ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/shapes.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/shapes.F90 (file contents):
Revision 1707 by gezelter, Thu Nov 4 16:20:37 2004 UTC vs.
Revision 2277 by chrisfen, Fri Aug 26 21:30:41 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42 +
43   module shapes
44  
45    use force_globals
# Line 13 | Line 55 | module shapes
55    implicit none
56  
57    PRIVATE
58 <  
58 >
59    INTEGER, PARAMETER:: CHEBYSHEV_TN = 1
60    INTEGER, PARAMETER:: CHEBYSHEV_UN = 2
61    INTEGER, PARAMETER:: LAGUERRE     = 3
# Line 26 | Line 68 | module shapes
68    public :: do_shape_pair
69    public :: newShapeType
70    public :: complete_Shape_FF
71 +  public :: destroyShapeTypes
72 +  public :: getShapeCut
73  
30
74    type, private :: Shape
75       integer :: atid
76       integer :: nContactFuncs
# Line 51 | Line 94 | module shapes
94       real ( kind = dp )  :: epsilon
95       real ( kind = dp )  :: sigma
96    end type Shape
97 <  
97 >
98    type, private :: ShapeList
99       integer :: n_shapes = 0
100       integer :: currentShape = 0
101 <     type (Shape), pointer :: Shapes(:)      => null()
102 <     integer, pointer      :: atidToShape(:) => null()
101 >     type(Shape), pointer :: Shapes(:)      => null()
102 >     integer, pointer     :: atidToShape(:) => null()
103    end type ShapeList
104    
105    type(ShapeList), save :: ShapeMap
106 <
106 >  
107    integer :: lmax
108 <
108 >  
109   contains  
110 <
110 >  
111    subroutine newShapeType(nContactFuncs, ContactFuncLValue, &
112         ContactFuncMValue, ContactFunctionType, ContactFuncCoefficient, &
113         nRangeFuncs, RangeFuncLValue, RangeFuncMValue, RangeFunctionType, &
114         RangeFuncCoefficient, nStrengthFuncs, StrengthFuncLValue, &
115         StrengthFuncMValue, StrengthFunctionType, StrengthFuncCoefficient, &
116 <       myATID, status)
117 <
116 >       c_ident, status)
117 >    
118      integer :: nContactFuncs
119      integer :: nRangeFuncs
120      integer :: nStrengthFuncs
121      integer :: shape_ident
122      integer :: status
123 +    integer :: c_ident
124      integer :: myATID
125      integer :: bigL
126      integer :: bigM
# Line 102 | Line 146 | contains  
146  
147         call getMatchingElementList(atypes, "is_Shape", .true., &
148              nShapeTypes, MatchList)
149 <      
149 >
150         call getMatchingElementList(atypes, "is_LennardJones", .true., &
151              nLJTypes, MatchList)
152 <      
152 >
153         ShapeMap%n_shapes = nShapeTypes + nLJTypes
154 <      
154 >
155         allocate(ShapeMap%Shapes(nShapeTypes + nLJTypes))
156 <      
156 >
157         ntypes = getSize(atypes)
158 <      
159 <       allocate(ShapeMap%atidToShape(0:ntypes))
158 >
159 >       allocate(ShapeMap%atidToShape(ntypes))
160      end if
161 <    
161 >
162      ShapeMap%currentShape = ShapeMap%currentShape + 1
163      current = ShapeMap%currentShape
164  
# Line 125 | Line 169 | contains  
169         return
170      endif
171  
172 <    call getElementProperty(atypes, myATID, 'c_ident', me)
172 >    myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
173  
174 <    ShapeMap%atidToShape(me)                         = current
175 <    ShapeMap%Shapes(current)%atid                    = me
174 >    ShapeMap%atidToShape(myATID)                     = current
175 >    ShapeMap%Shapes(current)%atid                    = myATID
176      ShapeMap%Shapes(current)%nContactFuncs           = nContactFuncs
177      ShapeMap%Shapes(current)%nRangeFuncs             = nRangeFuncs
178      ShapeMap%Shapes(current)%nStrengthFuncs          = nStrengthFuncs
# Line 147 | Line 191 | contains  
191  
192      bigL = -1
193      bigM = -1
194 <    
194 >
195      do j = 1, ShapeMap%Shapes(current)%nContactFuncs
196         if (ShapeMap%Shapes(current)%ContactFuncLValue(j) .gt. bigL) then
197            bigL = ShapeMap%Shapes(current)%ContactFuncLValue(j)
# Line 185 | Line 229 | contains  
229      type(Shape), intent(inout) :: myShape
230      integer, intent(out) :: stat
231      integer :: alloc_stat
232 <
232 >
233      stat = 0
234      if (associated(myShape%contactFuncLValue)) then
235         deallocate(myShape%contactFuncLValue)
# Line 289 | Line 333 | contains  
333      return
334  
335    end subroutine allocateShape
336 <    
336 >
337    subroutine complete_Shape_FF(status)
338      integer :: status
339      integer :: i, j, l, m, lm, function_type
340      real(kind=dp) :: thisDP, sigma
341 <    integer :: alloc_stat, iTheta, iPhi, nSteps, nAtypes, thisIP, current
341 >    integer :: alloc_stat, iTheta, iPhi, nSteps, nAtypes, myATID, current
342      logical :: thisProperty
343  
344      status = 0
# Line 303 | Line 347 | contains  
347         status = -1
348         return
349      end if
350 <    
350 >
351      nAtypes = getSize(atypes)
352  
353      if (nAtypes == 0) then
354         status = -1
355         return
356 <    end if
356 >    end if      
357  
358      ! atypes comes from c side
359 <    do i = 0, nAtypes
360 <      
361 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
362 <      
359 >    do i = 1, nAtypes
360 >    
361 >       myATID = getFirstMatchingElement(atypes, 'c_ident', i)
362 >       call getElementProperty(atypes, myATID, "is_LennardJones", thisProperty)
363 >        
364         if (thisProperty) then
320          
365            ShapeMap%currentShape = ShapeMap%currentShape + 1
366            current = ShapeMap%currentShape
367  
368 <          call getElementProperty(atypes, i, "c_ident",  thisIP)
369 <          ShapeMap%atidToShape(thisIP) = current
326 <          ShapeMap%Shapes(current)%atid = thisIP
368 >          ShapeMap%atidToShape(myATID) = current
369 >          ShapeMap%Shapes(current)%atid = myATID
370  
371            ShapeMap%Shapes(current)%isLJ = .true.
372  
373 <          ShapeMap%Shapes(current)%epsilon = getEpsilon(thisIP)
374 <          ShapeMap%Shapes(current)%sigma = getSigma(thisIP)
375 <          
373 >          ShapeMap%Shapes(current)%epsilon = getEpsilon(myATID)
374 >          ShapeMap%Shapes(current)%sigma = getSigma(myATID)
375 >
376         endif
377 <      
377 >
378      end do
379  
380      haveShapeMap = .true.
381 <    
381 >
382 > !    do i = 1, ShapeMap%n_shapes
383 > !       write(*,*) 'i = ', i, ' isLJ = ', ShapeMap%Shapes(i)%isLJ
384 > !    end do
385 >
386    end subroutine complete_Shape_FF
387 <    
387 >
388 >  function getShapeCut(atomID) result(cutValue)
389 >    integer, intent(in) :: atomID
390 >    real(kind=dp) :: cutValue, whoopdedoo
391 >
392 >    !! this is just a placeholder for a cutoff value, hopefully we'll
393 >    !! develop a method to calculate a sensible value
394 >    whoopdedoo = 9.0_dp
395 >
396 >    cutValue = whoopdedoo
397 >
398 >  end function getShapeCut
399 >
400    subroutine do_shape_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, &
401         pot, A, f, t, do_pot)
402 <    
402 >
403      INTEGER, PARAMETER:: LMAX         = 64
404      INTEGER, PARAMETER:: MMAX         = 64
405  
# Line 348 | Line 407 | contains  
407      real (kind=dp), intent(inout) :: rij, r2
408      real (kind=dp), dimension(3), intent(in) :: d
409      real (kind=dp), dimension(3), intent(inout) :: fpair
410 <    real (kind=dp) :: pot, vpair, sw
410 >    real (kind=dp) :: pot, vpair, sw, dswdr
411      real (kind=dp), dimension(9,nLocal) :: A
412      real (kind=dp), dimension(3,nLocal) :: f
413      real (kind=dp), dimension(3,nLocal) :: t
# Line 359 | Line 418 | contains  
418      integer :: l, m, lm, id1, id2, localError, function_type
419      real (kind=dp) :: sigma_i, s_i, eps_i, sigma_j, s_j, eps_j
420      real (kind=dp) :: coeff
421 +    real (kind=dp) :: pot_temp
422  
423      real (kind=dp) :: dsigmaidx, dsigmaidy, dsigmaidz
424      real (kind=dp) :: dsigmaidux, dsigmaiduy, dsigmaiduz
# Line 410 | Line 470 | contains  
470      real (kind=dp) :: dsduxi, dsduyi, dsduzi
471      real (kind=dp) :: dsdxj, dsdyj, dsdzj
472      real (kind=dp) :: dsduxj, dsduyj, dsduzj
473 <    
473 >
474      real (kind=dp) :: depsdxi, depsdyi, depsdzi
475      real (kind=dp) :: depsduxi, depsduyi, depsduzi
476      real (kind=dp) :: depsdxj, depsdyj, depsdzj
# Line 437 | Line 497 | contains  
497      real (kind=dp) :: fxji, fyji, fzji, fxjj, fyjj, fzjj
498      real (kind=dp) :: fxradial, fyradial, fzradial
499  
500 +    real (kind=dp) :: xihat, yihat, zihat, xjhat, yjhat, zjhat
501 +
502      real (kind=dp) :: plm_i(0:LMAX,0:MMAX), dlm_i(0:LMAX,0:MMAX)
503      real (kind=dp) :: plm_j(0:LMAX,0:MMAX), dlm_j(0:LMAX,0:MMAX)
504      real (kind=dp) :: tm_i(0:MMAX), dtm_i(0:MMAX), um_i(0:MMAX), dum_i(0:MMAX)
# Line 447 | Line 509 | contains  
509         return      
510      endif
511  
450    write(*,*) rij, r2, d(1), d(2), d(3)
451    write(*,*) 'before, atom1, 2 = ', atom1, atom2
452    write(*,*) 'f1 = ', f(1,atom1), f(2,atom1), f(3,atom1)
453    write(*,*) 'f2 = ', f(1,atom2), f(2,atom2), f(3,atom2)
454    write(*,*) 't1 = ', t(1,atom1), t(2,atom1), t(3,atom1)
455    write(*,*) 't2 = ', t(1,atom2), t(2,atom2), t(3,atom2)
456    
512      !! We assume that the rotation matrices have already been calculated
513      !! and placed in the A array.
459
514      r3 = r2*rij
515      r5 = r3*r2
516 <    
516 >
517      drdxi = -d(1) / rij
518      drdyi = -d(2) / rij
519      drdzi = -d(3) / rij
520 +    drduxi = 0.0d0
521 +    drduyi = 0.0d0
522 +    drduzi = 0.0d0
523  
524      drdxj = d(1) / rij
525      drdyj = d(2) / rij
526      drdzj = d(3) / rij
527 <    
527 >    drduxj = 0.0d0
528 >    drduyj = 0.0d0
529 >    drduzj = 0.0d0
530 >
531      ! find the atom type id (atid) for each atom:
532   #ifdef IS_MPI
533      atid1 = atid_Row(atom1)
# Line 480 | Line 540 | contains  
540      ! use the atid to find the shape type (st) for each atom:
541      st1 = ShapeMap%atidToShape(atid1)
542      st2 = ShapeMap%atidToShape(atid2)
543 +    
544 + !    write(*,*) atom1, atom2, atid1, atid2, st1, st2, ShapeMap%Shapes(st1)%isLJ, ShapeMap%Shapes(st2)%isLJ
545  
546      if (ShapeMap%Shapes(st1)%isLJ) then
547  
# Line 509 | Line 571 | contains  
571   #ifdef IS_MPI
572         ! rotate the inter-particle separation into the two different
573         ! body-fixed coordinate systems:
574 <      
574 >
575         xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
576         yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
577         zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
578 <      
578 >
579   #else
580         ! rotate the inter-particle separation into the two different
581         ! body-fixed coordinate systems:
582 <      
582 >
583         xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
584         yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
585         zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
524      
525 #endif
586  
587 + #endif
588 +       xihat = xi / rij
589 +       yihat = yi / rij
590 +       zihat = zi / rij
591         xi2 = xi*xi
592         yi2 = yi*yi
593         zi2 = zi*zi            
# Line 535 | Line 599 | contains  
599         dctidx = - zi * xi / r3
600         dctidy = - zi * yi / r3
601         dctidz = 1.0d0 / rij - zi2 / r3
602 <       dctidux =  yi / rij + (zi * yi) / r3
603 <       dctiduy = -xi / rij - (zi * xi) / r3
604 <       dctiduz = 0.0d0
602 >       dctidux = yi / rij ! - (zi * xi2) / r3
603 >       dctiduy = -xi / rij !- (zi * yi2) / r3
604 >       dctiduz = 0.0d0 !zi / rij - (zi2 * zi) / r3
605  
606         ! this is an attempt to try to truncate the singularity when
607         ! sin(theta) is near 0.0:
# Line 547 | Line 611 | contains  
611            proji = sqrt(rij * 1.0d-12)
612            dcpidx = 1.0d0 / proji
613            dcpidy = 0.0d0
614 <          dcpidux = 0.0d0
615 <          dcpiduy = zi / proji
614 >          dcpidux = xi / proji
615 >          dcpiduy = 0.0d0
616            dspidx = 0.0d0
617            dspidy = 1.0d0 / proji
618 <          dspidux = -zi / proji
619 <          dspiduy = 0.0d0
618 >          dspidux = 0.0d0
619 >          dspiduy = yi / proji
620         else
621            proji = sqrt(xi2 + yi2)
622            proji3 = proji*proji*proji
623            dcpidx = 1.0d0 / proji - xi2 / proji3
624            dcpidy = - xi * yi / proji3
625 <          dcpidux = xi * yi * zi / proji3
626 <          dcpiduy = zi / proji - xi2 * zi / proji3
625 >          dcpidux = xi / proji - (xi2 * xi) / proji3
626 >          dcpiduy = - (xi * yi2) / proji3
627            dspidx = - xi * yi / proji3
628            dspidy = 1.0d0 / proji - yi2 / proji3
629 <          dspidux = -zi / proji + yi2 * zi / proji3
630 <          dspiduy = - xi * yi * zi / proji3
629 >          dspidux = - (yi * xi2) / proji3
630 >          dspiduy = yi / proji - (yi2 * yi) / proji3
631         endif
632 <      
632 >
633         cpi = xi / proji
634         dcpidz = 0.0d0
635 <       dcpiduz = -yi / proji
636 <      
635 >       dcpiduz = 0.0d0
636 >
637         spi = yi / proji
638         dspidz = 0.0d0
639 <       dspiduz = xi / proji
576 <       write(*,*) 'before lmloop', cpi, dcpidx, dcpidux
639 >       dspiduz = 0.0d0
640  
641         call Associated_Legendre(cti, ShapeMap%Shapes(st1)%bigM, &
642              ShapeMap%Shapes(st1)%bigL, LMAX, &
# Line 583 | Line 646 | contains  
646              CHEBYSHEV_TN, tm_i, dtm_i)
647         call Orthogonal_Polynomial(cpi, ShapeMap%Shapes(st1)%bigM, MMAX, &
648              CHEBYSHEV_UN, um_i, dum_i)
649 <      
649 >
650         sigma_i = 0.0d0
651         s_i = 0.0d0
652         eps_i = 0.0d0
# Line 617 | Line 680 | contains  
680               dPhuncdX = coeff * dtm_i(m) * dcpidx
681               dPhuncdY = coeff * dtm_i(m) * dcpidy
682               dPhuncdZ = coeff * dtm_i(m) * dcpidz
683 <             dPhuncdUz = coeff * dtm_i(m) * dcpidux
683 >             dPhuncdUx = coeff * dtm_i(m) * dcpidux
684               dPhuncdUy = coeff * dtm_i(m) * dcpiduy
685               dPhuncdUz = coeff * dtm_i(m) * dcpiduz
686            else
# Line 631 | Line 694 | contains  
694            endif
695  
696            sigma_i = sigma_i + plm_i(m,l)*Phunc
697 <
697 > !!$          write(*,*) 'dsigmaidux = ', dsigmaidux
698 > !!$          write(*,*) 'Phunc = ', Phunc
699            dsigmaidx = dsigmaidx + plm_i(m,l)*dPhuncdX + &
700                 Phunc * dlm_i(m,l) * dctidx
701            dsigmaidy = dsigmaidy + plm_i(m,l)*dPhuncdY + &
702                 Phunc * dlm_i(m,l) * dctidy
703            dsigmaidz = dsigmaidz + plm_i(m,l)*dPhuncdZ + &
704                 Phunc * dlm_i(m,l) * dctidz
641          
705            dsigmaidux = dsigmaidux + plm_i(m,l)* dPhuncdUx + &
706                 Phunc * dlm_i(m,l) * dctidux
707            dsigmaiduy = dsigmaiduy + plm_i(m,l)* dPhuncdUy + &
708                 Phunc * dlm_i(m,l) * dctiduy
709            dsigmaiduz = dsigmaiduz + plm_i(m,l)* dPhuncdUz + &
710                 Phunc * dlm_i(m,l) * dctiduz
711 <
711 > !!$          write(*,*) 'dsigmaidux = ', dsigmaidux, '; dPhuncdUx = ', dPhuncdUx, &
712 > !!$                     '; dctidux = ', dctidux, '; plm_i(m,l) = ', plm_i(m,l), &
713 > !!$                     '; dlm_i(m,l) = ', dlm_i(m,l), '; m = ', m, '; l = ', l
714         end do
715  
716         do lm = 1, ShapeMap%Shapes(st1)%nRangeFuncs
# Line 653 | Line 718 | contains  
718            m = ShapeMap%Shapes(st1)%RangeFuncMValue(lm)
719            coeff = ShapeMap%Shapes(st1)%RangeFuncCoefficient(lm)
720            function_type = ShapeMap%Shapes(st1)%RangeFunctionType(lm)
656          
657         write(*,*) 'in lm loop a', coeff, dtm_i(m), dcpidx
721  
659
722            if ((function_type .eq. SH_COS).or.(m.eq.0)) then
723               Phunc = coeff * tm_i(m)
724               dPhuncdX = coeff * dtm_i(m) * dcpidx
725               dPhuncdY = coeff * dtm_i(m) * dcpidy
726               dPhuncdZ = coeff * dtm_i(m) * dcpidz
727 <             dPhuncdUz = coeff * dtm_i(m) * dcpidux
727 >             dPhuncdUx = coeff * dtm_i(m) * dcpidux
728               dPhuncdUy = coeff * dtm_i(m) * dcpiduy
729               dPhuncdUz = coeff * dtm_i(m) * dcpiduz
730            else
# Line 676 | Line 738 | contains  
738            endif
739  
740            s_i = s_i + plm_i(m,l)*Phunc
679          
741  
681          write(*,*) 'in lm loop ', dsidx, plm_i(m,l), dPhuncdX, Phunc, dlm_i(m,l), dctidx
742            dsidx = dsidx + plm_i(m,l)*dPhuncdX + &
743                 Phunc * dlm_i(m,l) * dctidx
744            dsidy = dsidy + plm_i(m,l)*dPhuncdY + &
745                 Phunc * dlm_i(m,l) * dctidy
746            dsidz = dsidz + plm_i(m,l)*dPhuncdZ + &
747                 Phunc * dlm_i(m,l) * dctidz
748 <          
748 >
749            dsidux = dsidux + plm_i(m,l)* dPhuncdUx + &
750                 Phunc * dlm_i(m,l) * dctidux
751            dsiduy = dsiduy + plm_i(m,l)* dPhuncdUy + &
# Line 694 | Line 754 | contains  
754                 Phunc * dlm_i(m,l) * dctiduz      
755  
756         end do
757 <              
757 >
758         do lm = 1, ShapeMap%Shapes(st1)%nStrengthFuncs
759            l = ShapeMap%Shapes(st1)%StrengthFuncLValue(lm)
760            m = ShapeMap%Shapes(st1)%StrengthFuncMValue(lm)
761            coeff = ShapeMap%Shapes(st1)%StrengthFuncCoefficient(lm)
762            function_type = ShapeMap%Shapes(st1)%StrengthFunctionType(lm)
763 <          
763 >
764            if ((function_type .eq. SH_COS).or.(m.eq.0)) then
765               Phunc = coeff * tm_i(m)
766               dPhuncdX = coeff * dtm_i(m) * dcpidx
767               dPhuncdY = coeff * dtm_i(m) * dcpidy
768               dPhuncdZ = coeff * dtm_i(m) * dcpidz
769 <             dPhuncdUz = coeff * dtm_i(m) * dcpidux
769 >             dPhuncdUx = coeff * dtm_i(m) * dcpidux
770               dPhuncdUy = coeff * dtm_i(m) * dcpiduy
771               dPhuncdUz = coeff * dtm_i(m) * dcpiduz
772            else
# Line 720 | Line 780 | contains  
780            endif
781  
782            eps_i = eps_i + plm_i(m,l)*Phunc
783 <          
783 >
784            depsidx = depsidx + plm_i(m,l)*dPhuncdX + &
785                 Phunc * dlm_i(m,l) * dctidx
786            depsidy = depsidy + plm_i(m,l)*dPhuncdY + &
787                 Phunc * dlm_i(m,l) * dctidy
788            depsidz = depsidz + plm_i(m,l)*dPhuncdZ + &
789                 Phunc * dlm_i(m,l) * dctidz
790 <          
790 >
791            depsidux = depsidux + plm_i(m,l)* dPhuncdUx + &
792                 Phunc * dlm_i(m,l) * dctidux
793            depsiduy = depsiduy + plm_i(m,l)* dPhuncdUy + &
# Line 738 | Line 798 | contains  
798         end do
799  
800      endif
741      
742       ! now do j:
801  
802 +    ! now do j:
803 +
804      if (ShapeMap%Shapes(st2)%isLJ) then
805         sigma_j = ShapeMap%Shapes(st2)%sigma
806         s_j = ShapeMap%Shapes(st2)%sigma
# Line 764 | Line 824 | contains  
824         depsjduy = 0.0d0
825         depsjduz = 0.0d0
826      else
827 <      
827 >
828   #ifdef IS_MPI
829         ! rotate the inter-particle separation into the two different
830         ! body-fixed coordinate systems:
831         ! negative sign because this is the vector from j to i:
832 <      
832 >
833         xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
834         yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
835         zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
# Line 777 | Line 837 | contains  
837         ! rotate the inter-particle separation into the two different
838         ! body-fixed coordinate systems:
839         ! negative sign because this is the vector from j to i:
840 <      
840 >
841         xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
842         yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
843         zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
844   #endif
845 <      
845 >
846 >       xjhat = xj / rij
847 >       yjhat = yj / rij
848 >       zjhat = zj / rij
849         xj2 = xj*xj
850         yj2 = yj*yj
851         zj2 = zj*zj
852         ctj = zj / rij
853 <      
853 >
854         if (ctj .gt. 1.0_dp) ctj = 1.0_dp
855         if (ctj .lt. -1.0_dp) ctj = -1.0_dp
856  
857         dctjdx = - zj * xj / r3
858         dctjdy = - zj * yj / r3
859         dctjdz = 1.0d0 / rij - zj2 / r3
860 <       dctjdux =  yj / rij + (zj * yj) / r3
861 <       dctjduy = -xj / rij - (zj * xj) / r3
862 <       dctjduz = 0.0d0
863 <      
860 >       dctjdux = yj / rij !- (zi * xj2) / r3
861 >       dctjduy = -xj / rij !- (zj * yj2) / r3
862 >       dctjduz = 0.0d0 !zj / rij - (zj2 * zj) / r3
863 >
864         ! this is an attempt to try to truncate the singularity when
865         ! sin(theta) is near 0.0:
866  
# Line 806 | Line 869 | contains  
869            projj = sqrt(rij * 1.0d-12)
870            dcpjdx = 1.0d0 / projj
871            dcpjdy = 0.0d0
872 <          dcpjdux = 0.0d0
873 <          dcpjduy = zj / projj
872 >          dcpjdux = xj / projj
873 >          dcpjduy = 0.0d0
874            dspjdx = 0.0d0
875            dspjdy = 1.0d0 / projj
876 <          dspjdux = -zj / projj
877 <          dspjduy = 0.0d0
876 >          dspjdux = 0.0d0
877 >          dspjduy = yj / projj
878         else
879            projj = sqrt(xj2 + yj2)
880            projj3 = projj*projj*projj
881            dcpjdx = 1.0d0 / projj - xj2 / projj3
882            dcpjdy = - xj * yj / projj3
883 <          dcpjdux = xj * yj * zj / projj3
884 <          dcpjduy = zj / projj - xj2 * zj / projj3
883 >          dcpjdux = xj / projj - (xj2 * xj) / projj3
884 >          dcpjduy = - (xj * yj2) / projj3
885            dspjdx = - xj * yj / projj3
886            dspjdy = 1.0d0 / projj - yj2 / projj3
887 <          dspjdux = -zj / projj + yj2 * zj / projj3
888 <          dspjduy = - xj * yj * zj / projj3
887 >          dspjdux = - (yj * xj2) / projj3
888 >          dspjduy = yj / projj - (yj2 * yj) / projj3
889         endif
890  
891         cpj = xj / projj
892         dcpjdz = 0.0d0
893 <       dcpjduz = -yj / projj
894 <      
893 >       dcpjduz = 0.0d0
894 >
895         spj = yj / projj
896         dspjdz = 0.0d0
897 <       dspjduz = xj / projj
897 >       dspjduz = 0.0d0
898  
899 +
900 + !       write(*,*) 'dcpdu = ' ,dcpidux, dcpiduy, dcpiduz
901 + !       write(*,*) 'dcpdu = ' ,dcpjdux, dcpjduy, dcpjduz
902         call Associated_Legendre(ctj, ShapeMap%Shapes(st2)%bigM, &
903              ShapeMap%Shapes(st2)%bigL, LMAX, &
904              plm_j, dlm_j)
905 <      
905 >
906         call Orthogonal_Polynomial(cpj, ShapeMap%Shapes(st2)%bigM, MMAX, &
907              CHEBYSHEV_TN, tm_j, dtm_j)
908         call Orthogonal_Polynomial(cpj, ShapeMap%Shapes(st2)%bigM, MMAX, &
909              CHEBYSHEV_UN, um_j, dum_j)
910 <      
910 >
911         sigma_j = 0.0d0
912         s_j = 0.0d0
913         eps_j = 0.0d0
# Line 875 | Line 941 | contains  
941               dPhuncdX = coeff * dtm_j(m) * dcpjdx
942               dPhuncdY = coeff * dtm_j(m) * dcpjdy
943               dPhuncdZ = coeff * dtm_j(m) * dcpjdz
944 <             dPhuncdUz = coeff * dtm_j(m) * dcpjdux
944 >             dPhuncdUx = coeff * dtm_j(m) * dcpjdux
945               dPhuncdUy = coeff * dtm_j(m) * dcpjduy
946               dPhuncdUz = coeff * dtm_j(m) * dcpjduz
947            else
# Line 887 | Line 953 | contains  
953               dPhuncdUy = coeff*(spj * dum_j(m-1)*dcpjduy + dspjduy *um_j(m-1))
954               dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1))
955            endif
956 <
956 >
957            sigma_j = sigma_j + plm_j(m,l)*Phunc
958 <          
958 >
959            dsigmajdx = dsigmajdx + plm_j(m,l)*dPhuncdX + &
960                 Phunc * dlm_j(m,l) * dctjdx
961            dsigmajdy = dsigmajdy + plm_j(m,l)*dPhuncdY + &
962                 Phunc * dlm_j(m,l) * dctjdy
963            dsigmajdz = dsigmajdz + plm_j(m,l)*dPhuncdZ + &
964                 Phunc * dlm_j(m,l) * dctjdz
965 <          
965 >
966            dsigmajdux = dsigmajdux + plm_j(m,l)* dPhuncdUx + &
967                 Phunc * dlm_j(m,l) * dctjdux
968            dsigmajduy = dsigmajduy + plm_j(m,l)* dPhuncdUy + &
# Line 917 | Line 983 | contains  
983               dPhuncdX = coeff * dtm_j(m) * dcpjdx
984               dPhuncdY = coeff * dtm_j(m) * dcpjdy
985               dPhuncdZ = coeff * dtm_j(m) * dcpjdz
986 <             dPhuncdUz = coeff * dtm_j(m) * dcpjdux
986 >             dPhuncdUx = coeff * dtm_j(m) * dcpjdux
987               dPhuncdUy = coeff * dtm_j(m) * dcpjduy
988               dPhuncdUz = coeff * dtm_j(m) * dcpjduz
989            else
# Line 931 | Line 997 | contains  
997            endif
998  
999            s_j = s_j + plm_j(m,l)*Phunc
1000 <          
1000 >
1001            dsjdx = dsjdx + plm_j(m,l)*dPhuncdX + &
1002                 Phunc * dlm_j(m,l) * dctjdx
1003            dsjdy = dsjdy + plm_j(m,l)*dPhuncdY + &
1004                 Phunc * dlm_j(m,l) * dctjdy
1005            dsjdz = dsjdz + plm_j(m,l)*dPhuncdZ + &
1006                 Phunc * dlm_j(m,l) * dctjdz
1007 <          
1007 >
1008            dsjdux = dsjdux + plm_j(m,l)* dPhuncdUx + &
1009                 Phunc * dlm_j(m,l) * dctjdux
1010            dsjduy = dsjduy + plm_j(m,l)* dPhuncdUy + &
# Line 972 | Line 1038 | contains  
1038               dPhuncdUz = coeff*(spj * dum_j(m-1)*dcpjduz + dspjduz *um_j(m-1))
1039            endif
1040  
1041 + !          write(*,*) 'l,m = ', l, m, coeff, dPhuncdUx, dPhuncdUy, dPhuncdUz
1042 +
1043            eps_j = eps_j + plm_j(m,l)*Phunc
1044 <          
1044 >
1045            depsjdx = depsjdx + plm_j(m,l)*dPhuncdX + &
1046                 Phunc * dlm_j(m,l) * dctjdx
1047            depsjdy = depsjdy + plm_j(m,l)*dPhuncdY + &
1048                 Phunc * dlm_j(m,l) * dctjdy
1049            depsjdz = depsjdz + plm_j(m,l)*dPhuncdZ + &
1050                 Phunc * dlm_j(m,l) * dctjdz
1051 <          
1051 >
1052            depsjdux = depsjdux + plm_j(m,l)* dPhuncdUx + &
1053                 Phunc * dlm_j(m,l) * dctjdux
1054            depsjduy = depsjduy + plm_j(m,l)* dPhuncdUy + &
# Line 995 | Line 1063 | contains  
1063      ! phew, now let's assemble the potential energy:
1064  
1065      sigma = 0.5*(sigma_i + sigma_j)
1066 <
1066 > !    write(*,*) sigma_i, ' = sigma_i; ', sigma_j, ' = sigma_j'
1067      dsigmadxi = 0.5*dsigmaidx
1068      dsigmadyi = 0.5*dsigmaidy
1069      dsigmadzi = 0.5*dsigmaidz
# Line 1027 | Line 1095 | contains  
1095      dsduzj = 0.5*dsjduz
1096  
1097      eps = sqrt(eps_i * eps_j)
1098 <
1099 <    write(*,*) 'sigma, s, eps = ', sigma, s, eps
1100 <
1098 > !!$    write(*,*) 'dsidu = ', dsidux, dsiduy, dsiduz
1099 > !!$    write(*,*) 'dsigidu = ', dsigmaidux, dsigmaiduy, dsigmaiduz
1100 > !!$    write(*,*) sigma_j, ' is sigma j; ', s_j, ' is s j; ', eps_j, ' is eps j'
1101      depsdxi = eps_j * depsidx / (2.0d0 * eps)
1102      depsdyi = eps_j * depsidy / (2.0d0 * eps)
1103      depsdzi = eps_j * depsidz / (2.0d0 * eps)
# Line 1043 | Line 1111 | contains  
1111      depsduxj = eps_i * depsjdux / (2.0d0 * eps)
1112      depsduyj = eps_i * depsjduy / (2.0d0 * eps)
1113      depsduzj = eps_i * depsjduz / (2.0d0 * eps)
1114 <    
1115 <    rtdenom = rij-sigma+s
1114 >
1115 > !!$    write(*,*) 'depsidu = ', depsidux, depsiduy, depsiduz
1116  
1117 <    write(*,*) 'rtdenom = ', rtdenom, ' sw = ', sw
1117 > !!$    write(*,*) 'depsjdu = ', depsjdux, depsjduy, depsjduz
1118 > !!$    write(*,*) 'depsduj = ', depsduxj, depsduyj, depsduzj
1119 > !!$
1120 > !!$    write(*,*) 's, sig, eps = ', s, sigma, eps
1121 >
1122 >    rtdenom = rij-sigma+s
1123      rt = s / rtdenom
1124  
1125 <    write(*,*) 'john' , dsdxi, rt, drdxi, dsigmadxi, rtdenom
1126 <    write(*,*) 'bigboot', dsduzj, rt, drduzj, dsigmaduzj, rtdenom
1125 >    drtdxi = (dsdxi - rt * (drdxi - dsigmadxi + dsdxi)) / rtdenom
1126 >    drtdyi = (dsdyi - rt * (drdyi - dsigmadyi + dsdyi)) / rtdenom
1127 >    drtdzi = (dsdzi - rt * (drdzi - dsigmadzi + dsdzi)) / rtdenom
1128 >    drtduxi = (dsduxi - rt * (drduxi - dsigmaduxi + dsduxi)) / rtdenom
1129 >    drtduyi = (dsduyi - rt * (drduyi - dsigmaduyi + dsduyi)) / rtdenom
1130 >    drtduzi = (dsduzi - rt * (drduzi - dsigmaduzi + dsduzi)) / rtdenom
1131 >    drtdxj = (dsdxj - rt * (drdxj - dsigmadxj + dsdxj)) / rtdenom
1132 >    drtdyj = (dsdyj - rt * (drdyj - dsigmadyj + dsdyj)) / rtdenom
1133 >    drtdzj = (dsdzj - rt * (drdzj - dsigmadzj + dsdzj)) / rtdenom
1134 >    drtduxj = (dsduxj - rt * (drduxj - dsigmaduxj + dsduxj)) / rtdenom
1135 >    drtduyj = (dsduyj - rt * (drduyj - dsigmaduyj + dsduyj)) / rtdenom
1136 >    drtduzj = (dsduzj - rt * (drduzj - dsigmaduzj + dsduzj)) / rtdenom
1137  
1138 + !!$    write(*,*) 'drtd_i = ', drtdxi, drtdyi, drtdzi
1139 + !!$    write(*,*) 'drtdu_j = ', drtduxj, drtduyj, drtduzj
1140  
1056    drtdxi = (dsdxi + rt * (drdxi - dsigmadxi + dsdxi)) / rtdenom
1057    drtdyi = (dsdyi + rt * (drdyi - dsigmadyi + dsdyi)) / rtdenom
1058    drtdzi = (dsdzi + rt * (drdzi - dsigmadzi + dsdzi)) / rtdenom
1059    drtduxi = (dsduxi + rt * (drduxi - dsigmaduxi + dsduxi)) / rtdenom
1060    drtduyi = (dsduyi + rt * (drduyi - dsigmaduyi + dsduyi)) / rtdenom
1061    drtduzi = (dsduzi + rt * (drduzi - dsigmaduzi + dsduzi)) / rtdenom
1062    drtdxj = (dsdxj + rt * (drdxj - dsigmadxj + dsdxj)) / rtdenom
1063    drtdyj = (dsdyj + rt * (drdyj - dsigmadyj + dsdyj)) / rtdenom
1064    drtdzj = (dsdzj + rt * (drdzj - dsigmadzj + dsdzj)) / rtdenom
1065    drtduxj = (dsduxj + rt * (drduxj - dsigmaduxj + dsduxj)) / rtdenom
1066    drtduyj = (dsduyj + rt * (drduyj - dsigmaduyj + dsduyj)) / rtdenom
1067    drtduzj = (dsduzj + rt * (drduzj - dsigmaduzj + dsduzj)) / rtdenom
1068    
1141      rt2 = rt*rt
1142      rt3 = rt2*rt
1143      rt5 = rt2*rt3
# Line 1074 | Line 1146 | contains  
1146      rt12 = rt6*rt6
1147      rt126 = rt12 - rt6
1148  
1149 +    pot_temp = 4.0d0 * eps * rt126
1150 +
1151 +    vpair = vpair + pot_temp
1152      if (do_pot) then
1153   #ifdef IS_MPI
1154 <       pot_row(atom1) = pot_row(atom1) + 2.0d0*eps*rt126*sw
1155 <       pot_col(atom2) = pot_col(atom2) + 2.0d0*eps*rt126*sw
1154 >       pot_row(atom1) = pot_row(atom1) + 0.5d0*pot_temp*sw
1155 >       pot_col(atom2) = pot_col(atom2) + 0.5d0*pot_temp*sw
1156   #else
1157 <       pot = pot + 4.0d0*eps*rt126*sw
1157 >       pot = pot + pot_temp*sw
1158   #endif
1159      endif
1085    
1086    write(*,*) 'drtdxi = ', drtdxi, drtdyi
1087    write(*,*) 'depsdxi = ', depsdxi, depsdyi
1160  
1161 + !!$    write(*,*) 'drtdu, depsdu = ', drtduxi, depsduxi
1162 +
1163      dvdxi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdxi + 4.0d0*depsdxi*rt126
1164      dvdyi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdyi + 4.0d0*depsdyi*rt126
1165      dvdzi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdzi + 4.0d0*depsdzi*rt126
# Line 1093 | Line 1167 | contains  
1167      dvduyi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduyi + 4.0d0*depsduyi*rt126
1168      dvduzi = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduzi + 4.0d0*depsduzi*rt126
1169  
1096    write(*,*) 'drtduzj = ', drtduzj, depsduzj
1097
1170      dvdxj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdxj + 4.0d0*depsdxj*rt126
1171      dvdyj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdyj + 4.0d0*depsdyj*rt126
1172      dvdzj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtdzj + 4.0d0*depsdzj*rt126
1173      dvduxj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduxj + 4.0d0*depsduxj*rt126
1174      dvduyj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduyj + 4.0d0*depsduyj*rt126
1175      dvduzj = 24.0d0*eps*(2.0d0*rt11 - rt5)*drtduzj + 4.0d0*depsduzj*rt126
1176 <
1176 > !!$    write(*,*) 'drtduxi = ', drtduxi, ' depsduxi = ', depsduxi
1177      ! do the torques first since they are easy:
1178      ! remember that these are still in the body fixed axes
1179  
1180 <    write(*,*) 'dvdx = ', dvdxi, dvdyi, dvdzi
1181 <    write(*,*) 'dvdx = ', dvdxj, dvdyj, dvdzj
1182 <    write(*,*) 'dvdu = ', dvduxi, dvduyi, dvduzi
1111 <    write(*,*) 'dvdu = ', dvduxj, dvduyj, dvduzj
1180 >    txi = 0.0d0
1181 >    tyi = 0.0d0
1182 >    tzi = 0.0d0
1183  
1184 <    txi = dvduxi * sw
1185 <    tyi = dvduyi * sw
1186 <    tzi = dvduzi * sw
1184 >    txj = 0.0d0
1185 >    tyj = 0.0d0
1186 >    tzj = 0.0d0
1187  
1188 <    txj = dvduxj * sw
1189 <    tyj = dvduyj * sw
1190 <    tzj = dvduzj * sw
1188 >    txi = (dvduyi - dvduzi) * sw
1189 >    tyi = (dvduzi - dvduxi) * sw
1190 >    tzi = (dvduxi - dvduyi) * sw
1191  
1192 +    txj = (dvduyj - dvduzj) * sw
1193 +    tyj = (dvduzj - dvduxj) * sw
1194 +    tzj = (dvduxj - dvduyj) * sw
1195 +
1196 + !!$    txi = dvduxi * sw
1197 + !!$    tyi = dvduyi * sw
1198 + !!$    tzi = dvduzi * sw
1199 + !!$
1200 + !!$    txj = dvduxj * sw
1201 + !!$    tyj = dvduyj * sw
1202 + !!$    tzj = dvduzj * sw
1203 +
1204 +    write(*,*) 't1 = ', txi, tyi, tzi
1205 +    write(*,*) 't2 = ', txj, tyj, tzj
1206 +
1207      ! go back to lab frame using transpose of rotation matrix:
1208 <    
1208 >
1209   #ifdef IS_MPI
1210      t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
1211           a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
# Line 1127 | Line 1213 | contains  
1213           a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
1214      t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
1215           a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
1216 <    
1216 >
1217      t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
1218           a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
1219      t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
1220 <            a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
1220 >         a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
1221      t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
1222           a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
1223   #else
1224      t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
1225      t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
1226      t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
1227 <    
1227 >
1228      t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
1229      t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
1230      t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
1231 +
1232   #endif
1233      ! Now, on to the forces:
1234 <    
1234 >
1235      ! first rotate the i terms back into the lab frame:
1149    
1150    fxi = dvdxi * sw
1151    fyi = dvdyi * sw
1152    fzi = dvdzi * sw
1236  
1237 <    fxj = dvdxj * sw
1238 <    fyj = dvdyj * sw
1239 <    fzj = dvdzj * sw
1237 >    fxi = -dvdxi * sw
1238 >    fyi = -dvdyi * sw
1239 >    fzi = -dvdzi * sw
1240  
1241 +    fxj = -dvdxj * sw
1242 +    fyj = -dvdyj * sw
1243 +    fzj = -dvdzj * sw
1244 +
1245 +
1246   #ifdef IS_MPI
1247      fxii = a_Row(1,atom1)*fxi + a_Row(4,atom1)*fyi + a_Row(7,atom1)*fzi
1248      fyii = a_Row(2,atom1)*fxi + a_Row(5,atom1)*fyi + a_Row(8,atom1)*fzi
# Line 1167 | Line 1255 | contains  
1255      fxii = a(1,atom1)*fxi + a(4,atom1)*fyi + a(7,atom1)*fzi
1256      fyii = a(2,atom1)*fxi + a(5,atom1)*fyi + a(8,atom1)*fzi
1257      fzii = a(3,atom1)*fxi + a(6,atom1)*fyi + a(9,atom1)*fzi
1258 <    
1258 >
1259      fxjj = a(1,atom2)*fxj + a(4,atom2)*fyj + a(7,atom2)*fzj
1260      fyjj = a(2,atom2)*fxj + a(5,atom2)*fyj + a(8,atom2)*fzj
1261      fzjj = a(3,atom2)*fxj + a(6,atom2)*fyj + a(9,atom2)*fzj
# Line 1176 | Line 1264 | contains  
1264      fxij = -fxii
1265      fyij = -fyii
1266      fzij = -fzii
1267 <    
1267 >
1268      fxji = -fxjj
1269      fyji = -fyjj
1270      fzji = -fzjj
1271  
1272 <    fxradial = fxii + fxji
1273 <    fyradial = fyii + fyji
1274 <    fzradial = fzii + fzji
1275 <
1272 >    fxradial = (fxii + fxji)
1273 >    fyradial = (fyii + fyji)
1274 >    fzradial = (fzii + fzji)
1275 > !!$    write(*,*) fxradial, ' is fxrad; ', fyradial, ' is fyrad; ', fzradial, 'is fzrad'
1276   #ifdef IS_MPI
1277      f_Row(1,atom1) = f_Row(1,atom1) + fxradial
1278      f_Row(2,atom1) = f_Row(2,atom1) + fyradial
1279      f_Row(3,atom1) = f_Row(3,atom1) + fzradial
1280 <    
1280 >
1281      f_Col(1,atom2) = f_Col(1,atom2) - fxradial
1282      f_Col(2,atom2) = f_Col(2,atom2) - fyradial
1283      f_Col(3,atom2) = f_Col(3,atom2) - fzradial
# Line 1197 | Line 1285 | contains  
1285      f(1,atom1) = f(1,atom1) + fxradial
1286      f(2,atom1) = f(2,atom1) + fyradial
1287      f(3,atom1) = f(3,atom1) + fzradial
1288 <    
1288 >
1289      f(1,atom2) = f(1,atom2) - fxradial
1290      f(2,atom2) = f(2,atom2) - fyradial
1291      f(3,atom2) = f(3,atom2) - fzradial
# Line 1210 | Line 1298 | contains  
1298      id1 = atom1
1299      id2 = atom2
1300   #endif
1301 <    
1301 >
1302      if (molMembershipList(id1) .ne. molMembershipList(id2)) then
1303 <      
1303 >
1304         fpair(1) = fpair(1) + fxradial
1305         fpair(2) = fpair(2) + fyradial
1306         fpair(3) = fpair(3) + fzradial
1307 <      
1307 >
1308      endif
1221    
1222    write(*,*) 'f1 = ', f(1,atom1), f(2,atom1), f(3,atom1)
1223    write(*,*) 'f2 = ', f(1,atom2), f(2,atom2), f(3,atom2)
1224    write(*,*) 't1 = ', t(1,atom1), t(2,atom1), t(3,atom1)
1225    write(*,*) 't2 = ', t(1,atom2), t(2,atom2), t(3,atom2)
1309  
1227
1310    end subroutine do_shape_pair
1311 <    
1311 >
1312    SUBROUTINE Associated_Legendre(x, l, m, lmax, plm, dlm)        
1313  
1314      ! Purpose: Compute the associated Legendre functions
# Line 1244 | Line 1326 | contains  
1326      !
1327      ! The original Fortran77 codes can be found here:
1328      ! http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html
1329 <    
1329 >
1330      real (kind=dp), intent(in) :: x
1331      integer, intent(in) :: l, m, lmax
1332      real (kind=dp), dimension(0:lmax,0:m), intent(out) :: PLM, DLM
# Line 1261 | Line 1343 | contains  
1343  
1344      ! start with 0,0:
1345      PLM(0,0) = 1.0D0
1346 <  
1346 >
1347      ! x = +/- 1 functions are easy:
1348      IF (abs(X).EQ.1.0D0) THEN
1349         DO I = 1, m
# Line 1316 | Line 1398 | contains  
1398  
1399  
1400    subroutine Orthogonal_Polynomial(x, m, mmax, function_type, pl, dpl)
1401 <  
1401 >
1402      ! Purpose: Compute orthogonal polynomials: Tn(x) or Un(x),
1403      !          or Ln(x) or Hn(x), and their derivatives
1404      ! Input :  function_type --- Function code
# Line 1335 | Line 1417 | contains  
1417      !
1418      ! The original Fortran77 codes can be found here:
1419      ! http://iris-lee3.ece.uiuc.edu/~jjin/routines/routines.html
1420 <  
1420 >
1421      real(kind=8), intent(in) :: x
1422      integer, intent(in):: m, mmax
1423      integer, intent(in):: function_type
1424      real(kind=8), dimension(0:mmax), intent(inout) :: pl, dpl
1425 <  
1425 >
1426      real(kind=8) :: a, b, c, y0, y1, dy0, dy1, yn, dyn
1427      integer :: k
1428  
# Line 1386 | Line 1468 | contains  
1468  
1469  
1470      RETURN
1471 <    
1471 >
1472    end subroutine Orthogonal_Polynomial
1391  
1392 end module shapes
1473  
1474 < subroutine makeShape(nContactFuncs, ContactFuncLValue, &
1475 <     ContactFuncMValue, ContactFunctionType, ContactFuncCoefficient, &
1396 <     nRangeFuncs, RangeFuncLValue, RangeFuncMValue, RangeFunctionType, &
1397 <     RangeFuncCoefficient, nStrengthFuncs, StrengthFuncLValue, &
1398 <     StrengthFuncMValue, StrengthFunctionType, StrengthFuncCoefficient, &
1399 <     myATID, status)
1474 >  subroutine deallocateShapes(this)
1475 >    type(Shape), pointer :: this
1476  
1477 <  use definitions
1478 <  use shapes, only: newShapeType
1479 <  
1480 <  integer :: nContactFuncs
1405 <  integer :: nRangeFuncs
1406 <  integer :: nStrengthFuncs
1407 <  integer :: status
1408 <  integer :: myATID
1409 <  
1410 <  integer, dimension(nContactFuncs) :: ContactFuncLValue          
1411 <  integer, dimension(nContactFuncs) :: ContactFuncMValue          
1412 <  integer, dimension(nContactFuncs) :: ContactFunctionType        
1413 <  real(kind=dp), dimension(nContactFuncs) :: ContactFuncCoefficient
1414 <  integer, dimension(nRangeFuncs) :: RangeFuncLValue            
1415 <  integer, dimension(nRangeFuncs) :: RangeFuncMValue            
1416 <  integer, dimension(nRangeFuncs) :: RangeFunctionType          
1417 <  real(kind=dp), dimension(nRangeFuncs) :: RangeFuncCoefficient  
1418 <  integer, dimension(nStrengthFuncs) :: StrengthFuncLValue          
1419 <  integer, dimension(nStrengthFuncs) :: StrengthFuncMValue          
1420 <  integer, dimension(nStrengthFuncs) :: StrengthFunctionType        
1421 <  real(kind=dp), dimension(nStrengthFuncs) :: StrengthFuncCoefficient
1422 <  
1423 <  call newShapeType(nContactFuncs, ContactFuncLValue, &
1424 <       ContactFuncMValue, ContactFunctionType, ContactFuncCoefficient, &
1425 <       nRangeFuncs, RangeFuncLValue, RangeFuncMValue, RangeFunctionType, &
1426 <       RangeFuncCoefficient, nStrengthFuncs, StrengthFuncLValue, &
1427 <       StrengthFuncMValue, StrengthFunctionType, StrengthFuncCoefficient, &
1428 <       myATID, status)
1477 >    if (associated( this%ContactFuncLValue)) then
1478 >       deallocate(this%ContactFuncLValue)
1479 >       this%ContactFuncLValue => null()
1480 >    end if
1481  
1482 <  return
1483 < end subroutine makeShape
1482 >    if (associated( this%ContactFuncMValue)) then
1483 >       deallocate( this%ContactFuncMValue)
1484 >       this%ContactFuncMValue => null()
1485 >    end if
1486 >    if (associated( this%ContactFunctionType)) then
1487 >       deallocate(this%ContactFunctionType)
1488 >       this%ContactFunctionType => null()
1489 >    end if
1490  
1491 < subroutine completeShapeFF(status)
1491 >    if (associated( this%ContactFuncCoefficient)) then
1492 >       deallocate(this%ContactFuncCoefficient)
1493 >       this%ContactFuncCoefficient => null()
1494 >    end if
1495  
1496 <  use shapes, only: complete_Shape_FF
1496 >    if (associated( this%RangeFuncLValue)) then
1497 >       deallocate(this%RangeFuncLValue)
1498 >       this%RangeFuncLValue => null()
1499 >    end if
1500 >    if (associated( this%RangeFuncMValue)) then
1501 >       deallocate( this%RangeFuncMValue)
1502 >       this%RangeFuncMValue => null()
1503 >    end if
1504  
1505 <  integer, intent(out)  :: status
1506 <  integer :: myStatus
1505 >    if (associated( this%RangeFunctionType)) then
1506 >       deallocate( this%RangeFunctionType)
1507 >       this%RangeFunctionType => null()
1508 >    end if
1509 >    if (associated( this%RangeFuncCoefficient)) then
1510 >       deallocate(this%RangeFuncCoefficient)
1511 >       this%RangeFuncCoefficient => null()
1512 >    end if
1513  
1514 <  myStatus = 0
1514 >    if (associated( this%StrengthFuncLValue)) then
1515 >       deallocate(this%StrengthFuncLValue)
1516 >       this%StrengthFuncLValue => null()
1517 >    end if
1518  
1519 <  call complete_Shape_FF(myStatus)
1519 >    if (associated( this%StrengthFuncMValue )) then
1520 >       deallocate(this%StrengthFuncMValue)
1521 >       this%StrengthFuncMValue => null()
1522 >    end if
1523  
1524 <  status = myStatus
1524 >    if(associated( this%StrengthFunctionType)) then
1525 >       deallocate(this%StrengthFunctionType)
1526 >       this%StrengthFunctionType => null()
1527 >    end if
1528 >    if (associated( this%StrengthFuncCoefficient )) then
1529 >       deallocate(this%StrengthFuncCoefficient)
1530 >       this%StrengthFuncCoefficient => null()
1531 >    end if
1532 >  end subroutine deallocateShapes
1533  
1534 <  return
1535 < end subroutine completeShapeFF
1534 >  subroutine destroyShapeTypes
1535 >    integer :: i
1536 >    type(Shape), pointer :: thisShape
1537  
1538 +    ! First walk through and kill the shape
1539 +    do i = 1,ShapeMap%n_shapes
1540 +       thisShape => ShapeMap%Shapes(i)
1541 +       call deallocateShapes(thisShape)
1542 +    end do
1543 +
1544 +    ! set shape map to starting values
1545 +    ShapeMap%n_shapes = 0
1546 +    ShapeMap%currentShape = 0
1547 +
1548 +    if (associated(ShapeMap%Shapes)) then
1549 +       deallocate(ShapeMap%Shapes)
1550 +       ShapeMap%Shapes => null()
1551 +    end if
1552 +
1553 +    if (associated(ShapeMap%atidToShape)) then
1554 +       deallocate(ShapeMap%atidToShape)
1555 +       ShapeMap%atidToShape => null()
1556 +    end if
1557 +
1558 +
1559 +  end subroutine destroyShapeTypes
1560 +
1561 +
1562 + end module shapes

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines