ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2381 by chrisfen, Tue Oct 18 15:01:42 2005 UTC vs.
Revision 2439 by chrisfen, Tue Nov 15 19:42:22 2005 UTC

# Line 58 | Line 58 | module electrostatic_module
58   #define __FORTRAN90
59   #include "UseTheForce/DarkSide/fInteractionMap.h"
60   #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
62  
63  
64    !! these prefactors convert the multipole interactions into kcal / mol
# Line 74 | Line 75 | module electrostatic_module
75    !! This unit is also known affectionately as an esu centi-barn.
76    real(kind=dp), parameter :: pre14 = 69.13373_dp
77  
78 <  !! variables to handle different summation methods for long-range electrostatics:
78 >  !! variables to handle different summation methods for long-range
79 >  !! electrostatics:
80    integer, save :: summationMethod = NONE
81 +  integer, save :: screeningMethod = UNDAMPED
82    logical, save :: summationMethodChecked = .false.
83    real(kind=DP), save :: defaultCutoff = 0.0_DP
84    real(kind=DP), save :: defaultCutoff2 = 0.0_DP
85    logical, save :: haveDefaultCutoff = .false.
86    real(kind=DP), save :: dampingAlpha = 0.0_DP
87 +  real(kind=DP), save :: alpha2 = 0.0_DP
88    logical, save :: haveDampingAlpha = .false.
89    real(kind=DP), save :: dielectric = 1.0_DP
90    logical, save :: haveDielectric = .false.
87  real(kind=DP), save :: constERFC = 0.0_DP
91    real(kind=DP), save :: constEXP = 0.0_DP
89  logical, save :: haveDWAconstants = .false.
92    real(kind=dp), save :: rcuti = 0.0_DP
93    real(kind=dp), save :: rcuti2 = 0.0_DP
94    real(kind=dp), save :: rcuti3 = 0.0_DP
# Line 97 | Line 99 | module electrostatic_module
99    real(kind=dp), save :: rt = 1.0_DP
100    real(kind=dp), save :: rrfsq = 1.0_DP
101    real(kind=dp), save :: preRF = 0.0_DP
102 <  logical, save :: preRFCalculated = .false.
103 <
102 >  real(kind=dp), save :: preRF2 = 0.0_DP
103 >  real(kind=dp), save :: f0 = 1.0_DP
104 >  real(kind=dp), save :: f1 = 1.0_DP
105 >  real(kind=dp), save :: f2 = 0.0_DP
106 >  real(kind=dp), save :: f0c = 1.0_DP
107 >  real(kind=dp), save :: f1c = 1.0_DP
108 >  real(kind=dp), save :: f2c = 0.0_DP
109 >
110   #ifdef __IFC
111   ! error function for ifc version > 7.
112    double precision, external :: derfc
113   #endif
114    
115    public :: setElectrostaticSummationMethod
116 +  public :: setScreeningMethod
117    public :: setElectrostaticCutoffRadius
118 <  public :: setDampedWolfAlpha
118 >  public :: setDampingAlpha
119    public :: setReactionFieldDielectric
111  public :: setReactionFieldPrefactor
120    public :: newElectrostaticType
121    public :: setCharge
122    public :: setDipoleMoment
# Line 117 | Line 125 | module electrostatic_module
125    public :: doElectrostaticPair
126    public :: getCharge
127    public :: getDipoleMoment
120  public :: pre22
128    public :: destroyElectrostaticTypes
129 <  public :: accumulate_rf
130 <  public :: accumulate_self_rf
124 <  public :: reaction_field_final
125 <  public :: rf_correct_forces
129 >  public :: self_self
130 >  public :: rf_self_excludes
131  
132    type :: Electrostatic
133       integer :: c_ident
# Line 151 | Line 156 | contains
156      summationMethod = the_ESM
157  
158    end subroutine setElectrostaticSummationMethod
159 +
160 +  subroutine setScreeningMethod(the_SM)
161 +    integer, intent(in) :: the_SM    
162 +    screeningMethod = the_SM
163 +  end subroutine setScreeningMethod
164  
165    subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
166      real(kind=dp), intent(in) :: thisRcut
# Line 161 | Line 171 | contains
171      haveDefaultCutoff = .true.
172    end subroutine setElectrostaticCutoffRadius
173  
174 <  subroutine setDampedWolfAlpha(thisAlpha)
174 >  subroutine setDampingAlpha(thisAlpha)
175      real(kind=dp), intent(in) :: thisAlpha
176      dampingAlpha = thisAlpha
177 +    alpha2 = dampingAlpha*dampingAlpha
178      haveDampingAlpha = .true.
179 <  end subroutine setDampedWolfAlpha
179 >  end subroutine setDampingAlpha
180    
181    subroutine setReactionFieldDielectric(thisDielectric)
182      real(kind=dp), intent(in) :: thisDielectric
# Line 173 | Line 184 | contains
184      haveDielectric = .true.
185    end subroutine setReactionFieldDielectric
186  
176  subroutine setReactionFieldPrefactor
177    if (haveDefaultCutoff .and. haveDielectric) then
178       defaultCutoff2 = defaultCutoff*defaultCutoff
179       preRF = pre22 * 2.0d0*(dielectric-1.0d0) / &
180            ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
181       preRFCalculated = .true.
182    else if (.not.haveDefaultCutoff) then
183       call handleError("setReactionFieldPrefactor", "Default cutoff not set")
184    else
185       call handleError("setReactionFieldPrefactor", "Dielectric not set")
186    endif
187  end subroutine setReactionFieldPrefactor
188
187    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
188         is_SplitDipole, is_Quadrupole, is_Tap, status)
189  
# Line 407 | Line 405 | contains
405      rcuti3 = rcuti2*rcuti
406      rcuti4 = rcuti2*rcuti2
407  
408 <    if (summationMethod .eq. DAMPED_WOLF) then
409 <       if (.not.haveDWAconstants) then
410 <          
413 <          if (.not.haveDampingAlpha) then
414 <             call handleError("checkSummationMethod", "no Damping Alpha set!")
415 <          endif
416 <          
417 <          if (.not.haveDefaultCutoff) then
418 <             call handleError("checkSummationMethod", "no Default Cutoff set!")
419 <          endif
420 <
421 <          constEXP = exp(-dampingAlpha*dampingAlpha*defaultCutoff*defaultCutoff)
422 <          constERFC = derfc(dampingAlpha*defaultCutoff)
423 <          invRootPi = 0.56418958354775628695d0
424 <          alphaPi = 2*dampingAlpha*invRootPi
425 <  
426 <          haveDWAconstants = .true.
408 >    if (screeningMethod .eq. DAMPED) then
409 >       if (.not.haveDampingAlpha) then
410 >          call handleError("checkSummationMethod", "no Damping Alpha set!")
411         endif
412 +      
413 +       if (.not.haveDefaultCutoff) then
414 +          call handleError("checkSummationMethod", "no Default Cutoff set!")
415 +       endif
416 +
417 +       constEXP = exp(-alpha2*defaultCutoff*defaultCutoff)
418 +       invRootPi = 0.56418958354775628695d0
419 +       alphaPi = 2.0d0*dampingAlpha*invRootPi
420 +       f0c = derfc(dampingAlpha*defaultCutoff)
421 +       f1c = alphaPi*defaultCutoff*constEXP + f0c
422 +       f2c = alphaPi*2.0d0*alpha2*constEXP*rcuti2
423 +
424      endif
425  
426      if (summationMethod .eq. REACTION_FIELD) then
427 <       if (.not.haveDielectric) then
428 <          call handleError("checkSummationMethod", "no reaction field Dielectric set!")
427 >       if (haveDielectric) then
428 >          defaultCutoff2 = defaultCutoff*defaultCutoff
429 >          preRF = (dielectric-1.0d0) / &
430 >               ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
431 >          preRF2 = 2.0d0*preRF
432 >       else
433 >          call handleError("checkSummationMethod", "Dielectric not set")
434         endif
435 +      
436      endif
437  
438      summationMethodChecked = .true.
439    end subroutine checkSummationMethod
440  
441  
440
442    subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
443         vpair, fpair, pot, eFrame, f, t, do_pot)
444  
# Line 449 | Line 450 | contains
450      real(kind=dp), intent(in) :: rij, r2, sw
451      real(kind=dp), intent(in), dimension(3) :: d
452      real(kind=dp), intent(inout) :: vpair
453 <    real(kind=dp), intent(inout), dimension(3) :: fpair
453 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
454  
455      real( kind = dp ) :: pot
456      real( kind = dp ), dimension(9,nLocal) :: eFrame
457      real( kind = dp ), dimension(3,nLocal) :: f
458 +    real( kind = dp ), dimension(3,nLocal) :: felec
459      real( kind = dp ), dimension(3,nLocal) :: t
460  
461      real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
# Line 471 | Line 473 | contains
473      real (kind=dp) :: cx_i, cy_i, cz_i
474      real (kind=dp) :: cx_j, cy_j, cz_j
475      real (kind=dp) :: cx2, cy2, cz2
476 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
476 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
477      real (kind=dp) :: riji, ri, ri2, ri3, ri4
478      real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
479      real (kind=dp) :: xhat, yhat, zhat
480      real (kind=dp) :: dudx, dudy, dudz
481      real (kind=dp) :: scale, sc2, bigR
482 <    real (kind=dp) :: varERFC, varEXP
483 <    real (kind=dp) :: limScale
482 >    real (kind=dp) :: varEXP
483 >    real (kind=dp) :: pot_term
484 >    real (kind=dp) :: preVal, rfVal
485  
486      if (.not.allocated(ElectrostaticMap)) then
487         call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
# Line 487 | Line 490 | contains
490  
491      if (.not.summationMethodChecked) then
492         call checkSummationMethod()
490      
493      endif
494  
493
495   #ifdef IS_MPI
496      me1 = atid_Row(atom1)
497      me2 = atid_Col(atom2)
# Line 499 | Line 500 | contains
500      me2 = atid(atom2)
501   #endif
502  
503 + !!$    if (rij .ge. defaultCutoff) then
504 + !!$       write(*,*) 'warning: rij = ', rij, ' rcut = ', defaultCutoff, ' sw = ', sw
505 + !!$    endif
506 +
507      !! some variables we'll need independent of electrostatic type:
508  
509      riji = 1.0d0 / rij
# Line 641 | Line 646 | contains
646      if (i_is_Charge) then
647  
648         if (j_is_Charge) then
649 +          if (screeningMethod .eq. DAMPED) then
650 +             f0 = derfc(dampingAlpha*rij)
651 +             varEXP = exp(-alpha2*rij*rij)
652 +             f1 = alphaPi*rij*varEXP + f0
653 +          endif
654  
655 <          if (summationMethod .eq. UNDAMPED_WOLF) then
655 >          preVal = pre11 * q_i * q_j
656  
657 <             vterm = pre11 * q_i * q_j * (riji - rcuti)
658 <             vpair = vpair + vterm
649 <             epot = epot + sw*vterm
657 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
658 >             vterm = preVal * (riji*f0 - rcuti*f0c)
659              
660 <             dudr  = -sw*pre11*q_i*q_j * (riji*riji-rcuti2)*riji
661 <            
662 <             dudx = dudx + dudr * d(1)
663 <             dudy = dudy + dudr * d(2)
664 <             dudz = dudz + dudr * d(3)
656 <
657 <          elseif (summationMethod .eq. DAMPED_WOLF) then
658 <
659 <             varERFC = derfc(dampingAlpha*rij)
660 <             varEXP = exp(-dampingAlpha*dampingAlpha*rij*rij)
661 <             vterm = pre11 * q_i * q_j * (varERFC*riji - constERFC*rcuti)
662 <             vpair = vpair + vterm
663 <             epot = epot + sw*vterm
660 >             dudr  = -sw * preVal * riji * riji * f1
661 >  
662 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
663 >             vterm = preVal * ( riji*f0 - rcuti*f0c + &
664 >                  f1c*rcuti2*(rij-defaultCutoff) )
665              
666 <             dudr  = -sw*pre11*q_i*q_j * ( riji*((varERFC*riji*riji &
667 <                                                  + alphaPi*varEXP) &
668 <                                                 - (constERFC*rcuti2 &
669 <                                                    + alphaPi*constEXP)) )
666 >             dudr  = -sw*preVal * (riji*riji*f1 - rcuti2*f1c)
667 >  
668 >          elseif (summationMethod .eq. REACTION_FIELD) then
669 >             rfVal = preRF*rij*rij
670 >             vterm = preVal * ( riji + rfVal )
671              
672 <             dudx = dudx + dudr * d(1)
673 <             dudy = dudy + dudr * d(2)
672 <             dudz = dudz + dudr * d(3)
673 <
672 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
673 >  
674            else
675 <
676 <             vterm = pre11 * q_i * q_j * riji
677 <             vpair = vpair + vterm
678 <             epot = epot + sw*vterm
675 >             vterm = preVal * riji*f0
676              
677 <             dudr  = - sw * vterm * riji
678 <            
682 <             dudx = dudx + dudr * xhat
683 <             dudy = dudy + dudr * yhat
684 <             dudz = dudz + dudr * zhat
685 <
677 >             dudr  = - sw * preVal * riji*riji*f1
678 >  
679            endif
680  
681 +          vpair = vpair + vterm
682 +          epot = epot + sw*vterm
683 +
684 +          dudx = dudx + dudr * xhat
685 +          dudy = dudy + dudr * yhat
686 +          dudz = dudz + dudr * zhat
687 +
688         endif
689  
690         if (j_is_Dipole) then
691  
692            pref = pre12 * q_i * mu_j
693  
694 <          if (summationMethod .eq. UNDAMPED_WOLF) then
694 >          if (summationMethod .eq. REACTION_FIELD) then
695               ri2 = riji * riji
696               ri3 = ri2 * riji
697 <
698 <             pref = pre12 * q_i * mu_j
699 <             vterm = - pref * ct_j * (ri2 - rcuti2)
697 >    
698 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
699               vpair = vpair + vterm
700               epot = epot + sw*vterm
701              
# Line 704 | Line 703 | contains
703               !! r_j - r_i and the charge-dipole potential takes the origin
704               !! as the point dipole, which is atom j in this case.
705              
706 <             dudx = dudx - sw*pref * ( ri3*( uz_j(1) - 3.0d0*ct_j*xhat) &
707 <                  - rcuti3*( uz_j(1) - 3.0d0*ct_j*d(1)*rcuti ) )
708 <             dudy = dudy - sw*pref * ( ri3*( uz_j(2) - 3.0d0*ct_j*yhat) &
709 <                  - rcuti3*( uz_j(2) - 3.0d0*ct_j*d(2)*rcuti ) )
710 <             dudz = dudz - sw*pref * ( ri3*( uz_j(3) - 3.0d0*ct_j*zhat) &
711 <                  - rcuti3*( uz_j(3) - 3.0d0*ct_j*d(3)*rcuti ) )
712 <            
713 <             duduz_j(1) = duduz_j(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
714 <             duduz_j(2) = duduz_j(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
716 <             duduz_j(3) = duduz_j(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
706 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
707 >                                     preRF2*uz_j(1) )
708 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
709 >                                     preRF2*uz_j(2) )
710 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
711 >                                     preRF2*uz_j(3) )        
712 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
713 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
714 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
715  
716            else
717               if (j_is_SplitDipole) then
# Line 729 | Line 727 | contains
727               ri3 = ri2 * ri
728               sc2 = scale * scale
729  
732             pref = pre12 * q_i * mu_j
730               vterm = - pref * ct_j * ri2 * scale
731               vpair = vpair + vterm
732               epot = epot + sw*vterm
# Line 757 | Line 754 | contains
754            cy2 = cy_j * cy_j
755            cz2 = cz_j * cz_j
756  
757 <          if (summationMethod .eq. UNDAMPED_WOLF) then
758 <             pref =  pre14 * q_i / 3.0_dp
759 <             vterm1 = pref * ri3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
760 <                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
761 <                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
762 <             vterm2 = pref * rcuti3*( qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
766 <                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
767 <                  qzz_j * (3.0_dp*cz2 - 1.0_dp) )
768 <             vpair = vpair + ( vterm1 - vterm2 )
769 <             epot = epot + sw*( vterm1 - vterm2 )
770 <            
771 <             dudx = dudx - (5.0_dp * &
772 <                  (vterm1*riji*xhat - vterm2*rcuti2*d(1))) + sw*pref * ( &
773 <                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(1)) - &
774 <                  qxx_j*2.0_dp*(xhat - rcuti*d(1))) + &
775 <                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(1)) - &
776 <                  qyy_j*2.0_dp*(xhat - rcuti*d(1))) + &
777 <                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(1)) - &
778 <                  qzz_j*2.0_dp*(xhat - rcuti*d(1))) )
779 <             dudy = dudy - (5.0_dp * &
780 <                  (vterm1*riji*yhat - vterm2*rcuti2*d(2))) + sw*pref * ( &
781 <                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(2)) - &
782 <                  qxx_j*2.0_dp*(yhat - rcuti*d(2))) + &
783 <                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(2)) - &
784 <                  qyy_j*2.0_dp*(yhat - rcuti*d(2))) + &
785 <                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(2)) - &
786 <                  qzz_j*2.0_dp*(yhat - rcuti*d(2))) )
787 <             dudz = dudz - (5.0_dp * &
788 <                  (vterm1*riji*zhat - vterm2*rcuti2*d(3))) + sw*pref * ( &
789 <                  (ri4 - rcuti4)*(qxx_j*(6.0_dp*cx_j*ux_j(3)) - &
790 <                  qxx_j*2.0_dp*(zhat - rcuti*d(3))) + &
791 <                  (ri4 - rcuti4)*(qyy_j*(6.0_dp*cy_j*uy_j(3)) - &
792 <                  qyy_j*2.0_dp*(zhat - rcuti*d(3))) + &
793 <                  (ri4 - rcuti4)*(qzz_j*(6.0_dp*cz_j*uz_j(3)) - &
794 <                  qzz_j*2.0_dp*(zhat - rcuti*d(3))) )
795 <            
796 <             dudux_j(1) = dudux_j(1) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*xhat) -&
797 <                  rcuti4*(qxx_j*6.0_dp*cx_j*d(1)))
798 <             dudux_j(2) = dudux_j(2) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*yhat) -&
799 <                  rcuti4*(qxx_j*6.0_dp*cx_j*d(2)))
800 <             dudux_j(3) = dudux_j(3) + sw*pref*(ri3*(qxx_j*6.0_dp*cx_j*zhat) -&
801 <                  rcuti4*(qxx_j*6.0_dp*cx_j*d(3)))
802 <            
803 <             duduy_j(1) = duduy_j(1) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*xhat) -&
804 <                  rcuti4*(qyy_j*6.0_dp*cx_j*d(1)))
805 <             duduy_j(2) = duduy_j(2) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*yhat) -&
806 <                  rcuti4*(qyy_j*6.0_dp*cx_j*d(2)))
807 <             duduy_j(3) = duduy_j(3) + sw*pref*(ri3*(qyy_j*6.0_dp*cy_j*zhat) -&
808 <                  rcuti4*(qyy_j*6.0_dp*cx_j*d(3)))
809 <            
810 <             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*xhat) -&
811 <                  rcuti4*(qzz_j*6.0_dp*cx_j*d(1)))
812 <             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*yhat) -&
813 <                  rcuti4*(qzz_j*6.0_dp*cx_j*d(2)))
814 <             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(qzz_j*6.0_dp*cz_j*zhat) -&
815 <                  rcuti4*(qzz_j*6.0_dp*cx_j*d(3)))
816 <        
817 <          else
818 <             pref =  pre14 * q_i / 3.0_dp
819 <             vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
820 <                  qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
821 <                  qzz_j * (3.0_dp*cz2 - 1.0_dp))
822 <             vpair = vpair + vterm
823 <             epot = epot + sw*vterm
824 <            
825 <             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
826 <                  qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
827 <                  qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
828 <                  qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
829 <             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
830 <                  qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
831 <                  qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
832 <                  qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
833 <             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
834 <                  qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
835 <                  qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
836 <                  qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
837 <            
838 <             dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
839 <             dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
840 <             dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
841 <            
842 <             duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
843 <             duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
844 <             duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
845 <            
846 <             duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
847 <             duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
848 <             duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
757 >          pref =  pre14 * q_i / 3.0_dp
758 >          vterm = pref * ri3 * (qxx_j * (3.0_dp*cx2 - 1.0_dp) + &
759 >               qyy_j * (3.0_dp*cy2 - 1.0_dp) + &
760 >               qzz_j * (3.0_dp*cz2 - 1.0_dp))
761 >          vpair = vpair + vterm
762 >          epot = epot + sw*vterm
763            
764 <          endif
764 >          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref * ri4 * ( &
765 >               qxx_j*(6.0_dp*cx_j*ux_j(1) - 2.0_dp*xhat) + &
766 >               qyy_j*(6.0_dp*cy_j*uy_j(1) - 2.0_dp*xhat) + &
767 >               qzz_j*(6.0_dp*cz_j*uz_j(1) - 2.0_dp*xhat) )
768 >          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref * ri4 * ( &
769 >               qxx_j*(6.0_dp*cx_j*ux_j(2) - 2.0_dp*yhat) + &
770 >               qyy_j*(6.0_dp*cy_j*uy_j(2) - 2.0_dp*yhat) + &
771 >               qzz_j*(6.0_dp*cz_j*uz_j(2) - 2.0_dp*yhat) )
772 >          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref * ri4 * ( &
773 >               qxx_j*(6.0_dp*cx_j*ux_j(3) - 2.0_dp*zhat) + &
774 >               qyy_j*(6.0_dp*cy_j*uy_j(3) - 2.0_dp*zhat) + &
775 >               qzz_j*(6.0_dp*cz_j*uz_j(3) - 2.0_dp*zhat) )
776 >          
777 >          dudux_j(1) = dudux_j(1) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*xhat)
778 >          dudux_j(2) = dudux_j(2) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*yhat)
779 >          dudux_j(3) = dudux_j(3) + sw*pref * ri3*(qxx_j*6.0_dp*cx_j*zhat)
780 >          
781 >          duduy_j(1) = duduy_j(1) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*xhat)
782 >          duduy_j(2) = duduy_j(2) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*yhat)
783 >          duduy_j(3) = duduy_j(3) + sw*pref * ri3*(qyy_j*6.0_dp*cy_j*zhat)
784 >          
785 >          duduz_j(1) = duduz_j(1) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*xhat)
786 >          duduz_j(2) = duduz_j(2) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*yhat)
787 >          duduz_j(3) = duduz_j(3) + sw*pref * ri3*(qzz_j*6.0_dp*cz_j*zhat)
788 >          
789         endif
790      endif
791 <
791 >    
792      if (i_is_Dipole) then
793  
794         if (j_is_Charge) then
795            
796            pref = pre12 * q_j * mu_i
797            
798 <          if (summationMethod .eq. UNDAMPED_WOLF) then
798 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
799               ri2 = riji * riji
800               ri3 = ri2 * riji
801 +            
802 +             pot_term = ri2 - rcuti2
803 +             vterm = pref * ct_i * pot_term
804 +             vpair = vpair + vterm
805 +             epot = epot + sw*vterm
806 +            
807 +             dudx = dudx + sw*pref * ( ri3*(uz_i(1)-3.0d0*ct_i*xhat) )
808 +             dudy = dudy + sw*pref * ( ri3*(uz_i(2)-3.0d0*ct_i*yhat) )
809 +             dudz = dudz + sw*pref * ( ri3*(uz_i(3)-3.0d0*ct_i*zhat) )
810 +            
811 +             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
812 +             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
813 +             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
814  
815 <             pref = pre12 * q_j * mu_i
816 <             vterm = pref * ct_i * (ri2 - rcuti2)
815 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
816 >             ri2 = riji * riji
817 >             ri3 = ri2 * riji
818 >
819 >             pot_term = ri2 - rcuti2 + 2.0d0*rcuti3*( rij - defaultCutoff )
820 >             vterm = pref * ct_i * pot_term
821               vpair = vpair + vterm
822               epot = epot + sw*vterm
823              
824 <             !! this has a + sign in the () because the rij vector is
825 <             !! r_j - r_i and the charge-dipole potential takes the origin
826 <             !! as the point dipole, which is atom j in this case.
824 >             dudx = dudx + sw*pref * ( (ri3-rcuti3)*(uz_i(1)-3.0d0*ct_i*xhat) )
825 >             dudy = dudy + sw*pref * ( (ri3-rcuti3)*(uz_i(2)-3.0d0*ct_i*yhat) )
826 >             dudz = dudz + sw*pref * ( (ri3-rcuti3)*(uz_i(3)-3.0d0*ct_i*zhat) )
827              
828 <             dudx = dudx + sw*pref * ( ri3*( uz_i(1) - 3.0d0*ct_i*xhat) &
829 <                  - rcuti3*( uz_i(1) - 3.0d0*ct_i*d(1)*rcuti ) )
830 <             dudy = dudy + sw*pref * ( ri3*( uz_i(2) - 3.0d0*ct_i*yhat) &
831 <                  - rcuti3*( uz_i(2) - 3.0d0*ct_i*d(2)*rcuti ) )
832 <             dudz = dudz + sw*pref * ( ri3*( uz_i(3) - 3.0d0*ct_i*zhat) &
833 <                  - rcuti3*( uz_i(3) - 3.0d0*ct_i*d(3)*rcuti ) )
828 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
829 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
830 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
831 >
832 >          elseif (summationMethod .eq. REACTION_FIELD) then
833 >             ri2 = riji * riji
834 >             ri3 = ri2 * riji
835 >
836 >             vterm = pref * ct_i * ( ri2 - preRF2*rij )
837 >             vpair = vpair + vterm
838 >             epot = epot + sw*vterm
839              
840 <             duduz_i(1) = duduz_i(1) - sw*pref*( ri2*xhat - d(1)*rcuti3 )
841 <             duduz_i(2) = duduz_i(2) - sw*pref*( ri2*yhat - d(2)*rcuti3 )
842 <             duduz_i(3) = duduz_i(3) - sw*pref*( ri2*zhat - d(3)*rcuti3 )
840 >             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
841 >                  preRF2*uz_i(1) )
842 >             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
843 >                  preRF2*uz_i(2) )
844 >             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
845 >                  preRF2*uz_i(3) )
846 >            
847 >             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
848 >             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
849 >             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
850  
851            else
852               if (i_is_SplitDipole) then
# Line 895 | Line 862 | contains
862               ri3 = ri2 * ri
863               sc2 = scale * scale
864  
898             pref = pre12 * q_j * mu_i
865               vterm = pref * ct_i * ri2 * scale
866               vpair = vpair + vterm
867               epot = epot + sw*vterm
# Line 911 | Line 877 | contains
877         endif
878        
879         if (j_is_Dipole) then
880 +          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
881 +          
882 +          ri2 = riji * riji
883 +          ri3 = ri2 * riji
884 +          ri4 = ri2 * ri2
885 +          
886 +          pref = pre22 * mu_i * mu_j
887  
888 <          if (summationMethod .eq. UNDAMPED_WOLF) then
889 <             ri2 = riji * riji
890 <             ri3 = ri2 * riji
918 <             ri4 = ri2 * ri2
919 <
920 <             pref = pre22 * mu_i * mu_j
921 <             vterm = pref * (ri3 - rcuti3) * (ct_ij - 3.0d0 * ct_i * ct_j)
888 >          if (summationMethod .eq. REACTION_FIELD) then
889 >             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
890 >                  preRF2*ct_ij )
891               vpair = vpair + vterm
892               epot = epot + sw*vterm
893              
894               a1 = 5.0d0 * ct_i * ct_j - ct_ij
895              
896               dudx = dudx + sw*pref*3.0d0*ri4 &
897 <                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1)) &
929 <                         - sw*pref*3.0d0*rcuti4 &
930 <                             * (a1*rcuti*d(1)-ct_i*uz_j(1)-ct_j*uz_i(1))
897 >                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
898               dudy = dudy + sw*pref*3.0d0*ri4 &
899 <                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2)) &
933 <                         - sw*pref*3.0d0*rcuti4 &
934 <                             * (a1*rcuti*d(2)-ct_i*uz_j(2)-ct_j*uz_i(2))
899 >                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
900               dudz = dudz + sw*pref*3.0d0*ri4 &
901 <                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3)) &
937 <                         - sw*pref*3.0d0*rcuti4 &
938 <                             * (a1*rcuti*d(3)-ct_i*uz_j(3)-ct_j*uz_i(3))
901 >                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
902              
903               duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
904 <                  - rcuti3*(uz_j(1) - 3.0d0*ct_j*d(1)*rcuti))
904 >                  - preRF2*uz_j(1))
905               duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
906 <                  - rcuti3*(uz_j(2) - 3.0d0*ct_j*d(2)*rcuti))
906 >                  - preRF2*uz_j(2))
907               duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
908 <                  - rcuti3*(uz_j(3) - 3.0d0*ct_j*d(3)*rcuti))
908 >                  - preRF2*uz_j(3))
909               duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
910 <                  - rcuti3*(uz_i(1) - 3.0d0*ct_i*d(1)*rcuti))
910 >                  - preRF2*uz_i(1))
911               duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
912 <                  - rcuti3*(uz_i(2) - 3.0d0*ct_i*d(2)*rcuti))
912 >                  - preRF2*uz_i(2))
913               duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
914 <                  - rcuti3*(uz_i(3) - 3.0d0*ct_i*d(3)*rcuti))
914 >                  - preRF2*uz_i(3))
915  
916            else
917               if (i_is_SplitDipole) then
# Line 970 | Line 933 | contains
933                  endif
934               endif
935              
973             ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
974            
975             ri2 = ri * ri
976             ri3 = ri2 * ri
977             ri4 = ri2 * ri2
936               sc2 = scale * scale
937 <            
980 <             pref = pre22 * mu_i * mu_j
937 >
938               vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
939               vpair = vpair + vterm
940               epot = epot + sw*vterm
# Line 1010 | Line 967 | contains
967  
968      if (i_is_Quadrupole) then
969         if (j_is_Charge) then
1013
970            ri2 = riji * riji
971            ri3 = ri2 * riji
972            ri4 = ri2 * ri2
# Line 1018 | Line 974 | contains
974            cy2 = cy_i * cy_i
975            cz2 = cz_i * cz_i
976  
977 <          if (summationMethod .eq. UNDAMPED_WOLF) then
978 <             pref = pre14 * q_j / 3.0_dp
979 <             vterm1 = pref * ri3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
980 <                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
981 <                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
982 <             vterm2 = pref * rcuti3*( qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
983 <                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
984 <                  qzz_i * (3.0_dp*cz2 - 1.0_dp) )
985 <             vpair = vpair + ( vterm1 - vterm2 )
986 <             epot = epot + sw*( vterm1 - vterm2 )
987 <            
988 <             dudx = dudx - sw*(5.0_dp*(vterm1*riji*xhat-vterm2*rcuti2*d(1))) +&
989 <                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(1)) - &
990 <                  qxx_i*2.0_dp*(xhat - rcuti*d(1))) + &
991 <                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(1)) - &
992 <                  qyy_i*2.0_dp*(xhat - rcuti*d(1))) + &
993 <                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(1)) - &
994 <                  qzz_i*2.0_dp*(xhat - rcuti*d(1))) )
995 <             dudy = dudy - sw*(5.0_dp*(vterm1*riji*yhat-vterm2*rcuti2*d(2))) +&
996 <                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(2)) - &
997 <                  qxx_i*2.0_dp*(yhat - rcuti*d(2))) + &
998 <                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(2)) - &
999 <                  qyy_i*2.0_dp*(yhat - rcuti*d(2))) + &
1000 <                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(2)) - &
1001 <                  qzz_i*2.0_dp*(yhat - rcuti*d(2))) )
1002 <             dudz = dudz - sw*(5.0_dp*(vterm1*riji*zhat-vterm2*rcuti2*d(3))) +&
1003 <                  sw*pref * ( (ri4 - rcuti4)*(qxx_i*(6.0_dp*cx_i*ux_i(3)) - &
1004 <                  qxx_i*2.0_dp*(zhat - rcuti*d(3))) + &
1005 <                  (ri4 - rcuti4)*(qyy_i*(6.0_dp*cy_i*uy_i(3)) - &
1006 <                  qyy_i*2.0_dp*(zhat - rcuti*d(3))) + &
1007 <                  (ri4 - rcuti4)*(qzz_i*(6.0_dp*cz_i*uz_i(3)) - &
1052 <                  qzz_i*2.0_dp*(zhat - rcuti*d(3))) )
1053 <            
1054 <             dudux_i(1) = dudux_i(1) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*xhat) -&
1055 <                  rcuti4*(qxx_i*6.0_dp*cx_i*d(1)))
1056 <             dudux_i(2) = dudux_i(2) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*yhat) -&
1057 <                  rcuti4*(qxx_i*6.0_dp*cx_i*d(2)))
1058 <             dudux_i(3) = dudux_i(3) + sw*pref*(ri3*(qxx_i*6.0_dp*cx_i*zhat) -&
1059 <                  rcuti4*(qxx_i*6.0_dp*cx_i*d(3)))
1060 <            
1061 <             duduy_i(1) = duduy_i(1) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*xhat) -&
1062 <                  rcuti4*(qyy_i*6.0_dp*cx_i*d(1)))
1063 <             duduy_i(2) = duduy_i(2) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*yhat) -&
1064 <                  rcuti4*(qyy_i*6.0_dp*cx_i*d(2)))
1065 <             duduy_i(3) = duduy_i(3) + sw*pref*(ri3*(qyy_i*6.0_dp*cy_i*zhat) -&
1066 <                  rcuti4*(qyy_i*6.0_dp*cx_i*d(3)))
1067 <            
1068 <             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*xhat) -&
1069 <                  rcuti4*(qzz_i*6.0_dp*cx_i*d(1)))
1070 <             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*yhat) -&
1071 <                  rcuti4*(qzz_i*6.0_dp*cx_i*d(2)))
1072 <             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(qzz_i*6.0_dp*cz_i*zhat) -&
1073 <                  rcuti4*(qzz_i*6.0_dp*cx_i*d(3)))
977 >          pref = pre14 * q_j / 3.0_dp
978 >          vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
979 >               qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
980 >               qzz_i * (3.0_dp*cz2 - 1.0_dp))
981 >          vpair = vpair + vterm
982 >          epot = epot + sw*vterm
983 >          
984 >          dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
985 >               qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
986 >               qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
987 >               qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
988 >          dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
989 >               qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
990 >               qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
991 >               qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
992 >          dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
993 >               qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
994 >               qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
995 >               qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
996 >          
997 >          dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
998 >          dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
999 >          dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1000 >          
1001 >          duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1002 >          duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1003 >          duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1004 >          
1005 >          duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1006 >          duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1007 >          duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1008  
1075          else
1076             pref = pre14 * q_j / 3.0_dp
1077             vterm = pref * ri3 * (qxx_i * (3.0_dp*cx2 - 1.0_dp) + &
1078                  qyy_i * (3.0_dp*cy2 - 1.0_dp) + &
1079                  qzz_i * (3.0_dp*cz2 - 1.0_dp))
1080             vpair = vpair + vterm
1081             epot = epot + sw*vterm
1082            
1083             dudx = dudx - 5.0_dp*sw*vterm*riji*xhat + sw*pref*ri4 * ( &
1084                  qxx_i*(6.0_dp*cx_i*ux_i(1) - 2.0_dp*xhat) + &
1085                  qyy_i*(6.0_dp*cy_i*uy_i(1) - 2.0_dp*xhat) + &
1086                  qzz_i*(6.0_dp*cz_i*uz_i(1) - 2.0_dp*xhat) )
1087             dudy = dudy - 5.0_dp*sw*vterm*riji*yhat + sw*pref*ri4 * ( &
1088                  qxx_i*(6.0_dp*cx_i*ux_i(2) - 2.0_dp*yhat) + &
1089                  qyy_i*(6.0_dp*cy_i*uy_i(2) - 2.0_dp*yhat) + &
1090                  qzz_i*(6.0_dp*cz_i*uz_i(2) - 2.0_dp*yhat) )
1091             dudz = dudz - 5.0_dp*sw*vterm*riji*zhat + sw*pref*ri4 * ( &
1092                  qxx_i*(6.0_dp*cx_i*ux_i(3) - 2.0_dp*zhat) + &
1093                  qyy_i*(6.0_dp*cy_i*uy_i(3) - 2.0_dp*zhat) + &
1094                  qzz_i*(6.0_dp*cz_i*uz_i(3) - 2.0_dp*zhat) )
1095            
1096             dudux_i(1) = dudux_i(1) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*xhat)
1097             dudux_i(2) = dudux_i(2) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*yhat)
1098             dudux_i(3) = dudux_i(3) + sw*pref*ri3*(qxx_i*6.0_dp*cx_i*zhat)
1099            
1100             duduy_i(1) = duduy_i(1) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*xhat)
1101             duduy_i(2) = duduy_i(2) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*yhat)
1102             duduy_i(3) = duduy_i(3) + sw*pref*ri3*(qyy_i*6.0_dp*cy_i*zhat)
1103            
1104             duduz_i(1) = duduz_i(1) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*xhat)
1105             duduz_i(2) = duduz_i(2) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*yhat)
1106             duduz_i(3) = duduz_i(3) + sw*pref*ri3*(qzz_i*6.0_dp*cz_i*zhat)
1107          endif
1009         endif
1010      endif
1011  
# Line 1217 | Line 1118 | contains
1118      return
1119    end subroutine doElectrostaticPair
1120  
1220  !! calculates the switching functions and their derivatives for a given
1221  subroutine calc_switch(r, mu, scale, dscale)
1222
1223    real (kind=dp), intent(in) :: r, mu
1224    real (kind=dp), intent(inout) :: scale, dscale
1225    real (kind=dp) :: rl, ru, mulow, minRatio, temp, scaleVal
1226
1227    ! distances must be in angstroms
1228    rl = 2.75d0
1229    ru = 3.75d0
1230    mulow = 0.0d0 !3.3856d0 ! 1.84 * 1.84
1231    minRatio = mulow / (mu*mu)
1232    scaleVal = 1.0d0 - minRatio
1233    
1234    if (r.lt.rl) then
1235       scale = minRatio
1236       dscale = 0.0d0
1237    elseif (r.gt.ru) then
1238       scale = 1.0d0
1239       dscale = 0.0d0
1240    else
1241       scale = 1.0d0 - scaleVal*((ru + 2.0d0*r - 3.0d0*rl) * (ru-r)**2) &
1242                        / ((ru - rl)**3)
1243       dscale = -scaleVal * 6.0d0 * (r-ru)*(r-rl)/((ru - rl)**3)    
1244    endif
1245        
1246    return
1247  end subroutine calc_switch
1248
1121    subroutine destroyElectrostaticTypes()
1122  
1123      if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1124  
1125    end subroutine destroyElectrostaticTypes
1126  
1127 <  subroutine accumulate_rf(atom1, atom2, rij, eFrame, taper)
1128 <
1257 <    integer, intent(in) :: atom1, atom2
1258 <    real (kind = dp), intent(in) :: rij
1259 <    real (kind = dp), dimension(9,nLocal) :: eFrame
1260 <
1261 <    integer :: me1, me2
1262 <    real (kind = dp), intent(in) :: taper
1263 <    real (kind = dp):: mu1, mu2
1264 <    real (kind = dp), dimension(3) :: ul1
1265 <    real (kind = dp), dimension(3) :: ul2  
1266 <
1267 <    integer :: localError
1268 <
1269 < #ifdef IS_MPI
1270 <    me1 = atid_Row(atom1)
1271 <    ul1(1) = eFrame_Row(3,atom1)
1272 <    ul1(2) = eFrame_Row(6,atom1)
1273 <    ul1(3) = eFrame_Row(9,atom1)
1274 <
1275 <    me2 = atid_Col(atom2)
1276 <    ul2(1) = eFrame_Col(3,atom2)
1277 <    ul2(2) = eFrame_Col(6,atom2)
1278 <    ul2(3) = eFrame_Col(9,atom2)
1279 < #else
1280 <    me1 = atid(atom1)
1281 <    ul1(1) = eFrame(3,atom1)
1282 <    ul1(2) = eFrame(6,atom1)
1283 <    ul1(3) = eFrame(9,atom1)
1284 <
1285 <    me2 = atid(atom2)
1286 <    ul2(1) = eFrame(3,atom2)
1287 <    ul2(2) = eFrame(6,atom2)
1288 <    ul2(3) = eFrame(9,atom2)
1289 < #endif
1290 <
1291 <    mu1 = getDipoleMoment(me1)
1292 <    mu2 = getDipoleMoment(me2)
1293 <
1294 < #ifdef IS_MPI
1295 <    rf_Row(1,atom1) = rf_Row(1,atom1) + ul2(1)*mu2*taper
1296 <    rf_Row(2,atom1) = rf_Row(2,atom1) + ul2(2)*mu2*taper
1297 <    rf_Row(3,atom1) = rf_Row(3,atom1) + ul2(3)*mu2*taper
1298 <
1299 <    rf_Col(1,atom2) = rf_Col(1,atom2) + ul1(1)*mu1*taper
1300 <    rf_Col(2,atom2) = rf_Col(2,atom2) + ul1(2)*mu1*taper
1301 <    rf_Col(3,atom2) = rf_Col(3,atom2) + ul1(3)*mu1*taper
1302 < #else
1303 <    rf(1,atom1) = rf(1,atom1) + ul2(1)*mu2*taper
1304 <    rf(2,atom1) = rf(2,atom1) + ul2(2)*mu2*taper
1305 <    rf(3,atom1) = rf(3,atom1) + ul2(3)*mu2*taper
1306 <
1307 <    rf(1,atom2) = rf(1,atom2) + ul1(1)*mu1*taper
1308 <    rf(2,atom2) = rf(2,atom2) + ul1(2)*mu1*taper
1309 <    rf(3,atom2) = rf(3,atom2) + ul1(3)*mu1*taper    
1310 < #endif
1311 <    return  
1312 <  end subroutine accumulate_rf
1313 <
1314 <  subroutine accumulate_self_rf(atom1, mu1, eFrame)
1315 <
1127 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1128 >    logical, intent(in) :: do_pot
1129      integer, intent(in) :: atom1
1130 <    real(kind=dp), intent(in) :: mu1
1130 >    integer :: atid1
1131      real(kind=dp), dimension(9,nLocal) :: eFrame
1132 +    real(kind=dp), dimension(3,nLocal) :: t
1133 +    real(kind=dp) :: mu1, c1
1134 +    real(kind=dp) :: preVal, epot, mypot
1135 +    real(kind=dp) :: eix, eiy, eiz
1136  
1137 <    !! should work for both MPI and non-MPI version since this is not pairwise.
1138 <    rf(1,atom1) = rf(1,atom1) + eFrame(3,atom1)*mu1
1322 <    rf(2,atom1) = rf(2,atom1) + eFrame(6,atom1)*mu1
1323 <    rf(3,atom1) = rf(3,atom1) + eFrame(9,atom1)*mu1
1137 >    ! this is a local only array, so we use the local atom type id's:
1138 >    atid1 = atid(atom1)
1139  
1140 +    if (.not.summationMethodChecked) then
1141 +       call checkSummationMethod()
1142 +    endif
1143 +    
1144 +    if (summationMethod .eq. REACTION_FIELD) then
1145 +       if (ElectrostaticMap(atid1)%is_Dipole) then
1146 +          mu1 = getDipoleMoment(atid1)
1147 +          
1148 +          preVal = pre22 * preRF2 * mu1*mu1
1149 +          mypot = mypot - 0.5d0*preVal
1150 +          
1151 +          ! The self-correction term adds into the reaction field vector
1152 +          
1153 +          eix = preVal * eFrame(3,atom1)
1154 +          eiy = preVal * eFrame(6,atom1)
1155 +          eiz = preVal * eFrame(9,atom1)
1156 +          
1157 +          ! once again, this is self-self, so only the local arrays are needed
1158 +          ! even for MPI jobs:
1159 +          
1160 +          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1161 +               eFrame(9,atom1)*eiy
1162 +          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1163 +               eFrame(3,atom1)*eiz
1164 +          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1165 +               eFrame(6,atom1)*eix
1166 +          
1167 +       endif
1168 +
1169 +    elseif (summationMethod .eq. SHIFTED_FORCE) then
1170 +       if (ElectrostaticMap(atid1)%is_Charge) then
1171 +          c1 = getCharge(atid1)
1172 +          
1173 +          if (screeningMethod .eq. DAMPED) then
1174 +             mypot = mypot - (f0c * rcuti * 0.5_dp + &
1175 +                  dampingAlpha*invRootPi) * c1 * c1    
1176 +            
1177 +          else            
1178 +             mypot = mypot - (rcuti * 0.5_dp * c1 * c1)
1179 +            
1180 +          endif
1181 +       endif
1182 +    endif
1183 +    
1184      return
1185 <  end subroutine accumulate_self_rf
1185 >  end subroutine self_self
1186  
1187 <  subroutine reaction_field_final(a1, mu1, eFrame, rfpot, t, do_pot)
1188 <
1330 <    integer, intent(in) :: a1
1331 <    real (kind=dp), intent(in) :: mu1
1332 <    real (kind=dp), intent(inout) :: rfpot
1187 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1188 >       f, t, do_pot)
1189      logical, intent(in) :: do_pot
1190 <    real (kind = dp), dimension(9,nLocal) :: eFrame
1191 <    real (kind = dp), dimension(3,nLocal) :: t
1192 <
1193 <    integer :: localError
1190 >    integer, intent(in) :: atom1
1191 >    integer, intent(in) :: atom2
1192 >    logical :: i_is_Charge, j_is_Charge
1193 >    logical :: i_is_Dipole, j_is_Dipole
1194 >    integer :: atid1
1195 >    integer :: atid2
1196 >    real(kind=dp), intent(in) :: rij
1197 >    real(kind=dp), intent(in) :: sw
1198 >    real(kind=dp), intent(in), dimension(3) :: d
1199 >    real(kind=dp), intent(inout) :: vpair
1200 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1201 >    real(kind=dp), dimension(3,nLocal) :: f
1202 >    real(kind=dp), dimension(3,nLocal) :: t
1203 >    real (kind = dp), dimension(3) :: duduz_i
1204 >    real (kind = dp), dimension(3) :: duduz_j
1205 >    real (kind = dp), dimension(3) :: uz_i
1206 >    real (kind = dp), dimension(3) :: uz_j
1207 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1208 >    real(kind=dp) :: xhat, yhat, zhat
1209 >    real(kind=dp) :: ct_i, ct_j
1210 >    real(kind=dp) :: ri2, ri3, riji, vterm
1211 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1212 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1213  
1214 <    if (.not.preRFCalculated) then
1215 <       call setReactionFieldPrefactor()
1214 >    if (.not.summationMethodChecked) then
1215 >       call checkSummationMethod()
1216      endif
1217  
1218 <    ! compute torques on dipoles:
1219 <    ! pre converts from mu in units of debye to kcal/mol
1218 >    dudx = 0.0d0
1219 >    dudy = 0.0d0
1220 >    dudz = 0.0d0
1221  
1222 <    ! The torque contribution is dipole cross reaction_field  
1222 >    riji = 1.0d0/rij
1223  
1224 <    t(1,a1) = t(1,a1) + preRF*mu1*(eFrame(6,a1)*rf(3,a1) - &
1225 <                                   eFrame(9,a1)*rf(2,a1))
1226 <    t(2,a1) = t(2,a1) + preRF*mu1*(eFrame(9,a1)*rf(1,a1) - &
1351 <                                   eFrame(3,a1)*rf(3,a1))
1352 <    t(3,a1) = t(3,a1) + preRF*mu1*(eFrame(3,a1)*rf(2,a1) - &
1353 <                                   eFrame(6,a1)*rf(1,a1))
1224 >    xhat = d(1) * riji
1225 >    yhat = d(2) * riji
1226 >    zhat = d(3) * riji
1227  
1228 <    ! the potential contribution is -1/2 dipole dot reaction_field
1228 >    ! this is a local only array, so we use the local atom type id's:
1229 >    atid1 = atid(atom1)
1230 >    atid2 = atid(atom2)
1231 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1232 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1233 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1234 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1235  
1236 <    if (do_pot) then
1237 <       rfpot = rfpot - 0.5d0 * preRF * mu1 * &
1238 <            (rf(1,a1)*eFrame(3,a1) + rf(2,a1)*eFrame(6,a1) + &
1239 <             rf(3,a1)*eFrame(9,a1))
1236 >    if (i_is_Charge.and.j_is_Charge) then
1237 >       q_i = ElectrostaticMap(atid1)%charge
1238 >       q_j = ElectrostaticMap(atid2)%charge
1239 >      
1240 >       preVal = pre11 * q_i * q_j
1241 >       rfVal = preRF*rij*rij
1242 >       vterm = preVal * rfVal
1243 >      
1244 >       myPot = myPot + sw*vterm
1245 >      
1246 >       dudr  = sw*preVal * 2.0d0*rfVal*riji
1247 >      
1248 >       dudx = dudx + dudr * xhat
1249 >       dudy = dudy + dudr * yhat
1250 >       dudz = dudz + dudr * zhat
1251 >      
1252 >    elseif (i_is_Charge.and.j_is_Dipole) then
1253 >       q_i = ElectrostaticMap(atid1)%charge
1254 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1255 >       uz_j(1) = eFrame(3,atom2)
1256 >       uz_j(2) = eFrame(6,atom2)
1257 >       uz_j(3) = eFrame(9,atom2)
1258 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1259 >      
1260 >       ri2 = riji * riji
1261 >       ri3 = ri2 * riji
1262 >      
1263 >       pref = pre12 * q_i * mu_j
1264 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1265 >       myPot = myPot + sw*vterm
1266 >      
1267 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1268 >            - preRF2*uz_j(1) )
1269 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1270 >            - preRF2*uz_j(2) )
1271 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1272 >            - preRF2*uz_j(3) )
1273 >      
1274 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1275 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1276 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1277 >      
1278 >    elseif (i_is_Dipole.and.j_is_Charge) then
1279 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1280 >       q_j = ElectrostaticMap(atid2)%charge
1281 >       uz_i(1) = eFrame(3,atom1)
1282 >       uz_i(2) = eFrame(6,atom1)
1283 >       uz_i(3) = eFrame(9,atom1)
1284 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1285 >      
1286 >       ri2 = riji * riji
1287 >       ri3 = ri2 * riji
1288 >      
1289 >       pref = pre12 * q_j * mu_i
1290 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1291 >       myPot = myPot + sw*vterm
1292 >      
1293 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1294 >            - preRF2*uz_i(1) )
1295 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1296 >            - preRF2*uz_i(2) )
1297 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1298 >            - preRF2*uz_i(3) )
1299 >      
1300 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1301 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1302 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1303 >      
1304      endif
1305 +      
1306  
1307 <    return
1308 <  end subroutine reaction_field_final
1309 <
1310 <  subroutine rf_correct_forces(atom1, atom2, d, rij, eFrame, taper, f, fpair)
1311 <
1312 <    integer, intent(in) :: atom1, atom2
1313 <    real(kind=dp), dimension(3), intent(in) :: d
1314 <    real(kind=dp), intent(in) :: rij, taper
1315 <    real( kind = dp ), dimension(9,nLocal) :: eFrame
1316 <    real( kind = dp ), dimension(3,nLocal) :: f
1317 <    real( kind = dp ), dimension(3), intent(inout) :: fpair
1318 <
1319 <    real (kind = dp), dimension(3) :: ul1
1320 <    real (kind = dp), dimension(3) :: ul2
1321 <    real (kind = dp) :: dtdr
1322 <    real (kind = dp) :: dudx, dudy, dudz, u1dotu2
1323 <    integer :: me1, me2, id1, id2
1380 <    real (kind = dp) :: mu1, mu2
1381 <
1382 <    integer :: localError
1383 <
1384 <    if (.not.preRFCalculated) then
1385 <       call setReactionFieldPrefactor()
1307 >    ! accumulate the forces and torques resulting from the self term
1308 >    f(1,atom1) = f(1,atom1) + dudx
1309 >    f(2,atom1) = f(2,atom1) + dudy
1310 >    f(3,atom1) = f(3,atom1) + dudz
1311 >    
1312 >    f(1,atom2) = f(1,atom2) - dudx
1313 >    f(2,atom2) = f(2,atom2) - dudy
1314 >    f(3,atom2) = f(3,atom2) - dudz
1315 >    
1316 >    if (i_is_Dipole) then
1317 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1318 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1319 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1320 >    elseif (j_is_Dipole) then
1321 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1322 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1323 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1324      endif
1325  
1388    if (rij.le.rrf) then
1389
1390       if (rij.lt.rt) then
1391          dtdr = 0.0d0
1392       else
1393          !         write(*,*) 'rf correct in taper region'
1394          dtdr = 6.0d0*(rij*rij - rij*rt - rij*rrf +rrf*rt)/((rrf-rt)**3)
1395       endif
1396
1397 #ifdef IS_MPI
1398       me1 = atid_Row(atom1)
1399       ul1(1) = eFrame_Row(3,atom1)
1400       ul1(2) = eFrame_Row(6,atom1)
1401       ul1(3) = eFrame_Row(9,atom1)
1402
1403       me2 = atid_Col(atom2)
1404       ul2(1) = eFrame_Col(3,atom2)
1405       ul2(2) = eFrame_Col(6,atom2)
1406       ul2(3) = eFrame_Col(9,atom2)
1407 #else
1408       me1 = atid(atom1)
1409       ul1(1) = eFrame(3,atom1)
1410       ul1(2) = eFrame(6,atom1)
1411       ul1(3) = eFrame(9,atom1)
1412
1413       me2 = atid(atom2)
1414       ul2(1) = eFrame(3,atom2)
1415       ul2(2) = eFrame(6,atom2)
1416       ul2(3) = eFrame(9,atom2)
1417 #endif
1418
1419       mu1 = getDipoleMoment(me1)
1420       mu2 = getDipoleMoment(me2)
1421
1422       u1dotu2 = ul1(1)*ul2(1) + ul1(2)*ul2(2) + ul1(3)*ul2(3)
1423
1424       dudx = - preRF*mu1*mu2*u1dotu2*dtdr*d(1)/rij
1425       dudy = - preRF*mu1*mu2*u1dotu2*dtdr*d(2)/rij
1426       dudz = - preRF*mu1*mu2*u1dotu2*dtdr*d(3)/rij
1427
1428 #ifdef IS_MPI
1429       f_Row(1,atom1) = f_Row(1,atom1) + dudx
1430       f_Row(2,atom1) = f_Row(2,atom1) + dudy
1431       f_Row(3,atom1) = f_Row(3,atom1) + dudz
1432
1433       f_Col(1,atom2) = f_Col(1,atom2) - dudx
1434       f_Col(2,atom2) = f_Col(2,atom2) - dudy
1435       f_Col(3,atom2) = f_Col(3,atom2) - dudz
1436 #else
1437       f(1,atom1) = f(1,atom1) + dudx
1438       f(2,atom1) = f(2,atom1) + dudy
1439       f(3,atom1) = f(3,atom1) + dudz
1440
1441       f(1,atom2) = f(1,atom2) - dudx
1442       f(2,atom2) = f(2,atom2) - dudy
1443       f(3,atom2) = f(3,atom2) - dudz
1444 #endif
1445
1446 #ifdef IS_MPI
1447       id1 = AtomRowToGlobal(atom1)
1448       id2 = AtomColToGlobal(atom2)
1449 #else
1450       id1 = atom1
1451       id2 = atom2
1452 #endif
1453
1454       if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1455
1456          fpair(1) = fpair(1) + dudx
1457          fpair(2) = fpair(2) + dudy
1458          fpair(3) = fpair(3) + dudz
1459
1460       endif
1461
1462    end if
1326      return
1327 <  end subroutine rf_correct_forces
1327 >  end subroutine rf_self_excludes
1328  
1329   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines