ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/electrostatic.F90 (file contents):
Revision 2118 by gezelter, Fri Mar 11 15:53:18 2005 UTC vs.
Revision 2717 by gezelter, Mon Apr 17 21:49:12 2006 UTC

# Line 40 | Line 40 | module electrostatic_module
40   !!
41  
42   module electrostatic_module
43 <  
43 >
44    use force_globals
45    use definitions
46    use atype_module
47    use vector_class
48    use simulation
49    use status
50 +  use interpolation
51   #ifdef IS_MPI
52    use mpiSimulation
53   #endif
# Line 54 | Line 55 | module electrostatic_module
55  
56    PRIVATE
57  
58 +
59 + #define __FORTRAN90
60 + #include "UseTheForce/DarkSide/fInteractionMap.h"
61 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
62 + #include "UseTheForce/DarkSide/fElectrostaticScreeningMethod.h"
63 +
64 +
65    !! these prefactors convert the multipole interactions into kcal / mol
66    !! all were computed assuming distances are measured in angstroms
67    !! Charge-Charge, assuming charges are measured in electrons
68 <  real(kind=dp), parameter :: pre11 = 332.0637778_dp
68 >  real(kind=dp), parameter :: pre11 = 332.0637778d0
69    !! Charge-Dipole, assuming charges are measured in electrons, and
70    !! dipoles are measured in debyes
71 <  real(kind=dp), parameter :: pre12 = 69.13373_dp
71 >  real(kind=dp), parameter :: pre12 = 69.13373d0
72    !! Dipole-Dipole, assuming dipoles are measured in debyes
73 <  real(kind=dp), parameter :: pre22 = 14.39325_dp
73 >  real(kind=dp), parameter :: pre22 = 14.39325d0
74    !! Charge-Quadrupole, assuming charges are measured in electrons, and
75    !! quadrupoles are measured in 10^-26 esu cm^2
76    !! This unit is also known affectionately as an esu centi-barn.
77 <  real(kind=dp), parameter :: pre14 = 69.13373_dp
77 >  real(kind=dp), parameter :: pre14 = 69.13373d0
78  
79 +  !! variables to handle different summation methods for long-range
80 +  !! electrostatics:
81 +  integer, save :: summationMethod = NONE
82 +  integer, save :: screeningMethod = UNDAMPED
83 +  logical, save :: summationMethodChecked = .false.
84 +  real(kind=DP), save :: defaultCutoff = 0.0_DP
85 +  real(kind=DP), save :: defaultCutoff2 = 0.0_DP
86 +  logical, save :: haveDefaultCutoff = .false.
87 +  real(kind=DP), save :: dampingAlpha = 0.0_DP
88 +  real(kind=DP), save :: alpha2 = 0.0_DP
89 +  logical, save :: haveDampingAlpha = .false.
90 +  real(kind=DP), save :: dielectric = 1.0_DP
91 +  logical, save :: haveDielectric = .false.
92 +  real(kind=DP), save :: constEXP = 0.0_DP
93 +  real(kind=dp), save :: rcuti = 0.0_DP
94 +  real(kind=dp), save :: rcuti2 = 0.0_DP
95 +  real(kind=dp), save :: rcuti3 = 0.0_DP
96 +  real(kind=dp), save :: rcuti4 = 0.0_DP
97 +  real(kind=dp), save :: alphaPi = 0.0_DP
98 +  real(kind=dp), save :: invRootPi = 0.0_DP
99 +  real(kind=dp), save :: rrf = 1.0_DP
100 +  real(kind=dp), save :: rt = 1.0_DP
101 +  real(kind=dp), save :: rrfsq = 1.0_DP
102 +  real(kind=dp), save :: preRF = 0.0_DP
103 +  real(kind=dp), save :: preRF2 = 0.0_DP
104 +  real(kind=dp), save :: f0 = 1.0_DP
105 +  real(kind=dp), save :: f1 = 1.0_DP
106 +  real(kind=dp), save :: f2 = 0.0_DP
107 +  real(kind=dp), save :: f3 = 0.0_DP
108 +  real(kind=dp), save :: f4 = 0.0_DP
109 +  real(kind=dp), save :: f0c = 1.0_DP
110 +  real(kind=dp), save :: f1c = 1.0_DP
111 +  real(kind=dp), save :: f2c = 0.0_DP
112 +  real(kind=dp), save :: f3c = 0.0_DP
113 +  real(kind=dp), save :: f4c = 0.0_DP
114 +
115 + #if defined(__IFC) || defined(__PGI)
116 + ! error function for ifc version > 7.
117 +  double precision, external :: derfc
118 + #endif
119 +  
120 +  public :: setElectrostaticSummationMethod
121 +  public :: setScreeningMethod
122 +  public :: setElectrostaticCutoffRadius
123 +  public :: setDampingAlpha
124 +  public :: setReactionFieldDielectric
125 +  public :: buildElectroSplines
126    public :: newElectrostaticType
127    public :: setCharge
128    public :: setDipoleMoment
# Line 76 | Line 131 | module electrostatic_module
131    public :: doElectrostaticPair
132    public :: getCharge
133    public :: getDipoleMoment
134 +  public :: destroyElectrostaticTypes
135 +  public :: self_self
136 +  public :: rf_self_excludes
137  
138 +
139    type :: Electrostatic
140       integer :: c_ident
141       logical :: is_Charge = .false.
142       logical :: is_Dipole = .false.
143       logical :: is_SplitDipole = .false.
144       logical :: is_Quadrupole = .false.
145 +     logical :: is_Tap = .false.
146       real(kind=DP) :: charge = 0.0_DP
147       real(kind=DP) :: dipole_moment = 0.0_DP
148       real(kind=DP) :: split_dipole_distance = 0.0_DP
# Line 91 | Line 151 | contains
151  
152    type(Electrostatic), dimension(:), allocatable :: ElectrostaticMap
153  
154 +  logical, save :: hasElectrostaticMap
155 +
156   contains
157 +
158 +  subroutine setElectrostaticSummationMethod(the_ESM)
159 +    integer, intent(in) :: the_ESM    
160 +
161 +    if ((the_ESM .le. 0) .or. (the_ESM .gt. REACTION_FIELD)) then
162 +       call handleError("setElectrostaticSummationMethod", "Unsupported Summation Method")
163 +    endif
164 +
165 +    summationMethod = the_ESM
166 +
167 +  end subroutine setElectrostaticSummationMethod
168 +
169 +  subroutine setScreeningMethod(the_SM)
170 +    integer, intent(in) :: the_SM    
171 +    screeningMethod = the_SM
172 +  end subroutine setScreeningMethod
173  
174 +  subroutine setElectrostaticCutoffRadius(thisRcut, thisRsw)
175 +    real(kind=dp), intent(in) :: thisRcut
176 +    real(kind=dp), intent(in) :: thisRsw
177 +    defaultCutoff = thisRcut
178 +    defaultCutoff2 = defaultCutoff*defaultCutoff
179 +    rrf = defaultCutoff
180 +    rt = thisRsw
181 +    haveDefaultCutoff = .true.
182 +  end subroutine setElectrostaticCutoffRadius
183 +
184 +  subroutine setDampingAlpha(thisAlpha)
185 +    real(kind=dp), intent(in) :: thisAlpha
186 +    dampingAlpha = thisAlpha
187 +    alpha2 = dampingAlpha*dampingAlpha
188 +    haveDampingAlpha = .true.
189 +  end subroutine setDampingAlpha
190 +  
191 +  subroutine setReactionFieldDielectric(thisDielectric)
192 +    real(kind=dp), intent(in) :: thisDielectric
193 +    dielectric = thisDielectric
194 +    haveDielectric = .true.
195 +  end subroutine setReactionFieldDielectric
196 +
197 +  subroutine buildElectroSplines()
198 +  end subroutine buildElectroSplines
199 +
200    subroutine newElectrostaticType(c_ident, is_Charge, is_Dipole, &
201 <       is_SplitDipole, is_Quadrupole, status)
202 <    
201 >       is_SplitDipole, is_Quadrupole, is_Tap, status)
202 >
203      integer, intent(in) :: c_ident
204      logical, intent(in) :: is_Charge
205      logical, intent(in) :: is_Dipole
206      logical, intent(in) :: is_SplitDipole
207      logical, intent(in) :: is_Quadrupole
208 +    logical, intent(in) :: is_Tap
209      integer, intent(out) :: status
210      integer :: nAtypes, myATID, i, j
211  
212      status = 0
213      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
214 <    
214 >
215      !! Be simple-minded and assume that we need an ElectrostaticMap that
216      !! is the same size as the total number of atom types
217  
218      if (.not.allocated(ElectrostaticMap)) then
219 <      
219 >
220         nAtypes = getSize(atypes)
221 <    
221 >
222         if (nAtypes == 0) then
223            status = -1
224            return
225         end if
226 <      
227 <       if (.not. allocated(ElectrostaticMap)) then
228 <          allocate(ElectrostaticMap(nAtypes))
124 <       endif
125 <      
226 >
227 >       allocate(ElectrostaticMap(nAtypes))
228 >
229      end if
230  
231      if (myATID .gt. size(ElectrostaticMap)) then
232         status = -1
233         return
234      endif
235 <    
235 >
236      ! set the values for ElectrostaticMap for this atom type:
237  
238      ElectrostaticMap(myATID)%c_ident = c_ident
# Line 137 | Line 240 | contains
240      ElectrostaticMap(myATID)%is_Dipole = is_Dipole
241      ElectrostaticMap(myATID)%is_SplitDipole = is_SplitDipole
242      ElectrostaticMap(myATID)%is_Quadrupole = is_Quadrupole
243 <    
243 >    ElectrostaticMap(myATID)%is_Tap = is_Tap
244 >
245 >    hasElectrostaticMap = .true.
246 >
247    end subroutine newElectrostaticType
248  
249    subroutine setCharge(c_ident, charge, status)
# Line 149 | Line 255 | contains
255      status = 0
256      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
257  
258 <    if (.not.allocated(ElectrostaticMap)) then
258 >    if (.not.hasElectrostaticMap) then
259         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setCharge!")
260         status = -1
261         return
# Line 165 | Line 271 | contains
271         call handleError("electrostatic", "Attempt to setCharge of an atom type that is not a charge!")
272         status = -1
273         return
274 <    endif      
274 >    endif
275  
276      ElectrostaticMap(myATID)%charge = charge
277    end subroutine setCharge
# Line 179 | Line 285 | contains
285      status = 0
286      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
287  
288 <    if (.not.allocated(ElectrostaticMap)) then
288 >    if (.not.hasElectrostaticMap) then
289         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setDipoleMoment!")
290         status = -1
291         return
# Line 209 | Line 315 | contains
315      status = 0
316      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
317  
318 <    if (.not.allocated(ElectrostaticMap)) then
318 >    if (.not.hasElectrostaticMap) then
319         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setSplitDipoleDistance!")
320         status = -1
321         return
# Line 239 | Line 345 | contains
345      status = 0
346      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
347  
348 <    if (.not.allocated(ElectrostaticMap)) then
348 >    if (.not.hasElectrostaticMap) then
349         call handleError("electrostatic", "no ElectrostaticMap was present before first call of setQuadrupoleMoments!")
350         status = -1
351         return
# Line 256 | Line 362 | contains
362         status = -1
363         return
364      endif
365 <    
365 >
366      do i = 1, 3
367 <          ElectrostaticMap(myATID)%quadrupole_moments(i) = &
368 <               quadrupole_moments(i)
369 <       enddo
367 >       ElectrostaticMap(myATID)%quadrupole_moments(i) = &
368 >            quadrupole_moments(i)
369 >    enddo
370  
371    end subroutine setQuadrupoleMoments
372  
373 <  
373 >
374    function getCharge(atid) result (c)
375      integer, intent(in) :: atid
376      integer :: localError
377      real(kind=dp) :: c
378 <    
379 <    if (.not.allocated(ElectrostaticMap)) then
378 >
379 >    if (.not.hasElectrostaticMap) then
380         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getCharge!")
381         return
382      end if
383 <    
383 >
384      if (.not.ElectrostaticMap(atid)%is_Charge) then
385         call handleError("electrostatic", "getCharge was called for an atom type that isn't a charge!")
386         return
387      endif
388 <    
388 >
389      c = ElectrostaticMap(atid)%charge
390    end function getCharge
391  
# Line 287 | Line 393 | contains
393      integer, intent(in) :: atid
394      integer :: localError
395      real(kind=dp) :: dm
396 <    
397 <    if (.not.allocated(ElectrostaticMap)) then
396 >
397 >    if (.not.hasElectrostaticMap) then
398         call handleError("electrostatic", "no ElectrostaticMap was present before first call of getDipoleMoment!")
399         return
400      end if
401 <    
401 >
402      if (.not.ElectrostaticMap(atid)%is_Dipole) then
403         call handleError("electrostatic", "getDipoleMoment was called for an atom type that isn't a dipole!")
404         return
405      endif
406 <    
406 >
407      dm = ElectrostaticMap(atid)%dipole_moment
408    end function getDipoleMoment
409  
410 <  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, sw, &
410 >  subroutine checkSummationMethod()
411 >
412 >    if (.not.haveDefaultCutoff) then
413 >       call handleError("checkSummationMethod", "no Default Cutoff set!")
414 >    endif
415 >
416 >    rcuti = 1.0d0 / defaultCutoff
417 >    rcuti2 = rcuti*rcuti
418 >    rcuti3 = rcuti2*rcuti
419 >    rcuti4 = rcuti2*rcuti2
420 >
421 >    if (screeningMethod .eq. DAMPED) then
422 >       if (.not.haveDampingAlpha) then
423 >          call handleError("checkSummationMethod", "no Damping Alpha set!")
424 >       endif
425 >      
426 >       if (.not.haveDefaultCutoff) then
427 >          call handleError("checkSummationMethod", "no Default Cutoff set!")
428 >       endif
429 >
430 >       constEXP = exp(-alpha2*defaultCutoff2)
431 >       invRootPi = 0.56418958354775628695d0
432 >       alphaPi = 2.0d0*dampingAlpha*invRootPi
433 >       f0c = derfc(dampingAlpha*defaultCutoff)
434 >       f1c = alphaPi*defaultCutoff*constEXP + f0c
435 >       f2c = alphaPi*2.0d0*alpha2*constEXP
436 >       f3c = alphaPi*2.0d0*alpha2*constEXP*defaultCutoff2*defaultCutoff
437 >    endif
438 >
439 >    if (summationMethod .eq. REACTION_FIELD) then
440 >       if (haveDielectric) then
441 >          defaultCutoff2 = defaultCutoff*defaultCutoff
442 >          preRF = (dielectric-1.0d0) / &
443 >               ((2.0d0*dielectric+1.0d0)*defaultCutoff2*defaultCutoff)
444 >          preRF2 = 2.0d0*preRF
445 >       else
446 >          call handleError("checkSummationMethod", "Dielectric not set")
447 >       endif
448 >      
449 >    endif
450 >
451 >    summationMethodChecked = .true.
452 >  end subroutine checkSummationMethod
453 >
454 >
455 >  subroutine doElectrostaticPair(atom1, atom2, d, rij, r2, rcut, sw, &
456         vpair, fpair, pot, eFrame, f, t, do_pot)
457 <    
457 >
458      logical, intent(in) :: do_pot
459 <    
459 >
460      integer, intent(in) :: atom1, atom2
461      integer :: localError
462  
463 <    real(kind=dp), intent(in) :: rij, r2, sw
463 >    real(kind=dp), intent(in) :: rij, r2, sw, rcut
464      real(kind=dp), intent(in), dimension(3) :: d
465      real(kind=dp), intent(inout) :: vpair
466 <    real(kind=dp), intent(inout), dimension(3) :: fpair
466 >    real(kind=dp), intent(inout), dimension(3) :: fpair    
467  
468      real( kind = dp ) :: pot
469      real( kind = dp ), dimension(9,nLocal) :: eFrame
470      real( kind = dp ), dimension(3,nLocal) :: f
471 +    real( kind = dp ), dimension(3,nLocal) :: felec
472      real( kind = dp ), dimension(3,nLocal) :: t
321    
322    real (kind = dp), dimension(3) :: ul_i
323    real (kind = dp), dimension(3) :: ul_j
473  
474 +    real (kind = dp), dimension(3) :: ux_i, uy_i, uz_i
475 +    real (kind = dp), dimension(3) :: ux_j, uy_j, uz_j
476 +    real (kind = dp), dimension(3) :: dudux_i, duduy_i, duduz_i
477 +    real (kind = dp), dimension(3) :: dudux_j, duduy_j, duduz_j
478 +
479      logical :: i_is_Charge, i_is_Dipole, i_is_SplitDipole, i_is_Quadrupole
480      logical :: j_is_Charge, j_is_Dipole, j_is_SplitDipole, j_is_Quadrupole
481 +    logical :: i_is_Tap, j_is_Tap
482      integer :: me1, me2, id1, id2
483      real (kind=dp) :: q_i, q_j, mu_i, mu_j, d_i, d_j
484 <    real (kind=dp) :: ct_i, ct_j, ct_ij, a1
484 >    real (kind=dp) :: qxx_i, qyy_i, qzz_i
485 >    real (kind=dp) :: qxx_j, qyy_j, qzz_j
486 >    real (kind=dp) :: cx_i, cy_i, cz_i
487 >    real (kind=dp) :: cx_j, cy_j, cz_j
488 >    real (kind=dp) :: cx2, cy2, cz2
489 >    real (kind=dp) :: ct_i, ct_j, ct_ij, a0, a1
490      real (kind=dp) :: riji, ri, ri2, ri3, ri4
491 <    real (kind=dp) :: pref, vterm, epot, dudr    
491 >    real (kind=dp) :: pref, vterm, epot, dudr, vterm1, vterm2
492      real (kind=dp) :: xhat, yhat, zhat
493      real (kind=dp) :: dudx, dudy, dudz
334    real (kind=dp) :: drdxj, drdyj, drdzj
335    real (kind=dp) :: duduix, duduiy, duduiz, dudujx, dudujy, dudujz
494      real (kind=dp) :: scale, sc2, bigR
495 +    real (kind=dp) :: varEXP
496 +    real (kind=dp) :: pot_term
497 +    real (kind=dp) :: preVal, rfVal
498 +    real (kind=dp) :: f13, f134
499  
500 <    if (.not.allocated(ElectrostaticMap)) then
501 <       call handleError("electrostatic", "no ElectrostaticMap was present before first call of do_electrostatic_pair!")
502 <       return
341 <    end if
500 >    if (.not.summationMethodChecked) then
501 >       call checkSummationMethod()
502 >    endif
503  
504   #ifdef IS_MPI
505      me1 = atid_Row(atom1)
# Line 351 | Line 512 | contains
512      !! some variables we'll need independent of electrostatic type:
513  
514      riji = 1.0d0 / rij
515 <
515 >  
516      xhat = d(1) * riji
517      yhat = d(2) * riji
518      zhat = d(3) * riji
519  
359    drdxj = xhat
360    drdyj = yhat
361    drdzj = zhat
362
520      !! logicals
364
521      i_is_Charge = ElectrostaticMap(me1)%is_Charge
522      i_is_Dipole = ElectrostaticMap(me1)%is_Dipole
523      i_is_SplitDipole = ElectrostaticMap(me1)%is_SplitDipole
524      i_is_Quadrupole = ElectrostaticMap(me1)%is_Quadrupole
525 +    i_is_Tap = ElectrostaticMap(me1)%is_Tap
526  
527      j_is_Charge = ElectrostaticMap(me2)%is_Charge
528      j_is_Dipole = ElectrostaticMap(me2)%is_Dipole
529      j_is_SplitDipole = ElectrostaticMap(me2)%is_SplitDipole
530      j_is_Quadrupole = ElectrostaticMap(me2)%is_Quadrupole
531 +    j_is_Tap = ElectrostaticMap(me2)%is_Tap
532  
533      if (i_is_Charge) then
534         q_i = ElectrostaticMap(me1)%charge      
535      endif
536 <    
536 >
537      if (i_is_Dipole) then
538         mu_i = ElectrostaticMap(me1)%dipole_moment
539   #ifdef IS_MPI
540 <       ul_i(1) = eFrame_Row(3,atom1)
541 <       ul_i(2) = eFrame_Row(6,atom1)
542 <       ul_i(3) = eFrame_Row(9,atom1)
540 >       uz_i(1) = eFrame_Row(3,atom1)
541 >       uz_i(2) = eFrame_Row(6,atom1)
542 >       uz_i(3) = eFrame_Row(9,atom1)
543   #else
544 <       ul_i(1) = eFrame(3,atom1)
545 <       ul_i(2) = eFrame(6,atom1)
546 <       ul_i(3) = eFrame(9,atom1)
544 >       uz_i(1) = eFrame(3,atom1)
545 >       uz_i(2) = eFrame(6,atom1)
546 >       uz_i(3) = eFrame(9,atom1)
547   #endif
548 <       ct_i = ul_i(1)*drdxj + ul_i(2)*drdyj + ul_i(3)*drdzj
548 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
549  
550         if (i_is_SplitDipole) then
551            d_i = ElectrostaticMap(me1)%split_dipole_distance
552         endif
553 <      
553 >
554      endif
555  
556 +    if (i_is_Quadrupole) then
557 +       qxx_i = ElectrostaticMap(me1)%quadrupole_moments(1)
558 +       qyy_i = ElectrostaticMap(me1)%quadrupole_moments(2)
559 +       qzz_i = ElectrostaticMap(me1)%quadrupole_moments(3)
560 + #ifdef IS_MPI
561 +       ux_i(1) = eFrame_Row(1,atom1)
562 +       ux_i(2) = eFrame_Row(4,atom1)
563 +       ux_i(3) = eFrame_Row(7,atom1)
564 +       uy_i(1) = eFrame_Row(2,atom1)
565 +       uy_i(2) = eFrame_Row(5,atom1)
566 +       uy_i(3) = eFrame_Row(8,atom1)
567 +       uz_i(1) = eFrame_Row(3,atom1)
568 +       uz_i(2) = eFrame_Row(6,atom1)
569 +       uz_i(3) = eFrame_Row(9,atom1)
570 + #else
571 +       ux_i(1) = eFrame(1,atom1)
572 +       ux_i(2) = eFrame(4,atom1)
573 +       ux_i(3) = eFrame(7,atom1)
574 +       uy_i(1) = eFrame(2,atom1)
575 +       uy_i(2) = eFrame(5,atom1)
576 +       uy_i(3) = eFrame(8,atom1)
577 +       uz_i(1) = eFrame(3,atom1)
578 +       uz_i(2) = eFrame(6,atom1)
579 +       uz_i(3) = eFrame(9,atom1)
580 + #endif
581 +       cx_i = ux_i(1)*xhat + ux_i(2)*yhat + ux_i(3)*zhat
582 +       cy_i = uy_i(1)*xhat + uy_i(2)*yhat + uy_i(3)*zhat
583 +       cz_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
584 +    endif
585 +
586      if (j_is_Charge) then
587         q_j = ElectrostaticMap(me2)%charge      
588      endif
589 <    
589 >
590      if (j_is_Dipole) then
591         mu_j = ElectrostaticMap(me2)%dipole_moment
592   #ifdef IS_MPI
593 <       ul_j(1) = eFrame_Col(3,atom2)
594 <       ul_j(2) = eFrame_Col(6,atom2)
595 <       ul_j(3) = eFrame_Col(9,atom2)
593 >       uz_j(1) = eFrame_Col(3,atom2)
594 >       uz_j(2) = eFrame_Col(6,atom2)
595 >       uz_j(3) = eFrame_Col(9,atom2)
596   #else
597 <       ul_j(1) = eFrame(3,atom2)
598 <       ul_j(2) = eFrame(6,atom2)
599 <       ul_j(3) = eFrame(9,atom2)
597 >       uz_j(1) = eFrame(3,atom2)
598 >       uz_j(2) = eFrame(6,atom2)
599 >       uz_j(3) = eFrame(9,atom2)
600   #endif
601 <       ct_j = ul_j(1)*drdxj + ul_j(2)*drdyj + ul_j(3)*drdzj
601 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
602  
603         if (j_is_SplitDipole) then
604            d_j = ElectrostaticMap(me2)%split_dipole_distance
605         endif
606      endif
607  
608 <    epot = 0.0_dp
609 <    dudx = 0.0_dp
610 <    dudy = 0.0_dp
611 <    dudz = 0.0_dp
608 >    if (j_is_Quadrupole) then
609 >       qxx_j = ElectrostaticMap(me2)%quadrupole_moments(1)
610 >       qyy_j = ElectrostaticMap(me2)%quadrupole_moments(2)
611 >       qzz_j = ElectrostaticMap(me2)%quadrupole_moments(3)
612 > #ifdef IS_MPI
613 >       ux_j(1) = eFrame_Col(1,atom2)
614 >       ux_j(2) = eFrame_Col(4,atom2)
615 >       ux_j(3) = eFrame_Col(7,atom2)
616 >       uy_j(1) = eFrame_Col(2,atom2)
617 >       uy_j(2) = eFrame_Col(5,atom2)
618 >       uy_j(3) = eFrame_Col(8,atom2)
619 >       uz_j(1) = eFrame_Col(3,atom2)
620 >       uz_j(2) = eFrame_Col(6,atom2)
621 >       uz_j(3) = eFrame_Col(9,atom2)
622 > #else
623 >       ux_j(1) = eFrame(1,atom2)
624 >       ux_j(2) = eFrame(4,atom2)
625 >       ux_j(3) = eFrame(7,atom2)
626 >       uy_j(1) = eFrame(2,atom2)
627 >       uy_j(2) = eFrame(5,atom2)
628 >       uy_j(3) = eFrame(8,atom2)
629 >       uz_j(1) = eFrame(3,atom2)
630 >       uz_j(2) = eFrame(6,atom2)
631 >       uz_j(3) = eFrame(9,atom2)
632 > #endif
633 >       cx_j = ux_j(1)*xhat + ux_j(2)*yhat + ux_j(3)*zhat
634 >       cy_j = uy_j(1)*xhat + uy_j(2)*yhat + uy_j(3)*zhat
635 >       cz_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
636 >    endif
637 >  
638 >    epot = 0.0d0
639 >    dudx = 0.0d0
640 >    dudy = 0.0d0
641 >    dudz = 0.0d0
642  
643 <    duduix = 0.0_dp
644 <    duduiy = 0.0_dp
645 <    duduiz = 0.0_dp
643 >    dudux_i = 0.0d0
644 >    duduy_i = 0.0d0
645 >    duduz_i = 0.0d0
646  
647 <    dudujx = 0.0_dp
648 <    dudujy = 0.0_dp
649 <    dudujz = 0.0_dp
647 >    dudux_j = 0.0d0
648 >    duduy_j = 0.0d0
649 >    duduz_j = 0.0d0
650  
651      if (i_is_Charge) then
652  
653         if (j_is_Charge) then
654 <          
655 <          vterm = pre11 * q_i * q_j * riji
656 <          vpair = vpair + vterm
657 <          epot = epot + sw*vterm
440 <
441 <          dudr  = - sw * vterm * riji
442 <
443 <          dudx = dudx + dudr * drdxj
444 <          dudy = dudy + dudr * drdyj
445 <          dudz = dudz + dudr * drdzj
446 <      
447 <       endif
448 <
449 <       if (j_is_Dipole) then
450 <
451 <          if (j_is_SplitDipole) then
452 <             BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
453 <             ri = 1.0_dp / BigR
454 <             scale = rij * ri
455 <          else
456 <             ri = riji
457 <             scale = 1.0_dp
654 >          if (screeningMethod .eq. DAMPED) then
655 >             f0 = derfc(dampingAlpha*rij)
656 >             varEXP = exp(-alpha2*rij*rij)
657 >             f1 = alphaPi*rij*varEXP + f0
658            endif
659  
660 <          ri2 = ri * ri
461 <          ri3 = ri2 * ri
462 <          sc2 = scale * scale
463 <            
464 <          pref = pre12 * q_i * mu_j
465 <          vterm = pref * ct_j * ri2 * scale
466 <          vpair = vpair + vterm
467 <          epot = epot + sw * vterm
660 >          preVal = pre11 * q_i * q_j
661  
662 <          !! this has a + sign in the () because the rij vector is
663 <          !! r_j - r_i and the charge-dipole potential takes the origin
664 <          !! as the point dipole, which is atom j in this case.
665 <
473 <          dudx = dudx + pref * sw * ri3 * ( ul_j(1) + 3.0d0*ct_j*xhat*sc2)
474 <          dudy = dudy + pref * sw * ri3 * ( ul_j(2) + 3.0d0*ct_j*yhat*sc2)
475 <          dudz = dudz + pref * sw * ri3 * ( ul_j(3) + 3.0d0*ct_j*zhat*sc2)
476 <
477 <          dudujx = dudujx - pref * sw * ri2 * xhat * scale
478 <          dudujy = dudujy - pref * sw * ri2 * yhat * scale
479 <          dudujz = dudujz - pref * sw * ri2 * zhat * scale
480 <          
481 <       endif
482 <
483 <    endif
662 >          if (summationMethod .eq. SHIFTED_POTENTIAL) then
663 >             vterm = preVal * (riji*f0 - rcuti*f0c)
664 >            
665 >             dudr  = -sw * preVal * riji * riji * f1
666    
667 <    if (i_is_Dipole) then
668 <      
669 <       if (j_is_Charge) then
670 <
671 <          if (i_is_SplitDipole) then
672 <             BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
673 <             ri = 1.0_dp / BigR
674 <             scale = rij * ri
667 >          elseif (summationMethod .eq. SHIFTED_FORCE) then
668 >             vterm = preVal * ( riji*f0 - rcuti*f0c + &
669 >                  f1c*rcuti2*(rij-defaultCutoff) )
670 >            
671 >             dudr  = -sw*preVal * (riji*riji*f1 - rcuti2*f1c)
672 >  
673 >          elseif (summationMethod .eq. REACTION_FIELD) then
674 >             rfVal = preRF*rij*rij
675 >             vterm = preVal * ( riji + rfVal )
676 >            
677 >             dudr  = sw * preVal * ( 2.0d0*rfVal - riji )*riji
678 >  
679            else
680 <             ri = riji
681 <             scale = 1.0_dp
680 >             vterm = preVal * riji*f0
681 >            
682 >             dudr  = - sw * preVal * riji*riji*f1
683 >  
684            endif
685  
498          ri2 = ri * ri
499          ri3 = ri2 * ri
500          sc2 = scale * scale
501            
502          pref = pre12 * q_j * mu_i
503          vterm = pref * ct_i * ri2 * scale
686            vpair = vpair + vterm
687 <          epot = epot + sw * vterm
687 >          epot = epot + sw*vterm
688  
689 <          dudx = dudx + pref * sw * ri3 * ( ul_i(1) - 3.0d0 * ct_i * xhat*sc2)
690 <          dudy = dudy + pref * sw * ri3 * ( ul_i(2) - 3.0d0 * ct_i * yhat*sc2)
691 <          dudz = dudz + pref * sw * ri3 * ( ul_i(3) - 3.0d0 * ct_i * zhat*sc2)
689 >          dudx = dudx + dudr * xhat
690 >          dudy = dudy + dudr * yhat
691 >          dudz = dudz + dudr * zhat
692  
511          duduix = duduix + pref * sw * ri2 * xhat * scale
512          duduiy = duduiy + pref * sw * ri2 * yhat * scale
513          duduiz = duduiz + pref * sw * ri2 * zhat * scale
693         endif
694  
695         if (j_is_Dipole) then
696 +          if (screeningMethod .eq. DAMPED) then
697 +             f0 = derfc(dampingAlpha*rij)
698 +             varEXP = exp(-alpha2*rij*rij)
699 +             f1 = alphaPi*rij*varEXP + f0
700 +             f3 = alphaPi*2.0d0*alpha2*varEXP*rij*rij*rij
701 +          endif
702  
703 <          if (i_is_SplitDipole) then
704 <             if (j_is_SplitDipole) then
705 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i + 0.25_dp * d_j * d_j)
706 <             else
707 <                BigR = sqrt(r2 + 0.25_dp * d_i * d_i)
708 <             endif
709 <             ri = 1.0_dp / BigR
710 <             scale = rij * ri                
703 >          pref = pre12 * q_i * mu_j
704 >
705 >          if (summationMethod .eq. REACTION_FIELD) then
706 >             ri2 = riji * riji
707 >             ri3 = ri2 * riji
708 >    
709 >             vterm = - pref * ct_j * ( ri2 - preRF2*rij )
710 >             vpair = vpair + vterm
711 >             epot = epot + sw*vterm
712 >            
713 >             !! this has a + sign in the () because the rij vector is
714 >             !! r_j - r_i and the charge-dipole potential takes the origin
715 >             !! as the point dipole, which is atom j in this case.
716 >            
717 >             dudx = dudx - sw*pref*( ri3*(uz_j(1) - 3.0d0*ct_j*xhat) - &
718 >                                     preRF2*uz_j(1) )
719 >             dudy = dudy - sw*pref*( ri3*(uz_j(2) - 3.0d0*ct_j*yhat) - &
720 >                                     preRF2*uz_j(2) )
721 >             dudz = dudz - sw*pref*( ri3*(uz_j(3) - 3.0d0*ct_j*zhat) - &
722 >                                     preRF2*uz_j(3) )        
723 >             duduz_j(1) = duduz_j(1) - sw*pref * xhat * ( ri2 - preRF2*rij )
724 >             duduz_j(2) = duduz_j(2) - sw*pref * yhat * ( ri2 - preRF2*rij )
725 >             duduz_j(3) = duduz_j(3) - sw*pref * zhat * ( ri2 - preRF2*rij )
726 >
727            else
728               if (j_is_SplitDipole) then
729 <                BigR = sqrt(r2 + 0.25_dp * d_j * d_j)
730 <                ri = 1.0_dp / BigR
731 <                scale = rij * ri                            
732 <             else                
729 >                BigR = sqrt(r2 + 0.25d0 * d_j * d_j)
730 >                ri = 1.0d0 / BigR
731 >                scale = rij * ri
732 >             else
733                  ri = riji
734 <                scale = 1.0_dp
734 >                scale = 1.0d0
735               endif
736 +            
737 +             ri2 = ri * ri
738 +             ri3 = ri2 * ri
739 +             sc2 = scale * scale
740 +
741 +             pot_term =  ri2 * scale * f1
742 +             vterm = - pref * ct_j * pot_term
743 +             vpair = vpair + vterm
744 +             epot = epot + sw*vterm
745 +            
746 +             !! this has a + sign in the () because the rij vector is
747 +             !! r_j - r_i and the charge-dipole potential takes the origin
748 +             !! as the point dipole, which is atom j in this case.
749 +            
750 +             dudx = dudx - sw*pref * ri3 * ( uz_j(1)*f1 - &
751 +                  ct_j*xhat*sc2*( 3.0d0*f1 + f3 ) )
752 +             dudy = dudy - sw*pref * ri3 * ( uz_j(2)*f1 - &
753 +                  ct_j*yhat*sc2*( 3.0d0*f1 + f3 ) )
754 +             dudz = dudz - sw*pref * ri3 * ( uz_j(3)*f1 - &
755 +                  ct_j*zhat*sc2*( 3.0d0*f1 + f3 ) )
756 +                          
757 +             duduz_j(1) = duduz_j(1) - sw*pref * pot_term * xhat
758 +             duduz_j(2) = duduz_j(2) - sw*pref * pot_term * yhat
759 +             duduz_j(3) = duduz_j(3) - sw*pref * pot_term * zhat
760 +
761            endif
762 +       endif
763  
764 <          ct_ij = ul_i(1)*ul_j(1) + ul_i(2)*ul_j(2) + ul_i(3)*ul_j(3)
764 >       if (j_is_Quadrupole) then
765 >          if (screeningMethod .eq. DAMPED) then
766 >             f0 = derfc(dampingAlpha*rij)
767 >             varEXP = exp(-alpha2*rij*rij)
768 >             f1 = alphaPi*rij*varEXP + f0
769 >             f2 = alphaPi*2.0d0*alpha2*varEXP
770 >             f3 = f2*rij*rij*rij
771 >             f4 = 2.0d0*alpha2*f2*rij
772 >          endif
773  
774 <          ri2 = ri * ri
775 <          ri3 = ri2 * ri
774 >          ri2 = riji * riji
775 >          ri3 = ri2 * riji
776            ri4 = ri2 * ri2
777 <          sc2 = scale * scale
777 >          cx2 = cx_j * cx_j
778 >          cy2 = cy_j * cy_j
779 >          cz2 = cz_j * cz_j
780  
781 <          pref = pre22 * mu_i * mu_j
782 <          vterm = pref * ri3 * (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
781 >          pref =  pre14 * q_i / 3.0d0
782 >          pot_term = ri3*(qxx_j * (3.0d0*cx2 - 1.0d0) + &
783 >               qyy_j * (3.0d0*cy2 - 1.0d0) + &
784 >               qzz_j * (3.0d0*cz2 - 1.0d0))
785 >          vterm = pref * (pot_term*f1 + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f2)
786            vpair = vpair + vterm
787 <          epot = epot + sw * vterm
787 >          epot = epot + sw*vterm
788            
789 <          a1 = 5.0d0 * ct_i * ct_j * sc2 - ct_ij
790 <
791 <          dudx=dudx+pref*sw*3.0d0*ri4*scale*(a1*xhat-ct_i*ul_j(1)-ct_j*ul_i(1))
792 <          dudy=dudy+pref*sw*3.0d0*ri4*scale*(a1*yhat-ct_i*ul_j(2)-ct_j*ul_i(2))
793 <          dudz=dudz+pref*sw*3.0d0*ri4*scale*(a1*zhat-ct_i*ul_j(3)-ct_j*ul_i(3))
794 <
795 <          duduix = duduix + pref*sw*ri3*(ul_j(1) - 3.0d0*ct_j*xhat*sc2)
796 <          duduiy = duduiy + pref*sw*ri3*(ul_j(2) - 3.0d0*ct_j*yhat*sc2)
797 <          duduiz = duduiz + pref*sw*ri3*(ul_j(3) - 3.0d0*ct_j*zhat*sc2)
798 <
799 <          dudujx = dudujx + pref*sw*ri3*(ul_i(1) - 3.0d0*ct_i*xhat*sc2)
800 <          dudujy = dudujy + pref*sw*ri3*(ul_i(2) - 3.0d0*ct_i*yhat*sc2)
801 <          dudujz = dudujz + pref*sw*ri3*(ul_i(3) - 3.0d0*ct_i*zhat*sc2)
789 >          dudx = dudx - sw*pref*pot_term*riji*xhat*(5.0d0*f1 + f3) + &
790 >               sw*pref*ri4 * ( &
791 >               qxx_j*(2.0d0*cx_j*ux_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
792 >               qyy_j*(2.0d0*cy_j*uy_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
793 >               qzz_j*(2.0d0*cz_j*uz_j(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) ) &
794 >               + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4
795 >          dudy = dudy - sw*pref*pot_term*riji*yhat*(5.0d0*f1 + f3) + &
796 >               sw*pref*ri4 * ( &
797 >               qxx_j*(2.0d0*cx_j*ux_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
798 >               qyy_j*(2.0d0*cy_j*uy_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
799 >               qzz_j*(2.0d0*cz_j*uz_j(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) ) &
800 >               + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4
801 >          dudz = dudz - sw*pref*pot_term*riji*zhat*(5.0d0*f1 + f3) + &
802 >               sw*pref*ri4 * ( &
803 >               qxx_j*(2.0d0*cx_j*ux_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
804 >               qyy_j*(2.0d0*cy_j*uy_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
805 >               qzz_j*(2.0d0*cz_j*uz_j(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) ) &
806 >               + (qxx_j*cx2 + qyy_j*cy2 + qzz_j*cz2)*f4
807 >          
808 >          dudux_j(1) = dudux_j(1) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*xhat) &
809 >               * (3.0d0*f1 + f3) )
810 >          dudux_j(2) = dudux_j(2) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*yhat) &
811 >               * (3.0d0*f1 + f3) )
812 >          dudux_j(3) = dudux_j(3) + sw*pref*ri3*( (qxx_j*2.0d0*cx_j*zhat) &
813 >               * (3.0d0*f1 + f3) )
814 >          
815 >          duduy_j(1) = duduy_j(1) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*xhat) &
816 >               * (3.0d0*f1 + f3) )
817 >          duduy_j(2) = duduy_j(2) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*yhat) &
818 >               * (3.0d0*f1 + f3) )
819 >          duduy_j(3) = duduy_j(3) + sw*pref*ri3*( (qyy_j*2.0d0*cy_j*zhat) &
820 >               * (3.0d0*f1 + f3) )
821 >          
822 >          duduz_j(1) = duduz_j(1) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*xhat) &
823 >               * (3.0d0*f1 + f3) )
824 >          duduz_j(2) = duduz_j(2) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*yhat) &
825 >               * (3.0d0*f1 + f3) )
826 >          duduz_j(3) = duduz_j(3) + sw*pref*ri3*( (qzz_j*2.0d0*cz_j*zhat) &
827 >               * (3.0d0*f1 + f3) )
828 >          
829         endif
563
830      endif
831      
832 +    if (i_is_Dipole) then
833 +
834 +       if (j_is_Charge) then
835 +          if (screeningMethod .eq. DAMPED) then
836 +             f0 = derfc(dampingAlpha*rij)
837 +             varEXP = exp(-alpha2*rij*rij)
838 +             f1 = alphaPi*rij*varEXP + f0
839 +             f3 = alphaPi*2.0d0*alpha2*varEXP*rij*rij*rij
840 +          endif
841 +          
842 +          pref = pre12 * q_j * mu_i
843 +          
844 +          if (summationMethod .eq. SHIFTED_POTENTIAL) then
845 +             ri2 = riji * riji
846 +             ri3 = ri2 * riji
847 +            
848 +             pot_term = ri2*f1 - rcuti2*f1c
849 +             vterm = pref * ct_i * pot_term
850 +             vpair = vpair + vterm
851 +             epot = epot + sw*vterm
852 +            
853 +             dudx = dudx + sw*pref*( ri3*(uz_i(1)*f1-ct_i*xhat*(3.0d0*f1+f3)) )
854 +             dudy = dudy + sw*pref*( ri3*(uz_i(2)*f1-ct_i*yhat*(3.0d0*f1+f3)) )
855 +             dudz = dudz + sw*pref*( ri3*(uz_i(3)*f1-ct_i*zhat*(3.0d0*f1+f3)) )
856 +            
857 +             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
858 +             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
859 +             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
860 +
861 +          elseif (summationMethod .eq. SHIFTED_FORCE) then
862 +             ri2 = riji * riji
863 +             ri3 = ri2 * riji
864 +
865 +             !! might need a -(f1c-f0c) or dct_i/dr in the derivative term...
866 +             pot_term = ri2*f1 - rcuti2*f1c + &
867 +                  (2.0d0*rcuti3*f1c + f2c)*( rij - defaultCutoff )
868 +             vterm = pref * ct_i * pot_term
869 +             vpair = vpair + vterm
870 +             epot = epot + sw*vterm
871 +            
872 +             dudx = dudx + sw*pref*( ri3*(uz_i(1)*f1-ct_i*xhat*(3.0d0*f1+f3)) &
873 +                  - rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) )
874 +             dudy = dudy + sw*pref*( ri3*(uz_i(2)*f1-ct_i*yhat*(3.0d0*f1+f3)) &
875 +                  - rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) )
876 +             dudz = dudz + sw*pref*( ri3*(uz_i(3)*f1-ct_i*zhat*(3.0d0*f1+f3)) &
877 +                  - rcuti3*(uz_i(1)*f1c-ct_i*xhat*(3.0d0*f1c+f3c)) )
878 +            
879 +             duduz_i(1) = duduz_i(1) + sw*pref * xhat * pot_term
880 +             duduz_i(2) = duduz_i(2) + sw*pref * yhat * pot_term
881 +             duduz_i(3) = duduz_i(3) + sw*pref * zhat * pot_term
882 +
883 +          elseif (summationMethod .eq. REACTION_FIELD) then
884 +             ri2 = riji * riji
885 +             ri3 = ri2 * riji
886 +
887 +             vterm = pref * ct_i * ( ri2 - preRF2*rij )
888 +             vpair = vpair + vterm
889 +             epot = epot + sw*vterm
890 +            
891 +             dudx = dudx + sw*pref * ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat) - &
892 +                  preRF2*uz_i(1) )
893 +             dudy = dudy + sw*pref * ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat) - &
894 +                  preRF2*uz_i(2) )
895 +             dudz = dudz + sw*pref * ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat) - &
896 +                  preRF2*uz_i(3) )
897 +            
898 +             duduz_i(1) = duduz_i(1) + sw*pref * xhat * ( ri2 - preRF2*rij )
899 +             duduz_i(2) = duduz_i(2) + sw*pref * yhat * ( ri2 - preRF2*rij )
900 +             duduz_i(3) = duduz_i(3) + sw*pref * zhat * ( ri2 - preRF2*rij )
901 +
902 +          else
903 +             if (i_is_SplitDipole) then
904 +                BigR = sqrt(r2 + 0.25d0 * d_i * d_i)
905 +                ri = 1.0d0 / BigR
906 +                scale = rij * ri
907 +             else
908 +                ri = riji
909 +                scale = 1.0d0
910 +             endif
911 +            
912 +             ri2 = ri * ri
913 +             ri3 = ri2 * ri
914 +             sc2 = scale * scale
915 +
916 +             pot_term = ri2 * f1 * scale
917 +             vterm = pref * ct_i * pot_term
918 +             vpair = vpair + vterm
919 +             epot = epot + sw*vterm
920 +            
921 +             dudx = dudx + sw*pref * ri3 * ( uz_i(1)*f1 - &
922 +                  ct_i*xhat*sc2*( 3.0d0*f1 + f3 ) )
923 +             dudy = dudy + sw*pref * ri3 * ( uz_i(2)*f1 - &
924 +                  ct_i*yhat*sc2*( 3.0d0*f1 + f3 ) )
925 +             dudz = dudz + sw*pref * ri3 * ( uz_i(3)*f1 - &
926 +                  ct_i*zhat*sc2*( 3.0d0*f1 + f3 ) )
927 +            
928 +             duduz_i(1) = duduz_i(1) + sw*pref * pot_term * xhat
929 +             duduz_i(2) = duduz_i(2) + sw*pref * pot_term * yhat
930 +             duduz_i(3) = duduz_i(3) + sw*pref * pot_term * zhat
931 +          endif
932 +       endif
933 +      
934 +       if (j_is_Dipole) then
935 +          if (screeningMethod .eq. DAMPED) then
936 +             f0 = derfc(dampingAlpha*rij)
937 +             varEXP = exp(-alpha2*rij*rij)
938 +             f1 = alphaPi*rij*varEXP + f0
939 +             f2 = alphaPi*2.0d0*alpha2*varEXP
940 +             f3 = f2*rij*rij*rij
941 +             f4 = 2.0d0*alpha2*f3*rij*rij
942 +          endif
943 +
944 +          ct_ij = uz_i(1)*uz_j(1) + uz_i(2)*uz_j(2) + uz_i(3)*uz_j(3)
945 +          
946 +          ri2 = riji * riji
947 +          ri3 = ri2 * riji
948 +          ri4 = ri2 * ri2
949 +          
950 +          pref = pre22 * mu_i * mu_j
951 +
952 +          if (summationMethod .eq. REACTION_FIELD) then
953 +             vterm = pref*( ri3*(ct_ij - 3.0d0 * ct_i * ct_j) - &
954 +                  preRF2*ct_ij )
955 +             vpair = vpair + vterm
956 +             epot = epot + sw*vterm
957 +            
958 +             a1 = 5.0d0 * ct_i * ct_j - ct_ij
959 +            
960 +             dudx = dudx + sw*pref*3.0d0*ri4 &
961 +                             * (a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))
962 +             dudy = dudy + sw*pref*3.0d0*ri4 &
963 +                             * (a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))
964 +             dudz = dudz + sw*pref*3.0d0*ri4 &
965 +                             * (a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))
966 +            
967 +             duduz_i(1) = duduz_i(1) + sw*pref*(ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
968 +                  - preRF2*uz_j(1))
969 +             duduz_i(2) = duduz_i(2) + sw*pref*(ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
970 +                  - preRF2*uz_j(2))
971 +             duduz_i(3) = duduz_i(3) + sw*pref*(ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
972 +                  - preRF2*uz_j(3))
973 +             duduz_j(1) = duduz_j(1) + sw*pref*(ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
974 +                  - preRF2*uz_i(1))
975 +             duduz_j(2) = duduz_j(2) + sw*pref*(ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
976 +                  - preRF2*uz_i(2))
977 +             duduz_j(3) = duduz_j(3) + sw*pref*(ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
978 +                  - preRF2*uz_i(3))
979 +
980 +          else
981 +             if (i_is_SplitDipole) then
982 +                if (j_is_SplitDipole) then
983 +                   BigR = sqrt(r2 + 0.25d0 * d_i * d_i + 0.25d0 * d_j * d_j)
984 +                else
985 +                   BigR = sqrt(r2 + 0.25d0 * d_i * d_i)
986 +                endif
987 +                ri = 1.0d0 / BigR
988 +                scale = rij * ri                
989 +             else
990 +                if (j_is_SplitDipole) then
991 +                   BigR = sqrt(r2 + 0.25d0 * d_j * d_j)
992 +                   ri = 1.0d0 / BigR
993 +                   scale = rij * ri                            
994 +                else                
995 +                   ri = riji
996 +                   scale = 1.0d0
997 +                endif
998 +             endif
999 +            
1000 +             sc2 = scale * scale
1001 +
1002 +             pot_term = (ct_ij - 3.0d0 * ct_i * ct_j * sc2)
1003 +             vterm = pref * ( ri3*pot_term*f1 + (ct_i * ct_j)*f2 )
1004 +             vpair = vpair + vterm
1005 +             epot = epot + sw*vterm
1006 +            
1007 +             f13 = f1+f3
1008 +             f134 = f13 + f4
1009 +            
1010 + !!$             dudx = dudx + sw*pref * ( ri4*scale*( &
1011 + !!$                  3.0d0*(a1*xhat-ct_i*uz_j(1)-ct_j*uz_i(1))*f1 &
1012 + !!$                  - pot_term*f3) &
1013 + !!$                  + 2.0d0*ct_i*ct_j*xhat*(ct_i*uz_j(1)+ct_j*uz_i(1))*f3 &
1014 + !!$                  + (ct_i * ct_j)*f4 )
1015 + !!$             dudy = dudy + sw*pref * ( ri4*scale*( &
1016 + !!$                  3.0d0*(a1*yhat-ct_i*uz_j(2)-ct_j*uz_i(2))*f1 &
1017 + !!$                  - pot_term*f3) &
1018 + !!$                  + 2.0d0*ct_i*ct_j*yhat*(ct_i*uz_j(2)+ct_j*uz_i(2))*f3 &
1019 + !!$                  + (ct_i * ct_j)*f4 )
1020 + !!$             dudz = dudz + sw*pref * ( ri4*scale*( &
1021 + !!$                  3.0d0*(a1*zhat-ct_i*uz_j(3)-ct_j*uz_i(3))*f1 &
1022 + !!$                  - pot_term*f3) &
1023 + !!$                  + 2.0d0*ct_i*ct_j*zhat*(ct_i*uz_j(3)+ct_j*uz_i(3))*f3 &
1024 + !!$                  + (ct_i * ct_j)*f4 )
1025 +
1026 +             dudx = dudx + sw*pref * ( ri4*scale*( &
1027 +                  15.0d0*(ct_i * ct_j * sc2)*xhat*f134 - &
1028 +                  3.0d0*(ct_i*uz_j(1) + ct_j*uz_i(1) + ct_ij*xhat)*f134) )
1029 +             dudy = dudy + sw*pref * ( ri4*scale*( &
1030 +                  15.0d0*(ct_i * ct_j * sc2)*yhat*f134 - &
1031 +                  3.0d0*(ct_i*uz_j(2) + ct_j*uz_i(2) + ct_ij*yhat)*f134) )
1032 +             dudz = dudz + sw*pref * ( ri4*scale*( &
1033 +                  15.0d0*(ct_i * ct_j * sc2)*zhat*f134 - &
1034 +                  3.0d0*(ct_i*uz_j(3) + ct_j*uz_i(3) + ct_ij*zhat)*f134) )
1035 +            
1036 +             duduz_i(1) = duduz_i(1) + sw*pref * &
1037 +                  ( ri3*(uz_j(1) - 3.0d0*ct_j*xhat*sc2)*f1 + (ct_j*xhat)*f2 )
1038 +             duduz_i(2) = duduz_i(2) + sw*pref * &
1039 +                  ( ri3*(uz_j(2) - 3.0d0*ct_j*yhat*sc2)*f1 + (ct_j*yhat)*f2 )
1040 +             duduz_i(3) = duduz_i(3) + sw*pref * &
1041 +                  ( ri3*(uz_j(3) - 3.0d0*ct_j*zhat*sc2)*f1 + (ct_j*zhat)*f2 )
1042 +            
1043 +             duduz_j(1) = duduz_j(1) + sw*pref * &
1044 +                  ( ri3*(uz_i(1) - 3.0d0*ct_i*xhat*sc2)*f1 + (ct_i*xhat)*f2 )
1045 +             duduz_j(2) = duduz_j(2) + sw*pref * &
1046 +                  ( ri3*(uz_i(2) - 3.0d0*ct_i*yhat*sc2)*f1 + (ct_i*yhat)*f2 )
1047 +             duduz_j(3) = duduz_j(3) + sw*pref * &
1048 +                  ( ri3*(uz_i(3) - 3.0d0*ct_i*zhat*sc2)*f1 + (ct_i*zhat)*f2 )
1049 +          endif
1050 +       endif
1051 +    endif
1052 +
1053 +    if (i_is_Quadrupole) then
1054 +       if (j_is_Charge) then
1055 +          if (screeningMethod .eq. DAMPED) then
1056 +             f0 = derfc(dampingAlpha*rij)
1057 +             varEXP = exp(-alpha2*rij*rij)
1058 +             f1 = alphaPi*rij*varEXP + f0
1059 +             f2 = alphaPi*2.0d0*alpha2*varEXP
1060 +             f3 = f2*rij*rij*rij
1061 +             f4 = 2.0d0*alpha2*f2*rij
1062 +          endif
1063 +
1064 +          ri2 = riji * riji
1065 +          ri3 = ri2 * riji
1066 +          ri4 = ri2 * ri2
1067 +          cx2 = cx_i * cx_i
1068 +          cy2 = cy_i * cy_i
1069 +          cz2 = cz_i * cz_i
1070 +
1071 +          pref = pre14 * q_j / 3.0d0
1072 +          pot_term = ri3 * (qxx_i * (3.0d0*cx2 - 1.0d0) + &
1073 +                            qyy_i * (3.0d0*cy2 - 1.0d0) + &
1074 +                            qzz_i * (3.0d0*cz2 - 1.0d0))
1075 +          vterm = pref * (pot_term*f1 + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f2)
1076 +          vpair = vpair + vterm
1077 +          epot = epot + sw*vterm
1078 +          
1079 +          dudx = dudx - sw*pref*pot_term*riji*xhat*(5.0d0*f1 + f3) + &
1080 +               sw*pref*ri4 * ( &
1081 +               qxx_i*(2.0d0*cx_i*ux_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
1082 +               qyy_i*(2.0d0*cy_i*uy_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) + &
1083 +               qzz_i*(2.0d0*cz_i*uz_i(1)*(3.0d0*f1 + f3) - 2.0d0*xhat*f1) ) &
1084 +               + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4
1085 +          dudy = dudy - sw*pref*pot_term*riji*yhat*(5.0d0*f1 + f3) + &
1086 +               sw*pref*ri4 * ( &
1087 +               qxx_i*(2.0d0*cx_i*ux_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
1088 +               qyy_i*(2.0d0*cy_i*uy_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) + &
1089 +               qzz_i*(2.0d0*cz_i*uz_i(2)*(3.0d0*f1 + f3) - 2.0d0*yhat*f1) ) &
1090 +               + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4
1091 +          dudz = dudz - sw*pref*pot_term*riji*zhat*(5.0d0*f1 + f3) + &
1092 +               sw*pref*ri4 * ( &
1093 +               qxx_i*(2.0d0*cx_i*ux_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
1094 +               qyy_i*(2.0d0*cy_i*uy_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) + &
1095 +               qzz_i*(2.0d0*cz_i*uz_i(3)*(3.0d0*f1 + f3) - 2.0d0*zhat*f1) ) &
1096 +               + (qxx_i*cx2 + qyy_i*cy2 + qzz_i*cz2)*f4
1097 +          
1098 +          dudux_i(1) = dudux_i(1) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*xhat) &
1099 +               * (3.0d0*f1 + f3) )
1100 +          dudux_i(2) = dudux_i(2) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*yhat) &
1101 +               * (3.0d0*f1 + f3) )
1102 +          dudux_i(3) = dudux_i(3) + sw*pref*( ri3*(qxx_i*2.0d0*cx_i*zhat) &
1103 +               * (3.0d0*f1 + f3) )
1104 +          
1105 +          duduy_i(1) = duduy_i(1) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*xhat) &
1106 +               * (3.0d0*f1 + f3) )
1107 +          duduy_i(2) = duduy_i(2) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*yhat) &
1108 +               * (3.0d0*f1 + f3) )
1109 +          duduy_i(3) = duduy_i(3) + sw*pref*( ri3*(qyy_i*2.0d0*cy_i*zhat) &
1110 +               * (3.0d0*f1 + f3) )
1111 +          
1112 +          duduz_i(1) = duduz_i(1) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*xhat) &
1113 +               * (3.0d0*f1 + f3) )
1114 +          duduz_i(2) = duduz_i(2) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*yhat) &
1115 +               * (3.0d0*f1 + f3) )
1116 +          duduz_i(3) = duduz_i(3) + sw*pref*( ri3*(qzz_i*2.0d0*cz_i*zhat) &
1117 +               * (3.0d0*f1 + f3) )
1118 +
1119 +       endif
1120 +    endif
1121 +
1122 +
1123      if (do_pot) then
1124   #ifdef IS_MPI
1125 <       pot_row(atom1) = pot_row(atom1) + 0.5d0*epot
1126 <       pot_col(atom2) = pot_col(atom2) + 0.5d0*epot
1125 >       pot_row(ELECTROSTATIC_POT,atom1) = pot_row(ELECTROSTATIC_POT,atom1) + 0.5d0*epot
1126 >       pot_col(ELECTROSTATIC_POT,atom2) = pot_col(ELECTROSTATIC_POT,atom2) + 0.5d0*epot
1127   #else
1128         pot = pot + epot
1129   #endif
1130      endif
1131 <        
1131 >
1132   #ifdef IS_MPI
1133      f_Row(1,atom1) = f_Row(1,atom1) + dudx
1134      f_Row(2,atom1) = f_Row(2,atom1) + dudy
1135      f_Row(3,atom1) = f_Row(3,atom1) + dudz
1136 <    
1136 >
1137      f_Col(1,atom2) = f_Col(1,atom2) - dudx
1138      f_Col(2,atom2) = f_Col(2,atom2) - dudy
1139      f_Col(3,atom2) = f_Col(3,atom2) - dudz
1140 <    
1140 >
1141      if (i_is_Dipole .or. i_is_Quadrupole) then
1142 <       t_Row(1,atom1) = t_Row(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1143 <       t_Row(2,atom1) = t_Row(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1144 <       t_Row(3,atom1) = t_Row(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1142 >       t_Row(1,atom1)=t_Row(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1143 >       t_Row(2,atom1)=t_Row(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1144 >       t_Row(3,atom1)=t_Row(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1145      endif
1146 +    if (i_is_Quadrupole) then
1147 +       t_Row(1,atom1)=t_Row(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1148 +       t_Row(2,atom1)=t_Row(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1149 +       t_Row(3,atom1)=t_Row(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1150  
1151 +       t_Row(1,atom1)=t_Row(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1152 +       t_Row(2,atom1)=t_Row(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1153 +       t_Row(3,atom1)=t_Row(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1154 +    endif
1155 +
1156      if (j_is_Dipole .or. j_is_Quadrupole) then
1157 <       t_Col(1,atom2) = t_Col(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1158 <       t_Col(2,atom2) = t_Col(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1159 <       t_Col(3,atom2) = t_Col(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1157 >       t_Col(1,atom2)=t_Col(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1158 >       t_Col(2,atom2)=t_Col(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1159 >       t_Col(3,atom2)=t_Col(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1160      endif
1161 +    if (j_is_Quadrupole) then
1162 +       t_Col(1,atom2)=t_Col(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1163 +       t_Col(2,atom2)=t_Col(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1164 +       t_Col(3,atom2)=t_Col(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1165  
1166 +       t_Col(1,atom2)=t_Col(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1167 +       t_Col(2,atom2)=t_Col(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1168 +       t_Col(3,atom2)=t_Col(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1169 +    endif
1170 +
1171   #else
1172      f(1,atom1) = f(1,atom1) + dudx
1173      f(2,atom1) = f(2,atom1) + dudy
1174      f(3,atom1) = f(3,atom1) + dudz
1175 <    
1175 >
1176      f(1,atom2) = f(1,atom2) - dudx
1177      f(2,atom2) = f(2,atom2) - dudy
1178      f(3,atom2) = f(3,atom2) - dudz
1179 <    
1179 >
1180      if (i_is_Dipole .or. i_is_Quadrupole) then
1181 <       t(1,atom1) = t(1,atom1) - ul_i(2)*duduiz + ul_i(3)*duduiy
1182 <       t(2,atom1) = t(2,atom1) - ul_i(3)*duduix + ul_i(1)*duduiz
1183 <       t(3,atom1) = t(3,atom1) - ul_i(1)*duduiy + ul_i(2)*duduix
1181 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1182 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1183 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1184      endif
1185 <      
1185 >    if (i_is_Quadrupole) then
1186 >       t(1,atom1)=t(1,atom1) - ux_i(2)*dudux_i(3) + ux_i(3)*dudux_i(2)
1187 >       t(2,atom1)=t(2,atom1) - ux_i(3)*dudux_i(1) + ux_i(1)*dudux_i(3)
1188 >       t(3,atom1)=t(3,atom1) - ux_i(1)*dudux_i(2) + ux_i(2)*dudux_i(1)
1189 >
1190 >       t(1,atom1)=t(1,atom1) - uy_i(2)*duduy_i(3) + uy_i(3)*duduy_i(2)
1191 >       t(2,atom1)=t(2,atom1) - uy_i(3)*duduy_i(1) + uy_i(1)*duduy_i(3)
1192 >       t(3,atom1)=t(3,atom1) - uy_i(1)*duduy_i(2) + uy_i(2)*duduy_i(1)
1193 >    endif
1194 >
1195      if (j_is_Dipole .or. j_is_Quadrupole) then
1196 <       t(1,atom2) = t(1,atom2) - ul_j(2)*dudujz + ul_j(3)*dudujy
1197 <       t(2,atom2) = t(2,atom2) - ul_j(3)*dudujx + ul_j(1)*dudujz
1198 <       t(3,atom2) = t(3,atom2) - ul_j(1)*dudujy + ul_j(2)*dudujx
1196 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1197 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1198 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1199      endif
1200 +    if (j_is_Quadrupole) then
1201 +       t(1,atom2)=t(1,atom2) - ux_j(2)*dudux_j(3) + ux_j(3)*dudux_j(2)
1202 +       t(2,atom2)=t(2,atom2) - ux_j(3)*dudux_j(1) + ux_j(1)*dudux_j(3)
1203 +       t(3,atom2)=t(3,atom2) - ux_j(1)*dudux_j(2) + ux_j(2)*dudux_j(1)
1204 +
1205 +       t(1,atom2)=t(1,atom2) - uy_j(2)*duduy_j(3) + uy_j(3)*duduy_j(2)
1206 +       t(2,atom2)=t(2,atom2) - uy_j(3)*duduy_j(1) + uy_j(1)*duduy_j(3)
1207 +       t(3,atom2)=t(3,atom2) - uy_j(1)*duduy_j(2) + uy_j(2)*duduy_j(1)
1208 +    endif
1209 +
1210   #endif
1211 <    
1211 >
1212   #ifdef IS_MPI
1213      id1 = AtomRowToGlobal(atom1)
1214      id2 = AtomColToGlobal(atom2)
# Line 624 | Line 1218 | contains
1218   #endif
1219  
1220      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1221 <      
1221 >
1222         fpair(1) = fpair(1) + dudx
1223         fpair(2) = fpair(2) + dudy
1224         fpair(3) = fpair(3) + dudz
# Line 633 | Line 1227 | contains
1227  
1228      return
1229    end subroutine doElectrostaticPair
1230 <  
1230 >
1231 >  subroutine destroyElectrostaticTypes()
1232 >
1233 >    if(allocated(ElectrostaticMap)) deallocate(ElectrostaticMap)
1234 >
1235 >  end subroutine destroyElectrostaticTypes
1236 >
1237 >  subroutine self_self(atom1, eFrame, mypot, t, do_pot)
1238 >    logical, intent(in) :: do_pot
1239 >    integer, intent(in) :: atom1
1240 >    integer :: atid1
1241 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1242 >    real(kind=dp), dimension(3,nLocal) :: t
1243 >    real(kind=dp) :: mu1, c1
1244 >    real(kind=dp) :: preVal, epot, mypot
1245 >    real(kind=dp) :: eix, eiy, eiz
1246 >
1247 >    ! this is a local only array, so we use the local atom type id's:
1248 >    atid1 = atid(atom1)
1249 >
1250 >    if (.not.summationMethodChecked) then
1251 >       call checkSummationMethod()
1252 >    endif
1253 >    
1254 >    if (summationMethod .eq. REACTION_FIELD) then
1255 >       if (ElectrostaticMap(atid1)%is_Dipole) then
1256 >          mu1 = getDipoleMoment(atid1)
1257 >          
1258 >          preVal = pre22 * preRF2 * mu1*mu1
1259 >          mypot = mypot - 0.5d0*preVal
1260 >          
1261 >          ! The self-correction term adds into the reaction field vector
1262 >          
1263 >          eix = preVal * eFrame(3,atom1)
1264 >          eiy = preVal * eFrame(6,atom1)
1265 >          eiz = preVal * eFrame(9,atom1)
1266 >          
1267 >          ! once again, this is self-self, so only the local arrays are needed
1268 >          ! even for MPI jobs:
1269 >          
1270 >          t(1,atom1)=t(1,atom1) - eFrame(6,atom1)*eiz + &
1271 >               eFrame(9,atom1)*eiy
1272 >          t(2,atom1)=t(2,atom1) - eFrame(9,atom1)*eix + &
1273 >               eFrame(3,atom1)*eiz
1274 >          t(3,atom1)=t(3,atom1) - eFrame(3,atom1)*eiy + &
1275 >               eFrame(6,atom1)*eix
1276 >          
1277 >       endif
1278 >
1279 >    elseif ( (summationMethod .eq. SHIFTED_FORCE) .or. &
1280 >         (summationMethod .eq. SHIFTED_POTENTIAL) ) then
1281 >       if (ElectrostaticMap(atid1)%is_Charge) then
1282 >          c1 = getCharge(atid1)
1283 >          
1284 >          if (screeningMethod .eq. DAMPED) then
1285 >             mypot = mypot - (f0c * rcuti * 0.5d0 + &
1286 >                  dampingAlpha*invRootPi) * c1 * c1    
1287 >            
1288 >          else            
1289 >             mypot = mypot - (rcuti * 0.5d0 * c1 * c1)
1290 >            
1291 >          endif
1292 >       endif
1293 >    endif
1294 >    
1295 >    return
1296 >  end subroutine self_self
1297 >
1298 >  subroutine rf_self_excludes(atom1, atom2, sw, eFrame, d, rij, vpair, myPot, &
1299 >       f, t, do_pot)
1300 >    logical, intent(in) :: do_pot
1301 >    integer, intent(in) :: atom1
1302 >    integer, intent(in) :: atom2
1303 >    logical :: i_is_Charge, j_is_Charge
1304 >    logical :: i_is_Dipole, j_is_Dipole
1305 >    integer :: atid1
1306 >    integer :: atid2
1307 >    real(kind=dp), intent(in) :: rij
1308 >    real(kind=dp), intent(in) :: sw
1309 >    real(kind=dp), intent(in), dimension(3) :: d
1310 >    real(kind=dp), intent(inout) :: vpair
1311 >    real(kind=dp), dimension(9,nLocal) :: eFrame
1312 >    real(kind=dp), dimension(3,nLocal) :: f
1313 >    real(kind=dp), dimension(3,nLocal) :: t
1314 >    real (kind = dp), dimension(3) :: duduz_i
1315 >    real (kind = dp), dimension(3) :: duduz_j
1316 >    real (kind = dp), dimension(3) :: uz_i
1317 >    real (kind = dp), dimension(3) :: uz_j
1318 >    real(kind=dp) :: q_i, q_j, mu_i, mu_j
1319 >    real(kind=dp) :: xhat, yhat, zhat
1320 >    real(kind=dp) :: ct_i, ct_j
1321 >    real(kind=dp) :: ri2, ri3, riji, vterm
1322 >    real(kind=dp) :: pref, preVal, rfVal, myPot
1323 >    real(kind=dp) :: dudx, dudy, dudz, dudr
1324 >
1325 >    if (.not.summationMethodChecked) then
1326 >       call checkSummationMethod()
1327 >    endif
1328 >
1329 >    dudx = 0.0d0
1330 >    dudy = 0.0d0
1331 >    dudz = 0.0d0
1332 >
1333 >    riji = 1.0d0/rij
1334 >
1335 >    xhat = d(1) * riji
1336 >    yhat = d(2) * riji
1337 >    zhat = d(3) * riji
1338 >
1339 >    ! this is a local only array, so we use the local atom type id's:
1340 >    atid1 = atid(atom1)
1341 >    atid2 = atid(atom2)
1342 >    i_is_Charge = ElectrostaticMap(atid1)%is_Charge
1343 >    j_is_Charge = ElectrostaticMap(atid2)%is_Charge
1344 >    i_is_Dipole = ElectrostaticMap(atid1)%is_Dipole
1345 >    j_is_Dipole = ElectrostaticMap(atid2)%is_Dipole
1346 >
1347 >    if (i_is_Charge.and.j_is_Charge) then
1348 >       q_i = ElectrostaticMap(atid1)%charge
1349 >       q_j = ElectrostaticMap(atid2)%charge
1350 >      
1351 >       preVal = pre11 * q_i * q_j
1352 >       rfVal = preRF*rij*rij
1353 >       vterm = preVal * rfVal
1354 >      
1355 >       myPot = myPot + sw*vterm
1356 >      
1357 >       dudr  = sw*preVal * 2.0d0*rfVal*riji
1358 >      
1359 >       dudx = dudx + dudr * xhat
1360 >       dudy = dudy + dudr * yhat
1361 >       dudz = dudz + dudr * zhat
1362 >      
1363 >    elseif (i_is_Charge.and.j_is_Dipole) then
1364 >       q_i = ElectrostaticMap(atid1)%charge
1365 >       mu_j = ElectrostaticMap(atid2)%dipole_moment
1366 >       uz_j(1) = eFrame(3,atom2)
1367 >       uz_j(2) = eFrame(6,atom2)
1368 >       uz_j(3) = eFrame(9,atom2)
1369 >       ct_j = uz_j(1)*xhat + uz_j(2)*yhat + uz_j(3)*zhat
1370 >      
1371 >       ri2 = riji * riji
1372 >       ri3 = ri2 * riji
1373 >      
1374 >       pref = pre12 * q_i * mu_j
1375 >       vterm = - pref * ct_j * ( ri2 - preRF2*rij )
1376 >       myPot = myPot + sw*vterm
1377 >      
1378 >       dudx = dudx - sw*pref*( ri3*(uz_j(1)-3.0d0*ct_j*xhat) &
1379 >            - preRF2*uz_j(1) )
1380 >       dudy = dudy - sw*pref*( ri3*(uz_j(2)-3.0d0*ct_j*yhat) &
1381 >            - preRF2*uz_j(2) )
1382 >       dudz = dudz - sw*pref*( ri3*(uz_j(3)-3.0d0*ct_j*zhat) &
1383 >            - preRF2*uz_j(3) )
1384 >      
1385 >       duduz_j(1) = duduz_j(1) - sw * pref * xhat * ( ri2 - preRF2*rij )
1386 >       duduz_j(2) = duduz_j(2) - sw * pref * yhat * ( ri2 - preRF2*rij )
1387 >       duduz_j(3) = duduz_j(3) - sw * pref * zhat * ( ri2 - preRF2*rij )
1388 >      
1389 >    elseif (i_is_Dipole.and.j_is_Charge) then
1390 >       mu_i = ElectrostaticMap(atid1)%dipole_moment
1391 >       q_j = ElectrostaticMap(atid2)%charge
1392 >       uz_i(1) = eFrame(3,atom1)
1393 >       uz_i(2) = eFrame(6,atom1)
1394 >       uz_i(3) = eFrame(9,atom1)
1395 >       ct_i = uz_i(1)*xhat + uz_i(2)*yhat + uz_i(3)*zhat
1396 >      
1397 >       ri2 = riji * riji
1398 >       ri3 = ri2 * riji
1399 >      
1400 >       pref = pre12 * q_j * mu_i
1401 >       vterm = pref * ct_i * ( ri2 - preRF2*rij )
1402 >       myPot = myPot + sw*vterm
1403 >      
1404 >       dudx = dudx + sw*pref*( ri3*(uz_i(1)-3.0d0*ct_i*xhat) &
1405 >            - preRF2*uz_i(1) )
1406 >       dudy = dudy + sw*pref*( ri3*(uz_i(2)-3.0d0*ct_i*yhat) &
1407 >            - preRF2*uz_i(2) )
1408 >       dudz = dudz + sw*pref*( ri3*(uz_i(3)-3.0d0*ct_i*zhat) &
1409 >            - preRF2*uz_i(3) )
1410 >      
1411 >       duduz_i(1) = duduz_i(1) + sw * pref * xhat * ( ri2 - preRF2*rij )
1412 >       duduz_i(2) = duduz_i(2) + sw * pref * yhat * ( ri2 - preRF2*rij )
1413 >       duduz_i(3) = duduz_i(3) + sw * pref * zhat * ( ri2 - preRF2*rij )
1414 >      
1415 >    endif
1416 >      
1417 >
1418 >    ! accumulate the forces and torques resulting from the self term
1419 >    f(1,atom1) = f(1,atom1) + dudx
1420 >    f(2,atom1) = f(2,atom1) + dudy
1421 >    f(3,atom1) = f(3,atom1) + dudz
1422 >    
1423 >    f(1,atom2) = f(1,atom2) - dudx
1424 >    f(2,atom2) = f(2,atom2) - dudy
1425 >    f(3,atom2) = f(3,atom2) - dudz
1426 >    
1427 >    if (i_is_Dipole) then
1428 >       t(1,atom1)=t(1,atom1) - uz_i(2)*duduz_i(3) + uz_i(3)*duduz_i(2)
1429 >       t(2,atom1)=t(2,atom1) - uz_i(3)*duduz_i(1) + uz_i(1)*duduz_i(3)
1430 >       t(3,atom1)=t(3,atom1) - uz_i(1)*duduz_i(2) + uz_i(2)*duduz_i(1)
1431 >    elseif (j_is_Dipole) then
1432 >       t(1,atom2)=t(1,atom2) - uz_j(2)*duduz_j(3) + uz_j(3)*duduz_j(2)
1433 >       t(2,atom2)=t(2,atom2) - uz_j(3)*duduz_j(1) + uz_j(1)*duduz_j(3)
1434 >       t(3,atom2)=t(3,atom2) - uz_j(1)*duduz_j(2) + uz_j(2)*duduz_j(1)
1435 >    endif
1436 >
1437 >    return
1438 >  end subroutine rf_self_excludes
1439 >
1440   end module electrostatic_module

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines