ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/sticky.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/sticky.F90 (file contents):
Revision 1608 by gezelter, Wed Oct 20 04:02:48 2004 UTC vs.
Revision 2232 by chrisfen, Wed May 18 19:06:22 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! This Module Calculates forces due to SSD potential and VDW interactions
43   !! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)].
44  
# Line 7 | Line 48
48   !! Corresponds to the force field defined in ssd_FF.cpp
49   !! @author Charles F. Vardeman II
50   !! @author Matthew Meineke
51 < !! @author Christopher Fennel
51 > !! @author Christopher Fennell
52   !! @author J. Daniel Gezelter
53 < !! @version $Id: sticky.F90,v 1.1 2004-10-20 04:02:48 gezelter Exp $, $Date: 2004-10-20 04:02:48 $, $Name: not supported by cvs2svn $, $Revision: 1.1 $
53 > !! @version $Id: sticky.F90,v 1.12 2005-05-18 19:06:22 chrisfen Exp $, $Date: 2005-05-18 19:06:22 $, $Name: not supported by cvs2svn $, $Revision: 1.12 $
54  
55 < module sticky_pair
55 > module sticky
56  
57    use force_globals
58    use definitions
59 +  use atype_module
60 +  use vector_class
61    use simulation
62 +  use status
63   #ifdef IS_MPI
64    use mpiSimulation
65   #endif
22
66    implicit none
67  
68    PRIVATE
69  
70 <  logical, save :: sticky_initialized = .false.
28 <  real( kind = dp ), save :: SSD_w0 = 0.0_dp
29 <  real( kind = dp ), save :: SSD_v0 = 0.0_dp
30 <  real( kind = dp ), save :: SSD_v0p = 0.0_dp
31 <  real( kind = dp ), save :: SSD_rl = 0.0_dp
32 <  real( kind = dp ), save :: SSD_ru = 0.0_dp
33 <  real( kind = dp ), save :: SSD_rlp = 0.0_dp
34 <  real( kind = dp ), save :: SSD_rup = 0.0_dp
35 <  real( kind = dp ), save :: SSD_rbig = 0.0_dp
36 <
37 <  public :: check_sticky_FF
38 <  public :: set_sticky_params
70 >  public :: newStickyType
71    public :: do_sticky_pair
72 +  public :: destroyStickyTypes
73 +  public :: do_sticky_power_pair
74  
75 +
76 +  type :: StickyList
77 +     integer :: c_ident
78 +     real( kind = dp ) :: w0 = 0.0_dp
79 +     real( kind = dp ) :: v0 = 0.0_dp
80 +     real( kind = dp ) :: v0p = 0.0_dp
81 +     real( kind = dp ) :: rl = 0.0_dp
82 +     real( kind = dp ) :: ru = 0.0_dp
83 +     real( kind = dp ) :: rlp = 0.0_dp
84 +     real( kind = dp ) :: rup = 0.0_dp
85 +     real( kind = dp ) :: rbig = 0.0_dp
86 +  end type StickyList
87 +
88 +  type(StickyList), dimension(:),allocatable :: StickyMap
89 +
90   contains
91  
92 <  subroutine check_sticky_FF(status)
44 <    integer :: status
45 <    status = -1
46 <    if (sticky_initialized) status = 0
47 <    return
48 <  end subroutine check_sticky_FF
92 >  subroutine newStickyType(c_ident, w0, v0, v0p, rl, ru, rlp, rup, isError)
93  
94 <  subroutine set_sticky_params(sticky_w0, sticky_v0, sticky_v0p, &
95 <       sticky_rl, sticky_ru, sticky_rlp, sticky_rup)
94 >    integer, intent(in) :: c_ident
95 >    integer, intent(inout) :: isError
96 >    real( kind = dp ), intent(in) :: w0, v0, v0p
97 >    real( kind = dp ), intent(in) :: rl, ru
98 >    real( kind = dp ), intent(in) :: rlp, rup
99 >    integer :: nATypes, myATID
100  
101 <    real( kind = dp ), intent(in) :: sticky_w0, sticky_v0, sticky_v0p
102 <    real( kind = dp ), intent(in) :: sticky_rl, sticky_ru
103 <    real( kind = dp ), intent(in) :: sticky_rlp, sticky_rup
104 <    
101 >
102 >    isError = 0
103 >    myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
104 >
105 >    !! Be simple-minded and assume that we need a StickyMap that
106 >    !! is the same size as the total number of atom types
107 >
108 >    if (.not.allocated(StickyMap)) then
109 >
110 >       nAtypes = getSize(atypes)
111 >
112 >       if (nAtypes == 0) then
113 >          isError = -1
114 >          return
115 >       end if
116 >
117 >       if (.not. allocated(StickyMap)) then
118 >          allocate(StickyMap(nAtypes))
119 >       endif
120 >
121 >    end if
122 >
123 >    if (myATID .gt. size(StickyMap)) then
124 >       isError = -1
125 >       return
126 >    endif
127 >
128 >    ! set the values for StickyMap for this atom type:
129 >
130 >    StickyMap(myATID)%c_ident = c_ident
131 >
132      ! we could pass all 5 parameters if we felt like it...
58    
59    SSD_w0 = sticky_w0
60    SSD_v0 = sticky_v0
61    SSD_v0p = sticky_v0p
62    SSD_rl = sticky_rl
63    SSD_ru = sticky_ru
64    SSD_rlp = sticky_rlp
65    SSD_rup = sticky_rup
133  
134 <    if (SSD_ru .gt. SSD_rup) then
135 <       SSD_rbig = SSD_ru
134 >    StickyMap(myATID)%w0 = w0
135 >    StickyMap(myATID)%v0 = v0
136 >    StickyMap(myATID)%v0p = v0p
137 >    StickyMap(myATID)%rl = rl
138 >    StickyMap(myATID)%ru = ru
139 >    StickyMap(myATID)%rlp = rlp
140 >    StickyMap(myATID)%rup = rup
141 >
142 >    if (StickyMap(myATID)%ru .gt. StickyMap(myATID)%rup) then
143 >       StickyMap(myATID)%rbig = StickyMap(myATID)%ru
144      else
145 <       SSD_rbig = SSD_rup
145 >       StickyMap(myATID)%rbig = StickyMap(myATID)%rup
146      endif
147 <  
73 <    sticky_initialized = .true.
147 >
148      return
149 <  end subroutine set_sticky_params
149 >  end subroutine newStickyType
150  
151    subroutine do_sticky_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, &
152         pot, A, f, t, do_pot)
153 <    
153 >
154      !! This routine does only the sticky portion of the SSD potential
155      !! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)].
156      !! The Lennard-Jones and dipolar interaction must be handled separately.
157 <    
157 >
158      !! We assume that the rotation matrices have already been calculated
159      !! and placed in the A array.
160  
# Line 113 | Line 187 | contains
187      real (kind=dp) :: radcomxi, radcomyi, radcomzi
188      real (kind=dp) :: radcomxj, radcomyj, radcomzj
189      integer :: id1, id2
190 +    integer :: me1, me2
191 +    real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig
192  
193 <    if (.not.sticky_initialized) then
194 <       write(*,*) 'Sticky forces not initialized!'
193 >    if (.not.allocated(StickyMap)) then
194 >       call handleError("sticky", "no StickyMap was present before first call of do_sticky_pair!")
195         return
196 <    endif
196 >    end if
197  
198 + #ifdef IS_MPI
199 +    me1 = atid_Row(atom1)
200 +    me2 = atid_Col(atom2)
201 + #else
202 +    me1 = atid(atom1)
203 +    me2 = atid(atom2)
204 + #endif
205  
206 <    if ( rij .LE. SSD_rbig ) then
206 >    if (me1.eq.me2) then
207 >       w0  = StickyMap(me1)%w0
208 >       v0  = StickyMap(me1)%v0
209 >       v0p = StickyMap(me1)%v0p
210 >       rl  = StickyMap(me1)%rl
211 >       ru  = StickyMap(me1)%ru
212 >       rlp = StickyMap(me1)%rlp
213 >       rup = StickyMap(me1)%rup
214 >       rbig = StickyMap(me1)%rbig
215 >    else
216 >       ! This is silly, but if you want 2 sticky types in your
217 >       ! simulation, we'll let you do it with the Lorentz-
218 >       ! Berthelot mixing rules.
219 >       ! (Warning: you'll be SLLLLLLLLLLLLLLLOOOOOOOOOOWWWWWWWWWWW)
220 >       rl   = 0.5_dp * ( StickyMap(me1)%rl + StickyMap(me2)%rl )
221 >       ru   = 0.5_dp * ( StickyMap(me1)%ru + StickyMap(me2)%ru )
222 >       rlp  = 0.5_dp * ( StickyMap(me1)%rlp + StickyMap(me2)%rlp )
223 >       rup  = 0.5_dp * ( StickyMap(me1)%rup + StickyMap(me2)%rup )
224 >       rbig = max(ru, rup)
225 >       w0  = sqrt( StickyMap(me1)%w0   * StickyMap(me2)%w0  )
226 >       v0  = sqrt( StickyMap(me1)%v0   * StickyMap(me2)%v0  )
227 >       v0p = sqrt( StickyMap(me1)%v0p  * StickyMap(me2)%v0p )
228 >    endif
229  
230 +    if ( rij .LE. rbig ) then
231 +
232         r3 = r2*rij
233         r5 = r3*r2
234  
# Line 165 | Line 272 | contains
272         yj2 = yj*yj
273         zj2 = zj*zj
274  
275 <       call calc_sw_fnc(rij, s, sp, dsdr, dspdr)
275 >       call calc_sw_fnc(rij, rl, ru, rlp, rup, s, sp, dsdr, dspdr)
276  
277         wi = 2.0d0*(xi2-yi2)*zi / r3
278         wj = 2.0d0*(xj2-yj2)*zj / r3
# Line 177 | Line 284 | contains
284         zjf = zj/rij - 0.6d0
285         zjs = zj/rij + 0.8d0
286  
287 <       wip = zif*zif*zis*zis - SSD_w0
288 <       wjp = zjf*zjf*zjs*zjs - SSD_w0
287 >       wip = zif*zif*zis*zis - w0
288 >       wjp = zjf*zjf*zjs*zjs - w0
289         wp = wip + wjp
290  
291 <       vpair = vpair + 0.5d0*(SSD_v0*s*w + SSD_v0p*sp*wp)
291 >       vpair = vpair + 0.5d0*(v0*s*w + v0p*sp*wp)
292         if (do_pot) then
293   #ifdef IS_MPI
294 <          pot_row(atom1) = pot_row(atom1) + 0.25d0*(SSD_v0*s*w + SSD_v0p*sp*wp)*sw
295 <          pot_col(atom2) = pot_col(atom2) + 0.25d0*(SSD_v0*s*w + SSD_v0p*sp*wp)*sw
294 >          pot_row(atom1) = pot_row(atom1) + 0.25d0*(v0*s*w + v0p*sp*wp)*sw
295 >          pot_col(atom2) = pot_col(atom2) + 0.25d0*(v0*s*w + v0p*sp*wp)*sw
296   #else
297 <          pot = pot + 0.5d0*(SSD_v0*s*w + SSD_v0p*sp*wp)*sw
297 >          pot = pot + 0.5d0*(v0*s*w + v0p*sp*wp)*sw
298   #endif  
299         endif
300  
# Line 229 | Line 336 | contains
336         ! do the torques first since they are easy:
337         ! remember that these are still in the body fixed axes
338  
339 <       txi = 0.5d0*(SSD_v0*s*dwidux + SSD_v0p*sp*dwipdux)*sw
340 <       tyi = 0.5d0*(SSD_v0*s*dwiduy + SSD_v0p*sp*dwipduy)*sw
341 <       tzi = 0.5d0*(SSD_v0*s*dwiduz + SSD_v0p*sp*dwipduz)*sw
339 >       txi = 0.5d0*(v0*s*dwidux + v0p*sp*dwipdux)*sw
340 >       tyi = 0.5d0*(v0*s*dwiduy + v0p*sp*dwipduy)*sw
341 >       tzi = 0.5d0*(v0*s*dwiduz + v0p*sp*dwipduz)*sw
342  
343 <       txj = 0.5d0*(SSD_v0*s*dwjdux + SSD_v0p*sp*dwjpdux)*sw
344 <       tyj = 0.5d0*(SSD_v0*s*dwjduy + SSD_v0p*sp*dwjpduy)*sw
345 <       tzj = 0.5d0*(SSD_v0*s*dwjduz + SSD_v0p*sp*dwjpduz)*sw
343 >       txj = 0.5d0*(v0*s*dwjdux + v0p*sp*dwjpdux)*sw
344 >       tyj = 0.5d0*(v0*s*dwjduy + v0p*sp*dwjpduy)*sw
345 >       tzj = 0.5d0*(v0*s*dwjduz + v0p*sp*dwjpduz)*sw
346  
347         ! go back to lab frame using transpose of rotation matrix:
348  
# Line 266 | Line 373 | contains
373  
374         ! first rotate the i terms back into the lab frame:
375  
376 <       radcomxi = (SSD_v0*s*dwidx+SSD_v0p*sp*dwipdx)*sw
377 <       radcomyi = (SSD_v0*s*dwidy+SSD_v0p*sp*dwipdy)*sw
378 <       radcomzi = (SSD_v0*s*dwidz+SSD_v0p*sp*dwipdz)*sw
376 >       radcomxi = (v0*s*dwidx+v0p*sp*dwipdx)*sw
377 >       radcomyi = (v0*s*dwidy+v0p*sp*dwipdy)*sw
378 >       radcomzi = (v0*s*dwidz+v0p*sp*dwipdz)*sw
379  
380 <       radcomxj = (SSD_v0*s*dwjdx+SSD_v0p*sp*dwjpdx)*sw
381 <       radcomyj = (SSD_v0*s*dwjdy+SSD_v0p*sp*dwjpdy)*sw
382 <       radcomzj = (SSD_v0*s*dwjdz+SSD_v0p*sp*dwjpdz)*sw
380 >       radcomxj = (v0*s*dwjdx+v0p*sp*dwjpdx)*sw
381 >       radcomyj = (v0*s*dwjdy+v0p*sp*dwjpdy)*sw
382 >       radcomzj = (v0*s*dwjdz+v0p*sp*dwjpdz)*sw
383  
384   #ifdef IS_MPI    
385         fxii = a_Row(1,atom1)*(radcomxi) + &
# Line 326 | Line 433 | contains
433  
434         ! now assemble these with the radial-only terms:
435  
436 <       fxradial = 0.5d0*(SSD_v0*dsdr*drdx*w + SSD_v0p*dspdr*drdx*wp + fxii + fxji)
437 <       fyradial = 0.5d0*(SSD_v0*dsdr*drdy*w + SSD_v0p*dspdr*drdy*wp + fyii + fyji)
438 <       fzradial = 0.5d0*(SSD_v0*dsdr*drdz*w + SSD_v0p*dspdr*drdz*wp + fzii + fzji)
436 >       fxradial = 0.5d0*(v0*dsdr*drdx*w + v0p*dspdr*drdx*wp + fxii + fxji)
437 >       fyradial = 0.5d0*(v0*dsdr*drdy*w + v0p*dspdr*drdy*wp + fyii + fyji)
438 >       fzradial = 0.5d0*(v0*dsdr*drdz*w + v0p*dspdr*drdz*wp + fzii + fzji)
439  
440   #ifdef IS_MPI
441         f_Row(1,atom1) = f_Row(1,atom1) + fxradial
# Line 355 | Line 462 | contains
462         id1 = atom1
463         id2 = atom2
464   #endif
465 <      
465 >
466         if (molMembershipList(id1) .ne. molMembershipList(id2)) then
467 <          
467 >
468            fpair(1) = fpair(1) + fxradial
469            fpair(2) = fpair(2) + fyradial
470            fpair(3) = fpair(3) + fzradial
471 <          
471 >
472         endif
473      endif
474    end subroutine do_sticky_pair
475  
476    !! calculates the switching functions and their derivatives for a given
477 <  subroutine calc_sw_fnc(r, s, sp, dsdr, dspdr)
478 <    
479 <    real (kind=dp), intent(in) :: r
477 >  subroutine calc_sw_fnc(r, rl, ru, rlp, rup, s, sp, dsdr, dspdr)
478 >
479 >    real (kind=dp), intent(in) :: r, rl, ru, rlp, rup
480      real (kind=dp), intent(inout) :: s, sp, dsdr, dspdr
481 <    
481 >
482      ! distances must be in angstroms
483 <    
484 <    if (r.lt.SSD_rl) then
483 >
484 >    if (r.lt.rl) then
485         s = 1.0d0
486         dsdr = 0.0d0
487 <    elseif (r.gt.SSD_ru) then
487 >    elseif (r.gt.ru) then
488         s = 0.0d0
489         dsdr = 0.0d0
490      else
491 <       s = ((SSD_ru + 2.0d0*r - 3.0d0*SSD_rl) * (SSD_ru-r)**2) / &
492 <            ((SSD_ru - SSD_rl)**3)
493 <       dsdr = 6.0d0*(r-SSD_ru)*(r-SSD_rl)/((SSD_ru - SSD_rl)**3)
491 >       s = ((ru + 2.0d0*r - 3.0d0*rl) * (ru-r)**2) / &
492 >            ((ru - rl)**3)
493 >       dsdr = 6.0d0*(r-ru)*(r-rl)/((ru - rl)**3)
494      endif
495  
496 <    if (r.lt.SSD_rlp) then
496 >    if (r.lt.rlp) then
497         sp = 1.0d0      
498         dspdr = 0.0d0
499 <    elseif (r.gt.SSD_rup) then
499 >    elseif (r.gt.rup) then
500         sp = 0.0d0
501         dspdr = 0.0d0
502      else
503 <       sp = ((SSD_rup + 2.0d0*r - 3.0d0*SSD_rlp) * (SSD_rup-r)**2) / &
504 <            ((SSD_rup - SSD_rlp)**3)
505 <       dspdr = 6.0d0*(r-SSD_rup)*(r-SSD_rlp)/((SSD_rup - SSD_rlp)**3)      
503 >       sp = ((rup + 2.0d0*r - 3.0d0*rlp) * (rup-r)**2) / &
504 >            ((rup - rlp)**3)
505 >       dspdr = 6.0d0*(r-rup)*(r-rlp)/((rup - rlp)**3)      
506      endif
507 <    
507 >
508      return
509    end subroutine calc_sw_fnc
403 end module sticky_pair
510  
511 <  subroutine set_sticky_params(sticky_w0, sticky_v0, sticky_v0p, &
512 <       sticky_rl, sticky_ru, sticky_rlp, sticky_rup)
513 <    use definitions, ONLY : dp  
514 <    use sticky_pair, ONLY : module_set_sticky_params => set_sticky_params
515 <    real( kind = dp ), intent(inout) :: sticky_w0, sticky_v0, sticky_v0p
516 <    real( kind = dp ), intent(inout) :: sticky_rl, sticky_ru
517 <    real( kind = dp ), intent(inout) :: sticky_rlp, sticky_rup
518 <    
519 <    call module_set_sticky_params(sticky_w0, sticky_v0, sticky_v0p, &
520 <       sticky_rl, sticky_ru, sticky_rlp, sticky_rup)
511 >  subroutine destroyStickyTypes()  
512 >    if(allocated(StickyMap)) deallocate(StickyMap)
513 >  end subroutine destroyStickyTypes
514 >  
515 >    subroutine do_sticky_power_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, &
516 >       pot, A, f, t, do_pot, ebalance)
517 >    !! We assume that the rotation matrices have already been calculated
518 >    !! and placed in the A array.
519 >
520 >    !! i and j are pointers to the two SSD atoms
521 >
522 >    integer, intent(in) :: atom1, atom2
523 >    real (kind=dp), intent(inout) :: rij, r2
524 >    real (kind=dp), dimension(3), intent(in) :: d
525 >    real (kind=dp), dimension(3), intent(inout) :: fpair
526 >    real (kind=dp) :: pot, vpair, sw
527 >    real (kind=dp), dimension(9,nLocal) :: A
528 >    real (kind=dp), dimension(3,nLocal) :: f
529 >    real (kind=dp), dimension(3,nLocal) :: t
530 >    real (kind=dp), intent(in) :: ebalance
531 >    logical, intent(in) :: do_pot
532 >
533 >    real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2
534 >    real (kind=dp) :: xihat, yihat, zihat, xjhat, yjhat, zjhat
535 >    real (kind=dp) :: rI, rI2, rI3, rI4, rI5, rI6, rI7, s, sp, dsdr, dspdr
536 >    real (kind=dp) :: wi, wj, w, wi2, wj2
537 >    real (kind=dp) :: dwidx, dwidy, dwidz, dwjdx, dwjdy, dwjdz
538 >    real (kind=dp) :: dwidux, dwiduy, dwiduz, dwjdux, dwjduy, dwjduz
539 >    real (kind=dp) :: drdx, drdy, drdz
540 >    real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj
541 >    real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj
542 >    real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji      
543 >    real (kind=dp) :: fxradial, fyradial, fzradial
544 >    real (kind=dp) :: rijtest, rjitest
545 >    real (kind=dp) :: radcomxi, radcomyi, radcomzi
546 >    real (kind=dp) :: radcomxj, radcomyj, radcomzj
547 >    integer :: id1, id2
548 >    integer :: me1, me2
549 >    real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig
550 >    real (kind=dp) :: zi3, zi4, zi5, zj3, zj4, zj5
551 >    real (kind=dp) :: frac1, frac2
552 >          
553 >    if (.not.allocated(StickyMap)) then
554 >       call handleError("sticky", "no StickyMap was present before first call of do_sticky_power_pair!")
555 >       return
556 >    end if
557 >
558 > #ifdef IS_MPI
559 >    me1 = atid_Row(atom1)
560 >    me2 = atid_Col(atom2)
561 > #else
562 >    me1 = atid(atom1)
563 >    me2 = atid(atom2)
564 > #endif
565 >
566 >    if (me1.eq.me2) then
567 >       w0  = StickyMap(me1)%w0
568 >       v0  = StickyMap(me1)%v0
569 >       v0p = StickyMap(me1)%v0p
570 >       rl  = StickyMap(me1)%rl
571 >       ru  = StickyMap(me1)%ru
572 >       rlp = StickyMap(me1)%rlp
573 >       rup = StickyMap(me1)%rup
574 >       rbig = StickyMap(me1)%rbig
575 >    else
576 >       ! This is silly, but if you want 2 sticky types in your
577 >       ! simulation, we'll let you do it with the Lorentz-
578 >       ! Berthelot mixing rules.
579 >       ! (Warning: you'll be SLLLLLLLLLLLLLLLOOOOOOOOOOWWWWWWWWWWW)
580 >       rl   = 0.5_dp * ( StickyMap(me1)%rl + StickyMap(me2)%rl )
581 >       ru   = 0.5_dp * ( StickyMap(me1)%ru + StickyMap(me2)%ru )
582 >       rlp  = 0.5_dp * ( StickyMap(me1)%rlp + StickyMap(me2)%rlp )
583 >       rup  = 0.5_dp * ( StickyMap(me1)%rup + StickyMap(me2)%rup )
584 >       rbig = max(ru, rup)
585 >       w0  = sqrt( StickyMap(me1)%w0   * StickyMap(me2)%w0  )
586 >       v0  = sqrt( StickyMap(me1)%v0   * StickyMap(me2)%v0  )
587 >       v0p = sqrt( StickyMap(me1)%v0p  * StickyMap(me2)%v0p )
588 >    endif
589 >
590 >    if ( rij .LE. rbig ) then
591 >
592 >       rI = 1.0d0/rij
593 >       rI2 = rI*rI
594 >       rI3 = rI2*rI
595 >       rI4 = rI2*rI2
596 >       rI5 = rI3*rI2
597 >       rI6 = rI3*rI3
598 >       rI7 = rI4*rI3
599 >              
600 >       drdx = d(1) * rI
601 >       drdy = d(2) * rI
602 >       drdz = d(3) * rI
603 >
604 > #ifdef IS_MPI
605 >       ! rotate the inter-particle separation into the two different
606 >       ! body-fixed coordinate systems:
607 >
608 >       xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
609 >       yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
610 >       zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
611 >
612 >       ! negative sign because this is the vector from j to i:
613 >
614 >       xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
615 >       yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
616 >       zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
617 > #else
618 >       ! rotate the inter-particle separation into the two different
619 >       ! body-fixed coordinate systems:
620 >
621 >       xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
622 >       yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
623 >       zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
624 >
625 >       ! negative sign because this is the vector from j to i:
626 >
627 >       xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
628 >       yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
629 >       zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
630 > #endif
631 >
632 >       xi2 = xi*xi
633 >       yi2 = yi*yi
634 >       zi2 = zi*zi
635 >       zi3 = zi2*zi
636 >       zi4 = zi2*zi2
637 >       zi5 = zi3*zi2
638 >       xihat = xi*rI
639 >       yihat = yi*rI
640 >       zihat = zi*rI
641        
642 <  end subroutine set_sticky_params
642 >       xj2 = xj*xj
643 >       yj2 = yj*yj
644 >       zj2 = zj*zj
645 >       zj3 = zj2*zj
646 >       zj4 = zj2*zj2
647 >       zj5 = zj3*zj2
648 >       xjhat = xj*rI
649 >       yjhat = yj*rI
650 >       zjhat = zj*rI
651 >      
652 >       call calc_sw_fnc(rij, rl, ru, rlp, rup, s, sp, dsdr, dspdr)
653 >          
654 >       frac1 = 1.5d0
655 >       frac2 = 0.5d0
656 >      
657 >       wi = 2.0d0*(xi2-yi2)*zi*rI3
658 >       wj = 2.0d0*(xj2-yj2)*zj*rI3
659 >      
660 >       wi2 = wi*wi
661 >       wj2 = wj*wj
662 >
663 >       w = frac1*wi*wi2 + frac2*wi + frac1*wj*wj2 + frac2*wj
664 >
665 >       vpair = vpair + 0.5d0*(v0*s*w) + ebalance
666 >      
667 >       if (do_pot) then
668 > #ifdef IS_MPI
669 >         pot_row(atom1) = pot_row(atom1) + 0.25d0*(v0*s*w)*sw
670 >         pot_col(atom2) = pot_col(atom2) + 0.25d0*(v0*s*w)*sw
671 > #else
672 >         pot = pot + 0.5d0*(v0*s*w)*sw + ebalance
673 > #endif  
674 >       endif
675 >
676 >       dwidx = ( 4.0d0*xi*zi*rI3 - 6.0d0*xi*zi*(xi2-yi2)*rI5 )
677 >       dwidy = ( -4.0d0*yi*zi*rI3 - 6.0d0*yi*zi*(xi2-yi2)*rI5 )
678 >       dwidz = ( 2.0d0*(xi2-yi2)*rI3 - 6.0d0*zi2*(xi2-yi2)*rI5 )
679 >      
680 >       dwidx = frac1*3.0d0*wi2*dwidx + frac2*dwidx
681 >       dwidy = frac1*3.0d0*wi2*dwidy + frac2*dwidy
682 >       dwidz = frac1*3.0d0*wi2*dwidz + frac2*dwidz
683 >
684 >       dwjdx = ( 4.0d0*xj*zj*rI3  - 6.0d0*xj*zj*(xj2-yj2)*rI5 )
685 >       dwjdy = ( -4.0d0*yj*zj*rI3  - 6.0d0*yj*zj*(xj2-yj2)*rI5 )
686 >       dwjdz = ( 2.0d0*(xj2-yj2)*rI3  - 6.0d0*zj2*(xj2-yj2)*rI5 )
687 >
688 >       dwjdx = frac1*3.0d0*wj2*dwjdx + frac2*dwjdx
689 >       dwjdy = frac1*3.0d0*wj2*dwjdy + frac2*dwjdy
690 >       dwjdz = frac1*3.0d0*wj2*dwjdz + frac2*dwjdz
691 >      
692 >       dwidux = ( 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))*rI3 )
693 >       dwiduy = ( 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))*rI3 )
694 >       dwiduz = ( -8.0d0*xi*yi*zi*rI3 )
695 >
696 >       dwidux = frac1*3.0d0*wi2*dwidux + frac2*dwidux
697 >       dwiduy = frac1*3.0d0*wi2*dwiduy + frac2*dwiduy
698 >       dwiduz = frac1*3.0d0*wi2*dwiduz + frac2*dwiduz
699 >
700 >       dwjdux = ( 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))*rI3 )
701 >       dwjduy = ( 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))*rI3 )
702 >       dwjduz = ( -8.0d0*xj*yj*zj*rI3 )
703 >
704 >       dwjdux = frac1*3.0d0*wj2*dwjdux + frac2*dwjdux
705 >       dwjduy = frac1*3.0d0*wj2*dwjduy + frac2*dwjduy
706 >       dwjduz = frac1*3.0d0*wj2*dwjduz + frac2*dwjduz
707 >
708 >       ! do the torques first since they are easy:
709 >       ! remember that these are still in the body fixed axes
710 >
711 >       txi = 0.5d0*(v0*s*dwidux)*sw
712 >       tyi = 0.5d0*(v0*s*dwiduy)*sw
713 >       tzi = 0.5d0*(v0*s*dwiduz)*sw
714 >
715 >       txj = 0.5d0*(v0*s*dwjdux)*sw
716 >       tyj = 0.5d0*(v0*s*dwjduy)*sw
717 >       tzj = 0.5d0*(v0*s*dwjduz)*sw
718 >
719 >       ! go back to lab frame using transpose of rotation matrix:
720 >
721 > #ifdef IS_MPI
722 >       t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
723 >            a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
724 >       t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
725 >            a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
726 >       t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
727 >            a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
728 >
729 >       t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
730 >            a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
731 >       t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
732 >            a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
733 >       t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
734 >            a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
735 > #else
736 >       t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
737 >       t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
738 >       t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
739 >
740 >       t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
741 >       t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
742 >       t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
743 > #endif    
744 >       ! Now, on to the forces:
745 >
746 >       ! first rotate the i terms back into the lab frame:
747 >
748 >       radcomxi = (v0*s*dwidx)*sw
749 >       radcomyi = (v0*s*dwidy)*sw
750 >       radcomzi = (v0*s*dwidz)*sw
751 >
752 >       radcomxj = (v0*s*dwjdx)*sw
753 >       radcomyj = (v0*s*dwjdy)*sw
754 >       radcomzj = (v0*s*dwjdz)*sw
755 >
756 > #ifdef IS_MPI    
757 >       fxii = a_Row(1,atom1)*(radcomxi) + &
758 >            a_Row(4,atom1)*(radcomyi) + &
759 >            a_Row(7,atom1)*(radcomzi)
760 >       fyii = a_Row(2,atom1)*(radcomxi) + &
761 >            a_Row(5,atom1)*(radcomyi) + &
762 >            a_Row(8,atom1)*(radcomzi)
763 >       fzii = a_Row(3,atom1)*(radcomxi) + &
764 >            a_Row(6,atom1)*(radcomyi) + &
765 >            a_Row(9,atom1)*(radcomzi)
766 >
767 >       fxjj = a_Col(1,atom2)*(radcomxj) + &
768 >            a_Col(4,atom2)*(radcomyj) + &
769 >            a_Col(7,atom2)*(radcomzj)
770 >       fyjj = a_Col(2,atom2)*(radcomxj) + &
771 >            a_Col(5,atom2)*(radcomyj) + &
772 >            a_Col(8,atom2)*(radcomzj)
773 >       fzjj = a_Col(3,atom2)*(radcomxj)+ &
774 >            a_Col(6,atom2)*(radcomyj) + &
775 >            a_Col(9,atom2)*(radcomzj)
776 > #else
777 >       fxii = a(1,atom1)*(radcomxi) + &
778 >            a(4,atom1)*(radcomyi) + &
779 >            a(7,atom1)*(radcomzi)
780 >       fyii = a(2,atom1)*(radcomxi) + &
781 >            a(5,atom1)*(radcomyi) + &
782 >            a(8,atom1)*(radcomzi)
783 >       fzii = a(3,atom1)*(radcomxi) + &
784 >            a(6,atom1)*(radcomyi) + &
785 >            a(9,atom1)*(radcomzi)
786 >
787 >       fxjj = a(1,atom2)*(radcomxj) + &
788 >            a(4,atom2)*(radcomyj) + &
789 >            a(7,atom2)*(radcomzj)
790 >       fyjj = a(2,atom2)*(radcomxj) + &
791 >            a(5,atom2)*(radcomyj) + &
792 >            a(8,atom2)*(radcomzj)
793 >       fzjj = a(3,atom2)*(radcomxj)+ &
794 >            a(6,atom2)*(radcomyj) + &
795 >            a(9,atom2)*(radcomzj)
796 > #endif
797 >
798 >       fxij = -fxii
799 >       fyij = -fyii
800 >       fzij = -fzii
801 >
802 >       fxji = -fxjj
803 >       fyji = -fyjj
804 >       fzji = -fzjj
805 >
806 >       ! now assemble these with the radial-only terms:
807 >
808 >       fxradial = 0.5d0*(v0*dsdr*w*drdx + fxii + fxji + ebalance*xihat)
809 >       fyradial = 0.5d0*(v0*dsdr*w*drdy + fyii + fyji + ebalance*yihat)
810 >       fzradial = 0.5d0*(v0*dsdr*w*drdz + fzii + fzji + ebalance*zihat)
811 >
812 > #ifdef IS_MPI
813 >       f_Row(1,atom1) = f_Row(1,atom1) + fxradial
814 >       f_Row(2,atom1) = f_Row(2,atom1) + fyradial
815 >       f_Row(3,atom1) = f_Row(3,atom1) + fzradial
816 >
817 >       f_Col(1,atom2) = f_Col(1,atom2) - fxradial
818 >       f_Col(2,atom2) = f_Col(2,atom2) - fyradial
819 >       f_Col(3,atom2) = f_Col(3,atom2) - fzradial
820 > #else
821 >       f(1,atom1) = f(1,atom1) + fxradial
822 >       f(2,atom1) = f(2,atom1) + fyradial
823 >       f(3,atom1) = f(3,atom1) + fzradial
824 >
825 >       f(1,atom2) = f(1,atom2) - fxradial
826 >       f(2,atom2) = f(2,atom2) - fyradial
827 >       f(3,atom2) = f(3,atom2) - fzradial
828 > #endif
829 >
830 > #ifdef IS_MPI
831 >       id1 = AtomRowToGlobal(atom1)
832 >       id2 = AtomColToGlobal(atom2)
833 > #else
834 >       id1 = atom1
835 >       id2 = atom2
836 > #endif
837 >
838 >       if (molMembershipList(id1) .ne. molMembershipList(id2)) then
839 >
840 >          fpair(1) = fpair(1) + fxradial
841 >          fpair(2) = fpair(2) + fyradial
842 >          fpair(3) = fpair(3) + fzradial
843 >
844 >       endif
845 >    endif
846 >  end subroutine do_sticky_power_pair
847 >
848 > end module sticky

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines