ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/DarkSide/sticky.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/DarkSide/sticky.F90 (file contents):
Revision 1930 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
Revision 2224 by chrisfen, Thu May 12 19:43:48 2005 UTC

# Line 48 | Line 48
48   !! Corresponds to the force field defined in ssd_FF.cpp
49   !! @author Charles F. Vardeman II
50   !! @author Matthew Meineke
51 < !! @author Christopher Fennel
51 > !! @author Christopher Fennell
52   !! @author J. Daniel Gezelter
53 < !! @version $Id: sticky.F90,v 1.3 2005-01-12 22:40:45 gezelter Exp $, $Date: 2005-01-12 22:40:45 $, $Name: not supported by cvs2svn $, $Revision: 1.3 $
53 > !! @version $Id: sticky.F90,v 1.9 2005-05-12 19:43:48 chrisfen Exp $, $Date: 2005-05-12 19:43:48 $, $Name: not supported by cvs2svn $, $Revision: 1.9 $
54  
55   module sticky
56  
# Line 69 | Line 69 | module sticky
69  
70    public :: newStickyType
71    public :: do_sticky_pair
72 +  public :: destroyStickyTypes
73 +  public :: do_sticky_power_pair
74  
75  
76    type :: StickyList
# Line 82 | Line 84 | module sticky
84       real( kind = dp ) :: rup = 0.0_dp
85       real( kind = dp ) :: rbig = 0.0_dp
86    end type StickyList
87 <  
87 >
88    type(StickyList), dimension(:),allocatable :: StickyMap
89  
90   contains
# Line 96 | Line 98 | contains
98      real( kind = dp ), intent(in) :: rlp, rup
99      integer :: nATypes, myATID
100  
101 <    
101 >
102      isError = 0
103      myATID = getFirstMatchingElement(atypes, "c_ident", c_ident)
104 <    
104 >
105      !! Be simple-minded and assume that we need a StickyMap that
106      !! is the same size as the total number of atom types
107  
# Line 128 | Line 130 | contains
130      StickyMap(myATID)%c_ident = c_ident
131  
132      ! we could pass all 5 parameters if we felt like it...
133 <    
133 >
134      StickyMap(myATID)%w0 = w0
135      StickyMap(myATID)%v0 = v0
136      StickyMap(myATID)%v0p = v0p
# Line 142 | Line 144 | contains
144      else
145         StickyMap(myATID)%rbig = StickyMap(myATID)%rup
146      endif
147 <  
147 >
148      return
149    end subroutine newStickyType
150  
151    subroutine do_sticky_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, &
152         pot, A, f, t, do_pot)
153 <    
153 >
154      !! This routine does only the sticky portion of the SSD potential
155      !! [Chandra and Ichiye, J. Chem. Phys. 111, 2701 (1999)].
156      !! The Lennard-Jones and dipolar interaction must be handled separately.
157 <    
157 >
158      !! We assume that the rotation matrices have already been calculated
159      !! and placed in the A array.
160  
# Line 186 | Line 188 | contains
188      real (kind=dp) :: radcomxj, radcomyj, radcomzj
189      integer :: id1, id2
190      integer :: me1, me2
191 <   real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig
191 >    real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig
192  
193 < if (.not.allocated(StickyMap)) then
193 >    if (.not.allocated(StickyMap)) then
194         call handleError("sticky", "no StickyMap was present before first call of do_sticky_pair!")
195         return
196      end if
197 <    
197 >
198   #ifdef IS_MPI
199      me1 = atid_Row(atom1)
200      me2 = atid_Col(atom2)
# Line 460 | Line 462 | if (.not.allocated(StickyMap)) then
462         id1 = atom1
463         id2 = atom2
464   #endif
465 <      
465 >
466         if (molMembershipList(id1) .ne. molMembershipList(id2)) then
467 <          
467 >
468            fpair(1) = fpair(1) + fxradial
469            fpair(2) = fpair(2) + fyradial
470            fpair(3) = fpair(3) + fzradial
471 <          
471 >
472         endif
473      endif
474    end subroutine do_sticky_pair
475  
476    !! calculates the switching functions and their derivatives for a given
477    subroutine calc_sw_fnc(r, rl, ru, rlp, rup, s, sp, dsdr, dspdr)
478 <    
478 >
479      real (kind=dp), intent(in) :: r, rl, ru, rlp, rup
480      real (kind=dp), intent(inout) :: s, sp, dsdr, dspdr
481 <    
481 >
482      ! distances must be in angstroms
483 <    
483 >
484      if (r.lt.rl) then
485         s = 1.0d0
486         dsdr = 0.0d0
# Line 502 | Line 504 | if (.not.allocated(StickyMap)) then
504              ((rup - rlp)**3)
505         dspdr = 6.0d0*(r-rup)*(r-rlp)/((rup - rlp)**3)      
506      endif
507 <    
507 >
508      return
509    end subroutine calc_sw_fnc
508 end module sticky
510  
511 <  subroutine newStickyType(c_ident, w0, v0, v0p, rl, ru, rlp, rup, isError)
511 >  subroutine destroyStickyTypes()  
512 >    if(allocated(StickyMap)) deallocate(StickyMap)
513 >  end subroutine destroyStickyTypes
514 >  
515 >    subroutine do_sticky_power_pair(atom1, atom2, d, rij, r2, sw, vpair, fpair, &
516 >       pot, A, f, t, do_pot)
517 >    !! We assume that the rotation matrices have already been calculated
518 >    !! and placed in the A array.
519  
520 <    use definitions, ONLY : dp  
513 <    use sticky, ONLY : module_newStickyType => newStickyType
520 >    !! i and j are pointers to the two SSD atoms
521  
522 <    integer, intent(inout) :: c_ident, isError
523 <    real( kind = dp ), intent(inout) :: w0, v0, v0p, rl, ru, rlp, rup
522 >    integer, intent(in) :: atom1, atom2
523 >    real (kind=dp), intent(inout) :: rij, r2
524 >    real (kind=dp), dimension(3), intent(in) :: d
525 >    real (kind=dp), dimension(3), intent(inout) :: fpair
526 >    real (kind=dp) :: pot, vpair, sw
527 >    real (kind=dp), dimension(9,nLocal) :: A
528 >    real (kind=dp), dimension(3,nLocal) :: f
529 >    real (kind=dp), dimension(3,nLocal) :: t
530 >    logical, intent(in) :: do_pot
531 >
532 >    real (kind=dp) :: xi, yi, zi, xj, yj, zj, xi2, yi2, zi2, xj2, yj2, zj2
533 >    real (kind=dp) :: xihat, yihat, zihat, xjhat, yjhat, zjhat
534 >    real (kind=dp) :: rI, rI2, rI3, rI4, rI5, rI6, rI7, s, sp, dsdr, dspdr
535 >    real (kind=dp) :: wi, wj, w, wip, wjp, wp, wi2, wj2, wip3, wjp3
536 >    real (kind=dp) :: dwidx, dwidy, dwidz, dwjdx, dwjdy, dwjdz
537 >    real (kind=dp) :: dwipdx, dwipdy, dwipdz, dwjpdx, dwjpdy, dwjpdz
538 >    real (kind=dp) :: dwidux, dwiduy, dwiduz, dwjdux, dwjduy, dwjduz
539 >    real (kind=dp) :: dwipdux, dwipduy, dwipduz, dwjpdux, dwjpduy, dwjpduz
540 >    real (kind=dp) :: zif, zis, zjf, zjs, uglyi, uglyj
541 >    real (kind=dp) :: drdx, drdy, drdz
542 >    real (kind=dp) :: txi, tyi, tzi, txj, tyj, tzj
543 >    real (kind=dp) :: fxii, fyii, fzii, fxjj, fyjj, fzjj
544 >    real (kind=dp) :: fxij, fyij, fzij, fxji, fyji, fzji      
545 >    real (kind=dp) :: fxradial, fyradial, fzradial
546 >    real (kind=dp) :: rijtest, rjitest
547 >    real (kind=dp) :: radcomxi, radcomyi, radcomzi
548 >    real (kind=dp) :: radcomxj, radcomyj, radcomzj
549 >    integer :: id1, id2
550 >    integer :: me1, me2
551 >    real (kind=dp) :: w0, v0, v0p, rl, ru, rlp, rup, rbig
552 >    real (kind=dp) :: zi3, zi4, zi5, zj3, zj4, zj5
553 >    real (kind=dp) :: oSw1, oSw2, prodVal
554 >    real (kind=dp) :: prei1, prei2, prei, prej1, prej2, prej
555 >    real (kind=dp) :: walt, walti, waltj, dwaltidx, dwaltidy, dwaltidz
556 >    real (kind=dp) :: dwaltjdx, dwaltjdy, dwaltjdz
557 >    real (kind=dp) :: dwaltidux, dwaltiduy, dwaltiduz
558 >    real (kind=dp) :: dwaltjdux, dwaltjduy, dwaltjduz
559 >    real (kind=dp) :: doSw1idx, doSw1idy, doSw1idz, doSw1jdx, doSw1jdy, doSw1jdz
560 >    real (kind=dp) :: doSw1idux, doSw1iduy, doSw1iduz
561 >    real (kind=dp) :: doSw1jdux, doSw1jduy, doSw1jduz
562 >    real (kind=dp) :: doSw2idx, doSw2idy, doSw2idz, doSw2jdx, doSw2jdy, doSw2jdz
563 >    real (kind=dp) :: doSw2idux, doSw2iduy, doSw2iduz
564 >    real (kind=dp) :: doSw2jdux, doSw2jduy, doSw2jduz
565      
566 <    call module_newStickyType(c_ident, w0, v0, v0p, rl, ru, rlp, rup, &
567 <         isError)
568 <    
569 <  end subroutine newStickyType
566 >    if (.not.allocated(StickyMap)) then
567 >       call handleError("sticky", "no StickyMap was present before first call of do_sticky_power_pair!")
568 >       return
569 >    end if
570 >
571 > #ifdef IS_MPI
572 >    me1 = atid_Row(atom1)
573 >    me2 = atid_Col(atom2)
574 > #else
575 >    me1 = atid(atom1)
576 >    me2 = atid(atom2)
577 > #endif
578 >
579 >    if (me1.eq.me2) then
580 >       w0  = StickyMap(me1)%w0
581 >       v0  = StickyMap(me1)%v0
582 >       v0p = StickyMap(me1)%v0p
583 >       rl  = StickyMap(me1)%rl
584 >       ru  = StickyMap(me1)%ru
585 >       rlp = StickyMap(me1)%rlp
586 >       rup = StickyMap(me1)%rup
587 >       rbig = StickyMap(me1)%rbig
588 >    else
589 >       ! This is silly, but if you want 2 sticky types in your
590 >       ! simulation, we'll let you do it with the Lorentz-
591 >       ! Berthelot mixing rules.
592 >       ! (Warning: you'll be SLLLLLLLLLLLLLLLOOOOOOOOOOWWWWWWWWWWW)
593 >       rl   = 0.5_dp * ( StickyMap(me1)%rl + StickyMap(me2)%rl )
594 >       ru   = 0.5_dp * ( StickyMap(me1)%ru + StickyMap(me2)%ru )
595 >       rlp  = 0.5_dp * ( StickyMap(me1)%rlp + StickyMap(me2)%rlp )
596 >       rup  = 0.5_dp * ( StickyMap(me1)%rup + StickyMap(me2)%rup )
597 >       rbig = max(ru, rup)
598 >       w0  = sqrt( StickyMap(me1)%w0   * StickyMap(me2)%w0  )
599 >       v0  = sqrt( StickyMap(me1)%v0   * StickyMap(me2)%v0  )
600 >       v0p = sqrt( StickyMap(me1)%v0p  * StickyMap(me2)%v0p )
601 >    endif
602 >
603 >    if ( rij .LE. rbig ) then
604 >
605 >       rI = 1.0d0/rij
606 >       rI2 = rI*rI
607 >       rI3 = rI2*rI
608 >       rI4 = rI2*rI2
609 >       rI5 = rI3*rI2
610 >       rI6 = rI3*rI3
611 >       rI7 = rI5*rI2
612 >              
613 >       drdx = d(1) * rI
614 >       drdy = d(2) * rI
615 >       drdz = d(3) * rI
616 >
617 > #ifdef IS_MPI
618 >       ! rotate the inter-particle separation into the two different
619 >       ! body-fixed coordinate systems:
620 >
621 >       xi = A_row(1,atom1)*d(1) + A_row(2,atom1)*d(2) + A_row(3,atom1)*d(3)
622 >       yi = A_row(4,atom1)*d(1) + A_row(5,atom1)*d(2) + A_row(6,atom1)*d(3)
623 >       zi = A_row(7,atom1)*d(1) + A_row(8,atom1)*d(2) + A_row(9,atom1)*d(3)
624 >
625 >       ! negative sign because this is the vector from j to i:
626 >
627 >       xj = -(A_Col(1,atom2)*d(1) + A_Col(2,atom2)*d(2) + A_Col(3,atom2)*d(3))
628 >       yj = -(A_Col(4,atom2)*d(1) + A_Col(5,atom2)*d(2) + A_Col(6,atom2)*d(3))
629 >       zj = -(A_Col(7,atom2)*d(1) + A_Col(8,atom2)*d(2) + A_Col(9,atom2)*d(3))
630 > #else
631 >       ! rotate the inter-particle separation into the two different
632 >       ! body-fixed coordinate systems:
633 >
634 >       xi = a(1,atom1)*d(1) + a(2,atom1)*d(2) + a(3,atom1)*d(3)
635 >       yi = a(4,atom1)*d(1) + a(5,atom1)*d(2) + a(6,atom1)*d(3)
636 >       zi = a(7,atom1)*d(1) + a(8,atom1)*d(2) + a(9,atom1)*d(3)
637 >
638 >       ! negative sign because this is the vector from j to i:
639 >
640 >       xj = -(a(1,atom2)*d(1) + a(2,atom2)*d(2) + a(3,atom2)*d(3))
641 >       yj = -(a(4,atom2)*d(1) + a(5,atom2)*d(2) + a(6,atom2)*d(3))
642 >       zj = -(a(7,atom2)*d(1) + a(8,atom2)*d(2) + a(9,atom2)*d(3))
643 > #endif
644 >
645 >       xi2 = xi*xi
646 >       yi2 = yi*yi
647 >       zi2 = zi*zi
648 >       zi3 = zi2*zi
649 >       zi4 = zi2*zi2
650 >       zi5 = zi4*zi
651 >       xihat = xi*rI
652 >       yihat = yi*rI
653 >       zihat = zi*rI
654 >      
655 >       xj2 = xj*xj
656 >       yj2 = yj*yj
657 >       zj2 = zj*zj
658 >       zj3 = zj2*zj
659 >       zj4 = zj2*zj2
660 >       zj5 = zj4*zj
661 >       xjhat = xj*rI
662 >       yjhat = yj*rI
663 >       zjhat = zj*rI
664 >      
665 >       call calc_sw_fnc(rij, rl, ru, rlp, rup, s, sp, dsdr, dspdr)
666 >          
667 >       wi = 2.0d0*(xi2-yi2)*zi * rI3
668 >       wj = 2.0d0*(xj2-yj2)*zj * rI3
669 >      
670 > !       prodVal = zihat*zjhat
671 > !       if (prodVal .ge. 0.0d0) then
672 > !         wi = 0.0d0
673 > !         wj = 0.0d0
674 > !       endif
675 >
676 >       wi2 = wi*wi
677 >       wj2 = wj*wj
678 >
679 >       w = wi*wi2+wj*wj2
680 >
681 >       zif = zihat - 0.6d0
682 >       zis = zihat + 0.8d0
683 >
684 >       zjf = zjhat - 0.6d0
685 >       zjs = zjhat + 0.8d0
686 >
687 >       wip = zif*zif*zis*zis - w0
688 >       wjp = zjf*zjf*zjs*zjs - w0
689 >       wp = wip + wjp
690 >        
691 >       !wip = zihat - 0.2d0
692 >       !wjp = zjhat - 0.2d0
693 >       !wip3 = wip*wip*wip
694 >       !wjp3 = wjp*wjp*wjp
695 >      
696 >       !wp = wip3*wip + wjp3*wjp
697 >
698 >       vpair = vpair + 0.5d0*(v0*s*w + v0p*sp*wp)
699 >      
700 >       if (do_pot) then
701 > #ifdef IS_MPI
702 >         pot_row(atom1) = pot_row(atom1) + 0.25d0*(v0*s*w + v0p*sp*wp)*sw
703 >         pot_col(atom2) = pot_col(atom2) + 0.25d0*(v0*s*w + v0p*sp*wp)*sw
704 > #else
705 >         pot = pot + 0.5d0*(v0*s*w + v0p*sp*wp)*sw
706 > #endif  
707 >       endif
708 >
709 >       dwidx = 3.0d0*wi2*( 4.0d0*xi*zi*rI3 - 6.0d0*xi*zi*(xi2-yi2)*rI5 )
710 >       dwidy = 3.0d0*wi2*( -4.0d0*yi*zi*rI3 - 6.0d0*yi*zi*(xi2-yi2)*rI5 )
711 >       dwidz = 3.0d0*wi2*( 2.0d0*(xi2-yi2)*rI3 - 6.0d0*zi2*(xi2-yi2)*rI5 )
712 >
713 >       dwjdx = 3.0d0*wj2*( 4.0d0*xj*zj*rI3  - 6.0d0*xj*zj*(xj2-yj2)*rI5 )
714 >       dwjdy = 3.0d0*wj2*( -4.0d0*yj*zj*rI3  - 6.0d0*yj*zj*(xj2-yj2)*rI5 )
715 >       dwjdz = 3.0d0*wj2*( 2.0d0*(xj2-yj2)*rI3  - 6.0d0*zj2*(xj2-yj2)*rI5 )
716 >
717 >       uglyi = zif*zif*zis + zif*zis*zis
718 >       uglyj = zjf*zjf*zjs + zjf*zjs*zjs
719 >
720 >       dwipdx = -2.0d0*xi*zi*uglyi*rI3
721 >       dwipdy = -2.0d0*yi*zi*uglyi*rI3
722 >       dwipdz = 2.0d0*(rI - zi2*rI3)*uglyi
723 >
724 >       dwjpdx = -2.0d0*xj*zj*uglyj*rI3
725 >       dwjpdy = -2.0d0*yj*zj*uglyj*rI3
726 >       dwjpdz = 2.0d0*(rI - zj2*rI3)*uglyj
727 >
728 >       !dwipdx = -4.0d0*wip3*zi*xihat
729 >       !dwipdy = -4.0d0*wip3*zi*yihat
730 >       !dwipdz = -4.0d0*wip3*(zi2 - 1.0d0)*rI
731 >
732 >       !dwjpdx = -4.0d0*wjp3*zj*xjhat
733 >       !dwjpdy = -4.0d0*wjp3*zj*yjhat
734 >       !dwjpdz = -4.0d0*wjp3*(zj2 - 1.0d0)*rI
735 >      
736 >       !dwipdx = 0.0d0
737 >       !dwipdy = 0.0d0
738 >       !dwipdz = 0.0d0
739 >
740 >       !dwjpdx = 0.0d0
741 >       !dwjpdy = 0.0d0
742 >       !dwjpdz = 0.0d0
743 >      
744 >       dwidux = 3.0d0*wi2*( 4.0d0*(yi*zi2 + 0.5d0*yi*(xi2-yi2))*rI3 )
745 >       dwiduy = 3.0d0*wi2*( 4.0d0*(xi*zi2 - 0.5d0*xi*(xi2-yi2))*rI3 )
746 >       dwiduz = 3.0d0*wi2*( -8.0d0*xi*yi*zi*rI3 )
747 >
748 >       dwjdux = 3.0d0*wj2*( 4.0d0*(yj*zj2 + 0.5d0*yj*(xj2-yj2))*rI3 )
749 >       dwjduy = 3.0d0*wj2*( 4.0d0*(xj*zj2 - 0.5d0*xj*(xj2-yj2))*rI3 )
750 >       dwjduz = 3.0d0*wj2*( -8.0d0*xj*yj*zj*rI3 )
751 >
752 >       dwipdux =  2.0d0*yi*uglyi*rI
753 >       dwipduy = -2.0d0*xi*uglyi*rI
754 >       dwipduz =  0.0d0
755 >
756 >       dwjpdux =  2.0d0*yj*uglyj*rI
757 >       dwjpduy = -2.0d0*xj*uglyj*rI
758 >       dwjpduz =  0.0d0
759 >
760 >       !dwipdux =  4.0d0*wip3*yihat
761 >       !dwipduy = -4.0d0*wip3*xihat
762 >       !dwipduz =  0.0d0
763 >
764 >       !dwjpdux =  4.0d0*wjp3*yjhat
765 >       !dwjpduy = -4.0d0*wjp3*xjhat
766 >       !dwjpduz =  0.0d0
767 >
768 >       !dwipdux = 0.0d0
769 >       !dwipduy = 0.0d0
770 >       !dwipduz = 0.0d0
771 >
772 >       !dwjpdux = 0.0d0
773 >       !dwjpduy = 0.0d0
774 >       !dwjpduz = 0.0d0
775 >      
776 >       ! do the torques first since they are easy:
777 >       ! remember that these are still in the body fixed axes
778 >
779 >       txi = 0.5d0*(v0*s*dwidux + v0p*sp*dwipdux)*sw
780 >       tyi = 0.5d0*(v0*s*dwiduy + v0p*sp*dwipduy)*sw
781 >       tzi = 0.5d0*(v0*s*dwiduz + v0p*sp*dwipduz)*sw
782 >
783 >       txj = 0.5d0*(v0*s*dwjdux + v0p*sp*dwjpdux)*sw
784 >       tyj = 0.5d0*(v0*s*dwjduy + v0p*sp*dwjpduy)*sw
785 >       tzj = 0.5d0*(v0*s*dwjduz + v0p*sp*dwjpduz)*sw
786 >
787 >       ! go back to lab frame using transpose of rotation matrix:
788 >
789 > #ifdef IS_MPI
790 >       t_Row(1,atom1) = t_Row(1,atom1) + a_Row(1,atom1)*txi + &
791 >            a_Row(4,atom1)*tyi + a_Row(7,atom1)*tzi
792 >       t_Row(2,atom1) = t_Row(2,atom1) + a_Row(2,atom1)*txi + &
793 >            a_Row(5,atom1)*tyi + a_Row(8,atom1)*tzi
794 >       t_Row(3,atom1) = t_Row(3,atom1) + a_Row(3,atom1)*txi + &
795 >            a_Row(6,atom1)*tyi + a_Row(9,atom1)*tzi
796 >
797 >       t_Col(1,atom2) = t_Col(1,atom2) + a_Col(1,atom2)*txj + &
798 >            a_Col(4,atom2)*tyj + a_Col(7,atom2)*tzj
799 >       t_Col(2,atom2) = t_Col(2,atom2) + a_Col(2,atom2)*txj + &
800 >            a_Col(5,atom2)*tyj + a_Col(8,atom2)*tzj
801 >       t_Col(3,atom2) = t_Col(3,atom2) + a_Col(3,atom2)*txj + &
802 >            a_Col(6,atom2)*tyj + a_Col(9,atom2)*tzj
803 > #else
804 >       t(1,atom1) = t(1,atom1) + a(1,atom1)*txi + a(4,atom1)*tyi + a(7,atom1)*tzi
805 >       t(2,atom1) = t(2,atom1) + a(2,atom1)*txi + a(5,atom1)*tyi + a(8,atom1)*tzi
806 >       t(3,atom1) = t(3,atom1) + a(3,atom1)*txi + a(6,atom1)*tyi + a(9,atom1)*tzi
807 >
808 >       t(1,atom2) = t(1,atom2) + a(1,atom2)*txj + a(4,atom2)*tyj + a(7,atom2)*tzj
809 >       t(2,atom2) = t(2,atom2) + a(2,atom2)*txj + a(5,atom2)*tyj + a(8,atom2)*tzj
810 >       t(3,atom2) = t(3,atom2) + a(3,atom2)*txj + a(6,atom2)*tyj + a(9,atom2)*tzj
811 > #endif    
812 >       ! Now, on to the forces:
813 >
814 >       ! first rotate the i terms back into the lab frame:
815 >
816 >       radcomxi = (v0*s*dwidx+v0p*sp*dwipdx)*sw
817 >       radcomyi = (v0*s*dwidy+v0p*sp*dwipdy)*sw
818 >       radcomzi = (v0*s*dwidz+v0p*sp*dwipdz)*sw
819 >
820 >       radcomxj = (v0*s*dwjdx+v0p*sp*dwjpdx)*sw
821 >       radcomyj = (v0*s*dwjdy+v0p*sp*dwjpdy)*sw
822 >       radcomzj = (v0*s*dwjdz+v0p*sp*dwjpdz)*sw
823 >
824 > #ifdef IS_MPI    
825 >       fxii = a_Row(1,atom1)*(radcomxi) + &
826 >            a_Row(4,atom1)*(radcomyi) + &
827 >            a_Row(7,atom1)*(radcomzi)
828 >       fyii = a_Row(2,atom1)*(radcomxi) + &
829 >            a_Row(5,atom1)*(radcomyi) + &
830 >            a_Row(8,atom1)*(radcomzi)
831 >       fzii = a_Row(3,atom1)*(radcomxi) + &
832 >            a_Row(6,atom1)*(radcomyi) + &
833 >            a_Row(9,atom1)*(radcomzi)
834 >
835 >       fxjj = a_Col(1,atom2)*(radcomxj) + &
836 >            a_Col(4,atom2)*(radcomyj) + &
837 >            a_Col(7,atom2)*(radcomzj)
838 >       fyjj = a_Col(2,atom2)*(radcomxj) + &
839 >            a_Col(5,atom2)*(radcomyj) + &
840 >            a_Col(8,atom2)*(radcomzj)
841 >       fzjj = a_Col(3,atom2)*(radcomxj)+ &
842 >            a_Col(6,atom2)*(radcomyj) + &
843 >            a_Col(9,atom2)*(radcomzj)
844 > #else
845 >       fxii = a(1,atom1)*(radcomxi) + &
846 >            a(4,atom1)*(radcomyi) + &
847 >            a(7,atom1)*(radcomzi)
848 >       fyii = a(2,atom1)*(radcomxi) + &
849 >            a(5,atom1)*(radcomyi) + &
850 >            a(8,atom1)*(radcomzi)
851 >       fzii = a(3,atom1)*(radcomxi) + &
852 >            a(6,atom1)*(radcomyi) + &
853 >            a(9,atom1)*(radcomzi)
854 >
855 >       fxjj = a(1,atom2)*(radcomxj) + &
856 >            a(4,atom2)*(radcomyj) + &
857 >            a(7,atom2)*(radcomzj)
858 >       fyjj = a(2,atom2)*(radcomxj) + &
859 >            a(5,atom2)*(radcomyj) + &
860 >            a(8,atom2)*(radcomzj)
861 >       fzjj = a(3,atom2)*(radcomxj)+ &
862 >            a(6,atom2)*(radcomyj) + &
863 >            a(9,atom2)*(radcomzj)
864 > #endif
865 >
866 >       fxij = -fxii
867 >       fyij = -fyii
868 >       fzij = -fzii
869 >
870 >       fxji = -fxjj
871 >       fyji = -fyjj
872 >       fzji = -fzjj
873 >
874 >       ! now assemble these with the radial-only terms:
875 >
876 >       fxradial = 0.5d0*((v0*dsdr*w + v0p*dspdr*wp)*drdx + fxii + fxji)
877 >       fyradial = 0.5d0*((v0*dsdr*w + v0p*dspdr*wp)*drdy + fyii + fyji)
878 >       fzradial = 0.5d0*((v0*dsdr*w + v0p*dspdr*wp)*drdz + fzii + fzji)
879 >
880 > #ifdef IS_MPI
881 >       f_Row(1,atom1) = f_Row(1,atom1) + fxradial
882 >       f_Row(2,atom1) = f_Row(2,atom1) + fyradial
883 >       f_Row(3,atom1) = f_Row(3,atom1) + fzradial
884 >
885 >       f_Col(1,atom2) = f_Col(1,atom2) - fxradial
886 >       f_Col(2,atom2) = f_Col(2,atom2) - fyradial
887 >       f_Col(3,atom2) = f_Col(3,atom2) - fzradial
888 > #else
889 >       f(1,atom1) = f(1,atom1) + fxradial
890 >       f(2,atom1) = f(2,atom1) + fyradial
891 >       f(3,atom1) = f(3,atom1) + fzradial
892 >
893 >       f(1,atom2) = f(1,atom2) - fxradial
894 >       f(2,atom2) = f(2,atom2) - fyradial
895 >       f(3,atom2) = f(3,atom2) - fzradial
896 > #endif
897 >
898 > #ifdef IS_MPI
899 >       id1 = AtomRowToGlobal(atom1)
900 >       id2 = AtomColToGlobal(atom2)
901 > #else
902 >       id1 = atom1
903 >       id2 = atom2
904 > #endif
905 >
906 >       if (molMembershipList(id1) .ne. molMembershipList(id2)) then
907 >
908 >          fpair(1) = fpair(1) + fxradial
909 >          fpair(2) = fpair(2) + fyradial
910 >          fpair(3) = fpair(3) + fzradial
911 >
912 >       endif
913 >    endif
914 >  end subroutine do_sticky_power_pair
915 >
916 > end module sticky

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines