ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1688 by chrisfen, Fri Oct 29 22:28:12 2004 UTC vs.
Revision 2298 by chuckv, Thu Sep 15 02:48:43 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.6 2004-10-29 22:28:12 chrisfen Exp $, $Date: 2004-10-29 22:28:12 $, $Name: not supported by cvs2svn $, $Revision: 1.6 $
48 > !! @version $Id: doForces.F90,v 1.43 2005-09-15 02:48:43 chuckv Exp $, $Date: 2005-09-15 02:48:43 $, $Name: not supported by cvs2svn $, $Revision: 1.43 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
59 >  use sticky
60 >  use electrostatic_module
61 >  use reaction_field_module
62    use gb_pair
63    use shapes
64    use vector_class
# Line 32 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/fCoulombicCorrection.h"
78 + #include "UseTheForce/DarkSide/fInteractionMap.h"
79  
80 +
81    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82    INTEGER, PARAMETER:: PAIR_LOOP    = 2
83  
39  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 <  
87 >  logical, save :: haveInteractionHash = .false.
88 >  logical, save :: haveGtypeCutoffMap = .false.
89 >  logical, save :: haveRlist = .false.
90 >
91    logical, save :: FF_uses_DirectionalAtoms
92 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
92 >  logical, save :: FF_uses_Dipoles
93    logical, save :: FF_uses_GayBerne
94    logical, save :: FF_uses_EAM
53  logical, save :: FF_uses_Shapes
54  logical, save :: FF_uses_FLARB
95    logical, save :: FF_uses_RF
96  
97    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
98    logical, save :: SIM_uses_EAM
65  logical, save :: SIM_uses_Shapes
66  logical, save :: SIM_uses_FLARB
99    logical, save :: SIM_uses_RF
100    logical, save :: SIM_requires_postpair_calc
101    logical, save :: SIM_requires_prepair_calc
102    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
103  
104 <  real(kind=dp), save :: rlist, rlistsq
104 >  integer, save :: corrMethod
105  
106    public :: init_FF
107 +  public :: setDefaultCutoffs
108    public :: do_force_loop
109 <  public :: setRlistDF
109 >  public :: createInteractionHash
110 >  public :: createGtypeCutoffMap
111 >  public :: getStickyCut
112 >  public :: getStickyPowerCut
113 >  public :: getGayBerneCut
114 >  public :: getEAMCut
115 >  public :: getShapeCut
116  
117   #ifdef PROFILE
118    public :: getforcetime
# Line 82 | Line 120 | module doForces
120    real :: forceTimeInitial, forceTimeFinal
121    integer :: nLoops
122   #endif
123 +  
124 +  !! Variables for cutoff mapping and interaction mapping
125 +  ! Bit hash to determine pair-pair interactions.
126 +  integer, dimension(:,:), allocatable :: InteractionHash
127 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
128 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
129 +  integer, dimension(:), allocatable :: groupToGtype
130 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
131 +  type ::gtypeCutoffs
132 +     real(kind=dp) :: rcut
133 +     real(kind=dp) :: rcutsq
134 +     real(kind=dp) :: rlistsq
135 +  end type gtypeCutoffs
136 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
137  
138 <  type :: Properties
139 <     logical :: is_Directional   = .false.
140 <     logical :: is_LennardJones  = .false.
141 <     logical :: is_Electrostatic = .false.
142 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
98 <
99 <  type(Properties), dimension(:),allocatable :: PropertyMap
100 <
138 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
139 >  integer, save :: coulombicCorrection = NONE
140 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
141 >  real(kind=dp),save :: rcuti
142 >  
143   contains
144  
145 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
145 >  subroutine createInteractionHash(status)
146      integer :: nAtypes
147 <    integer :: status
147 >    integer, intent(out) :: status
148      integer :: i
149 <    logical :: thisProperty
150 <    real (kind=DP) :: thisDPproperty
149 >    integer :: j
150 >    integer :: iHash
151 >    !! Test Types
152 >    logical :: i_is_LJ
153 >    logical :: i_is_Elect
154 >    logical :: i_is_Sticky
155 >    logical :: i_is_StickyP
156 >    logical :: i_is_GB
157 >    logical :: i_is_EAM
158 >    logical :: i_is_Shape
159 >    logical :: j_is_LJ
160 >    logical :: j_is_Elect
161 >    logical :: j_is_Sticky
162 >    logical :: j_is_StickyP
163 >    logical :: j_is_GB
164 >    logical :: j_is_EAM
165 >    logical :: j_is_Shape
166 >    real(kind=dp) :: myRcut
167  
168 <    status = 0
168 >    status = 0  
169  
170 +    if (.not. associated(atypes)) then
171 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
172 +       status = -1
173 +       return
174 +    endif
175 +    
176      nAtypes = getSize(atypes)
177 <
177 >    
178      if (nAtypes == 0) then
179         status = -1
180         return
181      end if
182 <        
183 <    if (.not. allocated(PropertyMap)) then
184 <       allocate(PropertyMap(nAtypes))
182 >
183 >    if (.not. allocated(InteractionHash)) then
184 >       allocate(InteractionHash(nAtypes,nAtypes))
185      endif
186  
187 +    if (.not. allocated(atypeMaxCutoff)) then
188 +       allocate(atypeMaxCutoff(nAtypes))
189 +    endif
190 +        
191      do i = 1, nAtypes
192 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
193 <       PropertyMap(i)%is_Directional = thisProperty
192 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
193 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
194 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
195 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
196 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
197 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
198 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
199  
200 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
200 >       do j = i, nAtypes
201  
202 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
203 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
202 >          iHash = 0
203 >          myRcut = 0.0_dp
204  
205 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
206 <       PropertyMap(i)%is_Sticky = thisProperty
205 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
206 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
207 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
208 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
209 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
210 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
211 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
212  
213 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
214 <       PropertyMap(i)%is_GayBerne = thisProperty
213 >          if (i_is_LJ .and. j_is_LJ) then
214 >             iHash = ior(iHash, LJ_PAIR)            
215 >          endif
216 >          
217 >          if (i_is_Elect .and. j_is_Elect) then
218 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
219 >          endif
220 >          
221 >          if (i_is_Sticky .and. j_is_Sticky) then
222 >             iHash = ior(iHash, STICKY_PAIR)
223 >          endif
224  
225 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
226 <       PropertyMap(i)%is_EAM = thisProperty
225 >          if (i_is_StickyP .and. j_is_StickyP) then
226 >             iHash = ior(iHash, STICKYPOWER_PAIR)
227 >          endif
228  
229 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
230 <       PropertyMap(i)%is_Shape = thisProperty
229 >          if (i_is_EAM .and. j_is_EAM) then
230 >             iHash = ior(iHash, EAM_PAIR)
231 >          endif
232  
233 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
234 <       PropertyMap(i)%is_FLARB = thisProperty
233 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
234 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
235 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
236 >
237 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
238 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
239 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
240 >
241 >
242 >          InteractionHash(i,j) = iHash
243 >          InteractionHash(j,i) = iHash
244 >
245 >       end do
246 >
247      end do
248  
249 <    havePropertyMap = .true.
249 >    haveInteractionHash = .true.
250 >  end subroutine createInteractionHash
251  
252 <  end subroutine createPropertyMap
252 >  subroutine createGtypeCutoffMap(stat)
253 >
254 >    integer, intent(out), optional :: stat
255 >    logical :: i_is_LJ
256 >    logical :: i_is_Elect
257 >    logical :: i_is_Sticky
258 >    logical :: i_is_StickyP
259 >    logical :: i_is_GB
260 >    logical :: i_is_EAM
261 >    logical :: i_is_Shape
262 >    logical :: GtypeFound
263 >
264 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
265 >    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
266 >    integer :: nGroupsInRow
267 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
268 >    real(kind=dp) :: biggestAtypeCutoff
269 >
270 >    stat = 0
271 >    if (.not. haveInteractionHash) then
272 >       call createInteractionHash(myStatus)      
273 >       if (myStatus .ne. 0) then
274 >          write(default_error, *) 'createInteractionHash failed in doForces!'
275 >          stat = -1
276 >          return
277 >       endif
278 >    endif
279 > #ifdef IS_MPI
280 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
281 > #endif
282 >    nAtypes = getSize(atypes)
283 > ! Set all of the initial cutoffs to zero.
284 >    atypeMaxCutoff = 0.0_dp
285 >    do i = 1, nAtypes
286 >       if (SimHasAtype(i)) then    
287 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
288 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
289 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
290 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
291 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
292 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
293 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
294 >          
295 >
296 >          if (i_is_LJ) then
297 >             thisRcut = getSigma(i) * 2.5_dp
298 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
299 >          endif
300 >          if (i_is_Elect) then
301 >             thisRcut = defaultRcut
302 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
303 >          endif
304 >          if (i_is_Sticky) then
305 >             thisRcut = getStickyCut(i)
306 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
307 >          endif
308 >          if (i_is_StickyP) then
309 >             thisRcut = getStickyPowerCut(i)
310 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
311 >          endif
312 >          if (i_is_GB) then
313 >             thisRcut = getGayBerneCut(i)
314 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
315 >          endif
316 >          if (i_is_EAM) then
317 >             thisRcut = getEAMCut(i)
318 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
319 >          endif
320 >          if (i_is_Shape) then
321 >             thisRcut = getShapeCut(i)
322 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
323 >          endif
324 >          
325 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
326 >             biggestAtypeCutoff = atypeMaxCutoff(i)
327 >          endif
328 >       endif
329 >    enddo
330 >  
331 >    nGroupTypes = 0
332 >    
333 >    istart = 1
334 > #ifdef IS_MPI
335 >    iend = nGroupsInRow
336 > #else
337 >    iend = nGroups
338 > #endif
339 >    
340 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
341 >    if(.not.allocated(groupToGtype)) then
342 >       allocate(groupToGtype(iend))
343 >       allocate(groupMaxCutoff(iend))
344 >       allocate(gtypeMaxCutoff(iend))
345 >       groupMaxCutoff = 0.0_dp
346 >       gtypeMaxCutoff = 0.0_dp
347 >    endif
348 >    !! first we do a single loop over the cutoff groups to find the
349 >    !! largest cutoff for any atypes present in this group.  We also
350 >    !! create gtypes at this point.
351 >    
352 >    tol = 1.0d-6
353 >    
354 >    do i = istart, iend      
355 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
356 >       groupMaxCutoff(i) = 0.0_dp
357 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
358 >          atom1 = groupListRow(ia)
359 > #ifdef IS_MPI
360 >          me_i = atid_row(atom1)
361 > #else
362 >          me_i = atid(atom1)
363 > #endif          
364 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
365 >             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
366 >          endif          
367 >       enddo
368 >
369 >       if (nGroupTypes.eq.0) then
370 >          nGroupTypes = nGroupTypes + 1
371 >          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
372 >          groupToGtype(i) = nGroupTypes
373 >       else
374 >          GtypeFound = .false.
375 >          do g = 1, nGroupTypes
376 >             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).lt.tol) then
377 >                groupToGtype(i) = g
378 >                GtypeFound = .true.
379 >             endif
380 >          enddo
381 >          if (.not.GtypeFound) then            
382 >             nGroupTypes = nGroupTypes + 1
383 >             gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
384 >             groupToGtype(i) = nGroupTypes
385 >          endif
386 >       endif
387 >    enddo    
388 >
389 >    !! allocate the gtypeCutoffMap here.
390 >    allocate(gtypeCutoffMap(nGroupTypes,nGroupTypes))
391 >    !! then we do a double loop over all the group TYPES to find the cutoff
392 >    !! map between groups of two types
393 >    
394 >    do i = 1, nGroupTypes
395 >       do j = 1, nGroupTypes
396 >      
397 >          select case(cutoffPolicy)
398 >          case(TRADITIONAL_CUTOFF_POLICY)
399 >             thisRcut = maxval(gtypeMaxCutoff)
400 >          case(MIX_CUTOFF_POLICY)
401 >             thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
402 >          case(MAX_CUTOFF_POLICY)
403 >             thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
404 >          case default
405 >             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
406 >             return
407 >          end select
408 >          gtypeCutoffMap(i,j)%rcut = thisRcut
409 >          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
410 >          skin = defaultRlist - defaultRcut
411 >          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
412  
413 +       enddo
414 +    enddo
415 +    
416 +    haveGtypeCutoffMap = .true.
417 +   end subroutine createGtypeCutoffMap
418 +
419 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
420 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
421 +     integer, intent(in) :: cutPolicy
422 +
423 +     defaultRcut = defRcut
424 +     defaultRsw = defRsw
425 +     defaultRlist = defRlist
426 +     cutoffPolicy = cutPolicy
427 +     rcuti = 1.0_dp / defaultRcut
428 +   end subroutine setDefaultCutoffs
429 +
430 +   subroutine setCutoffPolicy(cutPolicy)
431 +
432 +     integer, intent(in) :: cutPolicy
433 +     cutoffPolicy = cutPolicy
434 +     call createGtypeCutoffMap()
435 +   end subroutine setCutoffPolicy
436 +    
437 +    
438    subroutine setSimVariables()
439      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
440      SIM_uses_EAM = SimUsesEAM()
179    SIM_uses_Shapes = SimUsesShapes()
180    SIM_uses_FLARB = SimUsesFLARB()
181    SIM_uses_RF = SimUsesRF()
441      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
442      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
443      SIM_uses_PBC = SimUsesPBC()
444 +    SIM_uses_RF = SimUsesRF()
445  
446      haveSIMvariables = .true.
447  
# Line 194 | Line 454 | contains
454      integer :: myStatus
455  
456      error = 0
197    
198    if (.not. havePropertyMap) then
457  
458 <       myStatus = 0
458 >    if (.not. haveInteractionHash) then      
459 >       myStatus = 0      
460 >       call createInteractionHash(myStatus)      
461 >       if (myStatus .ne. 0) then
462 >          write(default_error, *) 'createInteractionHash failed in doForces!'
463 >          error = -1
464 >          return
465 >       endif
466 >    endif
467  
468 <       call createPropertyMap(myStatus)
469 <
468 >    if (.not. haveGtypeCutoffMap) then        
469 >       myStatus = 0      
470 >       call createGtypeCutoffMap(myStatus)      
471         if (myStatus .ne. 0) then
472 <          write(default_error, *) 'createPropertyMap failed in doForces!'
472 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
473            error = -1
474            return
475         endif
# Line 212 | Line 479 | contains
479         call setSimVariables()
480      endif
481  
482 <    if (.not. haveRlist) then
483 <       write(default_error, *) 'rList has not been set in doForces!'
484 <       error = -1
485 <       return
486 <    endif
482 >  !  if (.not. haveRlist) then
483 >  !     write(default_error, *) 'rList has not been set in doForces!'
484 >  !     error = -1
485 >  !     return
486 >  !  endif
487  
488      if (.not. haveNeighborList) then
489         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 239 | Line 506 | contains
506   #endif
507      return
508    end subroutine doReadyCheck
242    
509  
244  subroutine init_FF(use_RF_c, thisStat)
510  
511 <    logical, intent(in) :: use_RF_c
511 >  subroutine init_FF(use_RF, correctionMethod, dampingAlpha, thisStat)
512  
513 +    logical, intent(in) :: use_RF
514 +    integer, intent(in) :: correctionMethod
515 +    real(kind=dp), intent(in) :: dampingAlpha
516      integer, intent(out) :: thisStat  
517      integer :: my_status, nMatches
518      integer, pointer :: MatchList(:) => null()
# Line 254 | Line 522 | contains
522      thisStat = 0
523  
524      !! Fortran's version of a cast:
525 <    FF_uses_RF = use_RF_c
526 <    
525 >    FF_uses_RF = use_RF
526 >
527 >    !! set the electrostatic correction method
528 >    select case(coulombicCorrection)
529 >    case(NONE)
530 >       corrMethod = 0
531 >    case(UNDAMPED_WOLF)
532 >       corrMethod = 1
533 >    case(WOLF)
534 >       corrMethod = 2
535 >    case (REACTION_FIELD)
536 >       corrMethod = 3
537 >    case default
538 >       call handleError("init_FF", "Unknown Coulombic Correction Method")
539 >       return
540 >    end select
541 >        
542      !! init_FF is called *after* all of the atom types have been
543      !! defined in atype_module using the new_atype subroutine.
544      !!
545      !! this will scan through the known atypes and figure out what
546      !! interactions are used by the force field.    
547 <  
547 >
548      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
549      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
550      FF_uses_GayBerne = .false.
551      FF_uses_EAM = .false.
552 <    FF_uses_Shapes = .false.
274 <    FF_uses_FLARB = .false.
275 <    
552 >
553      call getMatchingElementList(atypes, "is_Directional", .true., &
554           nMatches, MatchList)
555      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
556  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
557      call getMatchingElementList(atypes, "is_Dipole", .true., &
558           nMatches, MatchList)
559 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
559 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
560      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
561      call getMatchingElementList(atypes, "is_GayBerne", .true., &
562           nMatches, MatchList)
563 <    if (nMatches .gt. 0) then
564 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
563 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
564 >
565      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
566      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
567  
329    call getMatchingElementList(atypes, "is_FLARB", .true., &
330         nMatches, MatchList)
331    if (nMatches .gt. 0) FF_uses_FLARB = .true.
568  
333    !! Assume sanity (for the sake of argument)
569      haveSaneForceField = .true.
570 <    
570 >
571      !! check to make sure the FF_uses_RF setting makes sense
572 <    
573 <    if (FF_uses_dipoles) then
572 >
573 >    if (FF_uses_Dipoles) then
574         if (FF_uses_RF) then
575            dielect = getDielect()
576            call initialize_rf(dielect)
577         endif
578      else
579 <       if (FF_uses_RF) then          
579 >       if ((corrMethod == 3) .or. FF_uses_RF) then
580            write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
581            thisStat = -1
582            haveSaneForceField = .false.
583            return
584         endif
350    endif
351
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
585      endif
586  
587      if (FF_uses_EAM) then
588 <         call init_EAM_FF(my_status)
588 >       call init_EAM_FF(my_status)
589         if (my_status /= 0) then
590            write(default_error, *) "init_EAM_FF returned a bad status"
591            thisStat = -1
# Line 377 | Line 603 | contains
603         endif
604      endif
605  
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
606      if (.not. haveNeighborList) then
607         !! Create neighbor lists
608         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 612 | contains
612            return
613         endif
614         haveNeighborList = .true.
615 <    endif    
616 <    
615 >    endif
616 >
617    end subroutine init_FF
395  
618  
619 +
620    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
621    !------------------------------------------------------------->
622 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
622 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
623         do_pot_c, do_stress_c, error)
624      !! Position array provided by C, dimensioned by getNlocal
625      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 628 | contains
628      !! Rotation Matrix for each long range particle in simulation.
629      real( kind = dp), dimension(9, nLocal) :: A    
630      !! Unit vectors for dipoles (lab frame)
631 <    real( kind = dp ), dimension(3,nLocal) :: u_l
631 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
632      !! Force array provided by C, dimensioned by getNlocal
633      real ( kind = dp ), dimension(3,nLocal) :: f
634      !! Torsion array provided by C, dimensioned by getNlocal
# Line 443 | Line 666 | contains
666      integer :: localError
667      integer :: propPack_i, propPack_j
668      integer :: loopStart, loopEnd, loop
669 <
669 >    integer :: iHash
670      real(kind=dp) :: listSkin = 1.0  
671 <    
671 >
672      !! initialize local variables  
673 <    
673 >
674   #ifdef IS_MPI
675      pot_local = 0.0_dp
676      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 680 | contains
680   #else
681      natoms = nlocal
682   #endif
683 <    
683 >
684      call doReadyCheck(localError)
685      if ( localError .ne. 0 ) then
686         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 688 | contains
688         return
689      end if
690      call zero_work_arrays()
691 <        
691 >
692      do_pot = do_pot_c
693      do_stress = do_stress_c
694 <    
694 >
695      ! Gather all information needed by all force loops:
696 <    
696 >
697   #ifdef IS_MPI    
698 <    
698 >
699      call gather(q, q_Row, plan_atom_row_3d)
700      call gather(q, q_Col, plan_atom_col_3d)
701  
702      call gather(q_group, q_group_Row, plan_group_row_3d)
703      call gather(q_group, q_group_Col, plan_group_col_3d)
704 <        
704 >
705      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
706 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
707 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
708 <      
706 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
707 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
708 >
709         call gather(A, A_Row, plan_atom_row_rotation)
710         call gather(A, A_Col, plan_atom_col_rotation)
711      endif
712 <    
712 >
713   #endif
714 <    
714 >
715      !! Begin force loop timing:
716   #ifdef PROFILE
717      call cpu_time(forceTimeInitial)
718      nloops = nloops + 1
719   #endif
720 <    
720 >
721      loopEnd = PAIR_LOOP
722      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
723         loopStart = PREPAIR_LOOP
# Line 509 | Line 732 | contains
732         if (loop .eq. loopStart) then
733   #ifdef IS_MPI
734            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
735 <             update_nlist)
735 >               update_nlist)
736   #else
737            call checkNeighborList(nGroups, q_group, listSkin, &
738 <             update_nlist)
738 >               update_nlist)
739   #endif
740         endif
741 <      
741 >
742         if (update_nlist) then
743            !! save current configuration and construct neighbor list
744   #ifdef IS_MPI
# Line 526 | Line 749 | contains
749            neighborListSize = size(list)
750            nlist = 0
751         endif
752 <      
752 >
753         istart = 1
754   #ifdef IS_MPI
755         iend = nGroupsInRow
# Line 536 | Line 759 | contains
759         outer: do i = istart, iend
760  
761            if (update_nlist) point(i) = nlist + 1
762 <          
762 >
763            n_in_i = groupStartRow(i+1) - groupStartRow(i)
764 <          
764 >
765            if (update_nlist) then
766   #ifdef IS_MPI
767               jstart = 1
# Line 553 | Line 776 | contains
776               ! make sure group i has neighbors
777               if (jstart .gt. jend) cycle outer
778            endif
779 <          
779 >
780            do jnab = jstart, jend
781               if (update_nlist) then
782                  j = jnab
# Line 562 | Line 785 | contains
785               endif
786  
787   #ifdef IS_MPI
788 +             me_j = atid_col(j)
789               call get_interatomic_vector(q_group_Row(:,i), &
790                    q_group_Col(:,j), d_grp, rgrpsq)
791   #else
792 +             me_j = atid(j)
793               call get_interatomic_vector(q_group(:,i), &
794                    q_group(:,j), d_grp, rgrpsq)
795   #endif
796  
797 <             if (rgrpsq < rlistsq) then
797 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
798                  if (update_nlist) then
799                     nlist = nlist + 1
800 <                  
800 >
801                     if (nlist > neighborListSize) then
802   #ifdef IS_MPI                
803                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 811 | contains
811                        end if
812                        neighborListSize = size(list)
813                     endif
814 <                  
814 >
815                     list(nlist) = j
816                  endif
817 <                
817 >
818                  if (loop .eq. PAIR_LOOP) then
819                     vij = 0.0d0
820                     fij(1:3) = 0.0d0
821                  endif
822 <                
822 >
823                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
824                       in_switching_region)
825 <                
825 >
826                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
827 <                
827 >
828                  do ia = groupStartRow(i), groupStartRow(i+1)-1
829 <                  
829 >
830                     atom1 = groupListRow(ia)
831 <                  
831 >
832                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
833 <                      
833 >
834                        atom2 = groupListCol(jb)
835 <                      
835 >
836                        if (skipThisPair(atom1, atom2)) cycle inner
837  
838                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 627 | Line 852 | contains
852   #ifdef IS_MPI                      
853                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
854                                rgrpsq, d_grp, do_pot, do_stress, &
855 <                              u_l, A, f, t, pot_local)
855 >                              eFrame, A, f, t, pot_local)
856   #else
857                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
858                                rgrpsq, d_grp, do_pot, do_stress, &
859 <                              u_l, A, f, t, pot)
859 >                              eFrame, A, f, t, pot)
860   #endif                                              
861                        else
862   #ifdef IS_MPI                      
863                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
864                                do_pot, &
865 <                              u_l, A, f, t, pot_local, vpair, fpair)
865 >                              eFrame, A, f, t, pot_local, vpair, fpair)
866   #else
867                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
868                                do_pot,  &
869 <                              u_l, A, f, t, pot, vpair, fpair)
869 >                              eFrame, A, f, t, pot, vpair, fpair)
870   #endif
871  
872                           vij = vij + vpair
# Line 649 | Line 874 | contains
874                        endif
875                     enddo inner
876                  enddo
877 <                
877 >
878                  if (loop .eq. PAIR_LOOP) then
879                     if (in_switching_region) then
880                        swderiv = vij*dswdr/rgrp
881                        fij(1) = fij(1) + swderiv*d_grp(1)
882                        fij(2) = fij(2) + swderiv*d_grp(2)
883                        fij(3) = fij(3) + swderiv*d_grp(3)
884 <                      
884 >
885                        do ia=groupStartRow(i), groupStartRow(i+1)-1
886                           atom1=groupListRow(ia)
887                           mf = mfactRow(atom1)
# Line 670 | Line 895 | contains
895                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
896   #endif
897                        enddo
898 <                      
898 >
899                        do jb=groupStartCol(j), groupStartCol(j+1)-1
900                           atom2=groupListCol(jb)
901                           mf = mfactCol(atom2)
# Line 685 | Line 910 | contains
910   #endif
911                        enddo
912                     endif
913 <                  
913 >
914                     if (do_stress) call add_stress_tensor(d_grp, fij)
915                  endif
916               end if
917            enddo
918         enddo outer
919 <      
919 >
920         if (update_nlist) then
921   #ifdef IS_MPI
922            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 930 | contains
930               update_nlist = .false.                              
931            endif
932         endif
933 <            
933 >
934         if (loop .eq. PREPAIR_LOOP) then
935            call do_preforce(nlocal, pot)
936         endif
937 <      
937 >
938      enddo
939 <    
939 >
940      !! Do timing
941   #ifdef PROFILE
942      call cpu_time(forceTimeFinal)
943      forceTime = forceTime + forceTimeFinal - forceTimeInitial
944   #endif    
945 <    
945 >
946   #ifdef IS_MPI
947      !!distribute forces
948 <    
948 >
949      f_temp = 0.0_dp
950      call scatter(f_Row,f_temp,plan_atom_row_3d)
951      do i = 1,nlocal
952         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
953      end do
954 <    
954 >
955      f_temp = 0.0_dp
956      call scatter(f_Col,f_temp,plan_atom_col_3d)
957      do i = 1,nlocal
958         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
959      end do
960 <    
960 >
961      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
962         t_temp = 0.0_dp
963         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 966 | contains
966         end do
967         t_temp = 0.0_dp
968         call scatter(t_Col,t_temp,plan_atom_col_3d)
969 <      
969 >
970         do i = 1,nlocal
971            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
972         end do
973      endif
974 <    
974 >
975      if (do_pot) then
976         ! scatter/gather pot_row into the members of my column
977         call scatter(pot_Row, pot_Temp, plan_atom_row)
978 <      
978 >
979         ! scatter/gather pot_local into all other procs
980         ! add resultant to get total pot
981         do i = 1, nlocal
982            pot_local = pot_local + pot_Temp(i)
983         enddo
984 <      
984 >
985         pot_Temp = 0.0_DP
986 <      
986 >
987         call scatter(pot_Col, pot_Temp, plan_atom_col)
988         do i = 1, nlocal
989            pot_local = pot_local + pot_Temp(i)
990         enddo
991 <      
991 >
992      endif
993   #endif
994 <    
994 >
995      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
996 <      
997 <       if (FF_uses_RF .and. SIM_uses_RF) then
998 <          
996 >
997 >       if ((FF_uses_RF .and. SIM_uses_RF) .or. (corrMethod == 3)) then
998 >
999   #ifdef IS_MPI
1000            call scatter(rf_Row,rf,plan_atom_row_3d)
1001            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 778 | Line 1003 | contains
1003               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1004            end do
1005   #endif
1006 <          
1006 >
1007            do i = 1, nLocal
1008 <            
1008 >
1009               rfpot = 0.0_DP
1010   #ifdef IS_MPI
1011               me_i = atid_row(i)
1012   #else
1013               me_i = atid(i)
1014   #endif
1015 +             iHash = InteractionHash(me_i,me_j)
1016              
1017 <             if (PropertyMap(me_i)%is_Dipole) then
1018 <                
1017 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1018 >
1019                  mu_i = getDipoleMoment(me_i)
1020 <                
1020 >
1021                  !! The reaction field needs to include a self contribution
1022                  !! to the field:
1023 <                call accumulate_self_rf(i, mu_i, u_l)
1023 >                call accumulate_self_rf(i, mu_i, eFrame)
1024                  !! Get the reaction field contribution to the
1025                  !! potential and torques:
1026 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1026 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1027   #ifdef IS_MPI
1028                  pot_local = pot_local + rfpot
1029   #else
1030                  pot = pot + rfpot
1031 <      
1031 >
1032   #endif
1033 <             endif            
1033 >             endif
1034            enddo
1035         endif
1036      endif
1037 <    
1038 <    
1037 >
1038 >
1039   #ifdef IS_MPI
1040 <    
1040 >
1041      if (do_pot) then
1042         pot = pot + pot_local
1043         !! we assume the c code will do the allreduce to get the total potential
1044         !! we could do it right here if we needed to...
1045      endif
1046 <    
1046 >
1047      if (do_stress) then
1048         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1049              mpi_comm_world,mpi_err)
1050         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1051              mpi_comm_world,mpi_err)
1052      endif
1053 <    
1053 >
1054   #else
1055 <    
1055 >
1056      if (do_stress) then
1057         tau = tau_Temp
1058         virial = virial_Temp
1059      endif
1060 <    
1060 >
1061   #endif
1062 <      
1062 >
1063    end subroutine do_force_loop
1064 <  
1064 >
1065    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1066 <       u_l, A, f, t, pot, vpair, fpair)
1066 >       eFrame, A, f, t, pot, vpair, fpair)
1067  
1068      real( kind = dp ) :: pot, vpair, sw
1069      real( kind = dp ), dimension(3) :: fpair
1070      real( kind = dp ), dimension(nLocal)   :: mfact
1071 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1071 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1072      real( kind = dp ), dimension(9,nLocal) :: A
1073      real( kind = dp ), dimension(3,nLocal) :: f
1074      real( kind = dp ), dimension(3,nLocal) :: t
# Line 854 | Line 1080 | contains
1080      real ( kind = dp ), intent(inout) :: d(3)
1081      integer :: me_i, me_j
1082  
1083 +    integer :: iHash
1084 +
1085      r = sqrt(rijsq)
1086      vpair = 0.0d0
1087      fpair(1:3) = 0.0d0
# Line 865 | Line 1093 | contains
1093      me_i = atid(i)
1094      me_j = atid(j)
1095   #endif
868    
869    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
870      
871       if ( PropertyMap(me_i)%is_LennardJones .and. &
872            PropertyMap(me_j)%is_LennardJones ) then
873          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
874       endif
875      
876    endif
877    
878    if (FF_uses_charges .and. SIM_uses_charges) then
879      
880       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
881          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
882               pot, f, do_pot)
883       endif
884      
885    endif
886    
887    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
888      
889       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
890          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
891               pot, u_l, f, t, do_pot)
892          if (FF_uses_RF .and. SIM_uses_RF) then
893             call accumulate_rf(i, j, r, u_l, sw)
894             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
895          endif
896       endif
1096  
1097 +    iHash = InteractionHash(me_i, me_j)
1098 +
1099 +    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1100 +       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1101      endif
1102  
1103 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1103 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1104 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1105 >            pot, eFrame, f, t, do_pot, corrMethod, rcuti)
1106  
1107 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1108 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1109 <               pot, A, f, t, do_pot)
1107 >       if ((FF_uses_RF .and. SIM_uses_RF) .or. (corrMethod == 3)) then
1108 >
1109 >          ! CHECK ME (RF needs to know about all electrostatic types)
1110 >          call accumulate_rf(i, j, r, eFrame, sw)
1111 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1112         endif
1113 <      
1113 >
1114      endif
1115  
1116 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1117 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1118 +            pot, A, f, t, do_pot)
1119 +    endif
1120  
1121 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1122 <      
1123 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
913 <            PropertyMap(me_j)%is_GayBerne) then
914 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
915 <               pot, u_l, f, t, do_pot)
916 <       endif
917 <      
1121 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1122 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1123 >            pot, A, f, t, do_pot)
1124      endif
1125 +
1126 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1127 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1128 +            pot, A, f, t, do_pot)
1129 +    endif
1130      
1131 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1132 <      
1133 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
923 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
924 <               do_pot)
925 <       endif
926 <      
1131 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1132 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1133 > !           pot, A, f, t, do_pot)
1134      endif
1135  
1136 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1137 <       if ( PropertyMap(me_i)%is_Shape .and. &
1138 <            PropertyMap(me_j)%is_Shape ) then
932 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
933 <               pot, A, f, t, do_pot)
934 <       endif
935 <      
1136 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1137 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1138 >            do_pot)
1139      endif
1140 +
1141 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1142 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1143 +            pot, A, f, t, do_pot)
1144 +    endif
1145 +
1146 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1147 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1148 +            pot, A, f, t, do_pot)
1149 +    endif
1150      
1151    end subroutine do_pair
1152  
1153    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1154 <       do_pot, do_stress, u_l, A, f, t, pot)
1154 >       do_pot, do_stress, eFrame, A, f, t, pot)
1155  
1156 <   real( kind = dp ) :: pot, sw
1157 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1158 <   real (kind=dp), dimension(9,nLocal) :: A
1159 <   real (kind=dp), dimension(3,nLocal) :: f
1160 <   real (kind=dp), dimension(3,nLocal) :: t
948 <  
949 <   logical, intent(inout) :: do_pot, do_stress
950 <   integer, intent(in) :: i, j
951 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
952 <   real ( kind = dp )                :: r, rc
953 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
954 <  
955 <   logical :: is_EAM_i, is_EAM_j
956 <  
957 <   integer :: me_i, me_j
958 <  
1156 >    real( kind = dp ) :: pot, sw
1157 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1158 >    real (kind=dp), dimension(9,nLocal) :: A
1159 >    real (kind=dp), dimension(3,nLocal) :: f
1160 >    real (kind=dp), dimension(3,nLocal) :: t
1161  
1162 +    logical, intent(inout) :: do_pot, do_stress
1163 +    integer, intent(in) :: i, j
1164 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1165 +    real ( kind = dp )                :: r, rc
1166 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1167 +
1168 +    integer :: me_i, me_j, iHash
1169 +
1170      r = sqrt(rijsq)
961    if (SIM_uses_molecular_cutoffs) then
962       rc = sqrt(rcijsq)
963    else
964       rc = r
965    endif
966  
1171  
1172   #ifdef IS_MPI  
1173 <   me_i = atid_row(i)
1174 <   me_j = atid_col(j)  
1173 >    me_i = atid_row(i)
1174 >    me_j = atid_col(j)  
1175   #else  
1176 <   me_i = atid(i)
1177 <   me_j = atid(j)  
1176 >    me_i = atid(i)
1177 >    me_j = atid(j)  
1178   #endif
1179 <  
1180 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1181 <      
1182 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1183 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1184 <      
1185 <   endif
1186 <  
1187 < end subroutine do_prepair
1188 <
1189 <
1190 < subroutine do_preforce(nlocal,pot)
1191 <   integer :: nlocal
1192 <   real( kind = dp ) :: pot
1193 <  
1194 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1195 <      call calc_EAM_preforce_Frho(nlocal,pot)
1196 <   endif
1197 <  
1198 <  
1199 < end subroutine do_preforce
1200 <
1201 <
1202 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1203 <  
1204 <   real (kind = dp), dimension(3) :: q_i
1205 <   real (kind = dp), dimension(3) :: q_j
1206 <   real ( kind = dp ), intent(out) :: r_sq
1207 <   real( kind = dp ) :: d(3), scaled(3)
1208 <   integer i
1209 <  
1210 <   d(1:3) = q_j(1:3) - q_i(1:3)
1211 <  
1212 <   ! Wrap back into periodic box if necessary
1213 <   if ( SIM_uses_PBC ) then
1214 <      
1215 <      if( .not.boxIsOrthorhombic ) then
1216 <         ! calc the scaled coordinates.
1217 <        
1218 <         scaled = matmul(HmatInv, d)
1219 <        
1220 <         ! wrap the scaled coordinates
1221 <        
1222 <         scaled = scaled  - anint(scaled)
1223 <        
1224 <        
1225 <         ! calc the wrapped real coordinates from the wrapped scaled
1226 <         ! coordinates
1227 <        
1228 <         d = matmul(Hmat,scaled)
1229 <        
1230 <      else
1231 <         ! calc the scaled coordinates.
1232 <        
1233 <         do i = 1, 3
1234 <            scaled(i) = d(i) * HmatInv(i,i)
1235 <            
1236 <            ! wrap the scaled coordinates
1237 <            
1238 <            scaled(i) = scaled(i) - anint(scaled(i))
1239 <            
1240 <            ! calc the wrapped real coordinates from the wrapped scaled
1241 <            ! coordinates
1242 <            
1243 <            d(i) = scaled(i)*Hmat(i,i)
1244 <         enddo
1245 <      endif
1246 <      
1247 <   endif
1248 <  
1249 <   r_sq = dot_product(d,d)
1250 <  
1251 < end subroutine get_interatomic_vector
1252 <
1253 < subroutine zero_work_arrays()
1050 <  
1179 >
1180 >    iHash = InteractionHash(me_i, me_j)
1181 >
1182 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1183 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1184 >    endif
1185 >    
1186 >  end subroutine do_prepair
1187 >
1188 >
1189 >  subroutine do_preforce(nlocal,pot)
1190 >    integer :: nlocal
1191 >    real( kind = dp ) :: pot
1192 >
1193 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1194 >       call calc_EAM_preforce_Frho(nlocal,pot)
1195 >    endif
1196 >
1197 >
1198 >  end subroutine do_preforce
1199 >
1200 >
1201 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1202 >
1203 >    real (kind = dp), dimension(3) :: q_i
1204 >    real (kind = dp), dimension(3) :: q_j
1205 >    real ( kind = dp ), intent(out) :: r_sq
1206 >    real( kind = dp ) :: d(3), scaled(3)
1207 >    integer i
1208 >
1209 >    d(1:3) = q_j(1:3) - q_i(1:3)
1210 >
1211 >    ! Wrap back into periodic box if necessary
1212 >    if ( SIM_uses_PBC ) then
1213 >
1214 >       if( .not.boxIsOrthorhombic ) then
1215 >          ! calc the scaled coordinates.
1216 >
1217 >          scaled = matmul(HmatInv, d)
1218 >
1219 >          ! wrap the scaled coordinates
1220 >
1221 >          scaled = scaled  - anint(scaled)
1222 >
1223 >
1224 >          ! calc the wrapped real coordinates from the wrapped scaled
1225 >          ! coordinates
1226 >
1227 >          d = matmul(Hmat,scaled)
1228 >
1229 >       else
1230 >          ! calc the scaled coordinates.
1231 >
1232 >          do i = 1, 3
1233 >             scaled(i) = d(i) * HmatInv(i,i)
1234 >
1235 >             ! wrap the scaled coordinates
1236 >
1237 >             scaled(i) = scaled(i) - anint(scaled(i))
1238 >
1239 >             ! calc the wrapped real coordinates from the wrapped scaled
1240 >             ! coordinates
1241 >
1242 >             d(i) = scaled(i)*Hmat(i,i)
1243 >          enddo
1244 >       endif
1245 >
1246 >    endif
1247 >
1248 >    r_sq = dot_product(d,d)
1249 >
1250 >  end subroutine get_interatomic_vector
1251 >
1252 >  subroutine zero_work_arrays()
1253 >
1254   #ifdef IS_MPI
1052  
1053   q_Row = 0.0_dp
1054   q_Col = 0.0_dp
1255  
1256 <   q_group_Row = 0.0_dp
1257 <   q_group_Col = 0.0_dp  
1258 <  
1259 <   u_l_Row = 0.0_dp
1260 <   u_l_Col = 0.0_dp
1261 <  
1262 <   A_Row = 0.0_dp
1263 <   A_Col = 0.0_dp
1264 <  
1265 <   f_Row = 0.0_dp
1266 <   f_Col = 0.0_dp
1267 <   f_Temp = 0.0_dp
1268 <  
1269 <   t_Row = 0.0_dp
1270 <   t_Col = 0.0_dp
1271 <   t_Temp = 0.0_dp
1272 <  
1273 <   pot_Row = 0.0_dp
1274 <   pot_Col = 0.0_dp
1275 <   pot_Temp = 0.0_dp
1276 <  
1277 <   rf_Row = 0.0_dp
1278 <   rf_Col = 0.0_dp
1279 <   rf_Temp = 0.0_dp
1280 <  
1256 >    q_Row = 0.0_dp
1257 >    q_Col = 0.0_dp
1258 >
1259 >    q_group_Row = 0.0_dp
1260 >    q_group_Col = 0.0_dp  
1261 >
1262 >    eFrame_Row = 0.0_dp
1263 >    eFrame_Col = 0.0_dp
1264 >
1265 >    A_Row = 0.0_dp
1266 >    A_Col = 0.0_dp
1267 >
1268 >    f_Row = 0.0_dp
1269 >    f_Col = 0.0_dp
1270 >    f_Temp = 0.0_dp
1271 >
1272 >    t_Row = 0.0_dp
1273 >    t_Col = 0.0_dp
1274 >    t_Temp = 0.0_dp
1275 >
1276 >    pot_Row = 0.0_dp
1277 >    pot_Col = 0.0_dp
1278 >    pot_Temp = 0.0_dp
1279 >
1280 >    rf_Row = 0.0_dp
1281 >    rf_Col = 0.0_dp
1282 >    rf_Temp = 0.0_dp
1283 >
1284   #endif
1285 <
1286 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1287 <      call clean_EAM()
1288 <   endif
1289 <  
1290 <   rf = 0.0_dp
1291 <   tau_Temp = 0.0_dp
1292 <   virial_Temp = 0.0_dp
1293 < end subroutine zero_work_arrays
1294 <
1295 < function skipThisPair(atom1, atom2) result(skip_it)
1296 <   integer, intent(in) :: atom1
1297 <   integer, intent(in), optional :: atom2
1298 <   logical :: skip_it
1299 <   integer :: unique_id_1, unique_id_2
1300 <   integer :: me_i,me_j
1301 <   integer :: i
1302 <  
1303 <   skip_it = .false.
1304 <  
1305 <   !! there are a number of reasons to skip a pair or a particle
1306 <   !! mostly we do this to exclude atoms who are involved in short
1307 <   !! range interactions (bonds, bends, torsions), but we also need
1308 <   !! to exclude some overcounted interactions that result from
1309 <   !! the parallel decomposition
1310 <  
1285 >
1286 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1287 >       call clean_EAM()
1288 >    endif
1289 >
1290 >    rf = 0.0_dp
1291 >    tau_Temp = 0.0_dp
1292 >    virial_Temp = 0.0_dp
1293 >  end subroutine zero_work_arrays
1294 >
1295 >  function skipThisPair(atom1, atom2) result(skip_it)
1296 >    integer, intent(in) :: atom1
1297 >    integer, intent(in), optional :: atom2
1298 >    logical :: skip_it
1299 >    integer :: unique_id_1, unique_id_2
1300 >    integer :: me_i,me_j
1301 >    integer :: i
1302 >
1303 >    skip_it = .false.
1304 >
1305 >    !! there are a number of reasons to skip a pair or a particle
1306 >    !! mostly we do this to exclude atoms who are involved in short
1307 >    !! range interactions (bonds, bends, torsions), but we also need
1308 >    !! to exclude some overcounted interactions that result from
1309 >    !! the parallel decomposition
1310 >
1311   #ifdef IS_MPI
1312 <   !! in MPI, we have to look up the unique IDs for each atom
1313 <   unique_id_1 = AtomRowToGlobal(atom1)
1312 >    !! in MPI, we have to look up the unique IDs for each atom
1313 >    unique_id_1 = AtomRowToGlobal(atom1)
1314   #else
1315 <   !! in the normal loop, the atom numbers are unique
1316 <   unique_id_1 = atom1
1315 >    !! in the normal loop, the atom numbers are unique
1316 >    unique_id_1 = atom1
1317   #endif
1318 <  
1319 <   !! We were called with only one atom, so just check the global exclude
1320 <   !! list for this atom
1321 <   if (.not. present(atom2)) then
1322 <      do i = 1, nExcludes_global
1323 <         if (excludesGlobal(i) == unique_id_1) then
1324 <            skip_it = .true.
1325 <            return
1326 <         end if
1327 <      end do
1328 <      return
1329 <   end if
1330 <  
1318 >
1319 >    !! We were called with only one atom, so just check the global exclude
1320 >    !! list for this atom
1321 >    if (.not. present(atom2)) then
1322 >       do i = 1, nExcludes_global
1323 >          if (excludesGlobal(i) == unique_id_1) then
1324 >             skip_it = .true.
1325 >             return
1326 >          end if
1327 >       end do
1328 >       return
1329 >    end if
1330 >
1331   #ifdef IS_MPI
1332 <   unique_id_2 = AtomColToGlobal(atom2)
1332 >    unique_id_2 = AtomColToGlobal(atom2)
1333   #else
1334 <   unique_id_2 = atom2
1334 >    unique_id_2 = atom2
1335   #endif
1336 <  
1336 >
1337   #ifdef IS_MPI
1338 <   !! this situation should only arise in MPI simulations
1339 <   if (unique_id_1 == unique_id_2) then
1340 <      skip_it = .true.
1341 <      return
1342 <   end if
1343 <  
1344 <   !! this prevents us from doing the pair on multiple processors
1345 <   if (unique_id_1 < unique_id_2) then
1346 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1347 <         skip_it = .true.
1348 <         return
1349 <      endif
1350 <   else                
1351 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1352 <         skip_it = .true.
1353 <         return
1354 <      endif
1355 <   endif
1338 >    !! this situation should only arise in MPI simulations
1339 >    if (unique_id_1 == unique_id_2) then
1340 >       skip_it = .true.
1341 >       return
1342 >    end if
1343 >
1344 >    !! this prevents us from doing the pair on multiple processors
1345 >    if (unique_id_1 < unique_id_2) then
1346 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1347 >          skip_it = .true.
1348 >          return
1349 >       endif
1350 >    else                
1351 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1352 >          skip_it = .true.
1353 >          return
1354 >       endif
1355 >    endif
1356   #endif
1357 <  
1358 <   !! the rest of these situations can happen in all simulations:
1359 <   do i = 1, nExcludes_global      
1360 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1361 <           (excludesGlobal(i) == unique_id_2)) then
1362 <         skip_it = .true.
1363 <         return
1364 <      endif
1365 <   enddo
1366 <  
1367 <   do i = 1, nSkipsForAtom(atom1)
1368 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1369 <         skip_it = .true.
1370 <         return
1371 <      endif
1372 <   end do
1373 <  
1374 <   return
1375 < end function skipThisPair
1376 <
1377 < function FF_UsesDirectionalAtoms() result(doesit)
1378 <   logical :: doesit
1379 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1380 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1381 < end function FF_UsesDirectionalAtoms
1382 <
1383 < function FF_RequiresPrepairCalc() result(doesit)
1384 <   logical :: doesit
1385 <   doesit = FF_uses_EAM
1386 < end function FF_RequiresPrepairCalc
1387 <
1388 < function FF_RequiresPostpairCalc() result(doesit)
1389 <   logical :: doesit
1390 <   doesit = FF_uses_RF
1391 < end function FF_RequiresPostpairCalc
1392 <
1357 >
1358 >    !! the rest of these situations can happen in all simulations:
1359 >    do i = 1, nExcludes_global      
1360 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1361 >            (excludesGlobal(i) == unique_id_2)) then
1362 >          skip_it = .true.
1363 >          return
1364 >       endif
1365 >    enddo
1366 >
1367 >    do i = 1, nSkipsForAtom(atom1)
1368 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1369 >          skip_it = .true.
1370 >          return
1371 >       endif
1372 >    end do
1373 >
1374 >    return
1375 >  end function skipThisPair
1376 >
1377 >  function FF_UsesDirectionalAtoms() result(doesit)
1378 >    logical :: doesit
1379 >    doesit = FF_uses_DirectionalAtoms
1380 >  end function FF_UsesDirectionalAtoms
1381 >
1382 >  function FF_RequiresPrepairCalc() result(doesit)
1383 >    logical :: doesit
1384 >    doesit = FF_uses_EAM
1385 >  end function FF_RequiresPrepairCalc
1386 >
1387 >  function FF_RequiresPostpairCalc() result(doesit)
1388 >    logical :: doesit
1389 >    doesit = FF_uses_RF
1390 >    if (corrMethod == 3) doesit = .true.
1391 >  end function FF_RequiresPostpairCalc
1392 >
1393   #ifdef PROFILE
1394 < function getforcetime() result(totalforcetime)
1395 <   real(kind=dp) :: totalforcetime
1396 <   totalforcetime = forcetime
1397 < end function getforcetime
1394 >  function getforcetime() result(totalforcetime)
1395 >    real(kind=dp) :: totalforcetime
1396 >    totalforcetime = forcetime
1397 >  end function getforcetime
1398   #endif
1196
1197 !! This cleans componets of force arrays belonging only to fortran
1399  
1400 < subroutine add_stress_tensor(dpair, fpair)
1200 <  
1201 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1202 <  
1203 <   ! because the d vector is the rj - ri vector, and
1204 <   ! because fx, fy, fz are the force on atom i, we need a
1205 <   ! negative sign here:  
1206 <  
1207 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1208 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1209 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1210 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1211 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1212 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1213 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1214 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1215 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1216 <  
1217 <   virial_Temp = virial_Temp + &
1218 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1219 <  
1220 < end subroutine add_stress_tensor
1221 <
1222 < end module doForces
1400 >  !! This cleans componets of force arrays belonging only to fortran
1401  
1402 < !! Interfaces for C programs to module....
1402 >  subroutine add_stress_tensor(dpair, fpair)
1403  
1404 < subroutine initFortranFF(use_RF_c, thisStat)
1227 <    use doForces, ONLY: init_FF
1228 <    logical, intent(in) :: use_RF_c
1404 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1405  
1406 <    integer, intent(out) :: thisStat  
1407 <    call init_FF(use_RF_c, thisStat)
1406 >    ! because the d vector is the rj - ri vector, and
1407 >    ! because fx, fy, fz are the force on atom i, we need a
1408 >    ! negative sign here:  
1409  
1410 < end subroutine initFortranFF
1410 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1411 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1412 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1413 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1414 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1415 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1416 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1417 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1418 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1419  
1420 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1421 <       do_pot_c, do_stress_c, error)
1237 <      
1238 <       use definitions, ONLY: dp
1239 <       use simulation
1240 <       use doForces, ONLY: do_force_loop
1241 <    !! Position array provided by C, dimensioned by getNlocal
1242 <    real ( kind = dp ), dimension(3, nLocal) :: q
1243 <    !! molecular center-of-mass position array
1244 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1245 <    !! Rotation Matrix for each long range particle in simulation.
1246 <    real( kind = dp), dimension(9, nLocal) :: A    
1247 <    !! Unit vectors for dipoles (lab frame)
1248 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1249 <    !! Force array provided by C, dimensioned by getNlocal
1250 <    real ( kind = dp ), dimension(3,nLocal) :: f
1251 <    !! Torsion array provided by C, dimensioned by getNlocal
1252 <    real( kind = dp ), dimension(3,nLocal) :: t    
1420 >    virial_Temp = virial_Temp + &
1421 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1422  
1423 <    !! Stress Tensor
1424 <    real( kind = dp), dimension(9) :: tau  
1425 <    real ( kind = dp ) :: pot
1257 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1258 <    integer :: error
1259 <    
1260 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1261 <       do_pot_c, do_stress_c, error)
1262 <      
1263 < end subroutine doForceloop
1423 >  end subroutine add_stress_tensor
1424 >
1425 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines