ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/gb.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/gb.F90 (file contents):
Revision 2518 by tim, Fri Dec 16 21:52:50 2005 UTC vs.
Revision 2788 by gezelter, Mon Jun 5 18:44:05 2006 UTC

# Line 46 | Line 46 | module gayberne
46    use simulation
47    use atype_module
48    use vector_class
49 +  use linearalgebra
50    use status
51    use lj
52 +  use fForceOptions
53   #ifdef IS_MPI
54    use mpiSimulation
55   #endif
# Line 59 | Line 61 | module gayberne
61   #define __FORTRAN90
62   #include "UseTheForce/DarkSide/fInteractionMap.h"
63  
64 +  logical, save :: haveGBMap = .false.
65 +  logical, save :: haveMixingMap = .false.
66 +  real(kind=dp), save :: mu = 2.0_dp
67 +  real(kind=dp), save :: nu = 1.0_dp
68 +
69 +
70    public :: newGBtype
71 +  public :: complete_GB_FF
72    public :: do_gb_pair
64  public :: do_gb_lj_pair
73    public :: getGayBerneCut
74    public :: destroyGBtypes
75  
76    type :: GBtype
77       integer          :: atid
78 <     real(kind = dp ) :: sigma
79 <     real(kind = dp ) :: l2b_ratio
78 >     real(kind = dp ) :: d
79 >     real(kind = dp ) :: l
80       real(kind = dp ) :: eps
81       real(kind = dp ) :: eps_ratio
82 <     real(kind = dp ) :: mu
83 <     real(kind = dp ) :: nu
76 <     real(kind = dp ) :: sigma_l
77 <     real(kind = dp ) :: eps_l
82 >     real(kind = dp ) :: dw
83 >     logical          :: isLJ
84    end type GBtype
85 <
85 >  
86    type, private :: GBList
87       integer               :: nGBtypes = 0
88       integer               :: currentGBtype = 0
89       type(GBtype), pointer :: GBtypes(:)      => null()
90       integer, pointer      :: atidToGBtype(:) => null()
91    end type GBList
92 <
92 >  
93    type(GBList), save :: GBMap
94 <
94 >  
95 >  type :: GBMixParameters
96 >     real(kind=DP) :: sigma0
97 >     real(kind=DP) :: eps0
98 >     real(kind=DP) :: dw
99 >     real(kind=DP) :: x2
100 >     real(kind=DP) :: xa2
101 >     real(kind=DP) :: xai2
102 >     real(kind=DP) :: xp2
103 >     real(kind=DP) :: xpap2
104 >     real(kind=DP) :: xpapi2
105 >  end type GBMixParameters
106 >  
107 >  type(GBMixParameters), dimension(:,:), allocatable :: GBMixingMap
108 >  
109   contains
110 <
111 <  subroutine newGBtype(c_ident, sigma, l2b_ratio, eps, eps_ratio, mu, nu, &
92 <       status)
110 >  
111 >  subroutine newGBtype(c_ident, d, l, eps, eps_ratio, dw, status)
112      
113      integer, intent(in) :: c_ident
114 <    real( kind = dp ), intent(in) :: sigma, l2b_ratio, eps, eps_ratio
96 <    real( kind = dp ), intent(in) :: mu, nu
114 >    real( kind = dp ), intent(in) :: d, l, eps, eps_ratio, dw
115      integer, intent(out) :: status
116 <
117 <    integer :: nGBTypes, ntypes, myATID
116 >    
117 >    integer :: nGBTypes, nLJTypes, ntypes, myATID
118      integer, pointer :: MatchList(:) => null()
119      integer :: current, i
120      status = 0
121 <
121 >    
122      if (.not.associated(GBMap%GBtypes)) then
123 <                              
123 >      
124         call getMatchingElementList(atypes, "is_GayBerne", .true., &
125              nGBtypes, MatchList)
126        
127 <       GBMap%nGBtypes = nGBtypes
128 <
129 <       allocate(GBMap%GBtypes(nGBtypes))
130 <
127 >       call getMatchingElementList(atypes, "is_LennardJones", .true., &
128 >            nLJTypes, MatchList)
129 >      
130 >       GBMap%nGBtypes = nGBtypes + nLJTypes
131 >      
132 >       allocate(GBMap%GBtypes(nGBtypes + nLJTypes))
133 >      
134         ntypes = getSize(atypes)
135        
136 <       allocate(GBMap%atidToGBtype(ntypes))
136 >       allocate(GBMap%atidToGBtype(ntypes))      
137 >    endif
138 >    
139 >    GBMap%currentGBtype = GBMap%currentGBtype + 1
140 >    current = GBMap%currentGBtype
141 >    
142 >    myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
143 >    
144 >    GBMap%atidToGBtype(myATID)       = current
145 >    GBMap%GBtypes(current)%atid      = myATID
146 >    GBMap%GBtypes(current)%d         = d
147 >    GBMap%GBtypes(current)%l         = l
148 >    GBMap%GBtypes(current)%eps       = eps
149 >    GBMap%GBtypes(current)%eps_ratio = eps_ratio
150 >    GBMap%GBtypes(current)%dw        = dw
151 >    GBMap%GBtypes(current)%isLJ      = .false.
152 >    
153 >    return
154 >  end subroutine newGBtype
155 >  
156 >  subroutine complete_GB_FF(status)
157 >    integer :: status
158 >    integer :: i, j, l, m, lm, function_type
159 >    real(kind=dp) :: thisDP, sigma
160 >    integer :: alloc_stat, iTheta, iPhi, nSteps, nAtypes, myATID, current
161 >    logical :: thisProperty
162 >    
163 >    status = 0
164 >    if (GBMap%currentGBtype == 0) then
165 >       call handleError("complete_GB_FF", "No members in GBMap")
166 >       status = -1
167 >       return
168 >    end if
169 >    
170 >    nAtypes = getSize(atypes)
171 >    
172 >    if (nAtypes == 0) then
173 >       status = -1
174 >       return
175 >    end if
176 >    
177 >    ! atypes comes from c side
178 >    do i = 1, nAtypes
179        
180 <       !! initialize atidToGBtype to -1 so that we can use this
181 <       !! array to figure out which atom comes first in the GBLJ
182 <       !! routine
180 >       myATID = getFirstMatchingElement(atypes, 'c_ident', i)
181 >       call getElementProperty(atypes, myATID, "is_LennardJones", thisProperty)
182 >      
183 >       if (thisProperty) then
184 >          GBMap%currentGBtype = GBMap%currentGBtype + 1
185 >          current = GBMap%currentGBtype
186 >          
187 >          GBMap%atidToGBtype(myATID) = current
188 >          GBMap%GBtypes(current)%atid      = myATID      
189 >          GBMap%GBtypes(current)%isLJ      = .true.          
190 >          GBMap%GBtypes(current)%d         = getSigma(myATID)
191 >          GBMap%GBtypes(current)%l         = GBMap%GBtypes(current)%d
192 >          GBMap%GBtypes(current)%eps       = getEpsilon(myATID)
193 >          GBMap%GBtypes(current)%eps_ratio = 1.0_dp
194 >          GBMap%GBtypes(current)%dw        = 1.0_dp
195 >          
196 >       endif
197 >      
198 >    end do
199 >    
200 >    haveGBMap = .true.
201  
202 <       do i = 1, ntypes
203 <          GBMap%atidToGBtype(i) = -1
123 <       enddo
202 >    mu = getGayBerneMu()
203 >    nu = getGayBerneNu()
204  
205 +    
206 +  end subroutine complete_GB_FF
207 +
208 +  subroutine createGBMixingMap()
209 +    integer :: nGBtypes, i, j
210 +    real (kind = dp) :: d1, l1, e1, er1, dw1
211 +    real (kind = dp) :: d2, l2, e2, er2, dw2
212 +    real (kind = dp) :: er, ermu, xp, ap2
213 +
214 +    if (GBMap%currentGBtype == 0) then
215 +       call handleError("GB", "No members in GBMap")
216 +       return
217 +    end if
218 +    
219 +    nGBtypes = GBMap%nGBtypes
220 +
221 +    if (.not. allocated(GBMixingMap)) then
222 +       allocate(GBMixingMap(nGBtypes, nGBtypes))
223      endif
224  
225 <    GBMap%currentGBtype = GBMap%currentGBtype + 1
128 <    current = GBMap%currentGBtype
225 >    do i = 1, nGBtypes
226  
227 <    myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
228 <    GBMap%atidToGBtype(myATID)        = current
229 <    GBMap%GBtypes(current)%atid       = myATID
230 <    GBMap%GBtypes(current)%sigma      = sigma
231 <    GBMap%GBtypes(current)%l2b_ratio  = l2b_ratio
135 <    GBMap%GBtypes(current)%eps        = eps
136 <    GBMap%GBtypes(current)%eps_ratio  = eps_ratio
137 <    GBMap%GBtypes(current)%mu         = mu
138 <    GBMap%GBtypes(current)%nu         = nu
139 <    GBMap%GBtypes(current)%sigma_l    = sigma*l2b_ratio
140 <    GBMap%GBtypes(current)%eps_l      = eps*eps_ratio
227 >       d1 = GBMap%GBtypes(i)%d
228 >       l1 = GBMap%GBtypes(i)%l
229 >       e1 = GBMap%GBtypes(i)%eps
230 >       er1 = GBMap%GBtypes(i)%eps_ratio
231 >       dw1 = GBMap%GBtypes(i)%dw
232  
233 <    return
143 <  end subroutine newGBtype
233 >       do j = i, nGBtypes
234  
235 +          d2 = GBMap%GBtypes(j)%d
236 +          l2 = GBMap%GBtypes(j)%l
237 +          e2 = GBMap%GBtypes(j)%eps
238 +          er2 = GBMap%GBtypes(j)%eps_ratio
239 +          dw2 = GBMap%GBtypes(j)%dw
240 +
241 +          GBMixingMap(i,j)%sigma0 = sqrt(d1*d1 + d2*d2)
242 +          GBMixingMap(i,j)%xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2)
243 +          GBMixingMap(i,j)%xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1)
244 +          GBMixingMap(i,j)%x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) / &
245 +               ((l2*l2 + d1*d1) * (l1*l1 + d2*d2))
246 +
247 +          ! assumed LB mixing rules for now:
248 +
249 +          GBMixingMap(i,j)%dw = 0.5_dp * (dw1 + dw2)
250 +          GBMixingMap(i,j)%eps0 = sqrt(e1 * e2)
251 +
252 +          er = sqrt(er1 * er2)
253 +          ermu = er**(1.0_dp / mu)
254 +          xp = (1.0_dp - ermu) / (1.0_dp + ermu)
255 +          ap2 = 1.0_dp / (1.0_dp + ermu)
256 +
257 +          GBMixingMap(i,j)%xp2 = xp*xp
258 +          GBMixingMap(i,j)%xpap2 = xp*ap2
259 +          GBMixingMap(i,j)%xpapi2 = xp/ap2
260 +          
261 +          if (i.ne.j) then
262 +             GBMixingMap(j,i)%sigma0 = GBMixingMap(i,j)%sigma0
263 +             GBMixingMap(j,i)%dw     = GBMixingMap(i,j)%dw    
264 +             GBMixingMap(j,i)%eps0   = GBMixingMap(i,j)%eps0  
265 +             GBMixingMap(j,i)%x2     = GBMixingMap(i,j)%x2    
266 +             GBMixingMap(j,i)%xa2    = GBMixingMap(i,j)%xa2  
267 +             GBMixingMap(j,i)%xai2   = GBMixingMap(i,j)%xai2  
268 +             GBMixingMap(j,i)%xp2    = GBMixingMap(i,j)%xp2  
269 +             GBMixingMap(j,i)%xpap2  = GBMixingMap(i,j)%xpap2
270 +             GBMixingMap(j,i)%xpapi2 = GBMixingMap(i,j)%xpapi2
271 +          endif
272 +       enddo
273 +    enddo
274 +    haveMixingMap = .true.
275 +    
276 +  end subroutine createGBMixingMap
277    
278 +
279    !! gay berne cutoff should be a parameter in globals, this is a temporary
280    !! work around - this should be fixed when gay berne is up and running
281  
282    function getGayBerneCut(atomID) result(cutValue)
283      integer, intent(in) :: atomID
284      integer :: gbt1
285 <    real(kind=dp) :: cutValue, sigma, l2b_ratio
285 >    real(kind=dp) :: cutValue, l, d
286  
287      if (GBMap%currentGBtype == 0) then
288         call handleError("GB", "No members in GBMap")
# Line 157 | Line 290 | contains
290      end if
291  
292      gbt1 = GBMap%atidToGBtype(atomID)
293 <    sigma = GBMap%GBtypes(gbt1)%sigma
294 <    l2b_ratio = GBMap%GBtypes(gbt1)%l2b_ratio
293 >    l = GBMap%GBtypes(gbt1)%l
294 >    d = GBMap%GBtypes(gbt1)%d  
295 >    cutValue = 2.5_dp*max(l,d)
296  
163    cutValue = l2b_ratio*sigma*2.5_dp
297    end function getGayBerneCut
298  
299    subroutine do_gb_pair(atom1, atom2, d, r, r2, sw, vpair, fpair, &
300 <       pot, A, f, t, do_pot)
300 >       pot, Amat, f, t, do_pot)
301      
302      integer, intent(in) :: atom1, atom2
303      integer :: atid1, atid2, gbt1, gbt2, id1, id2
# Line 172 | Line 305 | contains
305      real (kind=dp), dimension(3), intent(in) :: d
306      real (kind=dp), dimension(3), intent(inout) :: fpair
307      real (kind=dp) :: pot, sw, vpair
308 <    real (kind=dp), dimension(9,nLocal) :: A
308 >    real (kind=dp), dimension(9,nLocal) :: Amat
309      real (kind=dp), dimension(3,nLocal) :: f
310      real (kind=dp), dimension(3,nLocal) :: t
311      logical, intent(in) :: do_pot
312 <    real (kind = dp), dimension(3) :: ul1
180 <    real (kind = dp), dimension(3) :: ul2
312 >    real (kind = dp), dimension(3) :: ul1, ul2, rxu1, rxu2, uxu, rhat
313  
314 <    real(kind=dp) :: sigma, l2b_ratio, epsilon, eps_ratio, mu, nu, sigma_l, eps_l
315 <    real(kind=dp) :: chi, chiprime, emu, s2
316 <    real(kind=dp) :: r4, rdotu1, rdotu2, u1dotu2, g, gp, gpi, gmu, gmum
317 <    real(kind=dp) :: curlyE, enu, enum, eps, dotsum, dotdiff, ds2, dd2
318 <    real(kind=dp) :: opXdot, omXdot, opXpdot, omXpdot, pref, gfact
319 <    real(kind=dp) :: BigR, Ri, Ri2, Ri6, Ri7, Ri12, Ri13, R126, R137
320 <    real(kind=dp) :: dru1dx, dru1dy, dru1dz
321 <    real(kind=dp) :: dru2dx, dru2dy, dru2dz
322 <    real(kind=dp) :: dBigRdx, dBigRdy, dBigRdz
323 <    real(kind=dp) :: dBigRdu1x, dBigRdu1y, dBigRdu1z
192 <    real(kind=dp) :: dBigRdu2x, dBigRdu2y, dBigRdu2z
193 <    real(kind=dp) :: dUdx, dUdy, dUdz
194 <    real(kind=dp) :: dUdu1x, dUdu1y, dUdu1z, dUdu2x, dUdu2y, dUdu2z
195 <    real(kind=dp) :: dcE, dcEdu1x, dcEdu1y, dcEdu1z, dcEdu2x, dcEdu2y, dcEdu2z
196 <    real(kind=dp) :: depsdu1x, depsdu1y, depsdu1z, depsdu2x, depsdu2y, depsdu2z
197 <    real(kind=dp) :: drdx, drdy, drdz
198 <    real(kind=dp) :: dgdx, dgdy, dgdz
199 <    real(kind=dp) :: dgdu1x, dgdu1y, dgdu1z, dgdu2x, dgdu2y, dgdu2z
200 <    real(kind=dp) :: dgpdx, dgpdy, dgpdz
201 <    real(kind=dp) :: dgpdu1x, dgpdu1y, dgpdu1z, dgpdu2x, dgpdu2y, dgpdu2z
202 <    real(kind=dp) :: line1a, line1bx, line1by, line1bz
203 <    real(kind=dp) :: line2a, line2bx, line2by, line2bz
204 <    real(kind=dp) :: line3a, line3b, line3, line3x, line3y, line3z
205 <    real(kind=dp) :: term1x, term1y, term1z, term1u1x, term1u1y, term1u1z
206 <    real(kind=dp) :: term1u2x, term1u2y, term1u2z
207 <    real(kind=dp) :: term2a, term2b, term2u1x, term2u1y, term2u1z
208 <    real(kind=dp) :: term2u2x, term2u2y, term2u2z
209 <    real(kind=dp) :: yick1, yick2, mess1, mess2
210 <    
314 >    real (kind = dp) :: sigma0, dw, eps0, x2, xa2, xai2, xp2, xpap2, xpapi2
315 >    real (kind = dp) :: e1, e2, eps, sigma, s3, s03, au, bu, a, b, g, g2
316 >    real (kind = dp) :: U, BigR, R3, R6, R7, R12, R13, H, Hp, fx, fy, fz
317 >    real (kind = dp) :: dUdr, dUda, dUdb, dUdg, pref1, pref2
318 >    logical :: i_is_lj, j_is_lj
319 >
320 >    if (.not.haveMixingMap) then
321 >       call createGBMixingMap()
322 >    endif
323 >
324   #ifdef IS_MPI
325      atid1 = atid_Row(atom1)
326      atid2 = atid_Col(atom2)
# Line 217 | Line 330 | contains
330   #endif
331  
332      gbt1 = GBMap%atidToGBtype(atid1)
333 <    gbt2 = GBMap%atidToGBtype(atid2)
333 >    gbt2 = GBMap%atidToGBtype(atid2)    
334  
335 <    if (gbt1 .eq. gbt2) then
336 <       sigma     = GBMap%GBtypes(gbt1)%sigma      
224 <       l2b_ratio = GBMap%GBtypes(gbt1)%l2b_ratio  
225 <       epsilon   = GBMap%GBtypes(gbt1)%eps        
226 <       eps_ratio = GBMap%GBtypes(gbt1)%eps_ratio  
227 <       mu        = GBMap%GBtypes(gbt1)%mu        
228 <       nu        = GBMap%GBtypes(gbt1)%nu        
229 <       sigma_l   = GBMap%GBtypes(gbt1)%sigma_l    
230 <       eps_l     = GBMap%GBtypes(gbt1)%eps_l      
231 <    else
232 <       call handleError("GB", "GB-pair was called with two different GB types!")
233 <    endif
335 >    i_is_LJ = GBMap%GBTypes(gbt1)%isLJ
336 >    j_is_LJ = GBMap%GBTypes(gbt2)%isLJ
337  
338 <    s2 = (l2b_ratio)**2
339 <    emu = (eps_ratio)**(1.0d0/mu)
340 <
341 <    chi = (s2 - 1.0d0)/(s2 + 1.0d0)
342 <    chiprime = (1.0d0 - emu)/(1.0d0 + emu)
343 <
344 <    r4 = r2*r2
345 <
338 >    sigma0 = GBMixingMap(gbt1, gbt2)%sigma0
339 >    dw     = GBMixingMap(gbt1, gbt2)%dw    
340 >    eps0   = GBMixingMap(gbt1, gbt2)%eps0  
341 >    x2     = GBMixingMap(gbt1, gbt2)%x2    
342 >    xa2    = GBMixingMap(gbt1, gbt2)%xa2  
343 >    xai2   = GBMixingMap(gbt1, gbt2)%xai2  
344 >    xp2    = GBMixingMap(gbt1, gbt2)%xp2  
345 >    xpap2  = GBMixingMap(gbt1, gbt2)%xpap2
346 >    xpapi2 = GBMixingMap(gbt1, gbt2)%xpapi2
347 >    
348   #ifdef IS_MPI
349      ul1(1) = A_Row(7,atom1)
350      ul1(2) = A_Row(8,atom1)
# Line 249 | Line 354 | contains
354      ul2(2) = A_Col(8,atom2)
355      ul2(3) = A_Col(9,atom2)
356   #else
357 <    ul1(1) = A(7,atom1)
358 <    ul1(2) = A(8,atom1)
359 <    ul1(3) = A(9,atom1)
357 >    ul1(1) = Amat(7,atom1)
358 >    ul1(2) = Amat(8,atom1)
359 >    ul1(3) = Amat(9,atom1)
360  
361 <    ul2(1) = A(7,atom2)
362 <    ul2(2) = A(8,atom2)
363 <    ul2(3) = A(9,atom2)
361 >    ul2(1) = Amat(7,atom2)
362 >    ul2(2) = Amat(8,atom2)
363 >    ul2(3) = Amat(9,atom2)
364   #endif
365      
366 <    dru1dx = ul1(1)
367 <    dru2dx = ul2(1)
368 <    dru1dy = ul1(2)
369 <    dru2dy = ul2(2)
370 <    dru1dz = ul1(3)
371 <    dru2dz = ul2(3)
267 <        
268 <    drdx = d(1) / r
269 <    drdy = d(2) / r
270 <    drdz = d(3) / r
271 <    
272 <    ! do some dot products:
273 <    ! NB the r in these dot products is the actual intermolecular vector,
274 <    ! and is not the unit vector in that direction.
275 <    
276 <    rdotu1 = d(1)*ul1(1) + d(2)*ul1(2) + d(3)*ul1(3)
277 <    rdotu2 = d(1)*ul2(1) + d(2)*ul2(2) + d(3)*ul2(3)
278 <    u1dotu2 = ul1(1)*ul2(1) + ul1(2)*ul2(2) +  ul1(3)*ul2(3)
366 >    if (i_is_LJ) then
367 >       a = 0.0_dp
368 >       ul1 = 0.0_dp
369 >    else
370 >       a = d(1)*ul1(1)   + d(2)*ul1(2)   + d(3)*ul1(3)
371 >    endif
372  
373 <    ! This stuff is all for the calculation of g(Chi) and dgdx
374 <    ! Line numbers roughly follow the lines in equation A25 of Luckhurst
375 <    !   et al. Liquid Crystals 8, 451-464 (1990).
376 <    ! We note however, that there are some major typos in that Appendix
377 <    ! of the Luckhurst paper, particularly in equations A23, A29 and A31
378 <    ! We have attempted to correct them below.
286 <    
287 <    dotsum = rdotu1+rdotu2
288 <    dotdiff = rdotu1-rdotu2
289 <    ds2 = dotsum*dotsum
290 <    dd2 = dotdiff*dotdiff
291 <  
292 <    opXdot = 1.0d0 + Chi*u1dotu2
293 <    omXdot = 1.0d0 - Chi*u1dotu2
294 <    opXpdot = 1.0d0 + ChiPrime*u1dotu2
295 <    omXpdot = 1.0d0 - ChiPrime*u1dotu2
296 <  
297 <    line1a = dotsum/opXdot
298 <    line1bx = dru1dx + dru2dx
299 <    line1by = dru1dy + dru2dy
300 <    line1bz = dru1dz + dru2dz
301 <    
302 <    line2a = dotdiff/omXdot
303 <    line2bx = dru1dx - dru2dx
304 <    line2by = dru1dy - dru2dy
305 <    line2bz = dru1dz - dru2dz
306 <    
307 <    term1x = -Chi*(line1a*line1bx + line2a*line2bx)/r2
308 <    term1y = -Chi*(line1a*line1by + line2a*line2by)/r2
309 <    term1z = -Chi*(line1a*line1bz + line2a*line2bz)/r2
310 <    
311 <    line3a = ds2/opXdot
312 <    line3b = dd2/omXdot
313 <    line3 = Chi*(line3a + line3b)/r4
314 <    line3x = d(1)*line3
315 <    line3y = d(2)*line3
316 <    line3z = d(3)*line3
317 <    
318 <    dgdx = term1x + line3x
319 <    dgdy = term1y + line3y
320 <    dgdz = term1z + line3z
373 >    if (j_is_LJ) then
374 >       b = 0.0_dp
375 >       ul2 = 0.0_dp
376 >    else      
377 >       b = d(1)*ul2(1)   + d(2)*ul2(2)   + d(3)*ul2(3)
378 >    endif
379  
380 <    term1u1x = 2.0d0*(line1a+line2a)*d(1)
381 <    term1u1y = 2.0d0*(line1a+line2a)*d(2)
382 <    term1u1z = 2.0d0*(line1a+line2a)*d(3)
383 <    term1u2x = 2.0d0*(line1a-line2a)*d(1)
384 <    term1u2y = 2.0d0*(line1a-line2a)*d(2)
327 <    term1u2z = 2.0d0*(line1a-line2a)*d(3)
328 <    
329 <    term2a = -line3a/opXdot
330 <    term2b =  line3b/omXdot
331 <    
332 <    term2u1x = Chi*ul2(1)*(term2a + term2b)
333 <    term2u1y = Chi*ul2(2)*(term2a + term2b)
334 <    term2u1z = Chi*ul2(3)*(term2a + term2b)
335 <    term2u2x = Chi*ul1(1)*(term2a + term2b)
336 <    term2u2y = Chi*ul1(2)*(term2a + term2b)
337 <    term2u2z = Chi*ul1(3)*(term2a + term2b)
338 <    
339 <    pref = -Chi*0.5d0/r2
380 >    if (i_is_LJ.or.j_is_LJ) then
381 >       g = 0.0_dp
382 >    else
383 >       g = ul1(1)*ul2(1) + ul1(2)*ul2(2) + ul1(3)*ul2(3)
384 >    endif
385  
386 <    dgdu1x = pref*(term1u1x+term2u1x)
387 <    dgdu1y = pref*(term1u1y+term2u1y)
388 <    dgdu1z = pref*(term1u1z+term2u1z)
344 <    dgdu2x = pref*(term1u2x+term2u2x)
345 <    dgdu2y = pref*(term1u2y+term2u2y)
346 <    dgdu2z = pref*(term1u2z+term2u2z)
386 >    au = a / r
387 >    bu = b / r
388 >    g2 = g*g
389  
390 <    g = 1.0d0 - Chi*(line3a + line3b)/(2.0d0*r2)
391 <  
392 <    BigR = (r - sigma*(g**(-0.5d0)) + sigma)/sigma
393 <    Ri = 1.0d0/BigR
394 <    Ri2 = Ri*Ri
395 <    Ri6 = Ri2*Ri2*Ri2
396 <    Ri7 = Ri6*Ri
397 <    Ri12 = Ri6*Ri6
398 <    Ri13 = Ri6*Ri7
390 >    H  = (xa2 * au + xai2 * bu - 2.0_dp*x2*au*bu*g)  / (1.0_dp - x2*g2)
391 >    Hp = (xpap2*au + xpapi2*bu - 2.0_dp*xp2*au*bu*g) / (1.0_dp - xp2*g2)
392 >    sigma = sigma0 / sqrt(1.0_dp - H)
393 >    e1 = 1.0_dp / sqrt(1.0_dp - x2*g2)
394 >    e2 = 1.0_dp - Hp
395 >    eps = eps0 * (e1**nu) * (e2**mu)
396 >    BigR = dw*sigma0 / (r - sigma + dw*sigma0)
397 >    
398 >    R3 = BigR*BigR*BigR
399 >    R6 = R3*R3
400 >    R7 = R6 * BigR
401 >    R12 = R6*R6
402 >    R13 = R6*R7
403  
404 <    gfact = (g**(-1.5d0))*0.5d0
404 >    U = 4.0_dp * eps * (R12 - R6)
405  
406 <    dBigRdx = drdx/sigma + dgdx*gfact
407 <    dBigRdy = drdy/sigma + dgdy*gfact
362 <    dBigRdz = drdz/sigma + dgdz*gfact
406 >    s3 = sigma*sigma*sigma
407 >    s03 = sigma0*sigma0*sigma0
408  
409 <    dBigRdu1x = dgdu1x*gfact
410 <    dBigRdu1y = dgdu1y*gfact
366 <    dBigRdu1z = dgdu1z*gfact
367 <    dBigRdu2x = dgdu2x*gfact
368 <    dBigRdu2y = dgdu2y*gfact
369 <    dBigRdu2z = dgdu2z*gfact
409 >    pref1 = - 8.0_dp * eps * mu * (R12 - R6) / (e2 * r)
410 >    pref2 = 8.0_dp * eps * s3 * (6.0_dp*R13 - 3.0_dp*R7) / (dw*r*s03)
411  
412 <    ! Now, we must do it again for g(ChiPrime) and dgpdx
372 <
373 <    line1a = dotsum/opXpdot
374 <    line2a = dotdiff/omXpdot
375 <    term1x = -ChiPrime*(line1a*line1bx + line2a*line2bx)/r2
376 <    term1y = -ChiPrime*(line1a*line1by + line2a*line2by)/r2
377 <    term1z = -ChiPrime*(line1a*line1bz + line2a*line2bz)/r2
378 <    line3a = ds2/opXpdot
379 <    line3b = dd2/omXpdot
380 <    line3 = ChiPrime*(line3a + line3b)/r4
381 <    line3x = d(1)*line3
382 <    line3y = d(2)*line3
383 <    line3z = d(3)*line3
412 >    dUdr = - (pref1 * Hp + pref2 * (sigma0*sigma0*r/s3 - H))
413      
414 <    dgpdx = term1x + line3x
415 <    dgpdy = term1y + line3y
387 <    dgpdz = term1z + line3z
414 >    dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0_dp - xp2 * g2) &
415 >         + pref2 * (xa2 * au - x2 *bu*g) / (1.0_dp - x2 * g2)
416      
417 <    term1u1x = 2.00d0*(line1a+line2a)*d(1)
418 <    term1u1y = 2.00d0*(line1a+line2a)*d(2)
391 <    term1u1z = 2.00d0*(line1a+line2a)*d(3)
392 <    term1u2x = 2.0d0*(line1a-line2a)*d(1)
393 <    term1u2y = 2.0d0*(line1a-line2a)*d(2)
394 <    term1u2z = 2.0d0*(line1a-line2a)*d(3)
417 >    dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0_dp - xp2 * g2) &
418 >         + pref2 * (xai2 * bu - x2 *au*g) / (1.0_dp - x2 * g2)
419  
420 <    term2a = -line3a/opXpdot
421 <    term2b =  line3b/omXpdot
422 <    
423 <    term2u1x = ChiPrime*ul2(1)*(term2a + term2b)
424 <    term2u1y = ChiPrime*ul2(2)*(term2a + term2b)
425 <    term2u1z = ChiPrime*ul2(3)*(term2a + term2b)
426 <    term2u2x = ChiPrime*ul1(1)*(term2a + term2b)
403 <    term2u2y = ChiPrime*ul1(2)*(term2a + term2b)
404 <    term2u2z = ChiPrime*ul1(3)*(term2a + term2b)
405 <  
406 <    pref = -ChiPrime*0.5d0/r2
407 <    
408 <    dgpdu1x = pref*(term1u1x+term2u1x)
409 <    dgpdu1y = pref*(term1u1y+term2u1y)
410 <    dgpdu1z = pref*(term1u1z+term2u1z)
411 <    dgpdu2x = pref*(term1u2x+term2u2x)
412 <    dgpdu2y = pref*(term1u2y+term2u2y)
413 <    dgpdu2z = pref*(term1u2z+term2u2z)
414 <    
415 <    gp = 1.0d0 - ChiPrime*(line3a + line3b)/(2.0d0*r2)
416 <    gmu = gp**mu
417 <    gpi = 1.0d0 / gp
418 <    gmum = gmu*gpi
420 >    dUdg = 4.0_dp * eps * nu * (R12 - R6) * x2 * g / (1.0_dp - x2*g2) &
421 >         + 8.0_dp * eps * mu * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) / &
422 >         (1.0_dp - xp2 * g2) / e2 &
423 >         + 8.0_dp * eps * s3 * (3.0_dp * R7 - 6.0_dp * R13) * &
424 >         (x2 * au * bu - H * x2 * g) / (1.0_dp - x2 * g2) / (dw * s03)
425 >            
426 >    rhat = d / r
427  
428 <    curlyE = 1.0d0/dsqrt(1.0d0 - Chi*Chi*u1dotu2*u1dotu2)
429 <    dcE = (curlyE**3)*Chi*Chi*u1dotu2
428 >    fx = -dUdr * rhat(1) - dUda * ul1(1) - dUdb * ul2(1)
429 >    fy = -dUdr * rhat(2) - dUda * ul1(2) - dUdb * ul2(2)
430 >    fx = -dUdr * rhat(3) - dUda * ul1(3) - dUdb * ul2(3)
431  
432 <    dcEdu1x = dcE*ul2(1)
433 <    dcEdu1y = dcE*ul2(2)
434 <    dcEdu1z = dcE*ul2(3)
435 <    dcEdu2x = dcE*ul1(1)
427 <    dcEdu2y = dcE*ul1(2)
428 <    dcEdu2z = dcE*ul1(3)
429 <    
430 <    enu = curlyE**nu
431 <    enum = enu/curlyE
432 <  
433 <    eps = epsilon*enu*gmu
434 <
435 <    yick1 = epsilon*enu*mu*gmum
436 <    yick2 = epsilon*gmu*nu*enum
437 <
438 <    depsdu1x = yick1*dgpdu1x + yick2*dcEdu1x
439 <    depsdu1y = yick1*dgpdu1y + yick2*dcEdu1y
440 <    depsdu1z = yick1*dgpdu1z + yick2*dcEdu1z
441 <    depsdu2x = yick1*dgpdu2x + yick2*dcEdu2x
442 <    depsdu2y = yick1*dgpdu2y + yick2*dcEdu2y
443 <    depsdu2z = yick1*dgpdu2z + yick2*dcEdu2z
444 <    
445 <    R126 = Ri12 - Ri6
446 <    R137 = 6.0d0*Ri7 - 12.0d0*Ri13
447 <    
448 <    mess1 = gmu*R137
449 <    mess2 = R126*mu*gmum
450 <    
451 <    dUdx = 4.0d0*epsilon*enu*(mess1*dBigRdx + mess2*dgpdx)*sw
452 <    dUdy = 4.0d0*epsilon*enu*(mess1*dBigRdy + mess2*dgpdy)*sw
453 <    dUdz = 4.0d0*epsilon*enu*(mess1*dBigRdz + mess2*dgpdz)*sw
454 <    
455 <    dUdu1x = 4.0d0*(R126*depsdu1x + eps*R137*dBigRdu1x)*sw
456 <    dUdu1y = 4.0d0*(R126*depsdu1y + eps*R137*dBigRdu1y)*sw
457 <    dUdu1z = 4.0d0*(R126*depsdu1z + eps*R137*dBigRdu1z)*sw
458 <    dUdu2x = 4.0d0*(R126*depsdu2x + eps*R137*dBigRdu2x)*sw
459 <    dUdu2y = 4.0d0*(R126*depsdu2y + eps*R137*dBigRdu2y)*sw
460 <    dUdu2z = 4.0d0*(R126*depsdu2z + eps*R137*dBigRdu2z)*sw
461 <      
432 >    rxu1 = cross_product(d, ul1)
433 >    rxu2 = cross_product(d, ul2)    
434 >    uxu = cross_product(ul1, ul2)
435 >          
436   #ifdef IS_MPI
437 <    f_Row(1,atom1) = f_Row(1,atom1) + dUdx
438 <    f_Row(2,atom1) = f_Row(2,atom1) + dUdy
439 <    f_Row(3,atom1) = f_Row(3,atom1) + dUdz
437 >    f_Row(1,atom1) = f_Row(1,atom1) + fx
438 >    f_Row(2,atom1) = f_Row(2,atom1) + fy
439 >    f_Row(3,atom1) = f_Row(3,atom1) + fz
440      
441 <    f_Col(1,atom2) = f_Col(1,atom2) - dUdx
442 <    f_Col(2,atom2) = f_Col(2,atom2) - dUdy
443 <    f_Col(3,atom2) = f_Col(3,atom2) - dUdz
441 >    f_Col(1,atom2) = f_Col(1,atom2) - fx
442 >    f_Col(2,atom2) = f_Col(2,atom2) - fy
443 >    f_Col(3,atom2) = f_Col(3,atom2) - fz
444      
445 <    t_Row(1,atom1) = t_Row(1,atom1) + ul1(3)*dUdu1y - ul1(2)*dUdu1z
446 <    t_Row(2,atom1) = t_Row(2,atom1) + ul1(1)*dUdu1z - ul1(3)*dUdu1x
447 <    t_Row(3,atom1) = t_Row(3,atom1) + ul1(2)*dUdu1x - ul1(1)*dUdu1y
448 <    
449 <    t_Col(1,atom2) = t_Col(1,atom2) + ul2(3)*dUdu2y - ul2(2)*dUdu2z
450 <    t_Col(2,atom2) = t_Col(2,atom2) + ul2(1)*dUdu2z - ul2(3)*dUdu2x
451 <    t_Col(3,atom2) = t_Col(3,atom2) + ul2(2)*dUdu2x - ul2(1)*dUdu2y
445 >    t_Row(1,atom1) = t_Row(1,atom1) + dUda*rxu1(1) - dUdg*uxu(1)
446 >    t_Row(2,atom1) = t_Row(2,atom1) + dUda*rxu1(2) - dUdg*uxu(2)
447 >    t_Row(3,atom1) = t_Row(3,atom1) + dUda*rxu1(3) - dUdg*uxu(3)
448 >                                                                
449 >    t_Col(1,atom2) = t_Col(1,atom2) + dUdb*rxu2(1) + dUdg*uxu(1)
450 >    t_Col(2,atom2) = t_Col(2,atom2) + dUdb*rxu2(2) + dUdg*uxu(2)
451 >    t_Col(3,atom2) = t_Col(3,atom2) + dUdb*rxu2(3) + dUdg*uxu(3)
452   #else
453 <    f(1,atom1) = f(1,atom1) + dUdx
454 <    f(2,atom1) = f(2,atom1) + dUdy
455 <    f(3,atom1) = f(3,atom1) + dUdz
453 >    f(1,atom1) = f(1,atom1) + fx
454 >    f(2,atom1) = f(2,atom1) + fy
455 >    f(3,atom1) = f(3,atom1) + fz
456      
457 <    f(1,atom2) = f(1,atom2) - dUdx
458 <    f(2,atom2) = f(2,atom2) - dUdy
459 <    f(3,atom2) = f(3,atom2) - dUdz
457 >    f(1,atom2) = f(1,atom2) - fx
458 >    f(2,atom2) = f(2,atom2) - fy
459 >    f(3,atom2) = f(3,atom2) - fz
460      
461 <    t(1,atom1) = t(1,atom1) + ul1(3)*dUdu1y - ul1(2)*dUdu1z
462 <    t(2,atom1) = t(2,atom1) + ul1(1)*dUdu1z - ul1(3)*dUdu1x
463 <    t(3,atom1) = t(3,atom1) + ul1(2)*dUdu1x - ul1(1)*dUdu1y
464 <    
465 <    t(1,atom2) = t(1,atom2) + ul2(3)*dUdu2y - ul2(2)*dUdu2z
466 <    t(2,atom2) = t(2,atom2) + ul2(1)*dUdu2z - ul2(3)*dUdu2x
467 <    t(3,atom2) = t(3,atom2) + ul2(2)*dUdu2x - ul2(1)*dUdu2y
461 >    t(1,atom1) = t(1,atom1) +  dUda*rxu1(1) - dUdg*uxu(1)
462 >    t(2,atom1) = t(2,atom1) +  dUda*rxu1(2) - dUdg*uxu(2)
463 >    t(3,atom1) = t(3,atom1) +  dUda*rxu1(3) - dUdg*uxu(3)
464 >                                                        
465 >    t(1,atom2) = t(1,atom2) +  dUdb*rxu2(1) + dUdg*uxu(1)
466 >    t(2,atom2) = t(2,atom2) +  dUdb*rxu2(2) + dUdg*uxu(2)
467 >    t(3,atom2) = t(3,atom2) +  dUdb*rxu2(3) + dUdg*uxu(3)
468   #endif
469    
470      if (do_pot) then
471   #ifdef IS_MPI
472 <       pot_row(VDW_POT,atom1) = pot_row(VDW_POT,atom1) + 2.0d0*eps*R126*sw
473 <       pot_col(VDW_POT,atom2) = pot_col(VDW_POT,atom2) + 2.0d0*eps*R126*sw
472 >       pot_row(VDW_POT,atom1) = pot_row(VDW_POT,atom1) + 0.5d0*U*sw
473 >       pot_col(VDW_POT,atom2) = pot_col(VDW_POT,atom2) + 0.5d0*U*sw
474   #else
475 <       pot = pot + 4.0*eps*R126*sw
475 >       pot = pot + U*sw
476   #endif
477      endif
478      
479 <    vpair = vpair + 4.0*eps*R126
479 >    vpair = vpair + U*sw
480   #ifdef IS_MPI
481      id1 = AtomRowToGlobal(atom1)
482      id2 = AtomColToGlobal(atom2)
# Line 513 | Line 487 | contains
487      
488      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
489        
490 <       fpair(1) = fpair(1) + dUdx
491 <       fpair(2) = fpair(2) + dUdy
492 <       fpair(3) = fpair(3) + dUdz
490 >       fpair(1) = fpair(1) + fx
491 >       fpair(2) = fpair(2) + fy
492 >       fpair(3) = fpair(3) + fz
493        
494      endif
495      
496      return
497    end subroutine do_gb_pair
498 <
525 <  subroutine do_gb_lj_pair(atom1, atom2, d, r, r2, rcut, sw, vpair, fpair, &
526 <       pot, A, f, t, do_pot)
527 <    
528 <    integer, intent(in) :: atom1, atom2
529 <    integer :: id1, id2
530 <    real (kind=dp), intent(inout) :: r, r2, rcut
531 <    real (kind=dp), dimension(3), intent(in) :: d
532 <    real (kind=dp), dimension(3), intent(inout) :: fpair
533 <    real (kind=dp) :: pot, sw, vpair
534 <    real (kind=dp), dimension(9,nLocal) :: A
535 <    real (kind=dp), dimension(3,nLocal) :: f
536 <    real (kind=dp), dimension(3,nLocal) :: t
537 <    logical, intent(in) :: do_pot
538 <    real (kind = dp), dimension(3) :: ul
539 <    
540 <    real(kind=dp) :: gb_sigma, gb_eps, gb_eps_ratio, gb_mu, gb_l2b_ratio
541 <    real(kind=dp) :: s0, l2, d2, lj2
542 <    real(kind=dp) :: eE, eS, eab, eabf, moom, mum1
543 <    real(kind=dp) :: dx, dy, dz, drdx, drdy, drdz, rdotu
544 <    real(kind=dp) :: mess, sab, dsabdct, depmudct
545 <    real(kind=dp) :: epmu, depmudx, depmudy, depmudz
546 <    real(kind=dp) :: depmudux, depmuduy, depmuduz
547 <    real(kind=dp) :: BigR, dBigRdx, dBigRdy, dBigRdz
548 <    real(kind=dp) :: dBigRdux, dBigRduy, dBigRduz
549 <    real(kind=dp) :: dUdx, dUdy, dUdz, dUdux, dUduy, dUduz, e0
550 <    real(kind=dp) :: Ri, Ri3, Ri6, Ri7, Ri12, Ri13, R126, R137, prefactor
551 <    real(kind=dp) :: chipoalphap2, chioalpha2, ec, epsnot
552 <    real(kind=dp) :: drdotudx, drdotudy, drdotudz    
553 <    real(kind=dp) :: drdotudux, drdotuduy, drdotuduz    
554 <    real(kind=dp) :: ljeps, ljsigma
555 <    integer :: ljt1, ljt2, atid1, atid2, gbt1, gbt2
556 <    logical :: gb_first
557 <    
558 < #ifdef IS_MPI
559 <    atid1 = atid_Row(atom1)
560 <    atid2 = atid_Col(atom2)
561 < #else
562 <    atid1 = atid(atom1)
563 <    atid2 = atid(atom2)
564 < #endif
565 <    
566 <    gbt1 = GBMap%atidToGBtype(atid1)
567 <    gbt2 = GBMap%atidToGBtype(atid2)
568 <    
569 <    if (gbt1 .eq. -1) then
570 <       gb_first = .false.
571 <       if (gbt2 .eq. -1) then
572 <          call handleError("GB", "GBLJ was called without a GB type.")
573 <       endif
574 <    else
575 <       gb_first = .true.
576 <       if (gbt2 .ne. -1) then
577 <          call handleError("GB", "GBLJ was called with two GB types (instead of one).")
578 <       endif
579 <    endif
580 <    
581 <    ri =1/r
582 <    
583 <    dx = d(1)
584 <    dy = d(2)
585 <    dz = d(3)
586 <    
587 <    drdx = dx *ri
588 <    drdy = dy *ri
589 <    drdz = dz *ri
590 <    
591 <    if(gb_first)then
592 < #ifdef IS_MPI
593 <       ul(1) = A_Row(7,atom1)
594 <       ul(2) = A_Row(8,atom1)
595 <       ul(3) = A_Row(9,atom1)
596 < #else
597 <       ul(1) = A(7,atom1)
598 <       ul(2) = A(8,atom1)
599 <       ul(3) = A(9,atom1)      
600 < #endif
601 <       gb_sigma     = GBMap%GBtypes(gbt1)%sigma      
602 <       gb_l2b_ratio = GBMap%GBtypes(gbt1)%l2b_ratio
603 <       gb_eps       = GBMap%GBtypes(gbt1)%eps        
604 <       gb_eps_ratio = GBMap%GBtypes(gbt1)%eps_ratio  
605 <       gb_mu        = GBMap%GBtypes(gbt1)%mu        
606 <
607 <       ljsigma = getSigma(atid2)
608 <       ljeps = getEpsilon(atid2)
609 <    else
610 < #ifdef IS_MPI
611 <       ul(1) = A_Col(7,atom2)
612 <       ul(2) = A_Col(8,atom2)
613 <       ul(3) = A_Col(9,atom2)
614 < #else
615 <       ul(1) = A(7,atom2)
616 <       ul(2) = A(8,atom2)
617 <       ul(3) = A(9,atom2)    
618 < #endif
619 <       gb_sigma     = GBMap%GBtypes(gbt2)%sigma      
620 <       gb_l2b_ratio = GBMap%GBtypes(gbt2)%l2b_ratio
621 <       gb_eps       = GBMap%GBtypes(gbt2)%eps        
622 <       gb_eps_ratio = GBMap%GBtypes(gbt2)%eps_ratio  
623 <       gb_mu        = GBMap%GBtypes(gbt2)%mu        
624 <
625 <       ljsigma = getSigma(atid1)
626 <       ljeps = getEpsilon(atid1)
627 <    endif  
628 <
629 <    rdotu = (dx*ul(1)+dy*ul(2)+dz*ul(3))*ri
630 <  
631 <    drdotudx = ul(1)*ri-rdotu*dx*ri*ri
632 <    drdotudy = ul(2)*ri-rdotu*dy*ri*ri
633 <    drdotudz = ul(3)*ri-rdotu*dz*ri*ri
634 <    drdotudux = drdx
635 <    drdotuduy = drdy
636 <    drdotuduz = drdz
637 <
638 <    l2 = (gb_sigma*gb_l2b_ratio)**2
639 <    d2 = gb_sigma**2
640 <    lj2 = ljsigma**2
641 <    s0 = dsqrt(d2 + lj2)
642 <
643 <    chioalpha2 = (l2 - d2)/(l2 + lj2)
644 <
645 <    eE = dsqrt(gb_eps*gb_eps_ratio*ljeps)
646 <    eS = dsqrt(gb_eps*ljeps)
647 <    moom =  1.0d0 / gb_mu
648 <    mum1 = gb_mu-1
649 <    chipoalphap2 = 1 - (eE/eS)**moom
650 <
651 <    !! mess matches cleaver (eq 20)
652 <    
653 <    mess = 1-rdotu*rdotu*chioalpha2
654 <    sab = 1.0d0/dsqrt(mess)
655 <
656 <    dsabdct = s0*sab*sab*sab*rdotu*chioalpha2
657 <      
658 <    eab = 1-chipoalphap2*rdotu*rdotu
659 <    eabf = eS*(eab**gb_mu)
660 <
661 <    depmudct = -2*eS*chipoalphap2*gb_mu*rdotu*(eab**mum1)
662 <        
663 <    BigR = (r - sab*s0 + s0)/s0
664 <    dBigRdx = (drdx -dsabdct*drdotudx)/s0
665 <    dBigRdy = (drdy -dsabdct*drdotudy)/s0
666 <    dBigRdz = (drdz -dsabdct*drdotudz)/s0
667 <    dBigRdux = (-dsabdct*drdotudux)/s0
668 <    dBigRduy = (-dsabdct*drdotuduy)/s0
669 <    dBigRduz = (-dsabdct*drdotuduz)/s0
670 <    
671 <    depmudx = depmudct*drdotudx
672 <    depmudy = depmudct*drdotudy
673 <    depmudz = depmudct*drdotudz
674 <    depmudux = depmudct*drdotudux
675 <    depmuduy = depmudct*drdotuduy
676 <    depmuduz = depmudct*drdotuduz
677 <    
678 <    Ri = 1.0d0/BigR
679 <    Ri3 = Ri*Ri*Ri
680 <    Ri6 = Ri3*Ri3
681 <    Ri7 = Ri6*Ri
682 <    Ri12 = Ri6*Ri6
683 <    Ri13 = Ri6*Ri7
684 <    R126 = Ri12 - Ri6
685 <    R137 = 6.0d0*Ri7 - 12.0d0*Ri13
686 <    
687 <    prefactor = 4.0d0
688 <    
689 <    dUdx = prefactor*(eabf*R137*dBigRdx + R126*depmudx)*sw
690 <    dUdy = prefactor*(eabf*R137*dBigRdy + R126*depmudy)*sw
691 <    dUdz = prefactor*(eabf*R137*dBigRdz + R126*depmudz)*sw
692 <
693 <    dUdux = prefactor*(eabf*R137*dBigRdux + R126*depmudux)*sw
694 <    dUduy = prefactor*(eabf*R137*dBigRduy + R126*depmuduy)*sw
695 <    dUduz = prefactor*(eabf*R137*dBigRduz + R126*depmuduz)*sw
696 <    
697 < #ifdef IS_MPI
698 <    f_Row(1,atom1) = f_Row(1,atom1) + dUdx
699 <    f_Row(2,atom1) = f_Row(2,atom1) + dUdy
700 <    f_Row(3,atom1) = f_Row(3,atom1) + dUdz
701 <    
702 <    f_Col(1,atom2) = f_Col(1,atom2) - dUdx
703 <    f_Col(2,atom2) = f_Col(2,atom2) - dUdy
704 <    f_Col(3,atom2) = f_Col(3,atom2) - dUdz
705 <    
706 <    if (gb_first) then
707 <       t_Row(1,atom1) = t_Row(1,atom1) - ul(2)*dUduz + ul(3)*dUduy
708 <       t_Row(2,atom1) = t_Row(2,atom1) - ul(3)*dUdux + ul(1)*dUduz
709 <       t_Row(3,atom1) = t_Row(3,atom1) - ul(1)*dUduy + ul(2)*dUdux
710 <    else
711 <       t_Col(1,atom2) = t_Col(1,atom2) - ul(2)*dUduz + ul(3)*dUduy
712 <       t_Col(2,atom2) = t_Col(2,atom2) - ul(3)*dUdux + ul(1)*dUduz
713 <       t_Col(3,atom2) = t_Col(3,atom2) - ul(1)*dUduy + ul(2)*dUdux
714 <    endif
715 < #else    
716 <    f(1,atom1) = f(1,atom1) + dUdx
717 <    f(2,atom1) = f(2,atom1) + dUdy
718 <    f(3,atom1) = f(3,atom1) + dUdz
719 <    
720 <    f(1,atom2) = f(1,atom2) - dUdx
721 <    f(2,atom2) = f(2,atom2) - dUdy
722 <    f(3,atom2) = f(3,atom2) - dUdz
723 <    
724 <    ! torques are cross products:    
725 <
726 <    if (gb_first) then
727 <       t(1,atom1) = t(1,atom1) - ul(2)*dUduz + ul(3)*dUduy
728 <       t(2,atom1) = t(2,atom1) - ul(3)*dUdux + ul(1)*dUduz
729 <       t(3,atom1) = t(3,atom1) - ul(1)*dUduy + ul(2)*dUdux
730 <    else
731 <       t(1,atom2) = t(1,atom2) - ul(2)*dUduz + ul(3)*dUduy
732 <       t(2,atom2) = t(2,atom2) - ul(3)*dUdux + ul(1)*dUduz
733 <       t(3,atom2) = t(3,atom2) - ul(1)*dUduy + ul(2)*dUdux
734 <    endif
735 <
736 < #endif
737 <      
738 <    if (do_pot) then
739 < #ifdef IS_MPI
740 <       pot_row(VDW_POT,atom1) = pot_row(VDW_POT,atom1) + 2.0d0*eabf*R126*sw
741 <       pot_col(VDW_POT,atom2) = pot_col(VDW_POT,atom2) + 2.0d0*eabf*R126*sw
742 < #else
743 <       pot = pot + prefactor*eabf*R126*sw
744 < #endif
745 <    endif
746 <    
747 <    vpair = vpair + 4.0*eabf*R126
748 < #ifdef IS_MPI
749 <    id1 = AtomRowToGlobal(atom1)
750 <    id2 = AtomColToGlobal(atom2)
751 < #else
752 <    id1 = atom1
753 <    id2 = atom2
754 < #endif
755 <    
756 <    If (Molmembershiplist(Id1) .Ne. Molmembershiplist(Id2)) Then
757 <      
758 <       Fpair(1) = Fpair(1) + Dudx
759 <       Fpair(2) = Fpair(2) + Dudy
760 <       Fpair(3) = Fpair(3) + Dudz
761 <      
762 <    Endif
763 <    
764 <    return
765 <    
766 <  end subroutine do_gb_lj_pair
767 <
498 >  
499    subroutine destroyGBTypes()
500  
501      GBMap%nGBtypes = 0
# Line 780 | Line 511 | contains
511         GBMap%atidToGBtype => null()
512      end if
513      
514 +    haveMixingMap = .false.
515 +    
516    end subroutine destroyGBTypes
517  
518   end module gayberne

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines