ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 2085 by gezelter, Tue Mar 8 21:05:46 2005 UTC vs.
Revision 2398 by chrisfen, Wed Oct 26 23:31:18 2005 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.11 2005-03-08 21:05:46 gezelter Exp $, $Date: 2005-03-08 21:05:46 $, $Name: not supported by cvs2svn $, $Revision: 1.11 $
48 > !! @version $Id: doForces.F90,v 1.63 2005-10-26 23:31:18 chrisfen Exp $, $Date: 2005-10-26 23:31:18 $, $Name: not supported by cvs2svn $, $Revision: 1.63 $
49  
50  
51   module doForces
# Line 58 | Line 58 | module doForces
58    use lj
59    use sticky
60    use electrostatic_module
61 <  use reaction_field
62 <  use gb_pair
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
# Line 73 | Line 72 | module doForces
72  
73   #define __FORTRAN90
74   #include "UseTheForce/fSwitchingFunction.h"
75 + #include "UseTheForce/fCutoffPolicy.h"
76 + #include "UseTheForce/DarkSide/fInteractionMap.h"
77 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
80  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
83  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveDefaultCutoffs = .false.
89 >  logical, save :: haveRlist = .false.
90 >
91    logical, save :: FF_uses_DirectionalAtoms
87  logical, save :: FF_uses_LennardJones
88  logical, save :: FF_uses_Electrostatics
89  logical, save :: FF_uses_Charges
92    logical, save :: FF_uses_Dipoles
91  logical, save :: FF_uses_Quadrupoles
92  logical, save :: FF_uses_sticky
93    logical, save :: FF_uses_GayBerne
94    logical, save :: FF_uses_EAM
95  logical, save :: FF_uses_Shapes
96  logical, save :: FF_uses_FLARB
97  logical, save :: FF_uses_RF
95  
96    logical, save :: SIM_uses_DirectionalAtoms
100  logical, save :: SIM_uses_LennardJones
101  logical, save :: SIM_uses_Electrostatics
102  logical, save :: SIM_uses_Charges
103  logical, save :: SIM_uses_Dipoles
104  logical, save :: SIM_uses_Quadrupoles
105  logical, save :: SIM_uses_Sticky
106  logical, save :: SIM_uses_GayBerne
97    logical, save :: SIM_uses_EAM
108  logical, save :: SIM_uses_Shapes
109  logical, save :: SIM_uses_FLARB
110  logical, save :: SIM_uses_RF
98    logical, save :: SIM_requires_postpair_calc
99    logical, save :: SIM_requires_prepair_calc
100    logical, save :: SIM_uses_PBC
114  logical, save :: SIM_uses_molecular_cutoffs
101  
102 <  real(kind=dp), save :: rlist, rlistsq
102 >  integer, save :: electrostaticSummationMethod
103  
104    public :: init_FF
105 +  public :: setDefaultCutoffs
106    public :: do_force_loop
107 <  public :: setRlistDF
107 >  public :: createInteractionHash
108 >  public :: createGtypeCutoffMap
109 >  public :: getStickyCut
110 >  public :: getStickyPowerCut
111 >  public :: getGayBerneCut
112 >  public :: getEAMCut
113 >  public :: getShapeCut
114  
115   #ifdef PROFILE
116    public :: getforcetime
# Line 125 | Line 118 | module doForces
118    real :: forceTimeInitial, forceTimeFinal
119    integer :: nLoops
120   #endif
121 +  
122 +  !! Variables for cutoff mapping and interaction mapping
123 +  ! Bit hash to determine pair-pair interactions.
124 +  integer, dimension(:,:), allocatable :: InteractionHash
125 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
126 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
127 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
128  
129 <  type :: Properties
130 <     logical :: is_Directional   = .false.
131 <     logical :: is_LennardJones  = .false.
132 <     logical :: is_Electrostatic = .false.
133 <     logical :: is_Charge        = .false.
134 <     logical :: is_Dipole        = .false.
135 <     logical :: is_Quadrupole    = .false.
136 <     logical :: is_Sticky        = .false.
137 <     logical :: is_GayBerne      = .false.
138 <     logical :: is_EAM           = .false.
139 <     logical :: is_Shape         = .false.
140 <     logical :: is_FLARB         = .false.
141 <  end type Properties
129 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
130 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
131  
132 <  type(Properties), dimension(:),allocatable :: PropertyMap
132 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
133 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
134 >  type ::gtypeCutoffs
135 >     real(kind=dp) :: rcut
136 >     real(kind=dp) :: rcutsq
137 >     real(kind=dp) :: rlistsq
138 >  end type gtypeCutoffs
139 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
140  
141 +  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
142 +  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
143 +  real(kind=dp),save :: listSkin
144 +  
145   contains
146  
147 <  subroutine setRlistDF( this_rlist )
148 <    
149 <    real(kind=dp) :: this_rlist
150 <
151 <    rlist = this_rlist
152 <    rlistsq = rlist * rlist
153 <    
154 <    haveRlist = .true.
155 <
156 <  end subroutine setRlistDF    
157 <
158 <  subroutine createPropertyMap(status)
147 >  subroutine createInteractionHash(status)
148      integer :: nAtypes
149 <    integer :: status
149 >    integer, intent(out) :: status
150      integer :: i
151 <    logical :: thisProperty
152 <    real (kind=DP) :: thisDPproperty
151 >    integer :: j
152 >    integer :: iHash
153 >    !! Test Types
154 >    logical :: i_is_LJ
155 >    logical :: i_is_Elect
156 >    logical :: i_is_Sticky
157 >    logical :: i_is_StickyP
158 >    logical :: i_is_GB
159 >    logical :: i_is_EAM
160 >    logical :: i_is_Shape
161 >    logical :: j_is_LJ
162 >    logical :: j_is_Elect
163 >    logical :: j_is_Sticky
164 >    logical :: j_is_StickyP
165 >    logical :: j_is_GB
166 >    logical :: j_is_EAM
167 >    logical :: j_is_Shape
168 >    real(kind=dp) :: myRcut
169  
170 <    status = 0
170 >    status = 0  
171  
172 +    if (.not. associated(atypes)) then
173 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
174 +       status = -1
175 +       return
176 +    endif
177 +    
178      nAtypes = getSize(atypes)
179 <
179 >    
180      if (nAtypes == 0) then
181         status = -1
182         return
183      end if
184 <        
185 <    if (.not. allocated(PropertyMap)) then
186 <       allocate(PropertyMap(nAtypes))
184 >
185 >    if (.not. allocated(InteractionHash)) then
186 >       allocate(InteractionHash(nAtypes,nAtypes))
187 >    else
188 >       deallocate(InteractionHash)
189 >       allocate(InteractionHash(nAtypes,nAtypes))
190      endif
191  
192 +    if (.not. allocated(atypeMaxCutoff)) then
193 +       allocate(atypeMaxCutoff(nAtypes))
194 +    else
195 +       deallocate(atypeMaxCutoff)
196 +       allocate(atypeMaxCutoff(nAtypes))
197 +    endif
198 +        
199      do i = 1, nAtypes
200 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
201 <       PropertyMap(i)%is_Directional = thisProperty
200 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
201 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
202 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
203 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
204 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
205 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
206 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
207  
208 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
183 <       PropertyMap(i)%is_LennardJones = thisProperty
184 <      
185 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
186 <       PropertyMap(i)%is_Electrostatic = thisProperty
208 >       do j = i, nAtypes
209  
210 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
211 <       PropertyMap(i)%is_Charge = thisProperty
190 <      
191 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
192 <       PropertyMap(i)%is_Dipole = thisProperty
210 >          iHash = 0
211 >          myRcut = 0.0_dp
212  
213 <       call getElementProperty(atypes, i, "is_Quadrupole", thisProperty)
214 <       PropertyMap(i)%is_Quadrupole = thisProperty
213 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
214 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
215 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
216 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
217 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
218 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
219 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
220  
221 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
222 <       PropertyMap(i)%is_Sticky = thisProperty
221 >          if (i_is_LJ .and. j_is_LJ) then
222 >             iHash = ior(iHash, LJ_PAIR)            
223 >          endif
224 >          
225 >          if (i_is_Elect .and. j_is_Elect) then
226 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
227 >          endif
228 >          
229 >          if (i_is_Sticky .and. j_is_Sticky) then
230 >             iHash = ior(iHash, STICKY_PAIR)
231 >          endif
232  
233 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
234 <       PropertyMap(i)%is_GayBerne = thisProperty
233 >          if (i_is_StickyP .and. j_is_StickyP) then
234 >             iHash = ior(iHash, STICKYPOWER_PAIR)
235 >          endif
236  
237 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
238 <       PropertyMap(i)%is_EAM = thisProperty
237 >          if (i_is_EAM .and. j_is_EAM) then
238 >             iHash = ior(iHash, EAM_PAIR)
239 >          endif
240  
241 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
242 <       PropertyMap(i)%is_Shape = thisProperty
241 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
242 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
243 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
244  
245 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
246 <       PropertyMap(i)%is_FLARB = thisProperty
245 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
246 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
247 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
248 >
249 >
250 >          InteractionHash(i,j) = iHash
251 >          InteractionHash(j,i) = iHash
252 >
253 >       end do
254 >
255      end do
256  
257 <    havePropertyMap = .true.
257 >    haveInteractionHash = .true.
258 >  end subroutine createInteractionHash
259  
260 <  end subroutine createPropertyMap
260 >  subroutine createGtypeCutoffMap(stat)
261 >
262 >    integer, intent(out), optional :: stat
263 >    logical :: i_is_LJ
264 >    logical :: i_is_Elect
265 >    logical :: i_is_Sticky
266 >    logical :: i_is_StickyP
267 >    logical :: i_is_GB
268 >    logical :: i_is_EAM
269 >    logical :: i_is_Shape
270 >    logical :: GtypeFound
271 >
272 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
273 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
274 >    integer :: nGroupsInRow
275 >    integer :: nGroupsInCol
276 >    integer :: nGroupTypesRow,nGroupTypesCol
277 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol, skin
278 >    real(kind=dp) :: biggestAtypeCutoff
279 >
280 >    stat = 0
281 >    if (.not. haveInteractionHash) then
282 >       call createInteractionHash(myStatus)      
283 >       if (myStatus .ne. 0) then
284 >          write(default_error, *) 'createInteractionHash failed in doForces!'
285 >          stat = -1
286 >          return
287 >       endif
288 >    endif
289 > #ifdef IS_MPI
290 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
291 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
292 > #endif
293 >    nAtypes = getSize(atypes)
294 > ! Set all of the initial cutoffs to zero.
295 >    atypeMaxCutoff = 0.0_dp
296 >    do i = 1, nAtypes
297 >       if (SimHasAtype(i)) then    
298 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
299 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
300 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
301 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
302 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
303 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
304 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
305 >          
306 >
307 >          if (haveDefaultCutoffs) then
308 >             atypeMaxCutoff(i) = defaultRcut
309 >          else
310 >             if (i_is_LJ) then          
311 >                thisRcut = getSigma(i) * 2.5_dp
312 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
313 >             endif
314 >             if (i_is_Elect) then
315 >                thisRcut = defaultRcut
316 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
317 >             endif
318 >             if (i_is_Sticky) then
319 >                thisRcut = getStickyCut(i)
320 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
321 >             endif
322 >             if (i_is_StickyP) then
323 >                thisRcut = getStickyPowerCut(i)
324 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
325 >             endif
326 >             if (i_is_GB) then
327 >                thisRcut = getGayBerneCut(i)
328 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 >             endif
330 >             if (i_is_EAM) then
331 >                thisRcut = getEAMCut(i)
332 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 >             endif
334 >             if (i_is_Shape) then
335 >                thisRcut = getShapeCut(i)
336 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 >             endif
338 >          endif
339 >          
340 >          
341 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
342 >             biggestAtypeCutoff = atypeMaxCutoff(i)
343 >          endif
344 >
345 >       endif
346 >    enddo
347 >  
348 >
349 >    
350 >    istart = 1
351 >    jstart = 1
352 > #ifdef IS_MPI
353 >    iend = nGroupsInRow
354 >    jend = nGroupsInCol
355 > #else
356 >    iend = nGroups
357 >    jend = nGroups
358 > #endif
359 >    
360 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
361 >    if(.not.allocated(groupToGtypeRow)) then
362 >     !  allocate(groupToGtype(iend))
363 >       allocate(groupToGtypeRow(iend))
364 >    else
365 >       deallocate(groupToGtypeRow)
366 >       allocate(groupToGtypeRow(iend))
367 >    endif
368 >    if(.not.allocated(groupMaxCutoffRow)) then
369 >       allocate(groupMaxCutoffRow(iend))
370 >    else
371 >       deallocate(groupMaxCutoffRow)
372 >       allocate(groupMaxCutoffRow(iend))
373 >    end if
374 >
375 >    if(.not.allocated(gtypeMaxCutoffRow)) then
376 >       allocate(gtypeMaxCutoffRow(iend))
377 >    else
378 >       deallocate(gtypeMaxCutoffRow)
379 >       allocate(gtypeMaxCutoffRow(iend))
380 >    endif
381 >
382 >
383 > #ifdef IS_MPI
384 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
385 >    if(.not.associated(groupToGtypeCol)) then
386 >       allocate(groupToGtypeCol(jend))
387 >    else
388 >       deallocate(groupToGtypeCol)
389 >       allocate(groupToGtypeCol(jend))
390 >    end if
391 >
392 >    if(.not.associated(groupToGtypeCol)) then
393 >       allocate(groupToGtypeCol(jend))
394 >    else
395 >       deallocate(groupToGtypeCol)
396 >       allocate(groupToGtypeCol(jend))
397 >    end if
398 >    if(.not.associated(gtypeMaxCutoffCol)) then
399 >       allocate(gtypeMaxCutoffCol(jend))
400 >    else
401 >       deallocate(gtypeMaxCutoffCol)      
402 >       allocate(gtypeMaxCutoffCol(jend))
403 >    end if
404 >
405 >       groupMaxCutoffCol = 0.0_dp
406 >       gtypeMaxCutoffCol = 0.0_dp
407 >
408 > #endif
409 >       groupMaxCutoffRow = 0.0_dp
410 >       gtypeMaxCutoffRow = 0.0_dp
411 >
412 >
413 >    !! first we do a single loop over the cutoff groups to find the
414 >    !! largest cutoff for any atypes present in this group.  We also
415 >    !! create gtypes at this point.
416 >    
417 >    tol = 1.0d-6
418 >    nGroupTypesRow = 0
419 >
420 >    do i = istart, iend      
421 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
422 >       groupMaxCutoffRow(i) = 0.0_dp
423 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
424 >          atom1 = groupListRow(ia)
425 > #ifdef IS_MPI
426 >          me_i = atid_row(atom1)
427 > #else
428 >          me_i = atid(atom1)
429 > #endif          
430 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
431 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
432 >          endif          
433 >       enddo
434 >
435 >       if (nGroupTypesRow.eq.0) then
436 >          nGroupTypesRow = nGroupTypesRow + 1
437 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
438 >          groupToGtypeRow(i) = nGroupTypesRow
439 >       else
440 >          GtypeFound = .false.
441 >          do g = 1, nGroupTypesRow
442 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
443 >                groupToGtypeRow(i) = g
444 >                GtypeFound = .true.
445 >             endif
446 >          enddo
447 >          if (.not.GtypeFound) then            
448 >             nGroupTypesRow = nGroupTypesRow + 1
449 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
450 >             groupToGtypeRow(i) = nGroupTypesRow
451 >          endif
452 >       endif
453 >    enddo    
454 >
455 > #ifdef IS_MPI
456 >    do j = jstart, jend      
457 >       n_in_j = groupStartCol(j+1) - groupStartCol(j)
458 >       groupMaxCutoffCol(j) = 0.0_dp
459 >       do ja = groupStartCol(j), groupStartCol(j+1)-1
460 >          atom1 = groupListCol(ja)
461  
462 +          me_j = atid_col(atom1)
463 +
464 +          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
465 +             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
466 +          endif          
467 +       enddo
468 +
469 +       if (nGroupTypesCol.eq.0) then
470 +          nGroupTypesCol = nGroupTypesCol + 1
471 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
472 +          groupToGtypeCol(j) = nGroupTypesCol
473 +       else
474 +          GtypeFound = .false.
475 +          do g = 1, nGroupTypesCol
476 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
477 +                groupToGtypeCol(j) = g
478 +                GtypeFound = .true.
479 +             endif
480 +          enddo
481 +          if (.not.GtypeFound) then            
482 +             nGroupTypesCol = nGroupTypesCol + 1
483 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
484 +             groupToGtypeCol(j) = nGroupTypesCol
485 +          endif
486 +       endif
487 +    enddo    
488 +
489 + #else
490 + ! Set pointers to information we just found
491 +    nGroupTypesCol = nGroupTypesRow
492 +    groupToGtypeCol => groupToGtypeRow
493 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
494 +    groupMaxCutoffCol => groupMaxCutoffRow
495 + #endif
496 +
497 +
498 +
499 +
500 +
501 +    !! allocate the gtypeCutoffMap here.
502 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
503 +    !! then we do a double loop over all the group TYPES to find the cutoff
504 +    !! map between groups of two types
505 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
506 +
507 +    do i = 1, nGroupTypesRow
508 +       do j = 1, nGroupTypesCol
509 +      
510 +          select case(cutoffPolicy)
511 +          case(TRADITIONAL_CUTOFF_POLICY)
512 +             thisRcut = tradRcut
513 +          case(MIX_CUTOFF_POLICY)
514 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
515 +          case(MAX_CUTOFF_POLICY)
516 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
517 +          case default
518 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
519 +             return
520 +          end select
521 +          gtypeCutoffMap(i,j)%rcut = thisRcut
522 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
523 +          skin = defaultRlist - defaultRcut
524 +          listSkin = skin ! set neighbor list skin thickness
525 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
526 +
527 +          ! sanity check
528 +
529 +          if (haveDefaultCutoffs) then
530 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
531 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
532 +             endif
533 +          endif
534 +       enddo
535 +    enddo
536 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
537 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
538 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
539 + #ifdef IS_MPI
540 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
541 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
542 + #endif
543 +    groupMaxCutoffCol => null()
544 +    gtypeMaxCutoffCol => null()
545 +    
546 +    haveGtypeCutoffMap = .true.
547 +   end subroutine createGtypeCutoffMap
548 +
549 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
550 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
551 +     integer, intent(in) :: cutPolicy
552 +
553 +     defaultRcut = defRcut
554 +     defaultRsw = defRsw
555 +     defaultRlist = defRlist
556 +     cutoffPolicy = cutPolicy
557 +
558 +     haveDefaultCutoffs = .true.
559 +   end subroutine setDefaultCutoffs
560 +
561 +   subroutine setCutoffPolicy(cutPolicy)
562 +
563 +     integer, intent(in) :: cutPolicy
564 +     cutoffPolicy = cutPolicy
565 +     call createGtypeCutoffMap()
566 +   end subroutine setCutoffPolicy
567 +    
568 +    
569    subroutine setSimVariables()
570      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
219    SIM_uses_LennardJones = SimUsesLennardJones()
220    SIM_uses_Electrostatics = SimUsesElectrostatics()
221    SIM_uses_Charges = SimUsesCharges()
222    SIM_uses_Dipoles = SimUsesDipoles()
223    SIM_uses_Sticky = SimUsesSticky()
224    SIM_uses_GayBerne = SimUsesGayBerne()
571      SIM_uses_EAM = SimUsesEAM()
226    SIM_uses_Shapes = SimUsesShapes()
227    SIM_uses_FLARB = SimUsesFLARB()
228    SIM_uses_RF = SimUsesRF()
572      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
573      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
574      SIM_uses_PBC = SimUsesPBC()
# Line 241 | Line 584 | contains
584      integer :: myStatus
585  
586      error = 0
244    
245    if (.not. havePropertyMap) then
587  
588 <       myStatus = 0
588 >    if (.not. haveInteractionHash) then      
589 >       myStatus = 0      
590 >       call createInteractionHash(myStatus)      
591 >       if (myStatus .ne. 0) then
592 >          write(default_error, *) 'createInteractionHash failed in doForces!'
593 >          error = -1
594 >          return
595 >       endif
596 >    endif
597  
598 <       call createPropertyMap(myStatus)
599 <
598 >    if (.not. haveGtypeCutoffMap) then        
599 >       myStatus = 0      
600 >       call createGtypeCutoffMap(myStatus)      
601         if (myStatus .ne. 0) then
602 <          write(default_error, *) 'createPropertyMap failed in doForces!'
602 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
603            error = -1
604            return
605         endif
# Line 259 | Line 609 | contains
609         call setSimVariables()
610      endif
611  
612 <    if (.not. haveRlist) then
613 <       write(default_error, *) 'rList has not been set in doForces!'
614 <       error = -1
615 <       return
616 <    endif
612 >  !  if (.not. haveRlist) then
613 >  !     write(default_error, *) 'rList has not been set in doForces!'
614 >  !     error = -1
615 >  !     return
616 >  !  endif
617  
618      if (.not. haveNeighborList) then
619         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 286 | Line 636 | contains
636   #endif
637      return
638    end subroutine doReadyCheck
289    
639  
291  subroutine init_FF(use_RF_c, thisStat)
640  
641 <    logical, intent(in) :: use_RF_c
641 >  subroutine init_FF(thisESM, thisStat)
642  
643 +    integer, intent(in) :: thisESM
644      integer, intent(out) :: thisStat  
645      integer :: my_status, nMatches
646      integer, pointer :: MatchList(:) => null()
# Line 300 | Line 649 | contains
649      !! assume things are copacetic, unless they aren't
650      thisStat = 0
651  
652 <    !! Fortran's version of a cast:
653 <    FF_uses_RF = use_RF_c
305 <    
652 >    electrostaticSummationMethod = thisESM
653 >
654      !! init_FF is called *after* all of the atom types have been
655      !! defined in atype_module using the new_atype subroutine.
656      !!
657      !! this will scan through the known atypes and figure out what
658      !! interactions are used by the force field.    
659 <  
659 >
660      FF_uses_DirectionalAtoms = .false.
313    FF_uses_LennardJones = .false.
314    FF_uses_Electrostatics = .false.
315    FF_uses_Charges = .false.    
661      FF_uses_Dipoles = .false.
317    FF_uses_Sticky = .false.
662      FF_uses_GayBerne = .false.
663      FF_uses_EAM = .false.
664 <    FF_uses_Shapes = .false.
321 <    FF_uses_FLARB = .false.
322 <    
664 >
665      call getMatchingElementList(atypes, "is_Directional", .true., &
666           nMatches, MatchList)
667      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
668  
327    call getMatchingElementList(atypes, "is_LennardJones", .true., &
328         nMatches, MatchList)
329    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
330    
331    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
332         nMatches, MatchList)
333    if (nMatches .gt. 0) then
334       FF_uses_Electrostatics = .true.
335    endif
336
337    call getMatchingElementList(atypes, "is_Charge", .true., &
338         nMatches, MatchList)
339    if (nMatches .gt. 0) then
340       FF_uses_Charges = .true.  
341       FF_uses_Electrostatics = .true.
342    endif
343    
669      call getMatchingElementList(atypes, "is_Dipole", .true., &
670           nMatches, MatchList)
671 <    if (nMatches .gt. 0) then
347 <       FF_uses_Dipoles = .true.
348 <       FF_uses_Electrostatics = .true.
349 <       FF_uses_DirectionalAtoms = .true.
350 <    endif
351 <
352 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
353 <         nMatches, MatchList)
354 <    if (nMatches .gt. 0) then
355 <       FF_uses_Quadrupoles = .true.
356 <       FF_uses_Electrostatics = .true.
357 <       FF_uses_DirectionalAtoms = .true.
358 <    endif
359 <    
360 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
361 <         MatchList)
362 <    if (nMatches .gt. 0) then
363 <       FF_uses_Sticky = .true.
364 <       FF_uses_DirectionalAtoms = .true.
365 <    endif
671 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
672      
673      call getMatchingElementList(atypes, "is_GayBerne", .true., &
674           nMatches, MatchList)
675 <    if (nMatches .gt. 0) then
676 <       FF_uses_GayBerne = .true.
371 <       FF_uses_DirectionalAtoms = .true.
372 <    endif
373 <    
675 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
676 >
677      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
678      if (nMatches .gt. 0) FF_uses_EAM = .true.
376    
377    call getMatchingElementList(atypes, "is_Shape", .true., &
378         nMatches, MatchList)
379    if (nMatches .gt. 0) then
380       FF_uses_Shapes = .true.
381       FF_uses_DirectionalAtoms = .true.
382    endif
679  
384    call getMatchingElementList(atypes, "is_FLARB", .true., &
385         nMatches, MatchList)
386    if (nMatches .gt. 0) FF_uses_FLARB = .true.
680  
388    !! Assume sanity (for the sake of argument)
681      haveSaneForceField = .true.
390    
391    !! check to make sure the FF_uses_RF setting makes sense
392    
393    if (FF_uses_dipoles) then
394       if (FF_uses_RF) then
395          dielect = getDielect()
396          call initialize_rf(dielect)
397       endif
398    else
399       if (FF_uses_RF) then          
400          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
401          thisStat = -1
402          haveSaneForceField = .false.
403          return
404       endif
405    endif
682  
407    !sticky module does not contain check_sticky_FF anymore
408    !if (FF_uses_sticky) then
409    !   call check_sticky_FF(my_status)
410    !   if (my_status /= 0) then
411    !      thisStat = -1
412    !      haveSaneForceField = .false.
413    !      return
414    !   end if
415    !endif
416
683      if (FF_uses_EAM) then
684 <         call init_EAM_FF(my_status)
684 >       call init_EAM_FF(my_status)
685         if (my_status /= 0) then
686            write(default_error, *) "init_EAM_FF returned a bad status"
687            thisStat = -1
# Line 424 | Line 690 | contains
690         end if
691      endif
692  
427    if (FF_uses_GayBerne) then
428       call check_gb_pair_FF(my_status)
429       if (my_status .ne. 0) then
430          thisStat = -1
431          haveSaneForceField = .false.
432          return
433       endif
434    endif
435
436    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
437    endif
438    
693      if (.not. haveNeighborList) then
694         !! Create neighbor lists
695         call expandNeighborList(nLocal, my_status)
# Line 445 | Line 699 | contains
699            return
700         endif
701         haveNeighborList = .true.
702 <    endif    
703 <    
702 >    endif
703 >
704    end subroutine init_FF
451  
705  
706 +
707    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
708    !------------------------------------------------------------->
709    subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
# Line 469 | Line 723 | contains
723  
724      !! Stress Tensor
725      real( kind = dp), dimension(9) :: tau  
726 <    real ( kind = dp ) :: pot
726 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
727      logical ( kind = 2) :: do_pot_c, do_stress_c
728      logical :: do_pot
729      logical :: do_stress
730      logical :: in_switching_region
731   #ifdef IS_MPI
732 <    real( kind = DP ) :: pot_local
732 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
733      integer :: nAtomsInRow
734      integer :: nAtomsInCol
735      integer :: nprocs
# Line 490 | Line 744 | contains
744      integer :: nlist
745      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
746      real( kind = DP ) :: sw, dswdr, swderiv, mf
747 +    real( kind = DP ) :: rVal
748      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
749      real(kind=dp) :: rfpot, mu_i, virial
750      integer :: me_i, me_j, n_in_i, n_in_j
# Line 499 | Line 754 | contains
754      integer :: localError
755      integer :: propPack_i, propPack_j
756      integer :: loopStart, loopEnd, loop
757 +    integer :: iHash
758 +    integer :: i1
759 +    logical :: indirect_only
760 +  
761  
503    real(kind=dp) :: listSkin = 1.0  
504    
762      !! initialize local variables  
763 <    
763 >
764   #ifdef IS_MPI
765      pot_local = 0.0_dp
766      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 513 | Line 770 | contains
770   #else
771      natoms = nlocal
772   #endif
773 <    
773 >
774      call doReadyCheck(localError)
775      if ( localError .ne. 0 ) then
776         call handleError("do_force_loop", "Not Initialized")
# Line 521 | Line 778 | contains
778         return
779      end if
780      call zero_work_arrays()
781 <        
781 >
782      do_pot = do_pot_c
783      do_stress = do_stress_c
784 <    
784 >
785      ! Gather all information needed by all force loops:
786 <    
786 >
787   #ifdef IS_MPI    
788 <    
788 >
789      call gather(q, q_Row, plan_atom_row_3d)
790      call gather(q, q_Col, plan_atom_col_3d)
791  
792      call gather(q_group, q_group_Row, plan_group_row_3d)
793      call gather(q_group, q_group_Col, plan_group_col_3d)
794 <        
794 >
795      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
796         call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
797         call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
798 <      
798 >
799         call gather(A, A_Row, plan_atom_row_rotation)
800         call gather(A, A_Col, plan_atom_col_rotation)
801      endif
802 <    
802 >
803   #endif
804 <    
804 >
805      !! Begin force loop timing:
806   #ifdef PROFILE
807      call cpu_time(forceTimeInitial)
808      nloops = nloops + 1
809   #endif
810 <    
810 >
811      loopEnd = PAIR_LOOP
812      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
813         loopStart = PREPAIR_LOOP
# Line 565 | Line 822 | contains
822         if (loop .eq. loopStart) then
823   #ifdef IS_MPI
824            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
825 <             update_nlist)
825 >               update_nlist)
826   #else
827            call checkNeighborList(nGroups, q_group, listSkin, &
828 <             update_nlist)
828 >               update_nlist)
829   #endif
830         endif
831 <      
831 >
832         if (update_nlist) then
833            !! save current configuration and construct neighbor list
834   #ifdef IS_MPI
# Line 582 | Line 839 | contains
839            neighborListSize = size(list)
840            nlist = 0
841         endif
842 <      
842 >
843         istart = 1
844   #ifdef IS_MPI
845         iend = nGroupsInRow
# Line 592 | Line 849 | contains
849         outer: do i = istart, iend
850  
851            if (update_nlist) point(i) = nlist + 1
852 <          
852 >
853            n_in_i = groupStartRow(i+1) - groupStartRow(i)
854 <          
854 >
855            if (update_nlist) then
856   #ifdef IS_MPI
857               jstart = 1
# Line 609 | Line 866 | contains
866               ! make sure group i has neighbors
867               if (jstart .gt. jend) cycle outer
868            endif
869 <          
869 >
870            do jnab = jstart, jend
871               if (update_nlist) then
872                  j = jnab
# Line 618 | Line 875 | contains
875               endif
876  
877   #ifdef IS_MPI
878 +             me_j = atid_col(j)
879               call get_interatomic_vector(q_group_Row(:,i), &
880                    q_group_Col(:,j), d_grp, rgrpsq)
881   #else
882 +             me_j = atid(j)
883               call get_interatomic_vector(q_group(:,i), &
884                    q_group(:,j), d_grp, rgrpsq)
885 < #endif
885 > #endif      
886  
887 <             if (rgrpsq < rlistsq) then
887 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
888                  if (update_nlist) then
889                     nlist = nlist + 1
890 <                  
890 >
891                     if (nlist > neighborListSize) then
892   #ifdef IS_MPI                
893                        call expandNeighborList(nGroupsInRow, listerror)
# Line 642 | Line 901 | contains
901                        end if
902                        neighborListSize = size(list)
903                     endif
904 <                  
904 >
905                     list(nlist) = j
906                  endif
907 <                
907 >
908                  if (loop .eq. PAIR_LOOP) then
909                     vij = 0.0d0
910                     fij(1:3) = 0.0d0
911                  endif
912 <                
912 >
913                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
914                       in_switching_region)
915 <                
915 >
916                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
917 <                
917 >
918                  do ia = groupStartRow(i), groupStartRow(i+1)-1
919 <                  
919 >
920                     atom1 = groupListRow(ia)
921 <                  
921 >
922                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
923 <                      
923 >
924                        atom2 = groupListCol(jb)
666                      
667                      if (skipThisPair(atom1, atom2)) cycle inner
925  
926 +                      indirect_only = .false.
927 +    
928 +                      if (skipThisPair(atom1, atom2)) then
929 +                         if (electrostaticSummationMethod.ne.REACTION_FIELD) then
930 +                            cycle inner
931 +                         else
932 +                            indirect_only = .true.
933 +                         endif
934 +                      endif
935 +    
936 +
937                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
938                           d_atm(1:3) = d_grp(1:3)
939                           ratmsq = rgrpsq
# Line 692 | Line 960 | contains
960                        else
961   #ifdef IS_MPI                      
962                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
963 <                              do_pot, &
964 <                              eFrame, A, f, t, pot_local, vpair, fpair)
963 >                              do_pot, eFrame, A, f, t, pot_local, vpair, &
964 >                              fpair, d_grp, rgrp, indirect_only)
965   #else
966                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
967 <                              do_pot,  &
968 <                              eFrame, A, f, t, pot, vpair, fpair)
967 >                              do_pot, eFrame, A, f, t, pot, vpair, fpair, &
968 >                              d_grp, rgrp, indirect_only)
969   #endif
970  
971                           vij = vij + vpair
# Line 705 | Line 973 | contains
973                        endif
974                     enddo inner
975                  enddo
976 <                
976 >
977                  if (loop .eq. PAIR_LOOP) then
978                     if (in_switching_region) then
979                        swderiv = vij*dswdr/rgrp
980                        fij(1) = fij(1) + swderiv*d_grp(1)
981                        fij(2) = fij(2) + swderiv*d_grp(2)
982                        fij(3) = fij(3) + swderiv*d_grp(3)
983 <                      
983 >
984                        do ia=groupStartRow(i), groupStartRow(i+1)-1
985                           atom1=groupListRow(ia)
986                           mf = mfactRow(atom1)
# Line 726 | Line 994 | contains
994                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
995   #endif
996                        enddo
997 <                      
997 >
998                        do jb=groupStartCol(j), groupStartCol(j+1)-1
999                           atom2=groupListCol(jb)
1000                           mf = mfactCol(atom2)
# Line 741 | Line 1009 | contains
1009   #endif
1010                        enddo
1011                     endif
1012 <                  
1012 >
1013                     if (do_stress) call add_stress_tensor(d_grp, fij)
1014                  endif
1015               end if
1016            enddo
1017 +
1018         enddo outer
1019 <      
1019 >
1020         if (update_nlist) then
1021   #ifdef IS_MPI
1022            point(nGroupsInRow + 1) = nlist + 1
# Line 761 | Line 1030 | contains
1030               update_nlist = .false.                              
1031            endif
1032         endif
1033 <            
1033 >
1034         if (loop .eq. PREPAIR_LOOP) then
1035            call do_preforce(nlocal, pot)
1036         endif
1037 <      
1037 >
1038      enddo
1039 <    
1039 >
1040      !! Do timing
1041   #ifdef PROFILE
1042      call cpu_time(forceTimeFinal)
1043      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1044   #endif    
1045 <    
1045 >
1046   #ifdef IS_MPI
1047      !!distribute forces
1048 <    
1048 >
1049      f_temp = 0.0_dp
1050      call scatter(f_Row,f_temp,plan_atom_row_3d)
1051      do i = 1,nlocal
1052         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1053      end do
1054 <    
1054 >
1055      f_temp = 0.0_dp
1056      call scatter(f_Col,f_temp,plan_atom_col_3d)
1057      do i = 1,nlocal
1058         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1059      end do
1060 <    
1060 >
1061      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1062         t_temp = 0.0_dp
1063         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 797 | Line 1066 | contains
1066         end do
1067         t_temp = 0.0_dp
1068         call scatter(t_Col,t_temp,plan_atom_col_3d)
1069 <      
1069 >
1070         do i = 1,nlocal
1071            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1072         end do
1073      endif
1074 <    
1074 >
1075      if (do_pot) then
1076         ! scatter/gather pot_row into the members of my column
1077 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1078 <      
1077 >       do i = 1,LR_POT_TYPES
1078 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1079 >       end do
1080         ! scatter/gather pot_local into all other procs
1081         ! add resultant to get total pot
1082         do i = 1, nlocal
1083 <          pot_local = pot_local + pot_Temp(i)
1083 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1084 >               + pot_Temp(1:LR_POT_TYPES,i)
1085         enddo
1086 <      
1086 >
1087         pot_Temp = 0.0_DP
1088 <      
1089 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1088 >       do i = 1,LR_POT_TYPES
1089 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1090 >       end do
1091         do i = 1, nlocal
1092 <          pot_local = pot_local + pot_Temp(i)
1092 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1093 >               + pot_Temp(1:LR_POT_TYPES,i)
1094         enddo
1095 <      
1095 >
1096      endif
1097   #endif
1098 <    
1099 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1100 <      
828 <       if (FF_uses_RF .and. SIM_uses_RF) then
1098 >
1099 >    if (SIM_requires_postpair_calc) then
1100 >       do i = 1, nlocal            
1101            
1102 < #ifdef IS_MPI
1103 <          call scatter(rf_Row,rf,plan_atom_row_3d)
832 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
833 <          do i = 1,nlocal
834 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
835 <          end do
836 < #endif
1102 >          ! we loop only over the local atoms, so we don't need row and column
1103 >          ! lookups for the types
1104            
1105 <          do i = 1, nLocal
1106 <            
1107 <             rfpot = 0.0_DP
1105 >          me_i = atid(i)
1106 >          
1107 >          ! is the atom electrostatic?  See if it would have an
1108 >          ! electrostatic interaction with itself
1109 >          iHash = InteractionHash(me_i,me_i)
1110 >
1111 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1112   #ifdef IS_MPI
1113 <             me_i = atid_row(i)
1113 >             call rf_self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1114 >                  t, do_pot)
1115   #else
1116 <             me_i = atid(i)
1116 >             call rf_self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1117 >                  t, do_pot)
1118   #endif
1119 +          endif
1120 +  
1121 +          ! loop over the excludes to accumulate any additional RF components
1122 +
1123 +          do i1 = 1, nSkipsForAtom(i)
1124 +             j = skipsForAtom(i, i1)
1125              
1126 <             if (PropertyMap(me_i)%is_Dipole) then
1127 <                
1128 <                mu_i = getDipoleMoment(me_i)
1129 <                
1130 <                !! The reaction field needs to include a self contribution
1131 <                !! to the field:
1132 <                call accumulate_self_rf(i, mu_i, eFrame)
854 <                !! Get the reaction field contribution to the
855 <                !! potential and torques:
856 <                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1126 >             ! prevent overcounting of the skips
1127 >             if (i.lt.j) then
1128 >                call get_interatomic_vector(q(:,i), &
1129 >                     q(:,j), d_atm, ratmsq)
1130 >                rVal = dsqrt(ratmsq)
1131 >                call get_switch(ratmsq, sw, dswdr, rVal, group_switch, &
1132 >                     in_switching_region)
1133   #ifdef IS_MPI
1134 <                pot_local = pot_local + rfpot
1134 >                call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, vpair, &
1135 >                     pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1136   #else
1137 <                pot = pot + rfpot
1138 <      
1137 >                call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, vpair, &
1138 >                     pot(ELECTROSTATIC_POT), f, t, do_pot)
1139   #endif
1140 <             endif            
1140 >             endif
1141            enddo
1142 <       endif
1142 >       enddo      
1143      endif
1144      
868    
1145   #ifdef IS_MPI
1146      
1147      if (do_pot) then
1148 <       pot = pot + pot_local
1149 <       !! we assume the c code will do the allreduce to get the total potential
874 <       !! we could do it right here if we needed to...
1148 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1149 >            mpi_comm_world,mpi_err)            
1150      endif
1151      
1152      if (do_stress) then
# Line 889 | Line 1164 | contains
1164      endif
1165      
1166   #endif
1167 <      
1167 >    
1168    end subroutine do_force_loop
1169 <  
1169 >
1170    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1171 <       eFrame, A, f, t, pot, vpair, fpair)
1171 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, indirect_only)
1172  
1173 <    real( kind = dp ) :: pot, vpair, sw
1173 >    real( kind = dp ) :: vpair, sw
1174 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1175      real( kind = dp ), dimension(3) :: fpair
1176      real( kind = dp ), dimension(nLocal)   :: mfact
1177      real( kind = dp ), dimension(9,nLocal) :: eFrame
# Line 904 | Line 1180 | contains
1180      real( kind = dp ), dimension(3,nLocal) :: t
1181  
1182      logical, intent(inout) :: do_pot
1183 +    logical, intent(inout) :: indirect_only
1184      integer, intent(in) :: i, j
1185      real ( kind = dp ), intent(inout) :: rijsq
1186 <    real ( kind = dp )                :: r
1186 >    real ( kind = dp ), intent(inout) :: r_grp
1187      real ( kind = dp ), intent(inout) :: d(3)
1188 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1189 +    real ( kind = dp ) :: r
1190      integer :: me_i, me_j
1191  
1192 +    integer :: iHash
1193 +
1194      r = sqrt(rijsq)
1195      vpair = 0.0d0
1196      fpair(1:3) = 0.0d0
# Line 922 | Line 1203 | contains
1203      me_j = atid(j)
1204   #endif
1205  
1206 < !    write(*,*) i, j, me_i, me_j
1207 <    
1208 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1209 <      
929 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
930 <            PropertyMap(me_j)%is_LennardJones ) then
931 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
932 <       endif
933 <      
934 <    endif
935 <    
936 <    if (FF_uses_Electrostatics .and. SIM_uses_Electrostatics) then
937 <      
938 <       if (PropertyMap(me_i)%is_Electrostatic .and. &
939 <            PropertyMap(me_j)%is_Electrostatic) then
1206 >    iHash = InteractionHash(me_i, me_j)
1207 >
1208 >    if (indirect_only) then
1209 >       if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1210            call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1211 <               pot, eFrame, f, t, do_pot)
1211 >               pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot, indirect_only)
1212         endif
1213 <      
1214 <       if (FF_uses_dipoles .and. SIM_uses_dipoles) then      
1215 <          if ( PropertyMap(me_i)%is_Dipole .and. &
1216 <               PropertyMap(me_j)%is_Dipole) then
1217 <             if (FF_uses_RF .and. SIM_uses_RF) then
948 <                call accumulate_rf(i, j, r, eFrame, sw)
949 <                call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
950 <             endif
951 <          endif
1213 >    else
1214 >          
1215 >       if ( iand(iHash, LJ_PAIR).ne.0 ) then
1216 >          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1217 >               pot(VDW_POT), f, do_pot)
1218         endif
953    endif
1219  
1220 <
1221 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1222 <
1223 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1220 >       if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1221 >          call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1222 >               pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot, indirect_only)
1223 >       endif
1224 >      
1225 >       if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1226            call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1227 <               pot, A, f, t, do_pot)
1227 >               pot(HB_POT), A, f, t, do_pot)
1228         endif
1229        
1230 <    endif
1231 <
1232 <
1233 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1230 >       if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1231 >          call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1232 >               pot(HB_POT), A, f, t, do_pot)
1233 >       endif
1234        
1235 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
969 <            PropertyMap(me_j)%is_GayBerne) then
1235 >       if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1236            call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1237 <               pot, A, f, t, do_pot)
1237 >               pot(VDW_POT), A, f, t, do_pot)
1238         endif
1239        
1240 <    endif
1241 <    
1242 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1240 >       if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1241 >          call do_gb_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1242 >               pot(VDW_POT), A, f, t, do_pot)
1243 >       endif
1244        
1245 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
1246 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1247 <               do_pot)
1245 >       if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1246 >          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1247 >               pot(METALLIC_POT), f, do_pot)
1248         endif
1249        
1250 <    endif
984 <
985 <
986 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
987 <
988 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
989 <       if ( PropertyMap(me_i)%is_Shape .and. &
990 <            PropertyMap(me_j)%is_Shape ) then
1250 >       if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1251            call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1252 <               pot, A, f, t, do_pot)
1252 >               pot(VDW_POT), A, f, t, do_pot)
1253         endif
1254        
1255 +       if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1256 +          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1257 +               pot(VDW_POT), A, f, t, do_pot)
1258 +       endif
1259      endif
1260      
1261    end subroutine do_pair
# Line 999 | Line 1263 | contains
1263    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1264         do_pot, do_stress, eFrame, A, f, t, pot)
1265  
1266 <   real( kind = dp ) :: pot, sw
1267 <   real( kind = dp ), dimension(9,nLocal) :: eFrame
1268 <   real (kind=dp), dimension(9,nLocal) :: A
1269 <   real (kind=dp), dimension(3,nLocal) :: f
1270 <   real (kind=dp), dimension(3,nLocal) :: t
1271 <  
1008 <   logical, intent(inout) :: do_pot, do_stress
1009 <   integer, intent(in) :: i, j
1010 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1011 <   real ( kind = dp )                :: r, rc
1012 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
1013 <  
1014 <   logical :: is_EAM_i, is_EAM_j
1015 <  
1016 <   integer :: me_i, me_j
1017 <  
1266 >    real( kind = dp ) :: sw
1267 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1268 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1269 >    real (kind=dp), dimension(9,nLocal) :: A
1270 >    real (kind=dp), dimension(3,nLocal) :: f
1271 >    real (kind=dp), dimension(3,nLocal) :: t
1272  
1273 +    logical, intent(inout) :: do_pot, do_stress
1274 +    integer, intent(in) :: i, j
1275 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1276 +    real ( kind = dp )                :: r, rc
1277 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1278 +
1279 +    integer :: me_i, me_j, iHash
1280 +
1281      r = sqrt(rijsq)
1020    if (SIM_uses_molecular_cutoffs) then
1021       rc = sqrt(rcijsq)
1022    else
1023       rc = r
1024    endif
1025  
1282  
1283   #ifdef IS_MPI  
1284 <   me_i = atid_row(i)
1285 <   me_j = atid_col(j)  
1284 >    me_i = atid_row(i)
1285 >    me_j = atid_col(j)  
1286   #else  
1287 <   me_i = atid(i)
1288 <   me_j = atid(j)  
1287 >    me_i = atid(i)
1288 >    me_j = atid(j)  
1289   #endif
1034  
1035   if (FF_uses_EAM .and. SIM_uses_EAM) then
1036      
1037      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1038           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1039      
1040   endif
1041  
1042 end subroutine do_prepair
1043
1044
1045 subroutine do_preforce(nlocal,pot)
1046   integer :: nlocal
1047   real( kind = dp ) :: pot
1048  
1049   if (FF_uses_EAM .and. SIM_uses_EAM) then
1050      call calc_EAM_preforce_Frho(nlocal,pot)
1051   endif
1052  
1053  
1054 end subroutine do_preforce
1055
1056
1057 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1058  
1059   real (kind = dp), dimension(3) :: q_i
1060   real (kind = dp), dimension(3) :: q_j
1061   real ( kind = dp ), intent(out) :: r_sq
1062   real( kind = dp ) :: d(3), scaled(3)
1063   integer i
1064  
1065   d(1:3) = q_j(1:3) - q_i(1:3)
1066  
1067   ! Wrap back into periodic box if necessary
1068   if ( SIM_uses_PBC ) then
1069      
1070      if( .not.boxIsOrthorhombic ) then
1071         ! calc the scaled coordinates.
1072        
1073         scaled = matmul(HmatInv, d)
1074        
1075         ! wrap the scaled coordinates
1076        
1077         scaled = scaled  - anint(scaled)
1078        
1079        
1080         ! calc the wrapped real coordinates from the wrapped scaled
1081         ! coordinates
1082        
1083         d = matmul(Hmat,scaled)
1084        
1085      else
1086         ! calc the scaled coordinates.
1087        
1088         do i = 1, 3
1089            scaled(i) = d(i) * HmatInv(i,i)
1090            
1091            ! wrap the scaled coordinates
1092            
1093            scaled(i) = scaled(i) - anint(scaled(i))
1094            
1095            ! calc the wrapped real coordinates from the wrapped scaled
1096            ! coordinates
1097            
1098            d(i) = scaled(i)*Hmat(i,i)
1099         enddo
1100      endif
1101      
1102   endif
1103  
1104   r_sq = dot_product(d,d)
1105  
1106 end subroutine get_interatomic_vector
1107
1108 subroutine zero_work_arrays()
1109  
1110 #ifdef IS_MPI
1111  
1112   q_Row = 0.0_dp
1113   q_Col = 0.0_dp
1290  
1291 <   q_group_Row = 0.0_dp
1292 <   q_group_Col = 0.0_dp  
1293 <  
1294 <   eFrame_Row = 0.0_dp
1295 <   eFrame_Col = 0.0_dp
1296 <  
1297 <   A_Row = 0.0_dp
1298 <   A_Col = 0.0_dp
1299 <  
1300 <   f_Row = 0.0_dp
1301 <   f_Col = 0.0_dp
1302 <   f_Temp = 0.0_dp
1303 <  
1304 <   t_Row = 0.0_dp
1305 <   t_Col = 0.0_dp
1306 <   t_Temp = 0.0_dp
1307 <  
1308 <   pot_Row = 0.0_dp
1309 <   pot_Col = 0.0_dp
1310 <   pot_Temp = 0.0_dp
1311 <  
1312 <   rf_Row = 0.0_dp
1313 <   rf_Col = 0.0_dp
1314 <   rf_Temp = 0.0_dp
1315 <  
1291 >    iHash = InteractionHash(me_i, me_j)
1292 >
1293 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1294 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1295 >    endif
1296 >    
1297 >  end subroutine do_prepair
1298 >
1299 >
1300 >  subroutine do_preforce(nlocal,pot)
1301 >    integer :: nlocal
1302 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1303 >
1304 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1305 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1306 >    endif
1307 >
1308 >
1309 >  end subroutine do_preforce
1310 >
1311 >
1312 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1313 >
1314 >    real (kind = dp), dimension(3) :: q_i
1315 >    real (kind = dp), dimension(3) :: q_j
1316 >    real ( kind = dp ), intent(out) :: r_sq
1317 >    real( kind = dp ) :: d(3), scaled(3)
1318 >    integer i
1319 >
1320 >    d(1:3) = q_j(1:3) - q_i(1:3)
1321 >
1322 >    ! Wrap back into periodic box if necessary
1323 >    if ( SIM_uses_PBC ) then
1324 >
1325 >       if( .not.boxIsOrthorhombic ) then
1326 >          ! calc the scaled coordinates.
1327 >
1328 >          scaled = matmul(HmatInv, d)
1329 >
1330 >          ! wrap the scaled coordinates
1331 >
1332 >          scaled = scaled  - anint(scaled)
1333 >
1334 >
1335 >          ! calc the wrapped real coordinates from the wrapped scaled
1336 >          ! coordinates
1337 >
1338 >          d = matmul(Hmat,scaled)
1339 >
1340 >       else
1341 >          ! calc the scaled coordinates.
1342 >
1343 >          do i = 1, 3
1344 >             scaled(i) = d(i) * HmatInv(i,i)
1345 >
1346 >             ! wrap the scaled coordinates
1347 >
1348 >             scaled(i) = scaled(i) - anint(scaled(i))
1349 >
1350 >             ! calc the wrapped real coordinates from the wrapped scaled
1351 >             ! coordinates
1352 >
1353 >             d(i) = scaled(i)*Hmat(i,i)
1354 >          enddo
1355 >       endif
1356 >
1357 >    endif
1358 >
1359 >    r_sq = dot_product(d,d)
1360 >
1361 >  end subroutine get_interatomic_vector
1362 >
1363 >  subroutine zero_work_arrays()
1364 >
1365 > #ifdef IS_MPI
1366 >
1367 >    q_Row = 0.0_dp
1368 >    q_Col = 0.0_dp
1369 >
1370 >    q_group_Row = 0.0_dp
1371 >    q_group_Col = 0.0_dp  
1372 >
1373 >    eFrame_Row = 0.0_dp
1374 >    eFrame_Col = 0.0_dp
1375 >
1376 >    A_Row = 0.0_dp
1377 >    A_Col = 0.0_dp
1378 >
1379 >    f_Row = 0.0_dp
1380 >    f_Col = 0.0_dp
1381 >    f_Temp = 0.0_dp
1382 >
1383 >    t_Row = 0.0_dp
1384 >    t_Col = 0.0_dp
1385 >    t_Temp = 0.0_dp
1386 >
1387 >    pot_Row = 0.0_dp
1388 >    pot_Col = 0.0_dp
1389 >    pot_Temp = 0.0_dp
1390 >
1391 >    rf_Row = 0.0_dp
1392 >    rf_Col = 0.0_dp
1393 >    rf_Temp = 0.0_dp
1394 >
1395   #endif
1396 <
1397 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1398 <      call clean_EAM()
1399 <   endif
1400 <  
1401 <   rf = 0.0_dp
1402 <   tau_Temp = 0.0_dp
1403 <   virial_Temp = 0.0_dp
1404 < end subroutine zero_work_arrays
1405 <
1406 < function skipThisPair(atom1, atom2) result(skip_it)
1407 <   integer, intent(in) :: atom1
1408 <   integer, intent(in), optional :: atom2
1409 <   logical :: skip_it
1410 <   integer :: unique_id_1, unique_id_2
1411 <   integer :: me_i,me_j
1412 <   integer :: i
1413 <  
1414 <   skip_it = .false.
1415 <  
1416 <   !! there are a number of reasons to skip a pair or a particle
1417 <   !! mostly we do this to exclude atoms who are involved in short
1418 <   !! range interactions (bonds, bends, torsions), but we also need
1419 <   !! to exclude some overcounted interactions that result from
1420 <   !! the parallel decomposition
1421 <  
1396 >
1397 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1398 >       call clean_EAM()
1399 >    endif
1400 >
1401 >    rf = 0.0_dp
1402 >    tau_Temp = 0.0_dp
1403 >    virial_Temp = 0.0_dp
1404 >  end subroutine zero_work_arrays
1405 >
1406 >  function skipThisPair(atom1, atom2) result(skip_it)
1407 >    integer, intent(in) :: atom1
1408 >    integer, intent(in), optional :: atom2
1409 >    logical :: skip_it
1410 >    integer :: unique_id_1, unique_id_2
1411 >    integer :: me_i,me_j
1412 >    integer :: i
1413 >
1414 >    skip_it = .false.
1415 >
1416 >    !! there are a number of reasons to skip a pair or a particle
1417 >    !! mostly we do this to exclude atoms who are involved in short
1418 >    !! range interactions (bonds, bends, torsions), but we also need
1419 >    !! to exclude some overcounted interactions that result from
1420 >    !! the parallel decomposition
1421 >
1422   #ifdef IS_MPI
1423 <   !! in MPI, we have to look up the unique IDs for each atom
1424 <   unique_id_1 = AtomRowToGlobal(atom1)
1423 >    !! in MPI, we have to look up the unique IDs for each atom
1424 >    unique_id_1 = AtomRowToGlobal(atom1)
1425   #else
1426 <   !! in the normal loop, the atom numbers are unique
1427 <   unique_id_1 = atom1
1426 >    !! in the normal loop, the atom numbers are unique
1427 >    unique_id_1 = atom1
1428   #endif
1429 <  
1430 <   !! We were called with only one atom, so just check the global exclude
1431 <   !! list for this atom
1432 <   if (.not. present(atom2)) then
1433 <      do i = 1, nExcludes_global
1434 <         if (excludesGlobal(i) == unique_id_1) then
1435 <            skip_it = .true.
1436 <            return
1437 <         end if
1438 <      end do
1439 <      return
1440 <   end if
1441 <  
1429 >
1430 >    !! We were called with only one atom, so just check the global exclude
1431 >    !! list for this atom
1432 >    if (.not. present(atom2)) then
1433 >       do i = 1, nExcludes_global
1434 >          if (excludesGlobal(i) == unique_id_1) then
1435 >             skip_it = .true.
1436 >             return
1437 >          end if
1438 >       end do
1439 >       return
1440 >    end if
1441 >
1442   #ifdef IS_MPI
1443 <   unique_id_2 = AtomColToGlobal(atom2)
1443 >    unique_id_2 = AtomColToGlobal(atom2)
1444   #else
1445 <   unique_id_2 = atom2
1445 >    unique_id_2 = atom2
1446   #endif
1447 <  
1447 >
1448   #ifdef IS_MPI
1449 <   !! this situation should only arise in MPI simulations
1450 <   if (unique_id_1 == unique_id_2) then
1451 <      skip_it = .true.
1452 <      return
1453 <   end if
1454 <  
1455 <   !! this prevents us from doing the pair on multiple processors
1456 <   if (unique_id_1 < unique_id_2) then
1457 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1458 <         skip_it = .true.
1459 <         return
1460 <      endif
1461 <   else                
1462 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1463 <         skip_it = .true.
1464 <         return
1465 <      endif
1466 <   endif
1449 >    !! this situation should only arise in MPI simulations
1450 >    if (unique_id_1 == unique_id_2) then
1451 >       skip_it = .true.
1452 >       return
1453 >    end if
1454 >
1455 >    !! this prevents us from doing the pair on multiple processors
1456 >    if (unique_id_1 < unique_id_2) then
1457 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1458 >          skip_it = .true.
1459 >          return
1460 >       endif
1461 >    else                
1462 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1463 >          skip_it = .true.
1464 >          return
1465 >       endif
1466 >    endif
1467   #endif
1468 <  
1469 <   !! the rest of these situations can happen in all simulations:
1470 <   do i = 1, nExcludes_global      
1471 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1472 <           (excludesGlobal(i) == unique_id_2)) then
1473 <         skip_it = .true.
1474 <         return
1475 <      endif
1476 <   enddo
1477 <  
1478 <   do i = 1, nSkipsForAtom(atom1)
1479 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1480 <         skip_it = .true.
1481 <         return
1482 <      endif
1483 <   end do
1484 <  
1485 <   return
1486 < end function skipThisPair
1487 <
1488 < function FF_UsesDirectionalAtoms() result(doesit)
1489 <   logical :: doesit
1490 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1491 <        FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1492 <        FF_uses_GayBerne .or. FF_uses_Shapes
1493 < end function FF_UsesDirectionalAtoms
1494 <
1495 < function FF_RequiresPrepairCalc() result(doesit)
1496 <   logical :: doesit
1497 <   doesit = FF_uses_EAM
1243 < end function FF_RequiresPrepairCalc
1244 <
1245 < function FF_RequiresPostpairCalc() result(doesit)
1246 <   logical :: doesit
1247 <   doesit = FF_uses_RF
1248 < end function FF_RequiresPostpairCalc
1249 <
1468 >
1469 >    !! the rest of these situations can happen in all simulations:
1470 >    do i = 1, nExcludes_global      
1471 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1472 >            (excludesGlobal(i) == unique_id_2)) then
1473 >          skip_it = .true.
1474 >          return
1475 >       endif
1476 >    enddo
1477 >
1478 >    do i = 1, nSkipsForAtom(atom1)
1479 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1480 >          skip_it = .true.
1481 >          return
1482 >       endif
1483 >    end do
1484 >
1485 >    return
1486 >  end function skipThisPair
1487 >
1488 >  function FF_UsesDirectionalAtoms() result(doesit)
1489 >    logical :: doesit
1490 >    doesit = FF_uses_DirectionalAtoms
1491 >  end function FF_UsesDirectionalAtoms
1492 >
1493 >  function FF_RequiresPrepairCalc() result(doesit)
1494 >    logical :: doesit
1495 >    doesit = FF_uses_EAM
1496 >  end function FF_RequiresPrepairCalc
1497 >
1498   #ifdef PROFILE
1499 < function getforcetime() result(totalforcetime)
1500 <   real(kind=dp) :: totalforcetime
1501 <   totalforcetime = forcetime
1502 < end function getforcetime
1499 >  function getforcetime() result(totalforcetime)
1500 >    real(kind=dp) :: totalforcetime
1501 >    totalforcetime = forcetime
1502 >  end function getforcetime
1503   #endif
1256
1257 !! This cleans componets of force arrays belonging only to fortran
1504  
1505 < subroutine add_stress_tensor(dpair, fpair)
1506 <  
1507 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1508 <  
1509 <   ! because the d vector is the rj - ri vector, and
1510 <   ! because fx, fy, fz are the force on atom i, we need a
1511 <   ! negative sign here:  
1512 <  
1513 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1514 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1515 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1516 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1517 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1518 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1519 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1520 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1521 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1522 <  
1523 <   virial_Temp = virial_Temp + &
1524 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1525 <  
1526 < end subroutine add_stress_tensor
1527 <
1505 >  !! This cleans componets of force arrays belonging only to fortran
1506 >
1507 >  subroutine add_stress_tensor(dpair, fpair)
1508 >
1509 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1510 >
1511 >    ! because the d vector is the rj - ri vector, and
1512 >    ! because fx, fy, fz are the force on atom i, we need a
1513 >    ! negative sign here:  
1514 >
1515 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1516 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1517 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1518 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1519 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1520 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1521 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1522 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1523 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1524 >
1525 >    virial_Temp = virial_Temp + &
1526 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1527 >
1528 >  end subroutine add_stress_tensor
1529 >
1530   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines