ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 2085 by gezelter, Tue Mar 8 21:05:46 2005 UTC vs.
Revision 2280 by gezelter, Thu Sep 1 20:17:55 2005 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.11 2005-03-08 21:05:46 gezelter Exp $, $Date: 2005-03-08 21:05:46 $, $Name: not supported by cvs2svn $, $Revision: 1.11 $
48 > !! @version $Id: doForces.F90,v 1.34 2005-09-01 20:17:55 gezelter Exp $, $Date: 2005-09-01 20:17:55 $, $Name: not supported by cvs2svn $, $Revision: 1.34 $
49  
50  
51   module doForces
# Line 73 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
80  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
83  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveRlist = .false.
89 >
90    logical, save :: FF_uses_DirectionalAtoms
87  logical, save :: FF_uses_LennardJones
88  logical, save :: FF_uses_Electrostatics
89  logical, save :: FF_uses_Charges
91    logical, save :: FF_uses_Dipoles
91  logical, save :: FF_uses_Quadrupoles
92  logical, save :: FF_uses_sticky
92    logical, save :: FF_uses_GayBerne
93    logical, save :: FF_uses_EAM
95  logical, save :: FF_uses_Shapes
96  logical, save :: FF_uses_FLARB
94    logical, save :: FF_uses_RF
95  
96    logical, save :: SIM_uses_DirectionalAtoms
100  logical, save :: SIM_uses_LennardJones
101  logical, save :: SIM_uses_Electrostatics
102  logical, save :: SIM_uses_Charges
103  logical, save :: SIM_uses_Dipoles
104  logical, save :: SIM_uses_Quadrupoles
105  logical, save :: SIM_uses_Sticky
106  logical, save :: SIM_uses_GayBerne
97    logical, save :: SIM_uses_EAM
108  logical, save :: SIM_uses_Shapes
109  logical, save :: SIM_uses_FLARB
98    logical, save :: SIM_uses_RF
99    logical, save :: SIM_requires_postpair_calc
100    logical, save :: SIM_requires_prepair_calc
101    logical, save :: SIM_uses_PBC
114  logical, save :: SIM_uses_molecular_cutoffs
102  
103 <  real(kind=dp), save :: rlist, rlistsq
103 >  integer, save :: corrMethod
104  
105    public :: init_FF
106 +  public :: setDefaultCutoffs
107    public :: do_force_loop
108 <  public :: setRlistDF
108 >  public :: createInteractionHash
109 >  public :: createGtypeCutoffMap
110 >  public :: getStickyCut
111 >  public :: getStickyPowerCut
112 >  public :: getGayBerneCut
113 >  public :: getEAMCut
114 >  public :: getShapeCut
115  
116   #ifdef PROFILE
117    public :: getforcetime
# Line 125 | Line 119 | module doForces
119    real :: forceTimeInitial, forceTimeFinal
120    integer :: nLoops
121   #endif
122 +  
123 +  !! Variables for cutoff mapping and interaction mapping
124 +  ! Bit hash to determine pair-pair interactions.
125 +  integer, dimension(:,:), allocatable :: InteractionHash
126 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
127 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
128 +  integer, dimension(:), allocatable :: groupToGtype
129 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
130 +  type ::gtypeCutoffs
131 +     real(kind=dp) :: rcut
132 +     real(kind=dp) :: rcutsq
133 +     real(kind=dp) :: rlistsq
134 +  end type gtypeCutoffs
135 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
136  
137 <  type :: Properties
138 <     logical :: is_Directional   = .false.
139 <     logical :: is_LennardJones  = .false.
132 <     logical :: is_Electrostatic = .false.
133 <     logical :: is_Charge        = .false.
134 <     logical :: is_Dipole        = .false.
135 <     logical :: is_Quadrupole    = .false.
136 <     logical :: is_Sticky        = .false.
137 <     logical :: is_GayBerne      = .false.
138 <     logical :: is_EAM           = .false.
139 <     logical :: is_Shape         = .false.
140 <     logical :: is_FLARB         = .false.
141 <  end type Properties
142 <
143 <  type(Properties), dimension(:),allocatable :: PropertyMap
144 <
137 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
138 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
139 >  
140   contains
141  
142 <  subroutine setRlistDF( this_rlist )
148 <    
149 <    real(kind=dp) :: this_rlist
150 <
151 <    rlist = this_rlist
152 <    rlistsq = rlist * rlist
153 <    
154 <    haveRlist = .true.
155 <
156 <  end subroutine setRlistDF    
157 <
158 <  subroutine createPropertyMap(status)
142 >  subroutine createInteractionHash(status)
143      integer :: nAtypes
144 <    integer :: status
144 >    integer, intent(out) :: status
145      integer :: i
146 <    logical :: thisProperty
147 <    real (kind=DP) :: thisDPproperty
146 >    integer :: j
147 >    integer :: iHash
148 >    !! Test Types
149 >    logical :: i_is_LJ
150 >    logical :: i_is_Elect
151 >    logical :: i_is_Sticky
152 >    logical :: i_is_StickyP
153 >    logical :: i_is_GB
154 >    logical :: i_is_EAM
155 >    logical :: i_is_Shape
156 >    logical :: j_is_LJ
157 >    logical :: j_is_Elect
158 >    logical :: j_is_Sticky
159 >    logical :: j_is_StickyP
160 >    logical :: j_is_GB
161 >    logical :: j_is_EAM
162 >    logical :: j_is_Shape
163 >    real(kind=dp) :: myRcut
164  
165 <    status = 0
165 >    status = 0  
166  
167 +    if (.not. associated(atypes)) then
168 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
169 +       status = -1
170 +       return
171 +    endif
172 +    
173      nAtypes = getSize(atypes)
174 <
174 >    
175      if (nAtypes == 0) then
176         status = -1
177         return
178      end if
179 <        
180 <    if (.not. allocated(PropertyMap)) then
181 <       allocate(PropertyMap(nAtypes))
179 >
180 >    if (.not. allocated(InteractionHash)) then
181 >       allocate(InteractionHash(nAtypes,nAtypes))
182      endif
183  
184 +    if (.not. allocated(atypeMaxCutoff)) then
185 +       allocate(atypeMaxCutoff(nAtypes))
186 +    endif
187 +        
188      do i = 1, nAtypes
189 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
190 <       PropertyMap(i)%is_Directional = thisProperty
189 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
190 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
191 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
192 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
193 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
194 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
195 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
196  
197 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
183 <       PropertyMap(i)%is_LennardJones = thisProperty
184 <      
185 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
186 <       PropertyMap(i)%is_Electrostatic = thisProperty
197 >       do j = i, nAtypes
198  
199 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
200 <       PropertyMap(i)%is_Charge = thisProperty
190 <      
191 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
192 <       PropertyMap(i)%is_Dipole = thisProperty
199 >          iHash = 0
200 >          myRcut = 0.0_dp
201  
202 <       call getElementProperty(atypes, i, "is_Quadrupole", thisProperty)
203 <       PropertyMap(i)%is_Quadrupole = thisProperty
202 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
203 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
204 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
205 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
206 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
207 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
208 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
209  
210 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
211 <       PropertyMap(i)%is_Sticky = thisProperty
210 >          if (i_is_LJ .and. j_is_LJ) then
211 >             iHash = ior(iHash, LJ_PAIR)            
212 >          endif
213 >          
214 >          if (i_is_Elect .and. j_is_Elect) then
215 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
216 >          endif
217 >          
218 >          if (i_is_Sticky .and. j_is_Sticky) then
219 >             iHash = ior(iHash, STICKY_PAIR)
220 >          endif
221  
222 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
223 <       PropertyMap(i)%is_GayBerne = thisProperty
222 >          if (i_is_StickyP .and. j_is_StickyP) then
223 >             iHash = ior(iHash, STICKYPOWER_PAIR)
224 >          endif
225  
226 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
227 <       PropertyMap(i)%is_EAM = thisProperty
226 >          if (i_is_EAM .and. j_is_EAM) then
227 >             iHash = ior(iHash, EAM_PAIR)
228 >          endif
229  
230 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
231 <       PropertyMap(i)%is_Shape = thisProperty
230 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
231 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
232 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
233  
234 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
235 <       PropertyMap(i)%is_FLARB = thisProperty
234 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
235 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
236 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
237 >
238 >
239 >          InteractionHash(i,j) = iHash
240 >          InteractionHash(j,i) = iHash
241 >
242 >       end do
243 >
244      end do
245  
246 <    havePropertyMap = .true.
246 >    haveInteractionHash = .true.
247 >  end subroutine createInteractionHash
248  
249 <  end subroutine createPropertyMap
249 >  subroutine createGtypeCutoffMap(stat)
250 >
251 >    integer, intent(out), optional :: stat
252 >    logical :: i_is_LJ
253 >    logical :: i_is_Elect
254 >    logical :: i_is_Sticky
255 >    logical :: i_is_StickyP
256 >    logical :: i_is_GB
257 >    logical :: i_is_EAM
258 >    logical :: i_is_Shape
259 >
260 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
261 >    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
262 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
263 >    real(kind=dp) :: biggestAtypeCutoff
264 >
265 >    stat = 0
266 >    if (.not. haveInteractionHash) then
267 >       call createInteractionHash(myStatus)      
268 >       if (myStatus .ne. 0) then
269 >          write(default_error, *) 'createInteractionHash failed in doForces!'
270 >          stat = -1
271 >          return
272 >       endif
273 >    endif
274 >
275 >    nAtypes = getSize(atypes)
276 >    
277 >    do i = 1, nAtypes
278 >       if (SimHasAtype(i)) then          
279 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
280 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
281 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
282 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
283 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
284 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
285 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
286 >          
287 >          if (i_is_LJ) then
288 >             thisRcut = getSigma(i) * 2.5_dp
289 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
290 >          endif
291 >          if (i_is_Elect) then
292 >             thisRcut = defaultRcut
293 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
294 >          endif
295 >          if (i_is_Sticky) then
296 >             thisRcut = getStickyCut(i)
297 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
298 >          endif
299 >          if (i_is_StickyP) then
300 >             thisRcut = getStickyPowerCut(i)
301 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
302 >          endif
303 >          if (i_is_GB) then
304 >             thisRcut = getGayBerneCut(i)
305 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
306 >          endif
307 >          if (i_is_EAM) then
308 >             thisRcut = getEAMCut(i)
309 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
310 >          endif
311 >          if (i_is_Shape) then
312 >             thisRcut = getShapeCut(i)
313 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
314 >          endif
315 >          
316 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
317 >             biggestAtypeCutoff = atypeMaxCutoff(i)
318 >          endif
319 >       endif
320 >    enddo
321 >  
322 >    nGroupTypes = 0
323 >    
324 >    istart = 1
325 > #ifdef IS_MPI
326 >    iend = nGroupsInRow
327 > #else
328 >    iend = nGroups
329 > #endif
330 >
331 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
332 >    
333 >    !! first we do a single loop over the cutoff groups to find the largest cutoff for any atypes
334 >    !! present in this group.   We also create gtypes at this point.
335 >    tol = 1.0d-6
336 >    
337 >    do i = istart, iend      
338 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
339 >       groupMaxCutoff(i) = 0.0_dp
340 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
341 >          atom1 = groupListRow(ia)
342 > #ifdef IS_MPI
343 >          me_i = atid_row(atom1)
344 > #else
345 >          me_i = atid(atom1)
346 > #endif          
347 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
348 >             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
349 >          endif
350 >       enddo
351 >       if (nGroupTypes.eq.0) then
352 >          nGroupTypes = nGroupTypes + 1
353 >          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
354 >          groupToGtype(i) = nGroupTypes
355 >       else
356 >          do g = 1, nGroupTypes
357 >             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).gt.tol) then
358 >                nGroupTypes = nGroupTypes + 1
359 >                gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
360 >                groupToGtype(i) = nGroupTypes
361 >             else
362 >                groupToGtype(i) = g
363 >             endif
364 >          enddo
365 >       endif
366 >    enddo
367 >    
368 >    !! allocate the gtypeCutoffMap here.
369 >
370 >    !! then we do a double loop over all the group TYPES to find the cutoff
371 >    !! map between groups of two types
372 >    
373 >    do i = 1, nGroupTypes
374 >       do j = 1, nGroupTypes
375 >      
376 >          select case(cutoffPolicy)
377 >             case(TRADITIONAL_CUTOFF_POLICY)
378 >                thisRcut = maxval(gtypeMaxCutoff)
379 >             case(MIX_CUTOFF_POLICY)
380 >                thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
381 >             case(MAX_CUTOFF_POLICY)
382 >                thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
383 >             case default
384 >                call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
385 >                return
386 >          end select      
387 >         gtypeCutoffMap(i,j)%rcut = thisRcut
388 >         gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
389 >         skin = defaultRlist - defaultRcut
390 >         gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
391 >       enddo
392 >    enddo
393 >    
394 >    haveGtypeCutoffMap = .true.
395 >   end subroutine createGtypeCutoffMap
396 >
397 >   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
398 >     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
399 >     integer, intent(in) :: cutPolicy
400 >
401 >     defaultRcut = defRcut
402 >     defaultRsw = defRsw
403 >     defaultRlist = defRlist
404 >     cutoffPolicy = cutPolicy
405 >   end subroutine setDefaultCutoffs
406  
407 +   subroutine setCutoffPolicy(cutPolicy)
408 +
409 +     integer, intent(in) :: cutPolicy
410 +     cutoffPolicy = cutPolicy
411 +     call createGtypeCutoffMap()
412 +
413 +   end subroutine setCutoffPolicy
414 +    
415 +    
416    subroutine setSimVariables()
417      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
219    SIM_uses_LennardJones = SimUsesLennardJones()
220    SIM_uses_Electrostatics = SimUsesElectrostatics()
221    SIM_uses_Charges = SimUsesCharges()
222    SIM_uses_Dipoles = SimUsesDipoles()
223    SIM_uses_Sticky = SimUsesSticky()
224    SIM_uses_GayBerne = SimUsesGayBerne()
418      SIM_uses_EAM = SimUsesEAM()
226    SIM_uses_Shapes = SimUsesShapes()
227    SIM_uses_FLARB = SimUsesFLARB()
419      SIM_uses_RF = SimUsesRF()
420      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
421      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
# Line 241 | Line 432 | contains
432      integer :: myStatus
433  
434      error = 0
244    
245    if (.not. havePropertyMap) then
435  
436 <       myStatus = 0
436 >    if (.not. haveInteractionHash) then      
437 >       myStatus = 0      
438 >       call createInteractionHash(myStatus)      
439 >       if (myStatus .ne. 0) then
440 >          write(default_error, *) 'createInteractionHash failed in doForces!'
441 >          error = -1
442 >          return
443 >       endif
444 >    endif
445  
446 <       call createPropertyMap(myStatus)
447 <
446 >    if (.not. haveGtypeCutoffMap) then        
447 >       myStatus = 0      
448 >       call createGtypeCutoffMap(myStatus)      
449         if (myStatus .ne. 0) then
450 <          write(default_error, *) 'createPropertyMap failed in doForces!'
450 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
451            error = -1
452            return
453         endif
# Line 286 | Line 484 | contains
484   #endif
485      return
486    end subroutine doReadyCheck
289    
487  
291  subroutine init_FF(use_RF_c, thisStat)
488  
489 <    logical, intent(in) :: use_RF_c
489 >  subroutine init_FF(use_RF, use_UW, use_DW, thisStat)
490  
491 +    logical, intent(in) :: use_RF
492 +    logical, intent(in) :: use_UW
493 +    logical, intent(in) :: use_DW
494      integer, intent(out) :: thisStat  
495      integer :: my_status, nMatches
496 +    integer :: corrMethod
497      integer, pointer :: MatchList(:) => null()
498      real(kind=dp) :: rcut, rrf, rt, dielect
499  
# Line 301 | Line 501 | contains
501      thisStat = 0
502  
503      !! Fortran's version of a cast:
504 <    FF_uses_RF = use_RF_c
504 >    FF_uses_RF = use_RF
505 >
506 >    !! set the electrostatic correction method
507 >    if (use_UW) then
508 >       corrMethod = 1
509 >    elseif (use_DW) then
510 >       corrMethod = 2
511 >    else
512 >       corrMethod = 0
513 >    endif
514      
515      !! init_FF is called *after* all of the atom types have been
516      !! defined in atype_module using the new_atype subroutine.
517      !!
518      !! this will scan through the known atypes and figure out what
519      !! interactions are used by the force field.    
520 <  
520 >
521      FF_uses_DirectionalAtoms = .false.
313    FF_uses_LennardJones = .false.
314    FF_uses_Electrostatics = .false.
315    FF_uses_Charges = .false.    
522      FF_uses_Dipoles = .false.
317    FF_uses_Sticky = .false.
523      FF_uses_GayBerne = .false.
524      FF_uses_EAM = .false.
525 <    FF_uses_Shapes = .false.
321 <    FF_uses_FLARB = .false.
322 <    
525 >
526      call getMatchingElementList(atypes, "is_Directional", .true., &
527           nMatches, MatchList)
528      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
529  
327    call getMatchingElementList(atypes, "is_LennardJones", .true., &
328         nMatches, MatchList)
329    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
330    
331    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
332         nMatches, MatchList)
333    if (nMatches .gt. 0) then
334       FF_uses_Electrostatics = .true.
335    endif
336
337    call getMatchingElementList(atypes, "is_Charge", .true., &
338         nMatches, MatchList)
339    if (nMatches .gt. 0) then
340       FF_uses_Charges = .true.  
341       FF_uses_Electrostatics = .true.
342    endif
343    
530      call getMatchingElementList(atypes, "is_Dipole", .true., &
531           nMatches, MatchList)
532 <    if (nMatches .gt. 0) then
347 <       FF_uses_Dipoles = .true.
348 <       FF_uses_Electrostatics = .true.
349 <       FF_uses_DirectionalAtoms = .true.
350 <    endif
351 <
352 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
353 <         nMatches, MatchList)
354 <    if (nMatches .gt. 0) then
355 <       FF_uses_Quadrupoles = .true.
356 <       FF_uses_Electrostatics = .true.
357 <       FF_uses_DirectionalAtoms = .true.
358 <    endif
532 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
533      
360    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
361         MatchList)
362    if (nMatches .gt. 0) then
363       FF_uses_Sticky = .true.
364       FF_uses_DirectionalAtoms = .true.
365    endif
366    
534      call getMatchingElementList(atypes, "is_GayBerne", .true., &
535           nMatches, MatchList)
536 <    if (nMatches .gt. 0) then
537 <       FF_uses_GayBerne = .true.
371 <       FF_uses_DirectionalAtoms = .true.
372 <    endif
373 <    
536 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
537 >
538      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
539      if (nMatches .gt. 0) FF_uses_EAM = .true.
376    
377    call getMatchingElementList(atypes, "is_Shape", .true., &
378         nMatches, MatchList)
379    if (nMatches .gt. 0) then
380       FF_uses_Shapes = .true.
381       FF_uses_DirectionalAtoms = .true.
382    endif
540  
384    call getMatchingElementList(atypes, "is_FLARB", .true., &
385         nMatches, MatchList)
386    if (nMatches .gt. 0) FF_uses_FLARB = .true.
541  
388    !! Assume sanity (for the sake of argument)
542      haveSaneForceField = .true.
543 <    
543 >
544      !! check to make sure the FF_uses_RF setting makes sense
545 <    
546 <    if (FF_uses_dipoles) then
545 >
546 >    if (FF_uses_Dipoles) then
547         if (FF_uses_RF) then
548            dielect = getDielect()
549            call initialize_rf(dielect)
# Line 402 | Line 555 | contains
555            haveSaneForceField = .false.
556            return
557         endif
558 <    endif
558 >    endif
559  
407    !sticky module does not contain check_sticky_FF anymore
408    !if (FF_uses_sticky) then
409    !   call check_sticky_FF(my_status)
410    !   if (my_status /= 0) then
411    !      thisStat = -1
412    !      haveSaneForceField = .false.
413    !      return
414    !   end if
415    !endif
416
560      if (FF_uses_EAM) then
561 <         call init_EAM_FF(my_status)
561 >       call init_EAM_FF(my_status)
562         if (my_status /= 0) then
563            write(default_error, *) "init_EAM_FF returned a bad status"
564            thisStat = -1
# Line 433 | Line 576 | contains
576         endif
577      endif
578  
436    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
437    endif
438    
579      if (.not. haveNeighborList) then
580         !! Create neighbor lists
581         call expandNeighborList(nLocal, my_status)
# Line 445 | Line 585 | contains
585            return
586         endif
587         haveNeighborList = .true.
588 <    endif    
589 <    
588 >    endif
589 >
590    end subroutine init_FF
451  
591  
592 +
593    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
594    !------------------------------------------------------------->
595    subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
# Line 499 | Line 639 | contains
639      integer :: localError
640      integer :: propPack_i, propPack_j
641      integer :: loopStart, loopEnd, loop
642 <
642 >    integer :: iHash
643      real(kind=dp) :: listSkin = 1.0  
644 <    
644 >
645      !! initialize local variables  
646 <    
646 >
647   #ifdef IS_MPI
648      pot_local = 0.0_dp
649      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 513 | Line 653 | contains
653   #else
654      natoms = nlocal
655   #endif
656 <    
656 >
657      call doReadyCheck(localError)
658      if ( localError .ne. 0 ) then
659         call handleError("do_force_loop", "Not Initialized")
# Line 521 | Line 661 | contains
661         return
662      end if
663      call zero_work_arrays()
664 <        
664 >
665      do_pot = do_pot_c
666      do_stress = do_stress_c
667 <    
667 >
668      ! Gather all information needed by all force loops:
669 <    
669 >
670   #ifdef IS_MPI    
671 <    
671 >
672      call gather(q, q_Row, plan_atom_row_3d)
673      call gather(q, q_Col, plan_atom_col_3d)
674  
675      call gather(q_group, q_group_Row, plan_group_row_3d)
676      call gather(q_group, q_group_Col, plan_group_col_3d)
677 <        
677 >
678      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
679         call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
680         call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
681 <      
681 >
682         call gather(A, A_Row, plan_atom_row_rotation)
683         call gather(A, A_Col, plan_atom_col_rotation)
684      endif
685 <    
685 >
686   #endif
687 <    
687 >
688      !! Begin force loop timing:
689   #ifdef PROFILE
690      call cpu_time(forceTimeInitial)
691      nloops = nloops + 1
692   #endif
693 <    
693 >
694      loopEnd = PAIR_LOOP
695      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
696         loopStart = PREPAIR_LOOP
# Line 565 | Line 705 | contains
705         if (loop .eq. loopStart) then
706   #ifdef IS_MPI
707            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
708 <             update_nlist)
708 >               update_nlist)
709   #else
710            call checkNeighborList(nGroups, q_group, listSkin, &
711 <             update_nlist)
711 >               update_nlist)
712   #endif
713         endif
714 <      
714 >
715         if (update_nlist) then
716            !! save current configuration and construct neighbor list
717   #ifdef IS_MPI
# Line 582 | Line 722 | contains
722            neighborListSize = size(list)
723            nlist = 0
724         endif
725 <      
725 >
726         istart = 1
727   #ifdef IS_MPI
728         iend = nGroupsInRow
# Line 592 | Line 732 | contains
732         outer: do i = istart, iend
733  
734            if (update_nlist) point(i) = nlist + 1
735 <          
735 >
736            n_in_i = groupStartRow(i+1) - groupStartRow(i)
737 <          
737 >
738            if (update_nlist) then
739   #ifdef IS_MPI
740               jstart = 1
# Line 609 | Line 749 | contains
749               ! make sure group i has neighbors
750               if (jstart .gt. jend) cycle outer
751            endif
752 <          
752 >
753            do jnab = jstart, jend
754               if (update_nlist) then
755                  j = jnab
# Line 618 | Line 758 | contains
758               endif
759  
760   #ifdef IS_MPI
761 +             me_j = atid_col(j)
762               call get_interatomic_vector(q_group_Row(:,i), &
763                    q_group_Col(:,j), d_grp, rgrpsq)
764   #else
765 +             me_j = atid(j)
766               call get_interatomic_vector(q_group(:,i), &
767                    q_group(:,j), d_grp, rgrpsq)
768   #endif
769  
770 <             if (rgrpsq < rlistsq) then
770 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
771                  if (update_nlist) then
772                     nlist = nlist + 1
773 <                  
773 >
774                     if (nlist > neighborListSize) then
775   #ifdef IS_MPI                
776                        call expandNeighborList(nGroupsInRow, listerror)
# Line 642 | Line 784 | contains
784                        end if
785                        neighborListSize = size(list)
786                     endif
787 <                  
787 >
788                     list(nlist) = j
789                  endif
790 <                
790 >
791                  if (loop .eq. PAIR_LOOP) then
792                     vij = 0.0d0
793                     fij(1:3) = 0.0d0
794                  endif
795 <                
795 >
796                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
797                       in_switching_region)
798 <                
798 >
799                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
800 <                
800 >
801                  do ia = groupStartRow(i), groupStartRow(i+1)-1
802 <                  
802 >
803                     atom1 = groupListRow(ia)
804 <                  
804 >
805                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
806 <                      
806 >
807                        atom2 = groupListCol(jb)
808 <                      
808 >
809                        if (skipThisPair(atom1, atom2)) cycle inner
810  
811                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 705 | Line 847 | contains
847                        endif
848                     enddo inner
849                  enddo
850 <                
850 >
851                  if (loop .eq. PAIR_LOOP) then
852                     if (in_switching_region) then
853                        swderiv = vij*dswdr/rgrp
854                        fij(1) = fij(1) + swderiv*d_grp(1)
855                        fij(2) = fij(2) + swderiv*d_grp(2)
856                        fij(3) = fij(3) + swderiv*d_grp(3)
857 <                      
857 >
858                        do ia=groupStartRow(i), groupStartRow(i+1)-1
859                           atom1=groupListRow(ia)
860                           mf = mfactRow(atom1)
# Line 726 | Line 868 | contains
868                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
869   #endif
870                        enddo
871 <                      
871 >
872                        do jb=groupStartCol(j), groupStartCol(j+1)-1
873                           atom2=groupListCol(jb)
874                           mf = mfactCol(atom2)
# Line 741 | Line 883 | contains
883   #endif
884                        enddo
885                     endif
886 <                  
886 >
887                     if (do_stress) call add_stress_tensor(d_grp, fij)
888                  endif
889               end if
890            enddo
891         enddo outer
892 <      
892 >
893         if (update_nlist) then
894   #ifdef IS_MPI
895            point(nGroupsInRow + 1) = nlist + 1
# Line 761 | Line 903 | contains
903               update_nlist = .false.                              
904            endif
905         endif
906 <            
906 >
907         if (loop .eq. PREPAIR_LOOP) then
908            call do_preforce(nlocal, pot)
909         endif
910 <      
910 >
911      enddo
912 <    
912 >
913      !! Do timing
914   #ifdef PROFILE
915      call cpu_time(forceTimeFinal)
916      forceTime = forceTime + forceTimeFinal - forceTimeInitial
917   #endif    
918 <    
918 >
919   #ifdef IS_MPI
920      !!distribute forces
921 <    
921 >
922      f_temp = 0.0_dp
923      call scatter(f_Row,f_temp,plan_atom_row_3d)
924      do i = 1,nlocal
925         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
926      end do
927 <    
927 >
928      f_temp = 0.0_dp
929      call scatter(f_Col,f_temp,plan_atom_col_3d)
930      do i = 1,nlocal
931         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
932      end do
933 <    
933 >
934      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
935         t_temp = 0.0_dp
936         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 797 | Line 939 | contains
939         end do
940         t_temp = 0.0_dp
941         call scatter(t_Col,t_temp,plan_atom_col_3d)
942 <      
942 >
943         do i = 1,nlocal
944            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
945         end do
946      endif
947 <    
947 >
948      if (do_pot) then
949         ! scatter/gather pot_row into the members of my column
950         call scatter(pot_Row, pot_Temp, plan_atom_row)
951 <      
951 >
952         ! scatter/gather pot_local into all other procs
953         ! add resultant to get total pot
954         do i = 1, nlocal
955            pot_local = pot_local + pot_Temp(i)
956         enddo
957 <      
957 >
958         pot_Temp = 0.0_DP
959 <      
959 >
960         call scatter(pot_Col, pot_Temp, plan_atom_col)
961         do i = 1, nlocal
962            pot_local = pot_local + pot_Temp(i)
963         enddo
964 <      
964 >
965      endif
966   #endif
967 <    
967 >
968      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
969 <      
969 >
970         if (FF_uses_RF .and. SIM_uses_RF) then
971 <          
971 >
972   #ifdef IS_MPI
973            call scatter(rf_Row,rf,plan_atom_row_3d)
974            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 834 | Line 976 | contains
976               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
977            end do
978   #endif
979 <          
979 >
980            do i = 1, nLocal
981 <            
981 >
982               rfpot = 0.0_DP
983   #ifdef IS_MPI
984               me_i = atid_row(i)
985   #else
986               me_i = atid(i)
987   #endif
988 +             iHash = InteractionHash(me_i,me_j)
989              
990 <             if (PropertyMap(me_i)%is_Dipole) then
991 <                
990 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
991 >
992                  mu_i = getDipoleMoment(me_i)
993 <                
993 >
994                  !! The reaction field needs to include a self contribution
995                  !! to the field:
996                  call accumulate_self_rf(i, mu_i, eFrame)
# Line 858 | Line 1001 | contains
1001                  pot_local = pot_local + rfpot
1002   #else
1003                  pot = pot + rfpot
1004 <      
1004 >
1005   #endif
1006 <             endif            
1006 >             endif
1007            enddo
1008         endif
1009      endif
1010 <    
1011 <    
1010 >
1011 >
1012   #ifdef IS_MPI
1013 <    
1013 >
1014      if (do_pot) then
1015         pot = pot + pot_local
1016         !! we assume the c code will do the allreduce to get the total potential
1017         !! we could do it right here if we needed to...
1018      endif
1019 <    
1019 >
1020      if (do_stress) then
1021         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1022              mpi_comm_world,mpi_err)
1023         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1024              mpi_comm_world,mpi_err)
1025      endif
1026 <    
1026 >
1027   #else
1028 <    
1028 >
1029      if (do_stress) then
1030         tau = tau_Temp
1031         virial = virial_Temp
1032      endif
1033 <    
1033 >
1034   #endif
1035 <      
1035 >
1036    end subroutine do_force_loop
1037 <  
1037 >
1038    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1039         eFrame, A, f, t, pot, vpair, fpair)
1040  
# Line 908 | Line 1051 | contains
1051      real ( kind = dp ), intent(inout) :: rijsq
1052      real ( kind = dp )                :: r
1053      real ( kind = dp ), intent(inout) :: d(3)
1054 +    real ( kind = dp ) :: ebalance
1055      integer :: me_i, me_j
1056 +
1057 +    integer :: iHash
1058  
1059      r = sqrt(rijsq)
1060      vpair = 0.0d0
# Line 922 | Line 1068 | contains
1068      me_j = atid(j)
1069   #endif
1070  
1071 < !    write(*,*) i, j, me_i, me_j
1072 <    
1073 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1074 <      
929 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
930 <            PropertyMap(me_j)%is_LennardJones ) then
931 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
932 <       endif
933 <      
1071 >    iHash = InteractionHash(me_i, me_j)
1072 >
1073 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1074 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1075      endif
935    
936    if (FF_uses_Electrostatics .and. SIM_uses_Electrostatics) then
937      
938       if (PropertyMap(me_i)%is_Electrostatic .and. &
939            PropertyMap(me_j)%is_Electrostatic) then
940          call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
941               pot, eFrame, f, t, do_pot)
942       endif
943      
944       if (FF_uses_dipoles .and. SIM_uses_dipoles) then      
945          if ( PropertyMap(me_i)%is_Dipole .and. &
946               PropertyMap(me_j)%is_Dipole) then
947             if (FF_uses_RF .and. SIM_uses_RF) then
948                call accumulate_rf(i, j, r, eFrame, sw)
949                call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
950             endif
951          endif
952       endif
953    endif
1076  
1077 +    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1078 +       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1079 +            pot, eFrame, f, t, do_pot, corrMethod)
1080  
1081 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1081 >       if (FF_uses_RF .and. SIM_uses_RF) then
1082  
1083 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1084 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1085 <               pot, A, f, t, do_pot)
1083 >          ! CHECK ME (RF needs to know about all electrostatic types)
1084 >          call accumulate_rf(i, j, r, eFrame, sw)
1085 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1086         endif
1087 <      
1087 >
1088      endif
1089  
1090 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1091 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1092 +            pot, A, f, t, do_pot)
1093 +    endif
1094  
1095 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1096 <      
1097 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
969 <            PropertyMap(me_j)%is_GayBerne) then
970 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
971 <               pot, A, f, t, do_pot)
972 <       endif
973 <      
1095 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1096 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1097 >            pot, A, f, t, do_pot)
1098      endif
1099 +
1100 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1101 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1102 +            pot, A, f, t, do_pot)
1103 +    endif
1104      
1105 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1106 <      
1107 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
979 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
980 <               do_pot)
981 <       endif
982 <      
1105 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1106 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1107 > !           pot, A, f, t, do_pot)
1108      endif
1109  
1110 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1111 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1112 +            do_pot)
1113 +    endif
1114  
1115 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1115 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1116 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1117 >            pot, A, f, t, do_pot)
1118 >    endif
1119  
1120 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1121 <       if ( PropertyMap(me_i)%is_Shape .and. &
1122 <            PropertyMap(me_j)%is_Shape ) then
991 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
992 <               pot, A, f, t, do_pot)
993 <       endif
994 <      
1120 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1121 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1122 >            pot, A, f, t, do_pot)
1123      endif
1124      
1125    end subroutine do_pair
# Line 999 | Line 1127 | contains
1127    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1128         do_pot, do_stress, eFrame, A, f, t, pot)
1129  
1130 <   real( kind = dp ) :: pot, sw
1131 <   real( kind = dp ), dimension(9,nLocal) :: eFrame
1132 <   real (kind=dp), dimension(9,nLocal) :: A
1133 <   real (kind=dp), dimension(3,nLocal) :: f
1134 <   real (kind=dp), dimension(3,nLocal) :: t
1007 <  
1008 <   logical, intent(inout) :: do_pot, do_stress
1009 <   integer, intent(in) :: i, j
1010 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1011 <   real ( kind = dp )                :: r, rc
1012 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
1013 <  
1014 <   logical :: is_EAM_i, is_EAM_j
1015 <  
1016 <   integer :: me_i, me_j
1017 <  
1130 >    real( kind = dp ) :: pot, sw
1131 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1132 >    real (kind=dp), dimension(9,nLocal) :: A
1133 >    real (kind=dp), dimension(3,nLocal) :: f
1134 >    real (kind=dp), dimension(3,nLocal) :: t
1135  
1136 <    r = sqrt(rijsq)
1137 <    if (SIM_uses_molecular_cutoffs) then
1138 <       rc = sqrt(rcijsq)
1139 <    else
1140 <       rc = r
1024 <    endif
1025 <  
1136 >    logical, intent(inout) :: do_pot, do_stress
1137 >    integer, intent(in) :: i, j
1138 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1139 >    real ( kind = dp )                :: r, rc
1140 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1141  
1142 +    integer :: me_i, me_j, iHash
1143 +
1144   #ifdef IS_MPI  
1145 <   me_i = atid_row(i)
1146 <   me_j = atid_col(j)  
1145 >    me_i = atid_row(i)
1146 >    me_j = atid_col(j)  
1147   #else  
1148 <   me_i = atid(i)
1149 <   me_j = atid(j)  
1148 >    me_i = atid(i)
1149 >    me_j = atid(j)  
1150   #endif
1034  
1035   if (FF_uses_EAM .and. SIM_uses_EAM) then
1036      
1037      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1038           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1039      
1040   endif
1041  
1042 end subroutine do_prepair
1043
1044
1045 subroutine do_preforce(nlocal,pot)
1046   integer :: nlocal
1047   real( kind = dp ) :: pot
1048  
1049   if (FF_uses_EAM .and. SIM_uses_EAM) then
1050      call calc_EAM_preforce_Frho(nlocal,pot)
1051   endif
1052  
1053  
1054 end subroutine do_preforce
1055
1056
1057 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1058  
1059   real (kind = dp), dimension(3) :: q_i
1060   real (kind = dp), dimension(3) :: q_j
1061   real ( kind = dp ), intent(out) :: r_sq
1062   real( kind = dp ) :: d(3), scaled(3)
1063   integer i
1064  
1065   d(1:3) = q_j(1:3) - q_i(1:3)
1066  
1067   ! Wrap back into periodic box if necessary
1068   if ( SIM_uses_PBC ) then
1069      
1070      if( .not.boxIsOrthorhombic ) then
1071         ! calc the scaled coordinates.
1072        
1073         scaled = matmul(HmatInv, d)
1074        
1075         ! wrap the scaled coordinates
1076        
1077         scaled = scaled  - anint(scaled)
1078        
1079        
1080         ! calc the wrapped real coordinates from the wrapped scaled
1081         ! coordinates
1082        
1083         d = matmul(Hmat,scaled)
1084        
1085      else
1086         ! calc the scaled coordinates.
1087        
1088         do i = 1, 3
1089            scaled(i) = d(i) * HmatInv(i,i)
1090            
1091            ! wrap the scaled coordinates
1092            
1093            scaled(i) = scaled(i) - anint(scaled(i))
1094            
1095            ! calc the wrapped real coordinates from the wrapped scaled
1096            ! coordinates
1097            
1098            d(i) = scaled(i)*Hmat(i,i)
1099         enddo
1100      endif
1101      
1102   endif
1103  
1104   r_sq = dot_product(d,d)
1105  
1106 end subroutine get_interatomic_vector
1107
1108 subroutine zero_work_arrays()
1109  
1110 #ifdef IS_MPI
1111  
1112   q_Row = 0.0_dp
1113   q_Col = 0.0_dp
1151  
1152 <   q_group_Row = 0.0_dp
1153 <   q_group_Col = 0.0_dp  
1154 <  
1155 <   eFrame_Row = 0.0_dp
1156 <   eFrame_Col = 0.0_dp
1157 <  
1158 <   A_Row = 0.0_dp
1159 <   A_Col = 0.0_dp
1160 <  
1161 <   f_Row = 0.0_dp
1162 <   f_Col = 0.0_dp
1163 <   f_Temp = 0.0_dp
1164 <  
1165 <   t_Row = 0.0_dp
1166 <   t_Col = 0.0_dp
1167 <   t_Temp = 0.0_dp
1168 <  
1169 <   pot_Row = 0.0_dp
1170 <   pot_Col = 0.0_dp
1171 <   pot_Temp = 0.0_dp
1172 <  
1173 <   rf_Row = 0.0_dp
1174 <   rf_Col = 0.0_dp
1175 <   rf_Temp = 0.0_dp
1176 <  
1177 < #endif
1178 <
1179 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1180 <      call clean_EAM()
1181 <   endif
1182 <  
1183 <   rf = 0.0_dp
1184 <   tau_Temp = 0.0_dp
1185 <   virial_Temp = 0.0_dp
1186 < end subroutine zero_work_arrays
1187 <
1188 < function skipThisPair(atom1, atom2) result(skip_it)
1189 <   integer, intent(in) :: atom1
1190 <   integer, intent(in), optional :: atom2
1191 <   logical :: skip_it
1192 <   integer :: unique_id_1, unique_id_2
1193 <   integer :: me_i,me_j
1194 <   integer :: i
1195 <  
1196 <   skip_it = .false.
1197 <  
1198 <   !! there are a number of reasons to skip a pair or a particle
1199 <   !! mostly we do this to exclude atoms who are involved in short
1200 <   !! range interactions (bonds, bends, torsions), but we also need
1201 <   !! to exclude some overcounted interactions that result from
1202 <   !! the parallel decomposition
1203 <  
1204 < #ifdef IS_MPI
1205 <   !! in MPI, we have to look up the unique IDs for each atom
1206 <   unique_id_1 = AtomRowToGlobal(atom1)
1207 < #else
1208 <   !! in the normal loop, the atom numbers are unique
1209 <   unique_id_1 = atom1
1210 < #endif
1211 <  
1212 <   !! We were called with only one atom, so just check the global exclude
1213 <   !! list for this atom
1214 <   if (.not. present(atom2)) then
1215 <      do i = 1, nExcludes_global
1216 <         if (excludesGlobal(i) == unique_id_1) then
1217 <            skip_it = .true.
1218 <            return
1219 <         end if
1220 <      end do
1221 <      return
1222 <   end if
1223 <  
1224 < #ifdef IS_MPI
1225 <   unique_id_2 = AtomColToGlobal(atom2)
1189 < #else
1190 <   unique_id_2 = atom2
1191 < #endif
1192 <  
1152 >    iHash = InteractionHash(me_i, me_j)
1153 >
1154 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1155 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1156 >    endif
1157 >    
1158 >  end subroutine do_prepair
1159 >
1160 >
1161 >  subroutine do_preforce(nlocal,pot)
1162 >    integer :: nlocal
1163 >    real( kind = dp ) :: pot
1164 >
1165 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1166 >       call calc_EAM_preforce_Frho(nlocal,pot)
1167 >    endif
1168 >
1169 >
1170 >  end subroutine do_preforce
1171 >
1172 >
1173 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1174 >
1175 >    real (kind = dp), dimension(3) :: q_i
1176 >    real (kind = dp), dimension(3) :: q_j
1177 >    real ( kind = dp ), intent(out) :: r_sq
1178 >    real( kind = dp ) :: d(3), scaled(3)
1179 >    integer i
1180 >
1181 >    d(1:3) = q_j(1:3) - q_i(1:3)
1182 >
1183 >    ! Wrap back into periodic box if necessary
1184 >    if ( SIM_uses_PBC ) then
1185 >
1186 >       if( .not.boxIsOrthorhombic ) then
1187 >          ! calc the scaled coordinates.
1188 >
1189 >          scaled = matmul(HmatInv, d)
1190 >
1191 >          ! wrap the scaled coordinates
1192 >
1193 >          scaled = scaled  - anint(scaled)
1194 >
1195 >
1196 >          ! calc the wrapped real coordinates from the wrapped scaled
1197 >          ! coordinates
1198 >
1199 >          d = matmul(Hmat,scaled)
1200 >
1201 >       else
1202 >          ! calc the scaled coordinates.
1203 >
1204 >          do i = 1, 3
1205 >             scaled(i) = d(i) * HmatInv(i,i)
1206 >
1207 >             ! wrap the scaled coordinates
1208 >
1209 >             scaled(i) = scaled(i) - anint(scaled(i))
1210 >
1211 >             ! calc the wrapped real coordinates from the wrapped scaled
1212 >             ! coordinates
1213 >
1214 >             d(i) = scaled(i)*Hmat(i,i)
1215 >          enddo
1216 >       endif
1217 >
1218 >    endif
1219 >
1220 >    r_sq = dot_product(d,d)
1221 >
1222 >  end subroutine get_interatomic_vector
1223 >
1224 >  subroutine zero_work_arrays()
1225 >
1226   #ifdef IS_MPI
1227 <   !! this situation should only arise in MPI simulations
1228 <   if (unique_id_1 == unique_id_2) then
1229 <      skip_it = .true.
1230 <      return
1231 <   end if
1232 <  
1233 <   !! this prevents us from doing the pair on multiple processors
1234 <   if (unique_id_1 < unique_id_2) then
1235 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1236 <         skip_it = .true.
1237 <         return
1238 <      endif
1239 <   else                
1240 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1241 <         skip_it = .true.
1242 <         return
1243 <      endif
1244 <   endif
1227 >
1228 >    q_Row = 0.0_dp
1229 >    q_Col = 0.0_dp
1230 >
1231 >    q_group_Row = 0.0_dp
1232 >    q_group_Col = 0.0_dp  
1233 >
1234 >    eFrame_Row = 0.0_dp
1235 >    eFrame_Col = 0.0_dp
1236 >
1237 >    A_Row = 0.0_dp
1238 >    A_Col = 0.0_dp
1239 >
1240 >    f_Row = 0.0_dp
1241 >    f_Col = 0.0_dp
1242 >    f_Temp = 0.0_dp
1243 >
1244 >    t_Row = 0.0_dp
1245 >    t_Col = 0.0_dp
1246 >    t_Temp = 0.0_dp
1247 >
1248 >    pot_Row = 0.0_dp
1249 >    pot_Col = 0.0_dp
1250 >    pot_Temp = 0.0_dp
1251 >
1252 >    rf_Row = 0.0_dp
1253 >    rf_Col = 0.0_dp
1254 >    rf_Temp = 0.0_dp
1255 >
1256   #endif
1257 <  
1258 <   !! the rest of these situations can happen in all simulations:
1259 <   do i = 1, nExcludes_global      
1260 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1261 <           (excludesGlobal(i) == unique_id_2)) then
1262 <         skip_it = .true.
1263 <         return
1264 <      endif
1265 <   enddo
1266 <  
1267 <   do i = 1, nSkipsForAtom(atom1)
1268 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1269 <         skip_it = .true.
1270 <         return
1271 <      endif
1272 <   end do
1273 <  
1274 <   return
1275 < end function skipThisPair
1276 <
1277 < function FF_UsesDirectionalAtoms() result(doesit)
1278 <   logical :: doesit
1279 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1280 <        FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1281 <        FF_uses_GayBerne .or. FF_uses_Shapes
1282 < end function FF_UsesDirectionalAtoms
1283 <
1284 < function FF_RequiresPrepairCalc() result(doesit)
1285 <   logical :: doesit
1286 <   doesit = FF_uses_EAM
1287 < end function FF_RequiresPrepairCalc
1288 <
1289 < function FF_RequiresPostpairCalc() result(doesit)
1290 <   logical :: doesit
1291 <   doesit = FF_uses_RF
1292 < end function FF_RequiresPostpairCalc
1293 <
1257 >
1258 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1259 >       call clean_EAM()
1260 >    endif
1261 >
1262 >    rf = 0.0_dp
1263 >    tau_Temp = 0.0_dp
1264 >    virial_Temp = 0.0_dp
1265 >  end subroutine zero_work_arrays
1266 >
1267 >  function skipThisPair(atom1, atom2) result(skip_it)
1268 >    integer, intent(in) :: atom1
1269 >    integer, intent(in), optional :: atom2
1270 >    logical :: skip_it
1271 >    integer :: unique_id_1, unique_id_2
1272 >    integer :: me_i,me_j
1273 >    integer :: i
1274 >
1275 >    skip_it = .false.
1276 >
1277 >    !! there are a number of reasons to skip a pair or a particle
1278 >    !! mostly we do this to exclude atoms who are involved in short
1279 >    !! range interactions (bonds, bends, torsions), but we also need
1280 >    !! to exclude some overcounted interactions that result from
1281 >    !! the parallel decomposition
1282 >
1283 > #ifdef IS_MPI
1284 >    !! in MPI, we have to look up the unique IDs for each atom
1285 >    unique_id_1 = AtomRowToGlobal(atom1)
1286 > #else
1287 >    !! in the normal loop, the atom numbers are unique
1288 >    unique_id_1 = atom1
1289 > #endif
1290 >
1291 >    !! We were called with only one atom, so just check the global exclude
1292 >    !! list for this atom
1293 >    if (.not. present(atom2)) then
1294 >       do i = 1, nExcludes_global
1295 >          if (excludesGlobal(i) == unique_id_1) then
1296 >             skip_it = .true.
1297 >             return
1298 >          end if
1299 >       end do
1300 >       return
1301 >    end if
1302 >
1303 > #ifdef IS_MPI
1304 >    unique_id_2 = AtomColToGlobal(atom2)
1305 > #else
1306 >    unique_id_2 = atom2
1307 > #endif
1308 >
1309 > #ifdef IS_MPI
1310 >    !! this situation should only arise in MPI simulations
1311 >    if (unique_id_1 == unique_id_2) then
1312 >       skip_it = .true.
1313 >       return
1314 >    end if
1315 >
1316 >    !! this prevents us from doing the pair on multiple processors
1317 >    if (unique_id_1 < unique_id_2) then
1318 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1319 >          skip_it = .true.
1320 >          return
1321 >       endif
1322 >    else                
1323 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1324 >          skip_it = .true.
1325 >          return
1326 >       endif
1327 >    endif
1328 > #endif
1329 >
1330 >    !! the rest of these situations can happen in all simulations:
1331 >    do i = 1, nExcludes_global      
1332 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1333 >            (excludesGlobal(i) == unique_id_2)) then
1334 >          skip_it = .true.
1335 >          return
1336 >       endif
1337 >    enddo
1338 >
1339 >    do i = 1, nSkipsForAtom(atom1)
1340 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1341 >          skip_it = .true.
1342 >          return
1343 >       endif
1344 >    end do
1345 >
1346 >    return
1347 >  end function skipThisPair
1348 >
1349 >  function FF_UsesDirectionalAtoms() result(doesit)
1350 >    logical :: doesit
1351 >    doesit = FF_uses_DirectionalAtoms
1352 >  end function FF_UsesDirectionalAtoms
1353 >
1354 >  function FF_RequiresPrepairCalc() result(doesit)
1355 >    logical :: doesit
1356 >    doesit = FF_uses_EAM
1357 >  end function FF_RequiresPrepairCalc
1358 >
1359 >  function FF_RequiresPostpairCalc() result(doesit)
1360 >    logical :: doesit
1361 >    doesit = FF_uses_RF
1362 >  end function FF_RequiresPostpairCalc
1363 >
1364   #ifdef PROFILE
1365 < function getforcetime() result(totalforcetime)
1366 <   real(kind=dp) :: totalforcetime
1367 <   totalforcetime = forcetime
1368 < end function getforcetime
1365 >  function getforcetime() result(totalforcetime)
1366 >    real(kind=dp) :: totalforcetime
1367 >    totalforcetime = forcetime
1368 >  end function getforcetime
1369   #endif
1256
1257 !! This cleans componets of force arrays belonging only to fortran
1370  
1371 < subroutine add_stress_tensor(dpair, fpair)
1372 <  
1373 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1374 <  
1375 <   ! because the d vector is the rj - ri vector, and
1376 <   ! because fx, fy, fz are the force on atom i, we need a
1377 <   ! negative sign here:  
1378 <  
1379 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1380 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1381 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1382 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1383 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1384 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1385 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1386 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1387 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1388 <  
1389 <   virial_Temp = virial_Temp + &
1390 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1391 <  
1392 < end subroutine add_stress_tensor
1393 <
1371 >  !! This cleans componets of force arrays belonging only to fortran
1372 >
1373 >  subroutine add_stress_tensor(dpair, fpair)
1374 >
1375 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1376 >
1377 >    ! because the d vector is the rj - ri vector, and
1378 >    ! because fx, fy, fz are the force on atom i, we need a
1379 >    ! negative sign here:  
1380 >
1381 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1382 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1383 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1384 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1385 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1386 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1387 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1388 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1389 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1390 >
1391 >    virial_Temp = virial_Temp + &
1392 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1393 >
1394 >  end subroutine add_stress_tensor
1395 >
1396   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines