ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/gb.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/gb.F90 (file contents):
Revision 1930 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
Revision 2787 by gezelter, Mon Jun 5 18:24:45 2006 UTC

# Line 40 | Line 40 | module gb_pair
40   !!
41  
42  
43 < module gb_pair
43 > module gayberne
44    use force_globals
45    use definitions
46    use simulation
47 +  use atype_module
48 +  use vector_class
49 +  use linearalgebra
50 +  use status
51 +  use lj
52   #ifdef IS_MPI
53    use mpiSimulation
54   #endif
55    
56    implicit none
57  
58 <  PRIVATE
58 >  private
59  
60 <  logical, save :: gb_pair_initialized = .false.
61 <  real(kind=dp), save :: gb_sigma
57 <  real(kind=dp), save :: gb_l2b_ratio
58 <  real(kind=dp), save :: gb_eps
59 <  real(kind=dp), save :: gb_eps_ratio
60 <  real(kind=dp), save :: gb_mu
61 <  real(kind=dp), save :: gb_nu
60 > #define __FORTRAN90
61 > #include "UseTheForce/DarkSide/fInteractionMap.h"
62  
63 <  public :: check_gb_pair_FF
64 <  public :: set_gb_pair_params
63 >  logical, save :: haveGBMap = .false.
64 >  logical, save :: haveMixingMap = .false.
65 >  real(kind=dp), save :: mu = 2.0_dp
66 >  real(kind=dp), save :: nu = 1.0_dp
67 >
68 >
69 >  public :: newGBtype
70 >  public :: complete_GB_FF
71    public :: do_gb_pair
72 +  public :: getGayBerneCut
73 +  public :: destroyGBtypes
74  
75 +  type :: GBtype
76 +     integer          :: atid
77 +     real(kind = dp ) :: d
78 +     real(kind = dp ) :: l
79 +     real(kind = dp ) :: eps
80 +     real(kind = dp ) :: eps_ratio
81 +     real(kind = dp ) :: dw
82 +     logical          :: isLJ
83 +  end type GBtype
84 +  
85 +  type, private :: GBList
86 +     integer               :: nGBtypes = 0
87 +     integer               :: currentGBtype = 0
88 +     type(GBtype), pointer :: GBtypes(:)      => null()
89 +     integer, pointer      :: atidToGBtype(:) => null()
90 +  end type GBList
91 +  
92 +  type(GBList), save :: GBMap
93 +  
94 +  type :: GBMixParameters
95 +     real(kind=DP) :: sigma0
96 +     real(kind=DP) :: eps0
97 +     real(kind=DP) :: dw
98 +     real(kind=DP) :: x2
99 +     real(kind=DP) :: xa2
100 +     real(kind=DP) :: xai2
101 +     real(kind=DP) :: xp2
102 +     real(kind=DP) :: xpap2
103 +     real(kind=DP) :: xpapi2
104 +  end type GBMixParameters
105 +  
106 +  type(GBMixParameters), dimension(:,:), allocatable :: GBMixingMap
107 +  
108   contains
109 <
110 <  subroutine check_gb_pair_FF(status)
111 <    integer :: status
112 <    status = -1
113 <    if (gb_pair_initialized) status = 0
109 >  
110 >  subroutine newGBtype(c_ident, d, l, eps, eps_ratio, dw, status)
111 >    
112 >    integer, intent(in) :: c_ident
113 >    real( kind = dp ), intent(in) :: d, l, eps, eps_ratio, dw
114 >    integer, intent(out) :: status
115 >    
116 >    integer :: nGBTypes, nLJTypes, ntypes, myATID
117 >    integer, pointer :: MatchList(:) => null()
118 >    integer :: current, i
119 >    status = 0
120 >    
121 >    if (.not.associated(GBMap%GBtypes)) then
122 >      
123 >       call getMatchingElementList(atypes, "is_GayBerne", .true., &
124 >            nGBtypes, MatchList)
125 >      
126 >       call getMatchingElementList(atypes, "is_LennardJones", .true., &
127 >            nLJTypes, MatchList)
128 >      
129 >       GBMap%nGBtypes = nGBtypes + nLJTypes
130 >      
131 >       allocate(GBMap%GBtypes(nGBtypes + nLJTypes))
132 >      
133 >       ntypes = getSize(atypes)
134 >      
135 >       allocate(GBMap%atidToGBtype(ntypes))      
136 >    endif
137 >    
138 >    GBMap%currentGBtype = GBMap%currentGBtype + 1
139 >    current = GBMap%currentGBtype
140 >    
141 >    myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
142 >    
143 >    GBMap%atidToGBtype(myATID)       = current
144 >    GBMap%GBtypes(current)%atid      = myATID
145 >    GBMap%GBtypes(current)%d         = d
146 >    GBMap%GBtypes(current)%l         = l
147 >    GBMap%GBtypes(current)%eps       = eps
148 >    GBMap%GBtypes(current)%eps_ratio = eps_ratio
149 >    GBMap%GBtypes(current)%dw        = dw
150 >    GBMap%GBtypes(current)%isLJ      = .false.
151 >    
152      return
153 <  end subroutine check_gb_pair_FF
153 >  end subroutine newGBtype
154 >  
155 >  subroutine complete_GB_FF(status)
156 >    integer :: status
157 >    integer :: i, j, l, m, lm, function_type
158 >    real(kind=dp) :: thisDP, sigma
159 >    integer :: alloc_stat, iTheta, iPhi, nSteps, nAtypes, myATID, current
160 >    logical :: thisProperty
161 >    
162 >    status = 0
163 >    if (GBMap%currentGBtype == 0) then
164 >       call handleError("complete_GB_FF", "No members in GBMap")
165 >       status = -1
166 >       return
167 >    end if
168 >    
169 >    nAtypes = getSize(atypes)
170 >    
171 >    if (nAtypes == 0) then
172 >       status = -1
173 >       return
174 >    end if
175 >    
176 >    ! atypes comes from c side
177 >    do i = 1, nAtypes
178 >      
179 >       myATID = getFirstMatchingElement(atypes, 'c_ident', i)
180 >       call getElementProperty(atypes, myATID, "is_LennardJones", thisProperty)
181 >      
182 >       if (thisProperty) then
183 >          GBMap%currentGBtype = GBMap%currentGBtype + 1
184 >          current = GBMap%currentGBtype
185 >          
186 >          GBMap%atidToGBtype(myATID) = current
187 >          GBMap%GBtypes(current)%atid      = myATID      
188 >          GBMap%GBtypes(current)%isLJ      = .true.          
189 >          GBMap%GBtypes(current)%d         = getSigma(myATID)
190 >          GBMap%GBtypes(current)%l         = GBMap%GBtypes(current)%d
191 >          GBMap%GBtypes(current)%eps       = getEpsilon(myATID)
192 >          GBMap%GBtypes(current)%eps_ratio = 1.0_dp
193 >          GBMap%GBtypes(current)%dw        = 1.0_dp
194 >          
195 >       endif
196 >      
197 >    end do
198 >    
199 >    haveGBMap = .true.
200 >    
201 >  end subroutine complete_GB_FF
202  
203 <  subroutine set_gb_pair_params(sigma, l2b_ratio, eps, eps_ratio, mu, nu)
204 <    real( kind = dp ), intent(in) :: sigma, l2b_ratio, eps, eps_ratio
205 <    real( kind = dp ), intent(in) :: mu, nu
206 <  
207 <    gb_sigma = sigma
81 <    gb_l2b_ratio = l2b_ratio
82 <    gb_eps = eps
83 <    gb_eps_ratio = eps_ratio
84 <    gb_mu = mu
85 <    gb_nu = nu
203 >  subroutine createGBMixingMap()
204 >    integer :: nGBtypes, i, j
205 >    real (kind = dp) :: d1, l1, e1, er1, dw1
206 >    real (kind = dp) :: d2, l2, e2, er2, dw2
207 >    real (kind = dp) :: er, ermu, xp, ap2
208  
209 <    gb_pair_initialized = .true.
210 <    return
211 <  end subroutine set_gb_pair_params
209 >    if (GBMap%currentGBtype == 0) then
210 >       call handleError("GB", "No members in GBMap")
211 >       return
212 >    end if
213 >    
214 >    nGBtypes = GBMap%nGBtypes
215  
216 +    if (.not. allocated(GBMixingMap)) then
217 +       allocate(GBMixingMap(nGBtypes, nGBtypes))
218 +    endif
219  
220 +    do i = 1, nGBtypes
221 +
222 +       d1 = GBMap%GBtypes(i)%d
223 +       l1 = GBMap%GBtypes(i)%l
224 +       e1 = GBMap%GBtypes(i)%eps
225 +       er1 = GBMap%GBtypes(i)%eps_ratio
226 +       dw1 = GBMap%GBtypes(i)%dw
227 +
228 +       do j = i, nGBtypes
229 +
230 +          d2 = GBMap%GBtypes(j)%d
231 +          l2 = GBMap%GBtypes(j)%l
232 +          e2 = GBMap%GBtypes(j)%eps
233 +          er2 = GBMap%GBtypes(j)%eps_ratio
234 +          dw2 = GBMap%GBtypes(j)%dw
235 +
236 +          GBMixingMap(i,j)%sigma0 = sqrt(d1*d1 + d2*d2)
237 +          GBMixingMap(i,j)%xa2 = (l1*l1 - d1*d1)/(l1*l1 + d2*d2)
238 +          GBMixingMap(i,j)%xai2 = (l2*l2 - d2*d2)/(l2*l2 + d1*d1)
239 +          GBMixingMap(i,j)%x2 = (l1*l1 - d1*d1) * (l2*l2 - d2*d2) / &
240 +               ((l2*l2 + d1*d1) * (l1*l1 + d2*d2))
241 +
242 +          ! assumed LB mixing rules for now:
243 +
244 +          GBMixingMap(i,j)%dw = 0.5_dp * (dw1 + dw2)
245 +          GBMixingMap(i,j)%eps0 = sqrt(e1 * e2)
246 +
247 +          er = sqrt(er1 * er2)
248 +          ermu = er**(1.0_dp / mu)
249 +          xp = (1.0_dp - ermu) / (1.0_dp + ermu)
250 +          ap2 = 1.0_dp / (1.0_dp + ermu)
251 +
252 +          GBMixingMap(i,j)%xp2 = xp*xp
253 +          GBMixingMap(i,j)%xpap2 = xp*ap2
254 +          GBMixingMap(i,j)%xpapi2 = xp/ap2
255 +          
256 +          if (i.ne.j) then
257 +             GBMixingMap(j,i)%sigma0 = GBMixingMap(i,j)%sigma0
258 +             GBMixingMap(j,i)%dw     = GBMixingMap(i,j)%dw    
259 +             GBMixingMap(j,i)%eps0   = GBMixingMap(i,j)%eps0  
260 +             GBMixingMap(j,i)%x2     = GBMixingMap(i,j)%x2    
261 +             GBMixingMap(j,i)%xa2    = GBMixingMap(i,j)%xa2  
262 +             GBMixingMap(j,i)%xai2   = GBMixingMap(i,j)%xai2  
263 +             GBMixingMap(j,i)%xp2    = GBMixingMap(i,j)%xp2  
264 +             GBMixingMap(j,i)%xpap2  = GBMixingMap(i,j)%xpap2
265 +             GBMixingMap(j,i)%xpapi2 = GBMixingMap(i,j)%xpapi2
266 +          endif
267 +       enddo
268 +    enddo
269 +    haveMixingMap = .true.
270 +    
271 +  end subroutine createGBMixingMap
272 +  
273 +
274 +  !! gay berne cutoff should be a parameter in globals, this is a temporary
275 +  !! work around - this should be fixed when gay berne is up and running
276 +
277 +  function getGayBerneCut(atomID) result(cutValue)
278 +    integer, intent(in) :: atomID
279 +    integer :: gbt1
280 +    real(kind=dp) :: cutValue, l, d
281 +
282 +    if (GBMap%currentGBtype == 0) then
283 +       call handleError("GB", "No members in GBMap")
284 +       return
285 +    end if
286 +
287 +    gbt1 = GBMap%atidToGBtype(atomID)
288 +    l = GBMap%GBtypes(gbt1)%l
289 +    d = GBMap%GBtypes(gbt1)%d  
290 +    cutValue = 2.5_dp*max(l,d)
291 +
292 +  end function getGayBerneCut
293 +
294    subroutine do_gb_pair(atom1, atom2, d, r, r2, sw, vpair, fpair, &
295 <       pot, A, f, t, do_pot)
295 >       pot, Amat, f, t, do_pot)
296      
297      integer, intent(in) :: atom1, atom2
298 <    integer :: id1, id2
298 >    integer :: atid1, atid2, gbt1, gbt2, id1, id2
299      real (kind=dp), intent(inout) :: r, r2
300      real (kind=dp), dimension(3), intent(in) :: d
301      real (kind=dp), dimension(3), intent(inout) :: fpair
302      real (kind=dp) :: pot, sw, vpair
303 <    real (kind=dp), dimension(9,nLocal) :: A
303 >    real (kind=dp), dimension(9,nLocal) :: Amat
304      real (kind=dp), dimension(3,nLocal) :: f
305      real (kind=dp), dimension(3,nLocal) :: t
306      logical, intent(in) :: do_pot
307 <    real (kind = dp), dimension(3) :: ul1
106 <    real (kind = dp), dimension(3) :: ul2
307 >    real (kind = dp), dimension(3) :: ul1, ul2, rxu1, rxu2, uxu, rhat
308  
309 <    real(kind=dp) :: chi, chiprime, emu, s2
310 <    real(kind=dp) :: r4, rdotu1, rdotu2, u1dotu2, g, gp, gpi, gmu, gmum
311 <    real(kind=dp) :: curlyE, enu, enum, eps, dotsum, dotdiff, ds2, dd2
312 <    real(kind=dp) :: opXdot, omXdot, opXpdot, omXpdot, pref, gfact
313 <    real(kind=dp) :: BigR, Ri, Ri2, Ri6, Ri7, Ri12, Ri13, R126, R137
113 <    real(kind=dp) :: dru1dx, dru1dy, dru1dz
114 <    real(kind=dp) :: dru2dx, dru2dy, dru2dz
115 <    real(kind=dp) :: dBigRdx, dBigRdy, dBigRdz
116 <    real(kind=dp) :: dBigRdu1x, dBigRdu1y, dBigRdu1z
117 <    real(kind=dp) :: dBigRdu2x, dBigRdu2y, dBigRdu2z
118 <    real(kind=dp) :: dUdx, dUdy, dUdz
119 <    real(kind=dp) :: dUdu1x, dUdu1y, dUdu1z, dUdu2x, dUdu2y, dUdu2z
120 <    real(kind=dp) :: dcE, dcEdu1x, dcEdu1y, dcEdu1z, dcEdu2x, dcEdu2y, dcEdu2z
121 <    real(kind=dp) :: depsdu1x, depsdu1y, depsdu1z, depsdu2x, depsdu2y, depsdu2z
122 <    real(kind=dp) :: drdx, drdy, drdz
123 <    real(kind=dp) :: dgdx, dgdy, dgdz
124 <    real(kind=dp) :: dgdu1x, dgdu1y, dgdu1z, dgdu2x, dgdu2y, dgdu2z
125 <    real(kind=dp) :: dgpdx, dgpdy, dgpdz
126 <    real(kind=dp) :: dgpdu1x, dgpdu1y, dgpdu1z, dgpdu2x, dgpdu2y, dgpdu2z
127 <    real(kind=dp) :: line1a, line1bx, line1by, line1bz
128 <    real(kind=dp) :: line2a, line2bx, line2by, line2bz
129 <    real(kind=dp) :: line3a, line3b, line3, line3x, line3y, line3z
130 <    real(kind=dp) :: term1x, term1y, term1z, term1u1x, term1u1y, term1u1z
131 <    real(kind=dp) :: term1u2x, term1u2y, term1u2z
132 <    real(kind=dp) :: term2a, term2b, term2u1x, term2u1y, term2u1z
133 <    real(kind=dp) :: term2u2x, term2u2y, term2u2z
134 <    real(kind=dp) :: yick1, yick2, mess1, mess2
135 <    
136 <    s2 = (gb_l2b_ratio)**2
137 <    emu = (gb_eps_ratio)**(1.0d0/gb_mu)
309 >    real (kind = dp) :: sigma0, dw, eps0, x2, xa2, xai2, xp2, xpap2, xpapi2
310 >    real (kind = dp) :: e1, e2, eps, sigma, s3, s03, au, bu, a, b, g, g2
311 >    real (kind = dp) :: U, BigR, R3, R6, R7, R12, R13, H, Hp, fx, fy, fz
312 >    real (kind = dp) :: dUdr, dUda, dUdb, dUdg, pref1, pref2
313 >    logical :: i_is_lj, j_is_lj
314  
315 <    chi = (s2 - 1.0d0)/(s2 + 1.0d0)
316 <    chiprime = (1.0d0 - emu)/(1.0d0 + emu)
315 >    if (.not.haveMixingMap) then
316 >       call createGBMixingMap()
317 >    endif
318  
319 <    r4 = r2*r2
319 > #ifdef IS_MPI
320 >    atid1 = atid_Row(atom1)
321 >    atid2 = atid_Col(atom2)
322 > #else
323 >    atid1 = atid(atom1)
324 >    atid2 = atid(atom2)
325 > #endif
326  
327 +    gbt1 = GBMap%atidToGBtype(atid1)
328 +    gbt2 = GBMap%atidToGBtype(atid2)    
329 +
330 +    i_is_LJ = GBMap%GBTypes(gbt1)%isLJ
331 +    j_is_LJ = GBMap%GBTypes(gbt2)%isLJ
332 +
333 +    sigma0 = GBMixingMap(gbt1, gbt2)%sigma0
334 +    dw     = GBMixingMap(gbt1, gbt2)%dw    
335 +    eps0   = GBMixingMap(gbt1, gbt2)%eps0  
336 +    x2     = GBMixingMap(gbt1, gbt2)%x2    
337 +    xa2    = GBMixingMap(gbt1, gbt2)%xa2  
338 +    xai2   = GBMixingMap(gbt1, gbt2)%xai2  
339 +    xp2    = GBMixingMap(gbt1, gbt2)%xp2  
340 +    xpap2  = GBMixingMap(gbt1, gbt2)%xpap2
341 +    xpapi2 = GBMixingMap(gbt1, gbt2)%xpapi2
342 +    
343   #ifdef IS_MPI
344 <    ul1(1) = A_Row(3,atom1)
345 <    ul1(2) = A_Row(6,atom1)
344 >    ul1(1) = A_Row(7,atom1)
345 >    ul1(2) = A_Row(8,atom1)
346      ul1(3) = A_Row(9,atom1)
347  
348 <    ul2(1) = A_Col(3,atom2)
349 <    ul2(2) = A_Col(6,atom2)
348 >    ul2(1) = A_Col(7,atom2)
349 >    ul2(2) = A_Col(8,atom2)
350      ul2(3) = A_Col(9,atom2)
351   #else
352 <    ul1(1) = A(3,atom1)
353 <    ul1(2) = A(6,atom1)
354 <    ul1(3) = A(9,atom1)
352 >    ul1(1) = Amat(7,atom1)
353 >    ul1(2) = Amat(8,atom1)
354 >    ul1(3) = Amat(9,atom1)
355  
356 <    ul2(1) = A(3,atom2)
357 <    ul2(2) = A(6,atom2)
358 <    ul2(3) = A(9,atom2)
356 >    ul2(1) = Amat(7,atom2)
357 >    ul2(2) = Amat(8,atom2)
358 >    ul2(3) = Amat(9,atom2)
359   #endif
360      
361 <    dru1dx = ul1(1)
362 <    dru2dx = ul2(1)
363 <    dru1dy = ul1(2)
364 <    dru2dy = ul2(2)
365 <    dru1dz = ul1(3)
366 <    dru2dz = ul2(3)
168 <    
169 <    drdx = d(1) / r
170 <    drdy = d(2) / r
171 <    drdz = d(3) / r
172 <    
173 <    ! do some dot products:
174 <    ! NB the r in these dot products is the actual intermolecular vector,
175 <    ! and is not the unit vector in that direction.
176 <    
177 <    rdotu1 = d(1)*ul1(1) + d(2)*ul1(2) + d(3)*ul1(3)
178 <    rdotu2 = d(1)*ul2(1) + d(2)*ul2(2) + d(3)*ul2(3)
179 <    u1dotu2 = ul1(1)*ul2(1) + ul1(2)*ul2(2) +  ul1(3)*ul2(3)
361 >    if (i_is_LJ) then
362 >       a = 0.0_dp
363 >       ul1 = 0.0_dp
364 >    else
365 >       a = d(1)*ul1(1)   + d(2)*ul1(2)   + d(3)*ul1(3)
366 >    endif
367  
368 <    ! This stuff is all for the calculation of g(Chi) and dgdx
369 <    ! Line numbers roughly follow the lines in equation A25 of Luckhurst
370 <    !   et al. Liquid Crystals 8, 451-464 (1990).
371 <    ! We note however, that there are some major typos in that Appendix
372 <    ! of the Luckhurst paper, particularly in equations A23, A29 and A31
373 <    ! We have attempted to correct them below.
187 <    
188 <    dotsum = rdotu1+rdotu2
189 <    dotdiff = rdotu1-rdotu2
190 <    ds2 = dotsum*dotsum
191 <    dd2 = dotdiff*dotdiff
192 <  
193 <    opXdot = 1.0d0 + Chi*u1dotu2
194 <    omXdot = 1.0d0 - Chi*u1dotu2
195 <    opXpdot = 1.0d0 + ChiPrime*u1dotu2
196 <    omXpdot = 1.0d0 - ChiPrime*u1dotu2
197 <  
198 <    line1a = dotsum/opXdot
199 <    line1bx = dru1dx + dru2dx
200 <    line1by = dru1dy + dru2dy
201 <    line1bz = dru1dz + dru2dz
202 <    
203 <    line2a = dotdiff/omXdot
204 <    line2bx = dru1dx - dru2dx
205 <    line2by = dru1dy - dru2dy
206 <    line2bz = dru1dz - dru2dz
207 <    
208 <    term1x = -Chi*(line1a*line1bx + line2a*line2bx)/r2
209 <    term1y = -Chi*(line1a*line1by + line2a*line2by)/r2
210 <    term1z = -Chi*(line1a*line1bz + line2a*line2bz)/r2
211 <    
212 <    line3a = ds2/opXdot
213 <    line3b = dd2/omXdot
214 <    line3 = Chi*(line3a + line3b)/r4
215 <    line3x = d(1)*line3
216 <    line3y = d(2)*line3
217 <    line3z = d(3)*line3
218 <    
219 <    dgdx = term1x + line3x
220 <    dgdy = term1y + line3y
221 <    dgdz = term1z + line3z
368 >    if (j_is_LJ) then
369 >       b = 0.0_dp
370 >       ul2 = 0.0_dp
371 >    else      
372 >       b = d(1)*ul2(1)   + d(2)*ul2(2)   + d(3)*ul2(3)
373 >    endif
374  
375 <    term1u1x = 2.0d0*(line1a+line2a)*d(1)
376 <    term1u1y = 2.0d0*(line1a+line2a)*d(2)
377 <    term1u1z = 2.0d0*(line1a+line2a)*d(3)
378 <    term1u2x = 2.0d0*(line1a-line2a)*d(1)
379 <    term1u2y = 2.0d0*(line1a-line2a)*d(2)
228 <    term1u2z = 2.0d0*(line1a-line2a)*d(3)
229 <    
230 <    term2a = -line3a/opXdot
231 <    term2b =  line3b/omXdot
232 <    
233 <    term2u1x = Chi*ul2(1)*(term2a + term2b)
234 <    term2u1y = Chi*ul2(2)*(term2a + term2b)
235 <    term2u1z = Chi*ul2(3)*(term2a + term2b)
236 <    term2u2x = Chi*ul1(1)*(term2a + term2b)
237 <    term2u2y = Chi*ul1(2)*(term2a + term2b)
238 <    term2u2z = Chi*ul1(3)*(term2a + term2b)
239 <    
240 <    pref = -Chi*0.5d0/r2
375 >    if (i_is_LJ.or.j_is_LJ) then
376 >       g = 0.0_dp
377 >    else
378 >       g = ul1(1)*ul2(1) + ul1(2)*ul2(2) + ul1(3)*ul2(3)
379 >    endif
380  
381 <    dgdu1x = pref*(term1u1x+term2u1x)
382 <    dgdu1y = pref*(term1u1y+term2u1y)
383 <    dgdu1z = pref*(term1u1z+term2u1z)
245 <    dgdu2x = pref*(term1u2x+term2u2x)
246 <    dgdu2y = pref*(term1u2y+term2u2y)
247 <    dgdu2z = pref*(term1u2z+term2u2z)
381 >    au = a / r
382 >    bu = b / r
383 >    g2 = g*g
384  
385 <    g = 1.0d0 - Chi*(line3a + line3b)/(2.0d0*r2)
386 <  
387 <    BigR = (r - gb_sigma*(g**(-0.5d0)) + gb_sigma)/gb_sigma
388 <    Ri = 1.0d0/BigR
389 <    Ri2 = Ri*Ri
390 <    Ri6 = Ri2*Ri2*Ri2
391 <    Ri7 = Ri6*Ri
392 <    Ri12 = Ri6*Ri6
393 <    Ri13 = Ri6*Ri7
385 >    H  = (xa2 * au + xai2 * bu - 2.0_dp*x2*au*bu*g)  / (1.0_dp - x2*g2)
386 >    Hp = (xpap2*au + xpapi2*bu - 2.0_dp*xp2*au*bu*g) / (1.0_dp - xp2*g2)
387 >    sigma = sigma0 / sqrt(1.0_dp - H)
388 >    e1 = 1.0_dp / sqrt(1.0_dp - x2*g2)
389 >    e2 = 1.0_dp - Hp
390 >    eps = eps0 * (e1**nu) * (e2**mu)
391 >    BigR = dw*sigma0 / (r - sigma + dw*sigma0)
392 >    
393 >    R3 = BigR*BigR*BigR
394 >    R6 = R3*R3
395 >    R7 = R6 * BigR
396 >    R12 = R6*R6
397 >    R13 = R6*R7
398  
399 <    gfact = (g**(-1.5d0))*0.5d0
399 >    U = 4.0_dp * eps * (R12 - R6)
400  
401 <    dBigRdx = drdx/gb_sigma + dgdx*gfact
402 <    dBigRdy = drdy/gb_sigma + dgdy*gfact
263 <    dBigRdz = drdz/gb_sigma + dgdz*gfact
264 <    dBigRdu1x = dgdu1x*gfact
265 <    dBigRdu1y = dgdu1y*gfact
266 <    dBigRdu1z = dgdu1z*gfact
267 <    dBigRdu2x = dgdu2x*gfact
268 <    dBigRdu2y = dgdu2y*gfact
269 <    dBigRdu2z = dgdu2z*gfact
270 <  
271 <    ! Now, we must do it again for g(ChiPrime) and dgpdx
401 >    s3 = sigma*sigma*sigma
402 >    s03 = sigma0*sigma0*sigma0
403  
404 <    line1a = dotsum/opXpdot
405 <    line2a = dotdiff/omXpdot
406 <    term1x = -ChiPrime*(line1a*line1bx + line2a*line2bx)/r2
407 <    term1y = -ChiPrime*(line1a*line1by + line2a*line2by)/r2
277 <    term1z = -ChiPrime*(line1a*line1bz + line2a*line2bz)/r2
278 <    line3a = ds2/opXpdot
279 <    line3b = dd2/omXpdot
280 <    line3 = ChiPrime*(line3a + line3b)/r4
281 <    line3x = d(1)*line3
282 <    line3y = d(2)*line3
283 <    line3z = d(3)*line3
404 >    pref1 = - 8.0_dp * eps * mu * (R12 - R6) / (e2 * r)
405 >    pref2 = 8.0_dp * eps * s3 * (6.0_dp*R13 - 3.0_dp*R7) / (dw*r*s03)
406 >
407 >    dUdr = - (pref1 * Hp + pref2 * (sigma0*sigma0*r/s3 - H))
408      
409 <    dgpdx = term1x + line3x
410 <    dgpdy = term1y + line3y
287 <    dgpdz = term1z + line3z
409 >    dUda = pref1 * (xpap2*au - xp2*bu*g) / (1.0_dp - xp2 * g2) &
410 >         + pref2 * (xa2 * au - x2 *bu*g) / (1.0_dp - x2 * g2)
411      
412 <    term1u1x = 2.0d0*(line1a+line2a)*d(1)
413 <    term1u1y = 2.0d0*(line1a+line2a)*d(2)
291 <    term1u1z = 2.0d0*(line1a+line2a)*d(3)
292 <    term1u2x = 2.0d0*(line1a-line2a)*d(1)
293 <    term1u2y = 2.0d0*(line1a-line2a)*d(2)
294 <    term1u2z = 2.0d0*(line1a-line2a)*d(3)
295 <    
296 <    term2a = -line3a/opXpdot
297 <    term2b =  line3b/omXpdot
298 <    
299 <    term2u1x = ChiPrime*ul2(1)*(term2a + term2b)
300 <    term2u1y = ChiPrime*ul2(2)*(term2a + term2b)
301 <    term2u1z = ChiPrime*ul2(3)*(term2a + term2b)
302 <    term2u2x = ChiPrime*ul1(1)*(term2a + term2b)
303 <    term2u2y = ChiPrime*ul1(2)*(term2a + term2b)
304 <    term2u2z = ChiPrime*ul1(3)*(term2a + term2b)
305 <  
306 <    pref = -ChiPrime*0.5d0/r2
307 <    
308 <    dgpdu1x = pref*(term1u1x+term2u1x)
309 <    dgpdu1y = pref*(term1u1y+term2u1y)
310 <    dgpdu1z = pref*(term1u1z+term2u1z)
311 <    dgpdu2x = pref*(term1u2x+term2u2x)
312 <    dgpdu2y = pref*(term1u2y+term2u2y)
313 <    dgpdu2z = pref*(term1u2z+term2u2z)
314 <    
315 <    gp = 1.0d0 - ChiPrime*(line3a + line3b)/(2.0d0*r2)
316 <    gmu = gp**gb_mu
317 <    gpi = 1.0d0 / gp
318 <    gmum = gmu*gpi
319 <  
320 <    ! write(*,*) atom1, atom2, Chi, u1dotu2
321 <    curlyE = 1.0d0/dsqrt(1.0d0 - Chi*Chi*u1dotu2*u1dotu2)
412 >    dUdb = pref1 * (xpapi2*bu - xp2*au*g) / (1.0_dp - xp2 * g2) &
413 >         + pref2 * (xai2 * bu - x2 *au*g) / (1.0_dp - x2 * g2)
414  
415 <    dcE = (curlyE**3)*Chi*Chi*u1dotu2
416 <  
417 <    dcEdu1x = dcE*ul2(1)
418 <    dcEdu1y = dcE*ul2(2)
419 <    dcEdu1z = dcE*ul2(3)
420 <    dcEdu2x = dcE*ul1(1)
421 <    dcEdu2y = dcE*ul1(2)
330 <    dcEdu2z = dcE*ul1(3)
331 <    
332 <    enu = curlyE**gb_nu
333 <    enum = enu/curlyE
334 <  
335 <    eps = gb_eps*enu*gmu
415 >    dUdg = 4.0_dp * eps * nu * (R12 - R6) * x2 * g / (1.0_dp - x2*g2) &
416 >         + 8.0_dp * eps * mu * (R12 - R6) * (xp2*au*bu - Hp*xp2*g) / &
417 >         (1.0_dp - xp2 * g2) / e2 &
418 >         + 8.0_dp * eps * s3 * (3.0_dp * R7 - 6.0_dp * R13) * &
419 >         (x2 * au * bu - H * x2 * g) / (1.0_dp - x2 * g2) / (dw * s03)
420 >            
421 >    rhat = d / r
422  
423 <    yick1 = gb_eps*enu*gb_mu*gmum
424 <    yick2 = gb_eps*gmu*gb_nu*enum
423 >    fx = -dUdr * rhat(1) - dUda * ul1(1) - dUdb * ul2(1)
424 >    fy = -dUdr * rhat(2) - dUda * ul1(2) - dUdb * ul2(2)
425 >    fx = -dUdr * rhat(3) - dUda * ul1(3) - dUdb * ul2(3)
426  
427 <    depsdu1x = yick1*dgpdu1x + yick2*dcEdu1x
428 <    depsdu1y = yick1*dgpdu1y + yick2*dcEdu1y
429 <    depsdu1z = yick1*dgpdu1z + yick2*dcEdu1z
430 <    depsdu2x = yick1*dgpdu2x + yick2*dcEdu2x
344 <    depsdu2y = yick1*dgpdu2y + yick2*dcEdu2y
345 <    depsdu2z = yick1*dgpdu2z + yick2*dcEdu2z
346 <    
347 <    R126 = Ri12 - Ri6
348 <    R137 = 6.0d0*Ri7 - 12.0d0*Ri13
349 <    
350 <    mess1 = gmu*R137
351 <    mess2 = R126*gb_mu*gmum
352 <    
353 <    dUdx = 4.0d0*gb_eps*enu*(mess1*dBigRdx + mess2*dgpdx)*sw
354 <    dUdy = 4.0d0*gb_eps*enu*(mess1*dBigRdy + mess2*dgpdy)*sw
355 <    dUdz = 4.0d0*gb_eps*enu*(mess1*dBigRdz + mess2*dgpdz)*sw
356 <    
357 <    dUdu1x = 4.0d0*(R126*depsdu1x + eps*R137*dBigRdu1x)*sw
358 <    dUdu1y = 4.0d0*(R126*depsdu1y + eps*R137*dBigRdu1y)*sw
359 <    dUdu1z = 4.0d0*(R126*depsdu1z + eps*R137*dBigRdu1z)*sw
360 <    dUdu2x = 4.0d0*(R126*depsdu2x + eps*R137*dBigRdu2x)*sw
361 <    dUdu2y = 4.0d0*(R126*depsdu2y + eps*R137*dBigRdu2y)*sw
362 <    dUdu2z = 4.0d0*(R126*depsdu2z + eps*R137*dBigRdu2z)*sw
363 <      
427 >    rxu1 = cross_product(d, ul1)
428 >    rxu2 = cross_product(d, ul2)    
429 >    uxu = cross_product(ul1, ul2)
430 >          
431   #ifdef IS_MPI
432 <    f_Row(1,atom1) = f_Row(1,atom1) + dUdx
433 <    f_Row(2,atom1) = f_Row(2,atom1) + dUdy
434 <    f_Row(3,atom1) = f_Row(3,atom1) + dUdz
432 >    f_Row(1,atom1) = f_Row(1,atom1) + fx
433 >    f_Row(2,atom1) = f_Row(2,atom1) + fy
434 >    f_Row(3,atom1) = f_Row(3,atom1) + fz
435      
436 <    f_Col(1,atom2) = f_Col(1,atom2) - dUdx
437 <    f_Col(2,atom2) = f_Col(2,atom2) - dUdy
438 <    f_Col(3,atom2) = f_Col(3,atom2) - dUdz
436 >    f_Col(1,atom2) = f_Col(1,atom2) - fx
437 >    f_Col(2,atom2) = f_Col(2,atom2) - fy
438 >    f_Col(3,atom2) = f_Col(3,atom2) - fz
439      
440 <    t_Row(1,atom1) = t_Row(1,atom1) - ul1(2)*dUdu1z + ul1(3)*dUdu1y
441 <    t_Row(2,atom1) = t_Row(2,atom1) - ul1(3)*dUdu1x + ul1(1)*dUdu1z
442 <    t_Row(3,atom1) = t_Row(3,atom1) - ul1(1)*dUdu1y + ul1(2)*dUdu1x
443 <    
444 <    t_Col(1,atom2) = t_Col(1,atom2) - ul2(2)*dUdu2z + ul2(3)*dUdu2y
445 <    t_Col(2,atom2) = t_Col(2,atom2) - ul2(3)*dUdu2x + ul2(1)*dUdu2z
446 <    t_Col(3,atom2) = t_Col(3,atom2) - ul2(1)*dUdu2y + ul2(2)*dUdu2x
440 >    t_Row(1,atom1) = t_Row(1,atom1) + dUda*rxu1(1) - dUdg*uxu(1)
441 >    t_Row(2,atom1) = t_Row(2,atom1) + dUda*rxu1(2) - dUdg*uxu(2)
442 >    t_Row(3,atom1) = t_Row(3,atom1) + dUda*rxu1(3) - dUdg*uxu(3)
443 >                                                                
444 >    t_Col(1,atom2) = t_Col(1,atom2) + dUdb*rxu2(1) + dUdg*uxu(1)
445 >    t_Col(2,atom2) = t_Col(2,atom2) + dUdb*rxu2(2) + dUdg*uxu(2)
446 >    t_Col(3,atom2) = t_Col(3,atom2) + dUdb*rxu2(3) + dUdg*uxu(3)
447   #else
448 <    f(1,atom1) = f(1,atom1) + dUdx
449 <    f(2,atom1) = f(2,atom1) + dUdy
450 <    f(3,atom1) = f(3,atom1) + dUdz
448 >    f(1,atom1) = f(1,atom1) + fx
449 >    f(2,atom1) = f(2,atom1) + fy
450 >    f(3,atom1) = f(3,atom1) + fz
451      
452 <    f(1,atom2) = f(1,atom2) - dUdx
453 <    f(2,atom2) = f(2,atom2) - dUdy
454 <    f(3,atom2) = f(3,atom2) - dUdz
452 >    f(1,atom2) = f(1,atom2) - fx
453 >    f(2,atom2) = f(2,atom2) - fy
454 >    f(3,atom2) = f(3,atom2) - fz
455      
456 <    t(1,atom1) = t(1,atom1) - ul1(2)*dUdu1z + ul1(3)*dUdu1y
457 <    t(2,atom1) = t(2,atom1) - ul1(3)*dUdu1x + ul1(1)*dUdu1z
458 <    t(3,atom1) = t(3,atom1) - ul1(1)*dUdu1y + ul1(2)*dUdu1x
459 <    
460 <    t(1,atom2) = t(1,atom2) - ul2(2)*dUdu2z + ul2(3)*dUdu2y
461 <    t(2,atom2) = t(2,atom2) - ul2(3)*dUdu2x + ul2(1)*dUdu2z
462 <    t(3,atom2) = t(3,atom2) - ul2(1)*dUdu2y + ul2(2)*dUdu2x
456 >    t(1,atom1) = t(1,atom1) +  dUda*rxu1(1) - dUdg*uxu(1)
457 >    t(2,atom1) = t(2,atom1) +  dUda*rxu1(2) - dUdg*uxu(2)
458 >    t(3,atom1) = t(3,atom1) +  dUda*rxu1(3) - dUdg*uxu(3)
459 >                                                        
460 >    t(1,atom2) = t(1,atom2) +  dUdb*rxu2(1) + dUdg*uxu(1)
461 >    t(2,atom2) = t(2,atom2) +  dUdb*rxu2(2) + dUdg*uxu(2)
462 >    t(3,atom2) = t(3,atom2) +  dUdb*rxu2(3) + dUdg*uxu(3)
463   #endif
464 <            
464 >  
465      if (do_pot) then
466   #ifdef IS_MPI
467 <       pot_row(atom1) = pot_row(atom1) + 2.0d0*eps*R126*sw
468 <       pot_col(atom2) = pot_col(atom2) + 2.0d0*eps*R126*sw
467 >       pot_row(VDW_POT,atom1) = pot_row(VDW_POT,atom1) + 0.5d0*U*sw
468 >       pot_col(VDW_POT,atom2) = pot_col(VDW_POT,atom2) + 0.5d0*U*sw
469   #else
470 <       pot = pot + 4.0*eps*R126*sw
470 >       pot = pot + U*sw
471   #endif
472      endif
473 <
474 <    vpair = vpair + 4.0*eps*R126
473 >    
474 >    vpair = vpair + U*sw
475   #ifdef IS_MPI
476      id1 = AtomRowToGlobal(atom1)
477      id2 = AtomColToGlobal(atom2)
# Line 415 | Line 482 | contains
482      
483      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
484        
485 <       fpair(1) = fpair(1) + dUdx
486 <       fpair(2) = fpair(2) + dUdy
487 <       fpair(3) = fpair(3) + dUdz
485 >       fpair(1) = fpair(1) + fx
486 >       fpair(2) = fpair(2) + fy
487 >       fpair(3) = fpair(3) + fz
488        
489      endif
490      
491      return
492    end subroutine do_gb_pair
493 +  
494 +  subroutine destroyGBTypes()
495  
496 < end module gb_pair
496 >    GBMap%nGBtypes = 0
497 >    GBMap%currentGBtype = 0
498 >    
499 >    if (associated(GBMap%GBtypes)) then
500 >       deallocate(GBMap%GBtypes)
501 >       GBMap%GBtypes => null()
502 >    end if
503 >    
504 >    if (associated(GBMap%atidToGBtype)) then
505 >       deallocate(GBMap%atidToGBtype)
506 >       GBMap%atidToGBtype => null()
507 >    end if
508 >    
509 >    haveMixingMap = .false.
510 >    
511 >  end subroutine destroyGBTypes
512  
513 <
514 <  subroutine set_gb_pair_params(sigma, l2b_ratio, eps, eps_ratio, mu, nu)
431 <    use definitions, ONLY : dp
432 <    use gb_pair, ONLY : module_set_gb_pair_params => set_gb_pair_params
433 <    real( kind = dp ), intent(inout) :: sigma, l2b_ratio, eps, eps_ratio
434 <    real( kind = dp ), intent(inout) :: mu, nu
435 <    call module_set_gb_pair_params(sigma, l2b_ratio, eps, eps_ratio, mu, nu)
436 < end subroutine set_gb_pair_params
513 > end module gayberne
514 >    

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines