_is_Tap, j_is_Tap
469      integer :: me1, me2, id1, id2
470      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
471 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
472 <    real (kind=dp) :: riji, ri2, ri3, ri4
473 <    real (kind=dp) :: pref, vterm, epot, dudr    
471 >    real (kind=dp) :: qxx_i, qyy_i, qzz_i
472 >    real (kind=dp) :: qxx_j, qyy_j, qzz_j
473 >    real (kind=dp) :: cx_i, cy_i, cz_i
474 >    real (kind=dp) :: cx_j, cy_j, cz_j
475 >    real (kind=dp) :: cx2, cy2, cz2
476 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
477 >    real (kind=dp) :: riji, ri, ri2, ri3, ri4
478 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
479 >    real (kind=dp) :: xhat, yhat, zhat
480      real (kind=dp) :: dudx, dudy, dudz
481 <    real (kind=dp) :: drdxj, drdyj, drdzj
482 <    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
481 >    real (kind=dp) :: scale, sc2, bigR
482 >    real (kind=dp) :: varEXP
483 >    real (kind=dp) :: pot_term
484 >    real (kind=dp) :: preVal, rfVal
485  
326
486      if (.not.allocated(ElectrostaticMap)) then
487         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
488         return
489      end if
490  
491 +    if (.not.summationMethodChecked) then
492 +       call checkSummationMethod()
493 +    endif
494 +
495   #ifdef IS_MPI
496      me1 = atid_Row(atom1)
497      me2 = atid_Col(atom2)
# Line 337 | Line 500 | contains
500      me2 = atid(atom2)
501   #endif
502  
503 + !!$    if (rij .ge. defaultCutoff) then
504 + !!$       write(*,*) 'warning: rij = ', rij, ' rcut = ', defaultCutoff, ' sw = ', sw
505 + !!$    endif
506 +
507      !! some variables we'll need independent of electrostatic type:
508  
509      riji = 1.0d0 / rij
510 +  
511 +    xhat = d(1) * riji
512 +    yhat = d(2) * riji
513 +    zhat = d(3) * riji
514  
344    !! these are also useful as the unit vector of \vec{r}
345    !! \hat{r} = \vec{r} / r =   {(x_j-x_i) / r, (y_j-y_i)/r, (z_j-z_i)/r}
346
347    drdxj = d(1) * riji
348    drdyj = d(2) * riji
349    drdzj = d(3) * riji
350
515      !! logicals
352
516      i_is_Charge = ElectrostaticMap(me1)%is_Charge
517      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
518      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
519      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
520 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
521  
522      j_is_Charge = ElectrostaticMap(me2)%is_Charge
523      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
524      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
525      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
526 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
527  
528      if (i_is_Charge) then
529         q_i = ElectrostaticMap(me1)%charge      
530      endif
531 <    
531 >
532      if (i_is_Dipole) then
533         mu_i = ElectrostaticMap(me1)%dipole_moment
534   #ifdef IS_MPI
535 <       ul_i(1) = eFrame_Row(3,atom1)
536 <       ul_i(2) = eFrame_Row(6,atom1)
537 <       ul_i(3) = eFrame_Row(9,atom1)
535 >       uz_i(1) = eFrame_Row(3,atom1)
536 >       uz_i(2) = eFrame_Row(6,atom1)
537 >       uz_i(3) = eFrame_Row(9,atom1)
538   #else
539 <       ul_i(1) = eFrame(3,atom1)
540 <       ul_i(2) = eFrame(6,atom1)
541 <       ul_i(3) = eFrame(9,atom1)
539 >       uz_i(1) = eFrame(3,atom1)
540 >       uz_i(2) = eFrame(6,atom1)
541 >       uz_i(3) = eFrame(9,atom1)
542   #endif
543 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
543 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
544  
545         if (i_is_SplitDipole) then
546            d_i = ElectrostaticMap(me1)%split_dipole_distance
547         endif
548 <      
548 >
549      endif
550  
551 +    if (i_is_Quadrupole) then
552 +       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
553 +       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
554 +       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
555 + #ifdef IS_MPI
556 +       ux_i(1) = eFrame_Row(1,atom1)
557 +       ux_i(2) = eFrame_Row(4,atom1)
558 +       ux_i(3) = eFrame_Row(7,atom1)
559 +       uy_i(1) = eFrame_Row(2,atom1)
560 +       uy_i(2) = eFrame_Row(5,atom1)
561 +       uy_i(3) = eFrame_Row(8,atom1)
562 +       uz_i(1) = eFrame_Row(3,atom1)
563 +       uz_i(2) = eFrame_Row(6,atom1)
564 +       uz_i(3) = eFrame_Row(9,atom1)
565 + #else
566 +       ux_i(1) = eFrame(1,atom1)
567 +       ux_i(2) = eFrame(4,atom1)
568 +       ux_i(3) = eFrame(7,atom1)
569 +       uy_i(1) = eFrame(2,atom1)
570 +       uy_i(2) = eFrame(5,atom1)
571 +       uy_i(3) = eFrame(8,atom1)
572 +       uz_i(1) = eFrame(3,atom1)
573 +       uz_i(2) = eFrame(6,atom1)
574 +       uz_i(3) = eFrame(9,atom1)
575 + #endif
576 +       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
577 +       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
578 +       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
579 +    endif
580 +
581      if (j_is_Charge) then
582         q_j = ElectrostaticMap(me2)%charge      
583      endif
584 <    
584 >
585      if (j_is_Dipole) then
586         mu_j = ElectrostaticMap(me2)%dipole_moment
587   #ifdef IS_MPI
588 <       ul_j(1) = eFrame_Col(3,atom2)
589 <       ul_j(2) = eFrame_Col(6,atom2)
590 <       ul_j(3) = eFrame_Col(9,atom2)
588 >       uz_j(1) = eFrame_Col(3,atom2)
589 >       uz_j(2) = eFrame_Col(6,atom2)
590 >       uz_j(3) = eFrame_Col(9,atom2)
591   #else
592 <       ul_j(1) = eFrame(3,atom2)
593 <       ul_j(2) = eFrame(6,atom2)
594 <       ul_j(3) = eFrame(9,atom2)
592 >       uz_j(1) = eFrame(3,atom2)
593 >       uz_j(2) = eFrame(6,atom2)
594 >       uz_j(3) = eFrame(9,atom2)
595   #endif
596 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
596 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
597  
598         if (j_is_SplitDipole) then
599            d_j = ElectrostaticMap(me2)%split_dipole_distance
600         endif
601      endif
602  
603 +    if (j_is_Quadrupole) then
604 +       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
605 +       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
606 +       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
607 + #ifdef IS_MPI
608 +       ux_j(1) = eFrame_Col(1,atom2)
609 +       ux_j(2) = eFrame_Col(4,atom2)
610 +       ux_j(3) = eFrame_Col(7,atom2)
611 +       uy_j(1) = eFrame_Col(2,atom2)
612 +       uy_j(2) = eFrame_Col(5,atom2)
613 +       uy_j(3) = eFrame_Col(8,atom2)
614 +       uz_j(1) = eFrame_Col(3,atom2)
615 +       uz_j(2) = eFrame_Col(6,atom2)
616 +       uz_j(3) = eFrame_Col(9,atom2)
617 + #else
618 +       ux_j(1) = eFrame(1,atom2)
619 +       ux_j(2) = eFrame(4,atom2)
620 +       ux_j(3) = eFrame(7,atom2)
621 +       uy_j(1) = eFrame(2,atom2)
622 +       uy_j(2) = eFrame(5,atom2)
623 +       uy_j(3) = eFrame(8,atom2)
624 +       uz_j(1) = eFrame(3,atom2)
625 +       uz_j(2) = eFrame(6,atom2)
626 +       uz_j(3) = eFrame(9,atom2)
627 + #endif
628 +       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
629 +       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
630 +       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
631 +    endif
632 +  
633      epot = 0.0_dp
634      dudx = 0.0_dp
635      dudy = 0.0_dp
636      dudz = 0.0_dp
637  
638 <    duduix = 0.0_dp
639 <    duduiy = 0.0_dp
640 <    duduiz = 0.0_dp
638 >    dudux_i = 0.0_dp
639 >    duduy_i = 0.0_dp
640 >    duduz_i = 0.0_dp
641  
642 <    dudujx = 0.0_dp
643 <    dudujy = 0.0_dp
644 <    dudujz = 0.0_dp
642 >    dudux_j = 0.0_dp
643 >    duduy_j = 0.0_dp
644 >    duduz_j = 0.0_dp
645  
646      if (i_is_Charge) then
647  
648         if (j_is_Charge) then
649 <          
650 <          vterm = pre11 * q_i * q_j * riji
649 >          if (screeningMethod .eq. DAMPED) then
650 >             f0 = derfc(dampingAlpha*rij)
651 >             varEXP = exp(-alpha2*rij*rij)
652 >             f1 = alphaPi*rij*varEXP + f0
653 >          endif
654 >
655 >          preVal = pre11 * q_i * q_j
656 >
657 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
658 >             vterm = preVal * (riji*f0 - rcuti*f0c)
659 >            
660 >             dudr  = -sw * preVal * riji * riji * f1
661 >  
662 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
663 >             vterm = preVal * ( riji*f0 - rcuti*f0c + &
664 >                  f1c*rcuti2*(rij-defaultCutoff) )
665 >            
666 >             dudr  = -sw*preVal * (riji*riji*f1 - rcuti2*f1c)
667 >  
668 >          elseif (summationMethod .eq. REACTION_FIELD) then
669 >             rfVal = preRF*rij*rij
670 >             vterm = preVal * ( riji + rfVal )
671 >            
672 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
673 >  
674 >          else
675 >             vterm = preVal * riji*f0
676 >            
677 >             dudr  = - sw * preVal * riji*riji*f1
678 >  
679 >          endif
680 >
681            vpair = vpair + vterm
682            epot = epot + sw*vterm
683  
684 <          dudr  = - sw * vterm * riji
684 >          dudx = dudx + dudr * xhat
685 >          dudy = dudy + dudr * yhat
686 >          dudz = dudz + dudr * zhat
687  
431          dudx = dudx + dudr * drdxj
432          dudy = dudy + dudr * drdyj
433          dudz = dudz + dudr * drdzj
434      
688         endif
689  
690         if (j_is_Dipole) then
691  
439          ri2 = riji * riji
440          ri3 = ri2 * riji
441
692            pref = pre12 * q_i * mu_j
443          vterm = pref * ct_j * riji * riji
444          vpair = vpair + vterm
445          epot = epot + sw * vterm
693  
694 <          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0 * ct_j * drdxj)
695 <          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0 * ct_j * drdyj)
696 <          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0 * ct_j * drdzj)
694 >          if (summationMethod .eq. REACTION_FIELD) then
695 >             ri2 = riji * riji
696 >             ri3 = ri2 * riji
697 >    
698 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
699 >             vpair = vpair + vterm
700 >             epot = epot + sw*vterm
701 >            
702 >             !! this has a + sign in the () because the rij vector is
703 >             !! r_j - r_i and the charge-dipole potential takes the origin
704 >             !! as the point dipole, which is atom j in this case.
705 >            
706 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
707 >                                     preRF2*uz_j(1) )
708 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
709 >                                     preRF2*uz_j(2) )
710 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
711 >                                     preRF2*uz_j(3) )        
712 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
713 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
714 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
715  
716 <          dudujx = dudujx - pref * sw * ri2 * drdxj
717 <          dudujy = dudujy - pref * sw * ri2 * drdyj
718 <          dudujz = dudujz - pref * sw * ri2 * drdzj
719 <          
716 >          else
717 >             if (j_is_SplitDipole) then
718 >                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
719 >                ri = 1.0_dp / BigR
720 >                scale = rij * ri
721 >             else
722 >                ri = riji
723 >                scale = 1.0_dp
724 >             endif
725 >            
726 >             ri2 = ri * ri
727 >             ri3 = ri2 * ri
728 >             sc2 = scale * scale
729 >
730 >             vterm = - pref * ct_j * ri2 * scale
731 >             vpair = vpair + vterm
732 >             epot = epot + sw*vterm
733 >            
734 >             !! this has a + sign in the () because the rij vector is
735 >             !! r_j - r_i and the charge-dipole potential takes the origin
736 >             !! as the point dipole, which is atom j in this case.
737 >            
738 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
739 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
740 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
741 >            
742 >             duduz_j(1) = duduz_j(1) - sw*pref * ri2 * xhat * scale
743 >             duduz_j(2) = duduz_j(2) - sw*pref * ri2 * yhat * scale
744 >             duduz_j(3) = duduz_j(3) - sw*pref * ri2 * zhat * scale
745 >
746 >          endif
747         endif
456    endif
457  
458    if (i_is_Dipole) then
459      
460       if (j_is_Charge) then
748  
749 +       if (j_is_Quadrupole) then
750            ri2 = riji * riji
751            ri3 = ri2 * riji
752 +          ri4 = ri2 * ri2
753 +          cx2 = cx_j * cx_j
754 +          cy2 = cy_j * cy_j
755 +          cz2 = cz_j * cz_j
756  
757 <          pref = pre12 * q_j * mu_i
758 <          vterm = pref * ct_i * riji * riji
757 >          pref =  pre14 * q_i / 3.0_dp
758 >          vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
759 >               qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
760 >               qzz_j * (3.0_dp*cz2 - 1.0_dp))
761            vpair = vpair + vterm
762 <          epot = epot + sw * vterm
763 <
764 <          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * drdxj)
765 <          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * drdyj)
766 <          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * drdzj)
767 <
768 <          duduix = duduix + pref * sw * ri2 * drdxj
769 <          duduiy = duduiy + pref * sw * ri2 * drdyj
770 <          duduiz = duduiz + pref * sw * ri2 * drdzj
762 >          epot = epot + sw*vterm
763 >          
764 >          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
765 >               qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
766 >               qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
767 >               qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
768 >          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
769 >               qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
770 >               qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
771 >               qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
772 >          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
773 >               qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
774 >               qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
775 >               qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
776 >          
777 >          dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
778 >          dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
779 >          dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
780 >          
781 >          duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
782 >          duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
783 >          duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
784 >          
785 >          duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
786 >          duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
787 >          duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
788 >          
789         endif
790 +    endif
791 +    
792 +    if (i_is_Dipole) then
793  
794 <       if (j_is_Dipole) then
794 >       if (j_is_Charge) then
795 >          
796 >          pref = pre12 * q_j * mu_i
797 >          
798 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
799 >             ri2 = riji * riji
800 >             ri3 = ri2 * riji
801 >            
802 >             pot_term = ri2 - rcuti2
803 >             vterm = pref * ct_i * pot_term
804 >             vpair = vpair + vterm
805 >             epot = epot + sw*vterm
806 >            
807 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1)-3.0d0*ct_i*xhat) )
808 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2)-3.0d0*ct_i*yhat) )
809 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3)-3.0d0*ct_i*zhat) )
810 >            
811 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
812 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
813 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
814  
815 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
815 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
816 >             ri2 = riji * riji
817 >             ri3 = ri2 * riji
818 >
819 >             pot_term = ri2 - rcuti2 + 2.0d0*rcuti3*( rij - defaultCutoff )
820 >             vterm = pref * ct_i * pot_term
821 >             vpair = vpair + vterm
822 >             epot = epot + sw*vterm
823 >            
824 >             dudx = dudx + sw*pref * ( (ri3-rcuti3)*(uz_i(1)-3.0d0*ct_i*xhat) )
825 >             dudy = dudy + sw*pref * ( (ri3-rcuti3)*(uz_i(2)-3.0d0*ct_i*yhat) )
826 >             dudz = dudz + sw*pref * ( (ri3-rcuti3)*(uz_i(3)-3.0d0*ct_i*zhat) )
827 >            
828 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
829 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
830 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
831 >
832 >          elseif (summationMethod .eq. REACTION_FIELD) then
833 >             ri2 = riji * riji
834 >             ri3 = ri2 * riji
835 >
836 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
837 >             vpair = vpair + vterm
838 >             epot = epot + sw*vterm
839 >            
840 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
841 >                  preRF2*uz_i(1) )
842 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
843 >                  preRF2*uz_i(2) )
844 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
845 >                  preRF2*uz_i(3) )
846 >            
847 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
848 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
849 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
850 >
851 >          else
852 >             if (i_is_SplitDipole) then
853 >                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
854 >                ri = 1.0_dp / BigR
855 >                scale = rij * ri
856 >             else
857 >                ri = riji
858 >                scale = 1.0_dp
859 >             endif
860 >            
861 >             ri2 = ri * ri
862 >             ri3 = ri2 * ri
863 >             sc2 = scale * scale
864 >
865 >             vterm = pref * ct_i * ri2 * scale
866 >             vpair = vpair + vterm
867 >             epot = epot + sw*vterm
868 >            
869 >             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
870 >             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
871 >             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
872 >            
873 >             duduz_i(1) = duduz_i(1) + sw*pref * ri2 * xhat * scale
874 >             duduz_i(2) = duduz_i(2) + sw*pref * ri2 * yhat * scale
875 >             duduz_i(3) = duduz_i(3) + sw*pref * ri2 * zhat * scale
876 >          endif
877 >       endif
878 >      
879 >       if (j_is_Dipole) then
880 >          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
881 >          
882            ri2 = riji * riji
883            ri3 = ri2 * riji
884            ri4 = ri2 * ri2
485
486          pref = pre22 * mu_i * mu_j
487          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j)
488          vpair = vpair + vterm
489          epot = epot + sw * vterm
885            
886 <          a1 = 5.0d0 * ct_i * ct_j - ct_ij
886 >          pref = pre22 * mu_i * mu_j
887  
888 <          dudx = dudx + pref*sw*3.0d0*ri4*(a1*drdxj-ct_i*ul_j(1)-ct_j*ul_i(1))
889 <          dudy = dudy + pref*sw*3.0d0*ri4*(a1*drdyj-ct_i*ul_j(2)-ct_j*ul_i(2))
890 <          dudz = dudz + pref*sw*3.0d0*ri4*(a1*drdzj-ct_i*ul_j(3)-ct_j*ul_i(3))
888 >          if (summationMethod .eq. REACTION_FIELD) then
889 >             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
890 >                  preRF2*ct_ij )
891 >             vpair = vpair + vterm
892 >             epot = epot + sw*vterm
893 >            
894 >             a1 = 5.0d0 * ct_i * ct_j - ct_ij
895 >            
896 >             dudx = dudx + sw*pref*3.0d0*ri4 &
897 >                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
898 >             dudy = dudy + sw*pref*3.0d0*ri4 &
899 >                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
900 >             dudz = dudz + sw*pref*3.0d0*ri4 &
901 >                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
902 >            
903 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
904 >                  - preRF2*uz_j(1))
905 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
906 >                  - preRF2*uz_j(2))
907 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
908 >                  - preRF2*uz_j(3))
909 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
910 >                  - preRF2*uz_i(1))
911 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
912 >                  - preRF2*uz_i(2))
913 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
914 >                  - preRF2*uz_i(3))
915  
916 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*drdxj)
917 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*drdyj)
918 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*drdzj)
916 >          else
917 >             if (i_is_SplitDipole) then
918 >                if (j_is_SplitDipole) then
919 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
920 >                else
921 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
922 >                endif
923 >                ri = 1.0_dp / BigR
924 >                scale = rij * ri                
925 >             else
926 >                if (j_is_SplitDipole) then
927 >                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
928 >                   ri = 1.0_dp / BigR
929 >                   scale = rij * ri                            
930 >                else                
931 >                   ri = riji
932 >                   scale = 1.0_dp
933 >                endif
934 >             endif
935 >            
936 >             sc2 = scale * scale
937  
938 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*drdxj)
939 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*drdyj)
940 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*drdzj)
938 >             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
939 >             vpair = vpair + vterm
940 >             epot = epot + sw*vterm
941 >            
942 >             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
943 >            
944 >             dudx = dudx + sw*pref*3.0d0*ri4*scale &
945 >                             *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
946 >             dudy = dudy + sw*pref*3.0d0*ri4*scale &
947 >                             *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
948 >             dudz = dudz + sw*pref*3.0d0*ri4*scale &
949 >                             *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
950 >            
951 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3 &
952 >                                         *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
953 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3 &
954 >                                         *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
955 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3 &
956 >                                         *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
957 >            
958 >             duduz_j(1) = duduz_j(1) + sw*pref*ri3 &
959 >                                         *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
960 >             duduz_j(2) = duduz_j(2) + sw*pref*ri3 &
961 >                                         *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
962 >             duduz_j(3) = duduz_j(3) + sw*pref*ri3 &
963 >                                         *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
964 >          endif
965         endif
966 +    endif
967  
968 +    if (i_is_Quadrupole) then
969 +       if (j_is_Charge) then
970 +          ri2 = riji * riji
971 +          ri3 = ri2 * riji
972 +          ri4 = ri2 * ri2
973 +          cx2 = cx_i * cx_i
974 +          cy2 = cy_i * cy_i
975 +          cz2 = cz_i * cz_i
976 +
977 +          pref = pre14 * q_j / 3.0_dp
978 +          vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
979 +               qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
980 +               qzz_i * (3.0_dp*cz2 - 1.0_dp))
981 +          vpair = vpair + vterm
982 +          epot = epot + sw*vterm
983 +          
984 +          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
985 +               qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
986 +               qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
987 +               qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
988 +          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
989 +               qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
990 +               qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
991 +               qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
992 +          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
993 +               qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
994 +               qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
995 +               qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
996 +          
997 +          dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
998 +          dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
999 +          dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1000 +          
1001 +          duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1002 +          duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1003 +          duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1004 +          
1005 +          duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1006 +          duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1007 +          duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1008 +
1009 +       endif
1010      endif
1011 <    
1011 >
1012 >
1013      if (do_pot) then
1014   #ifdef IS_MPI
1015 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1016 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1015 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1016 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1017   #else
1018         pot = pot + epot
1019   #endif
1020      endif
1021 <        
1021 >
1022   #ifdef IS_MPI
1023      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1024      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1025      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1026 <    
1026 >
1027      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1028      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1029      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1030 <    
1030 >
1031      if (i_is_Dipole .or. i_is_Quadrupole) then
1032 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1033 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1034 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1032 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1033 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1034 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1035      endif
1036 +    if (i_is_Quadrupole) then
1037 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1038 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1039 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1040  
1041 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1042 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1043 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1044 +    endif
1045 +
1046      if (j_is_Dipole .or. j_is_Quadrupole) then
1047 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1048 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1049 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1047 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1048 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1049 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1050      endif
1051 +    if (j_is_Quadrupole) then
1052 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1053 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1054 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1055  
1056 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1057 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1058 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1059 +    endif
1060 +
1061   #else
1062      f(1,atom1) = f(1,atom1) + dudx
1063      f(2,atom1) = f(2,atom1) + dudy
1064      f(3,atom1) = f(3,atom1) + dudz
1065 <    
1065 >
1066      f(1,atom2) = f(1,atom2) - dudx
1067      f(2,atom2) = f(2,atom2) - dudy
1068      f(3,atom2) = f(3,atom2) - dudz
1069 <    
1069 >
1070      if (i_is_Dipole .or. i_is_Quadrupole) then
1071 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1072 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1073 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1071 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1072 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1073 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1074      endif
1075 <      
1075 >    if (i_is_Quadrupole) then
1076 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1077 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1078 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1079 >
1080 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1081 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1082 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1083 >    endif
1084 >
1085      if (j_is_Dipole .or. j_is_Quadrupole) then
1086 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1087 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1088 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1086 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1087 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1088 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1089      endif
1090 +    if (j_is_Quadrupole) then
1091 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1092 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1093 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1094 +
1095 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1096 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1097 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1098 +    endif
1099 +
1100   #endif
1101 <    
1101 >
1102   #ifdef IS_MPI
1103      id1 = AtomRowToGlobal(atom1)
1104      id2 = AtomColToGlobal(atom2)
# Line 566 | Line 1108 | contains
1108   #endif
1109  
1110      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1111 <      
1111 >
1112         fpair(1) = fpair(1) + dudx
1113         fpair(2) = fpair(2) + dudy
1114         fpair(3) = fpair(3) + dudz
# Line 575 | Line 1117 | contains
1117  
1118      return
1119    end subroutine doElectrostaticPair
578  
579 end module electrostatic_module
1120  
1121 +  subroutine destroyElectrostaticTypes()
1122 +
1123 +    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1124 +
1125 +  end subroutine destroyElectrostaticTypes
1126 +
1127 +  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1128 +    logical, intent(in) :: do_pot
1129 +    integer, intent(in) :: atom1
1130 +    integer :: atid1
1131 +    real(kind=dp), dimension(9,nLocal) :: eFrame
1132 +    real(kind=dp), dimension(3,nLocal) :: t
1133 +    real(kind=dp) :: mu1, c1
1134 +    real(kind=dp) :: preVal, epot, mypot
1135 +    real(kind=dp) :: eix, eiy, eiz
1136 +
1137 +    ! this is a local only array, so we use the local atom type id's:
1138 +    atid1 = atid(atom1)
1139 +
1140 +    if (.not.summationMethodChecked) then
1141 +       call checkSummationMethod()
1142 +    endif
1143 +    
1144 +    if (summationMethod .eq. REACTION_FIELD) then
1145 +       if (ElectrostaticMap(atid1)%is_Dipole) then
1146 +          mu1 = getDipoleMoment(atid1)
1147 +          
1148 +          preVal = pre22 * preRF2 * mu1*mu1
1149 +          mypot = mypot - 0.5d0*preVal
1150 +          
1151 +          ! The self-correction term adds into the reaction field vector
1152 +          
1153 +          eix = preVal * eFrame(3,atom1)
1154 +          eiy = preVal * eFrame(6,atom1)
1155 +          eiz = preVal * eFrame(9,atom1)
1156 +          
1157 +          ! once again, this is self-self, so only the local arrays are needed
1158 +          ! even for MPI jobs:
1159 +          
1160 +          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1161 +               eFrame(9,atom1)*eiy
1162 +          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1163 +               eFrame(3,atom1)*eiz
1164 +          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1165 +               eFrame(6,atom1)*eix
1166 +          
1167 +       endif
1168 +
1169 +    elseif (summationMethod .eq. SHIFTED_FORCE) then
1170 +       if (ElectrostaticMap(atid1)%is_Charge) then
1171 +          c1 = getCharge(atid1)
1172 +          
1173 +          if (screeningMethod .eq. DAMPED) then
1174 +             mypot = mypot - (f0c * rcuti * 0.5_dp + &
1175 +                  dampingAlpha*invRootPi) * c1 * c1    
1176 +            
1177 +          else            
1178 +             mypot = mypot - (rcuti * 0.5_dp * c1 * c1)
1179 +            
1180 +          endif
1181 +       endif
1182 +    endif
1183 +    
1184 +    return
1185 +  end subroutine self_self
1186 +
1187 +  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1188 +       f, t, do_pot)
1189 +    logical, intent(in) :: do_pot
1190 +    integer, intent(in) :: atom1
1191 +    integer, intent(in) :: atom2
1192 +    logical :: i_is_Charge, j_is_Charge
1193 +    logical :: i_is_Dipole, j_is_Dipole
1194 +    integer :: atid1
1195 +    integer :: atid2
1196 +    real(kind=dp), intent(in) :: rij
1197 +    real(kind=dp), intent(in) :: sw
1198 +    real(kind=dp), intent(in), dimension(3) :: d
1199 +    real(kind=dp), intent(inout) :: vpair
1200 +    real(kind=dp), dimension(9,nLocal) :: eFrame
1201 +    real(kind=dp), dimension(3,nLocal) :: f
1202 +    real(kind=dp), dimension(3,nLocal) :: t
1203 +    real (kind = dp), dimension(3) :: duduz_i
1204 +    real (kind = dp), dimension(3) :: duduz_j
1205 +    real (kind = dp), dimension(3) :: uz_i
1206 +    real (kind = dp), dimension(3) :: uz_j
1207 +    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1208 +    real(kind=dp) :: xhat, yhat, zhat
1209 +    real(kind=dp) :: ct_i, ct_j
1210 +    real(kind=dp) :: ri2, ri3, riji, vterm
1211 +    real(kind=dp) :: pref, preVal, rfVal, myPot
1212 +    real(kind=dp) :: dudx, dudy, dudz, dudr
1213 +
1214 +    if (.not.summationMethodChecked) then
1215 +       call checkSummationMethod()
1216 +    endif
1217 +
1218 +    dudx = 0.0d0
1219 +    dudy = 0.0d0
1220 +    dudz = 0.0d0
1221 +
1222 +    riji = 1.0d0/rij
1223 +
1224 +    xhat = d(1) * riji
1225 +    yhat = d(2) * riji
1226 +    zhat = d(3) * riji
1227 +
1228 +    ! this is a local only array, so we use the local atom type id's:
1229 +    atid1 = atid(atom1)
1230 +    atid2 = atid(atom2)
1231 +    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1232 +    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1233 +    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1234 +    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1235 +
1236 +    if (i_is_Charge.and.j_is_Charge) then
1237 +       q_i = ElectrostaticMap(atid1)%charge
1238 +       q_j = ElectrostaticMap(atid2)%charge
1239 +      
1240 +       preVal = pre11 * q_i * q_j
1241 +       rfVal = preRF*rij*rij
1242 +       vterm = preVal * rfVal
1243 +      
1244 +       myPot = myPot + sw*vterm
1245 +      
1246 +       dudr  = sw*preVal * 2.0d0*rfVal*riji
1247 +      
1248 +       dudx = dudx + dudr * xhat
1249 +       dudy = dudy + dudr * yhat
1250 +       dudz = dudz + dudr * zhat
1251 +      
1252 +    elseif (i_is_Charge.and.j_is_Dipole) then
1253 +       q_i = ElectrostaticMap(atid1)%charge
1254 +       mu_j = ElectrostaticMap(atid2)%dipole_moment
1255 +       uz_j(1) = eFrame(3,atom2)
1256 +       uz_j(2) = eFrame(6,atom2)
1257 +       uz_j(3) = eFrame(9,atom2)
1258 +       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1259 +      
1260 +       ri2 = riji * riji
1261 +       ri3 = ri2 * riji
1262 +      
1263 +       pref = pre12 * q_i * mu_j
1264 +       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1265 +       myPot = myPot + sw*vterm
1266 +      
1267 +       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1268 +            - preRF2*uz_j(1) )
1269 +       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1270 +            - preRF2*uz_j(2) )
1271 +       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1272 +            - preRF2*uz_j(3) )
1273 +      
1274 +       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1275 +       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1276 +       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1277 +      
1278 +    elseif (i_is_Dipole.and.j_is_Charge) then
1279 +       mu_i = ElectrostaticMap(atid1)%dipole_moment
1280 +       q_j = ElectrostaticMap(atid2)%charge
1281 +       uz_i(1) = eFrame(3,atom1)
1282 +       uz_i(2) = eFrame(6,atom1)
1283 +       uz_i(3) = eFrame(9,atom1)
1284 +       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1285 +      
1286 +       ri2 = riji * riji
1287 +       ri3 = ri2 * riji
1288 +      
1289 +       pref = pre12 * q_j * mu_i
1290 +       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1291 +       myPot = myPot + sw*vterm
1292 +      
1293 +       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1294 +            - preRF2*uz_i(1) )
1295 +       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1296 +            - preRF2*uz_i(2) )
1297 +       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1298 +            - preRF2*uz_i(3) )
1299 +      
1300 +       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1301 +       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1302 +       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1303 +      
1304 +    endif
1305 +      
1306 +
1307 +    ! accumulate the forces and torques resulting from the self term
1308 +    f(1,atom1) = f(1,atom1) + dudx
1309 +    f(2,atom1) = f(2,atom1) + dudy
1310 +    f(3,atom1) = f(3,atom1) + dudz
1311 +    
1312 +    f(1,atom2) = f(1,atom2) - dudx
1313 +    f(2,atom2) = f(2,atom2) - dudy
1314 +    f(3,atom2) = f(3,atom2) - dudz
1315 +    
1316 +    if (i_is_Dipole) then
1317 +       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1318 +       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1319 +       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1320 +    elseif (j_is_Dipole) then
1321 +       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1322 +       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1323 +       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1324 +    endif
1325 +
1326 +    return
1327 +  end subroutine rf_self_excludes
1328 +
1329 + end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines