ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2127 by gezelter, Mon Mar 21 19:23:27 2005 UTC vs.
Revision 2439 by chrisfen, Tue Nov 15 19:42:22 2005 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
# Line 54 | Line 54 | module electrostatic_module
54  
55    PRIVATE
56  
57 +
58 + #define __FORTRAN90
59 + #include "UseTheForce/DarkSide/fInteractionMap.h"
60 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
62 +
63 +
64    !! these prefactors convert the multipole interactions into kcal / mol
65    !! all were computed assuming distances are measured in angstroms
66    !! Charge-Charge, assuming charges are measured in electrons
# Line 68 | Line 75 | module electrostatic_module
75    !! This unit is also known affectionately as an esu centi-barn.
76    real(kind=dp), parameter :: pre14 = 69.13373_dp
77  
78 +  !! variables to handle different summation methods for long-range
79 +  !! electrostatics:
80 +  integer, save :: summationMethod = NONE
81 +  integer, save :: screeningMethod = UNDAMPED
82 +  logical, save :: summationMethodChecked = .false.
83 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
84 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
85 +  logical, save :: haveDefaultCutoff = .false.
86 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
87 +  real(kind=DP), save :: alpha2 = 0.0_DP
88 +  logical, save :: haveDampingAlpha = .false.
89 +  real(kind=DP), save :: dielectric = 1.0_DP
90 +  logical, save :: haveDielectric = .false.
91 +  real(kind=DP), save :: constEXP = 0.0_DP
92 +  real(kind=dp), save :: rcuti = 0.0_DP
93 +  real(kind=dp), save :: rcuti2 = 0.0_DP
94 +  real(kind=dp), save :: rcuti3 = 0.0_DP
95 +  real(kind=dp), save :: rcuti4 = 0.0_DP
96 +  real(kind=dp), save :: alphaPi = 0.0_DP
97 +  real(kind=dp), save :: invRootPi = 0.0_DP
98 +  real(kind=dp), save :: rrf = 1.0_DP
99 +  real(kind=dp), save :: rt = 1.0_DP
100 +  real(kind=dp), save :: rrfsq = 1.0_DP
101 +  real(kind=dp), save :: preRF = 0.0_DP
102 +  real(kind=dp), save :: preRF2 = 0.0_DP
103 +  real(kind=dp), save :: f0 = 1.0_DP
104 +  real(kind=dp), save :: f1 = 1.0_DP
105 +  real(kind=dp), save :: f2 = 0.0_DP
106 +  real(kind=dp), save :: f0c = 1.0_DP
107 +  real(kind=dp), save :: f1c = 1.0_DP
108 +  real(kind=dp), save :: f2c = 0.0_DP
109 +
110 + #ifdef __IFC
111 + ! error function for ifc version > 7.
112 +  double precision, external :: derfc
113 + #endif
114 +  
115 +  public :: setElectrostaticSummationMethod
116 +  public :: setScreeningMethod
117 +  public :: setElectrostaticCutoffRadius
118 +  public :: setDampingAlpha
119 +  public :: setReactionFieldDielectric
120    public :: newElectrostaticType
121    public :: setCharge
122    public :: setDipoleMoment
# Line 76 | Line 125 | module electrostatic_module
125    public :: doElectrostaticPair
126    public :: getCharge
127    public :: getDipoleMoment
128 +  public :: destroyElectrostaticTypes
129 +  public :: self_self
130 +  public :: rf_self_excludes
131  
132    type :: Electrostatic
133       integer :: c_ident
# Line 83 | Line 135 | module electrostatic_module
135       logical :: is_Dipole = .false.
136       logical :: is_SplitDipole = .false.
137       logical :: is_Quadrupole = .false.
138 +     logical :: is_Tap = .false.
139       real(kind=DP) :: charge = 0.0_DP
140       real(kind=DP) :: dipole_moment = 0.0_DP
141       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 92 | Line 145 | contains
145    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
146  
147   contains
148 +
149 +  subroutine setElectrostaticSummationMethod(the_ESM)
150 +    integer, intent(in) :: the_ESM    
151 +
152 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
153 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
154 +    endif
155  
156 +    summationMethod = the_ESM
157 +
158 +  end subroutine setElectrostaticSummationMethod
159 +
160 +  subroutine setScreeningMethod(the_SM)
161 +    integer, intent(in) :: the_SM    
162 +    screeningMethod = the_SM
163 +  end subroutine setScreeningMethod
164 +
165 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
166 +    real(kind=dp), intent(in) :: thisRcut
167 +    real(kind=dp), intent(in) :: thisRsw
168 +    defaultCutoff = thisRcut
169 +    rrf = defaultCutoff
170 +    rt = thisRsw
171 +    haveDefaultCutoff = .true.
172 +  end subroutine setElectrostaticCutoffRadius
173 +
174 +  subroutine setDampingAlpha(thisAlpha)
175 +    real(kind=dp), intent(in) :: thisAlpha
176 +    dampingAlpha = thisAlpha
177 +    alpha2 = dampingAlpha*dampingAlpha
178 +    haveDampingAlpha = .true.
179 +  end subroutine setDampingAlpha
180 +  
181 +  subroutine setReactionFieldDielectric(thisDielectric)
182 +    real(kind=dp), intent(in) :: thisDielectric
183 +    dielectric = thisDielectric
184 +    haveDielectric = .true.
185 +  end subroutine setReactionFieldDielectric
186 +
187    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
188 <       is_SplitDipole, is_Quadrupole, status)
189 <    
188 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
189 >
190      integer, intent(in) :: c_ident
191      logical, intent(in) :: is_Charge
192      logical, intent(in) :: is_Dipole
193      logical, intent(in) :: is_SplitDipole
194      logical, intent(in) :: is_Quadrupole
195 +    logical, intent(in) :: is_Tap
196      integer, intent(out) :: status
197      integer :: nAtypes, myATID, i, j
198  
199      status = 0
200      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
201 <    
201 >
202      !! Be simple-minded and assume that we need an ElectrostaticMap that
203      !! is the same size as the total number of atom types
204  
205      if (.not.allocated(ElectrostaticMap)) then
206 <      
206 >
207         nAtypes = getSize(atypes)
208 <    
208 >
209         if (nAtypes == 0) then
210            status = -1
211            return
212         end if
213 <      
213 >
214         if (.not. allocated(ElectrostaticMap)) then
215            allocate(ElectrostaticMap(nAtypes))
216         endif
217 <      
217 >
218      end if
219  
220      if (myATID .gt. size(ElectrostaticMap)) then
221         status = -1
222         return
223      endif
224 <    
224 >
225      ! set the values for ElectrostaticMap for this atom type:
226  
227      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 137 | Line 229 | contains
229      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
230      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
231      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
232 <    
232 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
233 >
234    end subroutine newElectrostaticType
235  
236    subroutine setCharge(c_ident, charge, status)
# Line 165 | Line 258 | contains
258         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
259         status = -1
260         return
261 <    endif      
261 >    endif
262  
263      ElectrostaticMap(myATID)%charge = charge
264    end subroutine setCharge
# Line 256 | Line 349 | contains
349         status = -1
350         return
351      endif
352 <    
352 >
353      do i = 1, 3
354 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 <               quadrupole_moments(i)
356 <       enddo
354 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
355 >            quadrupole_moments(i)
356 >    enddo
357  
358    end subroutine setQuadrupoleMoments
359  
360 <  
360 >
361    function getCharge(atid) result (c)
362      integer, intent(in) :: atid
363      integer :: localError
364      real(kind=dp) :: c
365 <    
365 >
366      if (.not.allocated(ElectrostaticMap)) then
367         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
368         return
369      end if
370 <    
370 >
371      if (.not.ElectrostaticMap(atid)%is_Charge) then
372         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
373         return
374      endif
375 <    
375 >
376      c = ElectrostaticMap(atid)%charge
377    end function getCharge
378  
# Line 287 | Line 380 | contains
380      integer, intent(in) :: atid
381      integer :: localError
382      real(kind=dp) :: dm
383 <    
383 >
384      if (.not.allocated(ElectrostaticMap)) then
385         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
386         return
387      end if
388 <    
388 >
389      if (.not.ElectrostaticMap(atid)%is_Dipole) then
390         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
391         return
392      endif
393 <    
393 >
394      dm = ElectrostaticMap(atid)%dipole_moment
395    end function getDipoleMoment
396  
397 +  subroutine checkSummationMethod()
398 +
399 +    if (.not.haveDefaultCutoff) then
400 +       call handleError("checkSummationMethod", "no Default Cutoff set!")
401 +    endif
402 +
403 +    rcuti = 1.0d0 / defaultCutoff
404 +    rcuti2 = rcuti*rcuti
405 +    rcuti3 = rcuti2*rcuti
406 +    rcuti4 = rcuti2*rcuti2
407 +
408 +    if (screeningMethod .eq. DAMPED) then
409 +       if (.not.haveDampingAlpha) then
410 +          call handleError("checkSummationMethod", "no Damping Alpha set!")
411 +       endif
412 +      
413 +       if (.not.haveDefaultCutoff) then
414 +          call handleError("checkSummationMethod", "no Default Cutoff set!")
415 +       endif
416 +
417 +       constEXP = exp(-alpha2*defaultCutoff*defaultCutoff)
418 +       invRootPi = 0.56418958354775628695d0
419 +       alphaPi = 2.0d0*dampingAlpha*invRootPi
420 +       f0c = derfc(dampingAlpha*defaultCutoff)
421 +       f1c = alphaPi*defaultCutoff*constEXP + f0c
422 +       f2c = alphaPi*2.0d0*alpha2*constEXP*rcuti2
423 +
424 +    endif
425 +
426 +    if (summationMethod .eq. REACTION_FIELD) then
427 +       if (haveDielectric) then
428 +          defaultCutoff2 = defaultCutoff*defaultCutoff
429 +          preRF = (dielectric-1.0d0) / &
430 +               ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
431 +          preRF2 = 2.0d0*preRF
432 +       else
433 +          call handleError("checkSummationMethod", "Dielectric not set")
434 +       endif
435 +      
436 +    endif
437 +
438 +    summationMethodChecked = .true.
439 +  end subroutine checkSummationMethod
440 +
441 +
442    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
443         vpair, fpair, pot, eFrame, f, t, do_pot)
444 <    
444 >
445      logical, intent(in) :: do_pot
446 <    
446 >
447      integer, intent(in) :: atom1, atom2
448      integer :: localError
449  
450      real(kind=dp), intent(in) :: rij, r2, sw
451      real(kind=dp), intent(in), dimension(3) :: d
452      real(kind=dp), intent(inout) :: vpair
453 <    real(kind=dp), intent(inout), dimension(3) :: fpair
453 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
454  
455      real( kind = dp ) :: pot
456      real( kind = dp ), dimension(9,nLocal) :: eFrame
457      real( kind = dp ), dimension(3,nLocal) :: f
458 +    real( kind = dp ), dimension(3,nLocal) :: felec
459      real( kind = dp ), dimension(3,nLocal) :: t
460 <    
460 >
461      real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
462      real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
463      real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
# Line 326 | Line 465 | contains
465  
466      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
467      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
468 +    logical :: i_is_Tap, j_is_Tap
469      integer :: me1, me2, id1, id2
470      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
471      real (kind=dp) :: qxx_i, qyy_i, qzz_i
# Line 333 | Line 473 | contains
473      real (kind=dp) :: cx_i, cy_i, cz_i
474      real (kind=dp) :: cx_j, cy_j, cz_j
475      real (kind=dp) :: cx2, cy2, cz2
476 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
476 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
477      real (kind=dp) :: riji, ri, ri2, ri3, ri4
478 <    real (kind=dp) :: pref, vterm, epot, dudr    
478 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
479      real (kind=dp) :: xhat, yhat, zhat
480      real (kind=dp) :: dudx, dudy, dudz
341    real (kind=dp) :: drdxj, drdyj, drdzj
481      real (kind=dp) :: scale, sc2, bigR
482 +    real (kind=dp) :: varEXP
483 +    real (kind=dp) :: pot_term
484 +    real (kind=dp) :: preVal, rfVal
485  
486      if (.not.allocated(ElectrostaticMap)) then
487         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
488         return
489      end if
490  
491 +    if (.not.summationMethodChecked) then
492 +       call checkSummationMethod()
493 +    endif
494 +
495   #ifdef IS_MPI
496      me1 = atid_Row(atom1)
497      me2 = atid_Col(atom2)
# Line 354 | Line 500 | contains
500      me2 = atid(atom2)
501   #endif
502  
503 + !!$    if (rij .ge. defaultCutoff) then
504 + !!$       write(*,*) 'warning: rij = ', rij, ' rcut = ', defaultCutoff, ' sw = ', sw
505 + !!$    endif
506 +
507      !! some variables we'll need independent of electrostatic type:
508  
509      riji = 1.0d0 / rij
510 <
510 >  
511      xhat = d(1) * riji
512      yhat = d(2) * riji
513      zhat = d(3) * riji
514  
365    drdxj = xhat
366    drdyj = yhat
367    drdzj = zhat
368
515      !! logicals
370
516      i_is_Charge = ElectrostaticMap(me1)%is_Charge
517      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
518      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
519      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
520 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
521  
522      j_is_Charge = ElectrostaticMap(me2)%is_Charge
523      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
524      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
525      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
526 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
527  
528      if (i_is_Charge) then
529         q_i = ElectrostaticMap(me1)%charge      
530      endif
531 <    
531 >
532      if (i_is_Dipole) then
533         mu_i = ElectrostaticMap(me1)%dipole_moment
534   #ifdef IS_MPI
# Line 398 | Line 545 | contains
545         if (i_is_SplitDipole) then
546            d_i = ElectrostaticMap(me1)%split_dipole_distance
547         endif
548 <      
548 >
549      endif
550  
551      if (i_is_Quadrupole) then
# Line 431 | Line 578 | contains
578         cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
579      endif
580  
434
581      if (j_is_Charge) then
582         q_j = ElectrostaticMap(me2)%charge      
583      endif
584 <    
584 >
585      if (j_is_Dipole) then
586         mu_j = ElectrostaticMap(me2)%dipole_moment
587   #ifdef IS_MPI
# Line 447 | Line 593 | contains
593         uz_j(2) = eFrame(6,atom2)
594         uz_j(3) = eFrame(9,atom2)
595   #endif
596 <       ct_j = uz_j(1)*drdxj + uz_j(2)*drdyj + uz_j(3)*drdzj
596 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
597  
598         if (j_is_SplitDipole) then
599            d_j = ElectrostaticMap(me2)%split_dipole_distance
# Line 483 | Line 629 | contains
629         cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
630         cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
631      endif
632 <
632 >  
633      epot = 0.0_dp
634      dudx = 0.0_dp
635      dudy = 0.0_dp
# Line 500 | Line 646 | contains
646      if (i_is_Charge) then
647  
648         if (j_is_Charge) then
649 <          
650 <          vterm = pre11 * q_i * q_j * riji
649 >          if (screeningMethod .eq. DAMPED) then
650 >             f0 = derfc(dampingAlpha*rij)
651 >             varEXP = exp(-alpha2*rij*rij)
652 >             f1 = alphaPi*rij*varEXP + f0
653 >          endif
654 >
655 >          preVal = pre11 * q_i * q_j
656 >
657 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
658 >             vterm = preVal * (riji*f0 - rcuti*f0c)
659 >            
660 >             dudr  = -sw * preVal * riji * riji * f1
661 >  
662 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
663 >             vterm = preVal * ( riji*f0 - rcuti*f0c + &
664 >                  f1c*rcuti2*(rij-defaultCutoff) )
665 >            
666 >             dudr  = -sw*preVal * (riji*riji*f1 - rcuti2*f1c)
667 >  
668 >          elseif (summationMethod .eq. REACTION_FIELD) then
669 >             rfVal = preRF*rij*rij
670 >             vterm = preVal * ( riji + rfVal )
671 >            
672 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
673 >  
674 >          else
675 >             vterm = preVal * riji*f0
676 >            
677 >             dudr  = - sw * preVal * riji*riji*f1
678 >  
679 >          endif
680 >
681            vpair = vpair + vterm
682            epot = epot + sw*vterm
683  
684 <          dudr  = - sw * vterm * riji
684 >          dudx = dudx + dudr * xhat
685 >          dudy = dudy + dudr * yhat
686 >          dudz = dudz + dudr * zhat
687  
510          dudx = dudx + dudr * drdxj
511          dudy = dudy + dudr * drdyj
512          dudz = dudz + dudr * drdzj
513      
688         endif
689  
690         if (j_is_Dipole) then
691  
692 <          if (j_is_SplitDipole) then
519 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
520 <             ri = 1.0_dp / BigR
521 <             scale = rij * ri
522 <          else
523 <             ri = riji
524 <             scale = 1.0_dp
525 <          endif
692 >          pref = pre12 * q_i * mu_j
693  
694 <          ri2 = ri * ri
695 <          ri3 = ri2 * ri
696 <          sc2 = scale * scale
694 >          if (summationMethod .eq. REACTION_FIELD) then
695 >             ri2 = riji * riji
696 >             ri3 = ri2 * riji
697 >    
698 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
699 >             vpair = vpair + vterm
700 >             epot = epot + sw*vterm
701              
702 <          pref = pre12 * q_i * mu_j
703 <          vterm = pref * ct_j * ri2 * scale
704 <          vpair = vpair + vterm
705 <          epot = epot + sw * vterm
702 >             !! this has a + sign in the () because the rij vector is
703 >             !! r_j - r_i and the charge-dipole potential takes the origin
704 >             !! as the point dipole, which is atom j in this case.
705 >            
706 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
707 >                                     preRF2*uz_j(1) )
708 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
709 >                                     preRF2*uz_j(2) )
710 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
711 >                                     preRF2*uz_j(3) )        
712 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
713 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
714 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
715  
716 <          !! this has a + sign in the () because the rij vector is
717 <          !! r_j - r_i and the charge-dipole potential takes the origin
718 <          !! as the point dipole, which is atom j in this case.
716 >          else
717 >             if (j_is_SplitDipole) then
718 >                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
719 >                ri = 1.0_dp / BigR
720 >                scale = rij * ri
721 >             else
722 >                ri = riji
723 >                scale = 1.0_dp
724 >             endif
725 >            
726 >             ri2 = ri * ri
727 >             ri3 = ri2 * ri
728 >             sc2 = scale * scale
729  
730 <          dudx = dudx + pref * sw * ri3 * ( uz_j(1) + 3.0d0*ct_j*xhat*sc2)
731 <          dudy = dudy + pref * sw * ri3 * ( uz_j(2) + 3.0d0*ct_j*yhat*sc2)
732 <          dudz = dudz + pref * sw * ri3 * ( uz_j(3) + 3.0d0*ct_j*zhat*sc2)
730 >             vterm = - pref * ct_j * ri2 * scale
731 >             vpair = vpair + vterm
732 >             epot = epot + sw*vterm
733 >            
734 >             !! this has a + sign in the () because the rij vector is
735 >             !! r_j - r_i and the charge-dipole potential takes the origin
736 >             !! as the point dipole, which is atom j in this case.
737 >            
738 >             dudx = dudx - sw*pref * ri3 * ( uz_j(1) - 3.0d0*ct_j*xhat*sc2)
739 >             dudy = dudy - sw*pref * ri3 * ( uz_j(2) - 3.0d0*ct_j*yhat*sc2)
740 >             dudz = dudz - sw*pref * ri3 * ( uz_j(3) - 3.0d0*ct_j*zhat*sc2)
741 >            
742 >             duduz_j(1) = duduz_j(1) - sw*pref * ri2 * xhat * scale
743 >             duduz_j(2) = duduz_j(2) - sw*pref * ri2 * yhat * scale
744 >             duduz_j(3) = duduz_j(3) - sw*pref * ri2 * zhat * scale
745  
746 <          duduz_j(1) = duduz_j(1) - pref * sw * ri2 * xhat * scale
545 <          duduz_j(2) = duduz_j(2) - pref * sw * ri2 * yhat * scale
546 <          duduz_j(3) = duduz_j(3) - pref * sw * ri2 * zhat * scale
547 <          
746 >          endif
747         endif
748  
749         if (j_is_Quadrupole) then
# Line 555 | Line 754 | contains
754            cy2 = cy_j * cy_j
755            cz2 = cz_j * cz_j
756  
757 <
559 <          pref =  pre14 * q_i / 6.0_dp
757 >          pref =  pre14 * q_i / 3.0_dp
758            vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
759                 qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
760                 qzz_j * (3.0_dp*cz2 - 1.0_dp))
761            vpair = vpair + vterm
762 <          epot = epot + sw * vterm
763 <
764 <          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat - pref * sw * ri4 * ( &
762 >          epot = epot + sw*vterm
763 >          
764 >          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
765                 qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
766                 qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
767                 qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
768 <          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat - pref * sw * ri4 * ( &
768 >          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
769                 qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
770                 qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
771                 qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
772 <          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat - pref * sw * ri4 * ( &
772 >          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
773                 qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
774                 qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
775                 qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
776            
777 <          dudux_j(1) = dudux_j(1) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*xhat)
778 <          dudux_j(2) = dudux_j(2) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*yhat)
779 <          dudux_j(3) = dudux_j(3) + pref * sw * ri3 * (qxx_j*6.0_dp*cx_j*zhat)
780 <
781 <          duduy_j(1) = duduy_j(1) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*xhat)
782 <          duduy_j(2) = duduy_j(2) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*yhat)
783 <          duduy_j(3) = duduy_j(3) + pref * sw * ri3 * (qyy_j*6.0_dp*cy_j*zhat)
784 <
785 <          duduz_j(1) = duduz_j(1) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*xhat)
786 <          duduz_j(2) = duduz_j(2) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*yhat)
787 <          duduz_j(3) = duduz_j(3) + pref * sw * ri3 * (qzz_j*6.0_dp*cz_j*zhat)
777 >          dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
778 >          dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
779 >          dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
780 >          
781 >          duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
782 >          duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
783 >          duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
784 >          
785 >          duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
786 >          duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
787 >          duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
788 >          
789         endif
591
790      endif
791 <  
791 >    
792      if (i_is_Dipole) then
793 <      
793 >
794         if (j_is_Charge) then
795 +          
796 +          pref = pre12 * q_j * mu_i
797 +          
798 +          if (summationMethod .eq. SHIFTED_POTENTIAL) then
799 +             ri2 = riji * riji
800 +             ri3 = ri2 * riji
801 +            
802 +             pot_term = ri2 - rcuti2
803 +             vterm = pref * ct_i * pot_term
804 +             vpair = vpair + vterm
805 +             epot = epot + sw*vterm
806 +            
807 +             dudx = dudx + sw*pref * ( ri3*(uz_i(1)-3.0d0*ct_i*xhat) )
808 +             dudy = dudy + sw*pref * ( ri3*(uz_i(2)-3.0d0*ct_i*yhat) )
809 +             dudz = dudz + sw*pref * ( ri3*(uz_i(3)-3.0d0*ct_i*zhat) )
810 +            
811 +             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
812 +             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
813 +             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
814  
815 <          if (i_is_SplitDipole) then
816 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
817 <             ri = 1.0_dp / BigR
601 <             scale = rij * ri
602 <          else
603 <             ri = riji
604 <             scale = 1.0_dp
605 <          endif
815 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
816 >             ri2 = riji * riji
817 >             ri3 = ri2 * riji
818  
819 <          ri2 = ri * ri
820 <          ri3 = ri2 * ri
821 <          sc2 = scale * scale
819 >             pot_term = ri2 - rcuti2 + 2.0d0*rcuti3*( rij - defaultCutoff )
820 >             vterm = pref * ct_i * pot_term
821 >             vpair = vpair + vterm
822 >             epot = epot + sw*vterm
823              
824 <          pref = pre12 * q_j * mu_i
825 <          vterm = pref * ct_i * ri2 * scale
826 <          vpair = vpair + vterm
827 <          epot = epot + sw * vterm
824 >             dudx = dudx + sw*pref * ( (ri3-rcuti3)*(uz_i(1)-3.0d0*ct_i*xhat) )
825 >             dudy = dudy + sw*pref * ( (ri3-rcuti3)*(uz_i(2)-3.0d0*ct_i*yhat) )
826 >             dudz = dudz + sw*pref * ( (ri3-rcuti3)*(uz_i(3)-3.0d0*ct_i*zhat) )
827 >            
828 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
829 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
830 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
831  
832 <          dudx = dudx + pref * sw * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
833 <          dudy = dudy + pref * sw * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
834 <          dudz = dudz + pref * sw * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
832 >          elseif (summationMethod .eq. REACTION_FIELD) then
833 >             ri2 = riji * riji
834 >             ri3 = ri2 * riji
835  
836 <          duduz_i(1) = duduz_i(1) + pref * sw * ri2 * xhat * scale
837 <          duduz_i(2) = duduz_i(2) + pref * sw * ri2 * yhat * scale
838 <          duduz_i(3) = duduz_i(3) + pref * sw * ri2 * zhat * scale
839 <       endif
836 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
837 >             vpair = vpair + vterm
838 >             epot = epot + sw*vterm
839 >            
840 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
841 >                  preRF2*uz_i(1) )
842 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
843 >                  preRF2*uz_i(2) )
844 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
845 >                  preRF2*uz_i(3) )
846 >            
847 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
848 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
849 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
850  
625       if (j_is_Dipole) then
626
627          if (i_is_SplitDipole) then
628             if (j_is_SplitDipole) then
629                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
630             else
631                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
632             endif
633             ri = 1.0_dp / BigR
634             scale = rij * ri                
851            else
852 <             if (j_is_SplitDipole) then
853 <                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
852 >             if (i_is_SplitDipole) then
853 >                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
854                  ri = 1.0_dp / BigR
855 <                scale = rij * ri                            
856 <             else                
855 >                scale = rij * ri
856 >             else
857                  ri = riji
858                  scale = 1.0_dp
859               endif
860 <          endif
860 >            
861 >             ri2 = ri * ri
862 >             ri3 = ri2 * ri
863 >             sc2 = scale * scale
864  
865 +             vterm = pref * ct_i * ri2 * scale
866 +             vpair = vpair + vterm
867 +             epot = epot + sw*vterm
868 +            
869 +             dudx = dudx + sw*pref * ri3 * ( uz_i(1) - 3.0d0 * ct_i * xhat*sc2)
870 +             dudy = dudy + sw*pref * ri3 * ( uz_i(2) - 3.0d0 * ct_i * yhat*sc2)
871 +             dudz = dudz + sw*pref * ri3 * ( uz_i(3) - 3.0d0 * ct_i * zhat*sc2)
872 +            
873 +             duduz_i(1) = duduz_i(1) + sw*pref * ri2 * xhat * scale
874 +             duduz_i(2) = duduz_i(2) + sw*pref * ri2 * yhat * scale
875 +             duduz_i(3) = duduz_i(3) + sw*pref * ri2 * zhat * scale
876 +          endif
877 +       endif
878 +      
879 +       if (j_is_Dipole) then
880            ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
881 <
882 <          ri2 = ri * ri
883 <          ri3 = ri2 * ri
881 >          
882 >          ri2 = riji * riji
883 >          ri3 = ri2 * riji
884            ri4 = ri2 * ri2
651          sc2 = scale * scale
652
653          pref = pre22 * mu_i * mu_j
654          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
655          vpair = vpair + vterm
656          epot = epot + sw * vterm
885            
886 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
886 >          pref = pre22 * mu_i * mu_j
887  
888 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
889 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
890 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
888 >          if (summationMethod .eq. REACTION_FIELD) then
889 >             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
890 >                  preRF2*ct_ij )
891 >             vpair = vpair + vterm
892 >             epot = epot + sw*vterm
893 >            
894 >             a1 = 5.0d0 * ct_i * ct_j - ct_ij
895 >            
896 >             dudx = dudx + sw*pref*3.0d0*ri4 &
897 >                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
898 >             dudy = dudy + sw*pref*3.0d0*ri4 &
899 >                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
900 >             dudz = dudz + sw*pref*3.0d0*ri4 &
901 >                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
902 >            
903 >             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
904 >                  - preRF2*uz_j(1))
905 >             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
906 >                  - preRF2*uz_j(2))
907 >             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
908 >                  - preRF2*uz_j(3))
909 >             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
910 >                  - preRF2*uz_i(1))
911 >             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
912 >                  - preRF2*uz_i(2))
913 >             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
914 >                  - preRF2*uz_i(3))
915  
916 <          duduz_i(1) = duduz_i(1) + pref*sw*ri3*(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
917 <          duduz_i(2) = duduz_i(2) + pref*sw*ri3*(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
918 <          duduz_i(3) = duduz_i(3) + pref*sw*ri3*(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
916 >          else
917 >             if (i_is_SplitDipole) then
918 >                if (j_is_SplitDipole) then
919 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
920 >                else
921 >                   BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
922 >                endif
923 >                ri = 1.0_dp / BigR
924 >                scale = rij * ri                
925 >             else
926 >                if (j_is_SplitDipole) then
927 >                   BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
928 >                   ri = 1.0_dp / BigR
929 >                   scale = rij * ri                            
930 >                else                
931 >                   ri = riji
932 >                   scale = 1.0_dp
933 >                endif
934 >             endif
935 >            
936 >             sc2 = scale * scale
937  
938 <          duduz_j(1) = duduz_j(1) + pref*sw*ri3*(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
939 <          duduz_j(2) = duduz_j(2) + pref*sw*ri3*(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
940 <          duduz_j(3) = duduz_j(3) + pref*sw*ri3*(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
938 >             vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
939 >             vpair = vpair + vterm
940 >             epot = epot + sw*vterm
941 >            
942 >             a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
943 >            
944 >             dudx = dudx + sw*pref*3.0d0*ri4*scale &
945 >                             *(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
946 >             dudy = dudy + sw*pref*3.0d0*ri4*scale &
947 >                             *(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
948 >             dudz = dudz + sw*pref*3.0d0*ri4*scale &
949 >                             *(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
950 >            
951 >             duduz_i(1) = duduz_i(1) + sw*pref*ri3 &
952 >                                         *(uz_j(1) - 3.0d0*ct_j*xhat*sc2)
953 >             duduz_i(2) = duduz_i(2) + sw*pref*ri3 &
954 >                                         *(uz_j(2) - 3.0d0*ct_j*yhat*sc2)
955 >             duduz_i(3) = duduz_i(3) + sw*pref*ri3 &
956 >                                         *(uz_j(3) - 3.0d0*ct_j*zhat*sc2)
957 >            
958 >             duduz_j(1) = duduz_j(1) + sw*pref*ri3 &
959 >                                         *(uz_i(1) - 3.0d0*ct_i*xhat*sc2)
960 >             duduz_j(2) = duduz_j(2) + sw*pref*ri3 &
961 >                                         *(uz_i(2) - 3.0d0*ct_i*yhat*sc2)
962 >             duduz_j(3) = duduz_j(3) + sw*pref*ri3 &
963 >                                         *(uz_i(3) - 3.0d0*ct_i*zhat*sc2)
964 >          endif
965         endif
672
966      endif
967  
968      if (i_is_Quadrupole) then
969         if (j_is_Charge) then
677          
970            ri2 = riji * riji
971            ri3 = ri2 * riji
972            ri4 = ri2 * ri2
973            cx2 = cx_i * cx_i
974            cy2 = cy_i * cy_i
975            cz2 = cz_i * cz_i
976 <          
977 <          pref = pre14 * q_j / 6.0_dp
976 >
977 >          pref = pre14 * q_j / 3.0_dp
978            vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
979                 qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
980                 qzz_i * (3.0_dp*cz2 - 1.0_dp))
981            vpair = vpair + vterm
982 <          epot = epot + sw * vterm
982 >          epot = epot + sw*vterm
983            
984 <          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat - pref * sw * ri4 * ( &
984 >          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
985                 qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
986                 qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
987                 qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
988 <          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat - pref * sw * ri4 * ( &
988 >          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
989                 qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
990                 qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
991                 qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
992 <          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat - pref * sw * ri4 * ( &
992 >          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
993                 qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
994                 qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
995                 qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
996            
997 <          dudux_i(1) = dudux_i(1) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*xhat)
998 <          dudux_i(2) = dudux_i(2) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*yhat)
999 <          dudux_i(3) = dudux_i(3) + pref * sw * ri3 * (qxx_i*6.0_dp*cx_i*zhat)
997 >          dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
998 >          dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
999 >          dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1000            
1001 <          duduy_i(1) = duduy_i(1) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*xhat)
1002 <          duduy_i(2) = duduy_i(2) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*yhat)
1003 <          duduy_i(3) = duduy_i(3) + pref * sw * ri3 * (qyy_i*6.0_dp*cy_i*zhat)
1001 >          duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1002 >          duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1003 >          duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1004            
1005 <          duduz_i(1) = duduz_i(1) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*xhat)
1006 <          duduz_i(2) = duduz_i(2) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*yhat)
1007 <          duduz_i(3) = duduz_i(3) + pref * sw * ri3 * (qzz_i*6.0_dp*cz_i*zhat)
1005 >          duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1006 >          duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1007 >          duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1008 >
1009         endif
1010      endif
1011 <      
1012 <    
1011 >
1012 >
1013      if (do_pot) then
1014   #ifdef IS_MPI
1015 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1016 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1015 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1016 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1017   #else
1018         pot = pot + epot
1019   #endif
1020      endif
1021 <        
1021 >
1022   #ifdef IS_MPI
1023      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1024      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1025      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1026 <    
1026 >
1027      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1028      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1029      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1030 <    
1030 >
1031      if (i_is_Dipole .or. i_is_Quadrupole) then
1032         t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1033         t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
# Line 769 | Line 1062 | contains
1062      f(1,atom1) = f(1,atom1) + dudx
1063      f(2,atom1) = f(2,atom1) + dudy
1064      f(3,atom1) = f(3,atom1) + dudz
1065 <    
1065 >
1066      f(1,atom2) = f(1,atom2) - dudx
1067      f(2,atom2) = f(2,atom2) - dudy
1068      f(3,atom2) = f(3,atom2) - dudz
1069 <    
1069 >
1070      if (i_is_Dipole .or. i_is_Quadrupole) then
1071         t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1072         t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
# Line 805 | Line 1098 | contains
1098      endif
1099  
1100   #endif
1101 <    
1101 >
1102   #ifdef IS_MPI
1103      id1 = AtomRowToGlobal(atom1)
1104      id2 = AtomColToGlobal(atom2)
# Line 815 | Line 1108 | contains
1108   #endif
1109  
1110      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1111 <      
1111 >
1112         fpair(1) = fpair(1) + dudx
1113         fpair(2) = fpair(2) + dudy
1114         fpair(3) = fpair(3) + dudz
# Line 824 | Line 1117 | contains
1117  
1118      return
1119    end subroutine doElectrostaticPair
1120 <  
1120 >
1121 >  subroutine destroyElectrostaticTypes()
1122 >
1123 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1124 >
1125 >  end subroutine destroyElectrostaticTypes
1126 >
1127 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1128 >    logical, intent(in) :: do_pot
1129 >    integer, intent(in) :: atom1
1130 >    integer :: atid1
1131 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1132 >    real(kind=dp), dimension(3,nLocal) :: t
1133 >    real(kind=dp) :: mu1, c1
1134 >    real(kind=dp) :: preVal, epot, mypot
1135 >    real(kind=dp) :: eix, eiy, eiz
1136 >
1137 >    ! this is a local only array, so we use the local atom type id's:
1138 >    atid1 = atid(atom1)
1139 >
1140 >    if (.not.summationMethodChecked) then
1141 >       call checkSummationMethod()
1142 >    endif
1143 >    
1144 >    if (summationMethod .eq. REACTION_FIELD) then
1145 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1146 >          mu1 = getDipoleMoment(atid1)
1147 >          
1148 >          preVal = pre22 * preRF2 * mu1*mu1
1149 >          mypot = mypot - 0.5d0*preVal
1150 >          
1151 >          ! The self-correction term adds into the reaction field vector
1152 >          
1153 >          eix = preVal * eFrame(3,atom1)
1154 >          eiy = preVal * eFrame(6,atom1)
1155 >          eiz = preVal * eFrame(9,atom1)
1156 >          
1157 >          ! once again, this is self-self, so only the local arrays are needed
1158 >          ! even for MPI jobs:
1159 >          
1160 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1161 >               eFrame(9,atom1)*eiy
1162 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1163 >               eFrame(3,atom1)*eiz
1164 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1165 >               eFrame(6,atom1)*eix
1166 >          
1167 >       endif
1168 >
1169 >    elseif (summationMethod .eq. SHIFTED_FORCE) then
1170 >       if (ElectrostaticMap(atid1)%is_Charge) then
1171 >          c1 = getCharge(atid1)
1172 >          
1173 >          if (screeningMethod .eq. DAMPED) then
1174 >             mypot = mypot - (f0c * rcuti * 0.5_dp + &
1175 >                  dampingAlpha*invRootPi) * c1 * c1    
1176 >            
1177 >          else            
1178 >             mypot = mypot - (rcuti * 0.5_dp * c1 * c1)
1179 >            
1180 >          endif
1181 >       endif
1182 >    endif
1183 >    
1184 >    return
1185 >  end subroutine self_self
1186 >
1187 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1188 >       f, t, do_pot)
1189 >    logical, intent(in) :: do_pot
1190 >    integer, intent(in) :: atom1
1191 >    integer, intent(in) :: atom2
1192 >    logical :: i_is_Charge, j_is_Charge
1193 >    logical :: i_is_Dipole, j_is_Dipole
1194 >    integer :: atid1
1195 >    integer :: atid2
1196 >    real(kind=dp), intent(in) :: rij
1197 >    real(kind=dp), intent(in) :: sw
1198 >    real(kind=dp), intent(in), dimension(3) :: d
1199 >    real(kind=dp), intent(inout) :: vpair
1200 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1201 >    real(kind=dp), dimension(3,nLocal) :: f
1202 >    real(kind=dp), dimension(3,nLocal) :: t
1203 >    real (kind = dp), dimension(3) :: duduz_i
1204 >    real (kind = dp), dimension(3) :: duduz_j
1205 >    real (kind = dp), dimension(3) :: uz_i
1206 >    real (kind = dp), dimension(3) :: uz_j
1207 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1208 >    real(kind=dp) :: xhat, yhat, zhat
1209 >    real(kind=dp) :: ct_i, ct_j
1210 >    real(kind=dp) :: ri2, ri3, riji, vterm
1211 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1212 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1213 >
1214 >    if (.not.summationMethodChecked) then
1215 >       call checkSummationMethod()
1216 >    endif
1217 >
1218 >    dudx = 0.0d0
1219 >    dudy = 0.0d0
1220 >    dudz = 0.0d0
1221 >
1222 >    riji = 1.0d0/rij
1223 >
1224 >    xhat = d(1) * riji
1225 >    yhat = d(2) * riji
1226 >    zhat = d(3) * riji
1227 >
1228 >    ! this is a local only array, so we use the local atom type id's:
1229 >    atid1 = atid(atom1)
1230 >    atid2 = atid(atom2)
1231 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1232 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1233 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1234 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1235 >
1236 >    if (i_is_Charge.and.j_is_Charge) then
1237 >       q_i = ElectrostaticMap(atid1)%charge
1238 >       q_j = ElectrostaticMap(atid2)%charge
1239 >      
1240 >       preVal = pre11 * q_i * q_j
1241 >       rfVal = preRF*rij*rij
1242 >       vterm = preVal * rfVal
1243 >      
1244 >       myPot = myPot + sw*vterm
1245 >      
1246 >       dudr  = sw*preVal * 2.0d0*rfVal*riji
1247 >      
1248 >       dudx = dudx + dudr * xhat
1249 >       dudy = dudy + dudr * yhat
1250 >       dudz = dudz + dudr * zhat
1251 >      
1252 >    elseif (i_is_Charge.and.j_is_Dipole) then
1253 >       q_i = ElectrostaticMap(atid1)%charge
1254 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1255 >       uz_j(1) = eFrame(3,atom2)
1256 >       uz_j(2) = eFrame(6,atom2)
1257 >       uz_j(3) = eFrame(9,atom2)
1258 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1259 >      
1260 >       ri2 = riji * riji
1261 >       ri3 = ri2 * riji
1262 >      
1263 >       pref = pre12 * q_i * mu_j
1264 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1265 >       myPot = myPot + sw*vterm
1266 >      
1267 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1268 >            - preRF2*uz_j(1) )
1269 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1270 >            - preRF2*uz_j(2) )
1271 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1272 >            - preRF2*uz_j(3) )
1273 >      
1274 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1275 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1276 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1277 >      
1278 >    elseif (i_is_Dipole.and.j_is_Charge) then
1279 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1280 >       q_j = ElectrostaticMap(atid2)%charge
1281 >       uz_i(1) = eFrame(3,atom1)
1282 >       uz_i(2) = eFrame(6,atom1)
1283 >       uz_i(3) = eFrame(9,atom1)
1284 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1285 >      
1286 >       ri2 = riji * riji
1287 >       ri3 = ri2 * riji
1288 >      
1289 >       pref = pre12 * q_j * mu_i
1290 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1291 >       myPot = myPot + sw*vterm
1292 >      
1293 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1294 >            - preRF2*uz_i(1) )
1295 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1296 >            - preRF2*uz_i(2) )
1297 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1298 >            - preRF2*uz_i(3) )
1299 >      
1300 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1301 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1302 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1303 >      
1304 >    endif
1305 >      
1306 >
1307 >    ! accumulate the forces and torques resulting from the self term
1308 >    f(1,atom1) = f(1,atom1) + dudx
1309 >    f(2,atom1) = f(2,atom1) + dudy
1310 >    f(3,atom1) = f(3,atom1) + dudz
1311 >    
1312 >    f(1,atom2) = f(1,atom2) - dudx
1313 >    f(2,atom2) = f(2,atom2) - dudy
1314 >    f(3,atom2) = f(3,atom2) - dudz
1315 >    
1316 >    if (i_is_Dipole) then
1317 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1318 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1319 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1320 >    elseif (j_is_Dipole) then
1321 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1322 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1323 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1324 >    endif
1325 >
1326 >    return
1327 >  end subroutine rf_self_excludes
1328 >
1329   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines