ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1636 by chrisfen, Fri Oct 22 22:54:01 2004 UTC vs.
Revision 2367 by kdaily, Fri Oct 14 15:44:37 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.4 2004-10-22 22:53:57 chrisfen Exp $, $Date: 2004-10-22 22:53:57 $, $Name: not supported by cvs2svn $, $Revision: 1.4 $
48 > !! @version $Id: doForces.F90,v 1.58 2005-10-14 15:44:37 kdaily Exp $, $Date: 2005-10-14 15:44:37 $, $Name: not supported by cvs2svn $, $Revision: 1.58 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
59 >  use sticky
60 >  use electrostatic_module
61 >  use reaction_field_module
62    use gb_pair
63    use shapes
64    use vector_class
# Line 32 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80 +
81    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82    INTEGER, PARAMETER:: PAIR_LOOP    = 2
83  
39  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 <  
87 >  logical, save :: haveInteractionHash = .false.
88 >  logical, save :: haveGtypeCutoffMap = .false.
89 >  logical, save :: haveDefaultCutoffs = .false.
90 >  logical, save :: haveRlist = .false.
91 >
92    logical, save :: FF_uses_DirectionalAtoms
93 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
93 >  logical, save :: FF_uses_Dipoles
94    logical, save :: FF_uses_GayBerne
95    logical, save :: FF_uses_EAM
53  logical, save :: FF_uses_Shapes
54  logical, save :: FF_uses_FLARB
55  logical, save :: FF_uses_RF
96  
97    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
98    logical, save :: SIM_uses_EAM
65  logical, save :: SIM_uses_Shapes
66  logical, save :: SIM_uses_FLARB
67  logical, save :: SIM_uses_RF
99    logical, save :: SIM_requires_postpair_calc
100    logical, save :: SIM_requires_prepair_calc
101    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
102  
103 <  real(kind=dp), save :: rlist, rlistsq
103 >  integer, save :: electrostaticSummationMethod
104  
105    public :: init_FF
106 +  public :: setDefaultCutoffs
107    public :: do_force_loop
108 <  public :: setRlistDF
108 >  public :: createInteractionHash
109 >  public :: createGtypeCutoffMap
110 >  public :: getStickyCut
111 >  public :: getStickyPowerCut
112 >  public :: getGayBerneCut
113 >  public :: getEAMCut
114 >  public :: getShapeCut
115  
116   #ifdef PROFILE
117    public :: getforcetime
# Line 82 | Line 119 | module doForces
119    real :: forceTimeInitial, forceTimeFinal
120    integer :: nLoops
121   #endif
122 +  
123 +  !! Variables for cutoff mapping and interaction mapping
124 +  ! Bit hash to determine pair-pair interactions.
125 +  integer, dimension(:,:), allocatable :: InteractionHash
126 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
127 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
128 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
129  
130 <  type :: Properties
131 <     logical :: is_Directional   = .false.
88 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
130 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
131 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
132  
133 <  type(Properties), dimension(:),allocatable :: PropertyMap
133 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
134 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
135 >  type ::gtypeCutoffs
136 >     real(kind=dp) :: rcut
137 >     real(kind=dp) :: rcutsq
138 >     real(kind=dp) :: rlistsq
139 >  end type gtypeCutoffs
140 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
141  
142 +  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
143 +  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
144 +  real(kind=dp),save :: listSkin
145 +  
146   contains
147  
148 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
148 >  subroutine createInteractionHash(status)
149      integer :: nAtypes
150 <    integer :: status
150 >    integer, intent(out) :: status
151      integer :: i
152 <    logical :: thisProperty
153 <    real (kind=DP) :: thisDPproperty
152 >    integer :: j
153 >    integer :: iHash
154 >    !! Test Types
155 >    logical :: i_is_LJ
156 >    logical :: i_is_Elect
157 >    logical :: i_is_Sticky
158 >    logical :: i_is_StickyP
159 >    logical :: i_is_GB
160 >    logical :: i_is_EAM
161 >    logical :: i_is_Shape
162 >    logical :: j_is_LJ
163 >    logical :: j_is_Elect
164 >    logical :: j_is_Sticky
165 >    logical :: j_is_StickyP
166 >    logical :: j_is_GB
167 >    logical :: j_is_EAM
168 >    logical :: j_is_Shape
169 >    real(kind=dp) :: myRcut
170  
171 <    status = 0
171 >    status = 0  
172  
173 +    if (.not. associated(atypes)) then
174 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
175 +       status = -1
176 +       return
177 +    endif
178 +    
179      nAtypes = getSize(atypes)
180 <
180 >    
181      if (nAtypes == 0) then
182         status = -1
183         return
184      end if
185 <        
186 <    if (.not. allocated(PropertyMap)) then
187 <       allocate(PropertyMap(nAtypes))
185 >
186 >    if (.not. allocated(InteractionHash)) then
187 >       allocate(InteractionHash(nAtypes,nAtypes))
188 >    else
189 >       deallocate(InteractionHash)
190 >       allocate(InteractionHash(nAtypes,nAtypes))
191      endif
192  
193 +    if (.not. allocated(atypeMaxCutoff)) then
194 +       allocate(atypeMaxCutoff(nAtypes))
195 +    else
196 +       deallocate(atypeMaxCutoff)
197 +       allocate(atypeMaxCutoff(nAtypes))
198 +    endif
199 +        
200      do i = 1, nAtypes
201 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
202 <       PropertyMap(i)%is_Directional = thisProperty
201 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
202 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
203 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
204 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
205 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
206 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
207 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
208  
209 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
209 >       do j = i, nAtypes
210  
211 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
212 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
211 >          iHash = 0
212 >          myRcut = 0.0_dp
213  
214 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
215 <       PropertyMap(i)%is_Sticky = thisProperty
216 <
217 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
218 <       PropertyMap(i)%is_GayBerne = thisProperty
219 <
220 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
157 <       PropertyMap(i)%is_EAM = thisProperty
214 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
215 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
216 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
217 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
218 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
219 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
220 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
221  
222 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
223 <       PropertyMap(i)%is_Shape = thisProperty
222 >          if (i_is_LJ .and. j_is_LJ) then
223 >             iHash = ior(iHash, LJ_PAIR)            
224 >          endif
225 >          
226 >          if (i_is_Elect .and. j_is_Elect) then
227 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
228 >          endif
229 >          
230 >          if (i_is_Sticky .and. j_is_Sticky) then
231 >             iHash = ior(iHash, STICKY_PAIR)
232 >          endif
233  
234 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
235 <       PropertyMap(i)%is_FLARB = thisProperty
234 >          if (i_is_StickyP .and. j_is_StickyP) then
235 >             iHash = ior(iHash, STICKYPOWER_PAIR)
236 >          endif
237 >
238 >          if (i_is_EAM .and. j_is_EAM) then
239 >             iHash = ior(iHash, EAM_PAIR)
240 >          endif
241 >
242 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
243 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
244 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
245 >
246 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
247 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
248 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
249 >
250 >
251 >          InteractionHash(i,j) = iHash
252 >          InteractionHash(j,i) = iHash
253 >
254 >       end do
255 >
256      end do
257  
258 <    havePropertyMap = .true.
258 >    haveInteractionHash = .true.
259 >  end subroutine createInteractionHash
260  
261 <  end subroutine createPropertyMap
261 >  subroutine createGtypeCutoffMap(stat)
262 >
263 >    integer, intent(out), optional :: stat
264 >    logical :: i_is_LJ
265 >    logical :: i_is_Elect
266 >    logical :: i_is_Sticky
267 >    logical :: i_is_StickyP
268 >    logical :: i_is_GB
269 >    logical :: i_is_EAM
270 >    logical :: i_is_Shape
271 >    logical :: GtypeFound
272 >
273 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
274 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
275 >    integer :: nGroupsInRow
276 >    integer :: nGroupsInCol
277 >    integer :: nGroupTypesRow,nGroupTypesCol
278 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol, skin
279 >    real(kind=dp) :: biggestAtypeCutoff
280 >
281 >    stat = 0
282 >    if (.not. haveInteractionHash) then
283 >       call createInteractionHash(myStatus)      
284 >       if (myStatus .ne. 0) then
285 >          write(default_error, *) 'createInteractionHash failed in doForces!'
286 >          stat = -1
287 >          return
288 >       endif
289 >    endif
290 > #ifdef IS_MPI
291 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
292 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
293 > #endif
294 >    nAtypes = getSize(atypes)
295 > ! Set all of the initial cutoffs to zero.
296 >    atypeMaxCutoff = 0.0_dp
297 >    do i = 1, nAtypes
298 >       if (SimHasAtype(i)) then    
299 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
300 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
301 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
302 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
303 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
304 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
305 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
306 >          
307 >
308 >          if (haveDefaultCutoffs) then
309 >             atypeMaxCutoff(i) = defaultRcut
310 >          else
311 >             if (i_is_LJ) then          
312 >                thisRcut = getSigma(i) * 2.5_dp
313 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
314 >             endif
315 >             if (i_is_Elect) then
316 >                thisRcut = defaultRcut
317 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
318 >             endif
319 >             if (i_is_Sticky) then
320 >                thisRcut = getStickyCut(i)
321 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
322 >             endif
323 >             if (i_is_StickyP) then
324 >                thisRcut = getStickyPowerCut(i)
325 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
326 >             endif
327 >             if (i_is_GB) then
328 >                thisRcut = getGayBerneCut(i)
329 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
330 >             endif
331 >             if (i_is_EAM) then
332 >                thisRcut = getEAMCut(i)
333 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
334 >             endif
335 >             if (i_is_Shape) then
336 >                thisRcut = getShapeCut(i)
337 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
338 >             endif
339 >          endif
340 >          
341 >          
342 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
343 >             biggestAtypeCutoff = atypeMaxCutoff(i)
344 >          endif
345 >
346 >       endif
347 >    enddo
348 >  
349 >
350 >    
351 >    istart = 1
352 >    jstart = 1
353 > #ifdef IS_MPI
354 >    iend = nGroupsInRow
355 >    jend = nGroupsInCol
356 > #else
357 >    iend = nGroups
358 >    jend = nGroups
359 > #endif
360 >    
361 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
362 >    if(.not.allocated(groupToGtypeRow)) then
363 >     !  allocate(groupToGtype(iend))
364 >       allocate(groupToGtypeRow(iend))
365 >    else
366 >       deallocate(groupToGtypeRow)
367 >       allocate(groupToGtypeRow(iend))
368 >    endif
369 >    if(.not.allocated(groupMaxCutoffRow)) then
370 >       allocate(groupMaxCutoffRow(iend))
371 >    else
372 >       deallocate(groupMaxCutoffRow)
373 >       allocate(groupMaxCutoffRow(iend))
374 >    end if
375 >
376 >    if(.not.allocated(gtypeMaxCutoffRow)) then
377 >       allocate(gtypeMaxCutoffRow(iend))
378 >    else
379 >       deallocate(gtypeMaxCutoffRow)
380 >       allocate(gtypeMaxCutoffRow(iend))
381 >    endif
382 >
383 >
384 > #ifdef IS_MPI
385 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
386 >    if(.not.associated(groupToGtypeCol)) then
387 >       allocate(groupToGtypeCol(jend))
388 >    else
389 >       deallocate(groupToGtypeCol)
390 >       allocate(groupToGtypeCol(jend))
391 >    end if
392 >
393 >    if(.not.associated(groupToGtypeCol)) then
394 >       allocate(groupToGtypeCol(jend))
395 >    else
396 >       deallocate(groupToGtypeCol)
397 >       allocate(groupToGtypeCol(jend))
398 >    end if
399 >    if(.not.associated(gtypeMaxCutoffCol)) then
400 >       allocate(gtypeMaxCutoffCol(jend))
401 >    else
402 >       deallocate(gtypeMaxCutoffCol)      
403 >       allocate(gtypeMaxCutoffCol(jend))
404 >    end if
405 >
406 >       groupMaxCutoffCol = 0.0_dp
407 >       gtypeMaxCutoffCol = 0.0_dp
408 >
409 > #endif
410 >       groupMaxCutoffRow = 0.0_dp
411 >       gtypeMaxCutoffRow = 0.0_dp
412 >
413 >
414 >    !! first we do a single loop over the cutoff groups to find the
415 >    !! largest cutoff for any atypes present in this group.  We also
416 >    !! create gtypes at this point.
417 >    
418 >    tol = 1.0d-6
419 >    nGroupTypesRow = 0
420 >
421 >    do i = istart, iend      
422 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
423 >       groupMaxCutoffRow(i) = 0.0_dp
424 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
425 >          atom1 = groupListRow(ia)
426 > #ifdef IS_MPI
427 >          me_i = atid_row(atom1)
428 > #else
429 >          me_i = atid(atom1)
430 > #endif          
431 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
432 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
433 >          endif          
434 >       enddo
435  
436 +       if (nGroupTypesRow.eq.0) then
437 +          nGroupTypesRow = nGroupTypesRow + 1
438 +          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
439 +          groupToGtypeRow(i) = nGroupTypesRow
440 +       else
441 +          GtypeFound = .false.
442 +          do g = 1, nGroupTypesRow
443 +             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
444 +                groupToGtypeRow(i) = g
445 +                GtypeFound = .true.
446 +             endif
447 +          enddo
448 +          if (.not.GtypeFound) then            
449 +             nGroupTypesRow = nGroupTypesRow + 1
450 +             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
451 +             groupToGtypeRow(i) = nGroupTypesRow
452 +          endif
453 +       endif
454 +    enddo    
455 +
456 + #ifdef IS_MPI
457 +    do j = jstart, jend      
458 +       n_in_j = groupStartCol(j+1) - groupStartCol(j)
459 +       groupMaxCutoffCol(j) = 0.0_dp
460 +       do ja = groupStartCol(j), groupStartCol(j+1)-1
461 +          atom1 = groupListCol(ja)
462 +
463 +          me_j = atid_col(atom1)
464 +
465 +          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
466 +             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
467 +          endif          
468 +       enddo
469 +
470 +       if (nGroupTypesCol.eq.0) then
471 +          nGroupTypesCol = nGroupTypesCol + 1
472 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
473 +          groupToGtypeCol(j) = nGroupTypesCol
474 +       else
475 +          GtypeFound = .false.
476 +          do g = 1, nGroupTypesCol
477 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
478 +                groupToGtypeCol(j) = g
479 +                GtypeFound = .true.
480 +             endif
481 +          enddo
482 +          if (.not.GtypeFound) then            
483 +             nGroupTypesCol = nGroupTypesCol + 1
484 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
485 +             groupToGtypeCol(j) = nGroupTypesCol
486 +          endif
487 +       endif
488 +    enddo    
489 +
490 + #else
491 + ! Set pointers to information we just found
492 +    nGroupTypesCol = nGroupTypesRow
493 +    groupToGtypeCol => groupToGtypeRow
494 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
495 +    groupMaxCutoffCol => groupMaxCutoffRow
496 + #endif
497 +
498 +
499 +
500 +
501 +
502 +    !! allocate the gtypeCutoffMap here.
503 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
504 +    !! then we do a double loop over all the group TYPES to find the cutoff
505 +    !! map between groups of two types
506 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
507 +
508 +    do i = 1, nGroupTypesRow
509 +       do j = 1, nGroupTypesCol
510 +      
511 +          select case(cutoffPolicy)
512 +          case(TRADITIONAL_CUTOFF_POLICY)
513 +             thisRcut = tradRcut
514 +          case(MIX_CUTOFF_POLICY)
515 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
516 +          case(MAX_CUTOFF_POLICY)
517 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
518 +          case default
519 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
520 +             return
521 +          end select
522 +          gtypeCutoffMap(i,j)%rcut = thisRcut
523 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
524 +          skin = defaultRlist - defaultRcut
525 +          listSkin = skin ! set neighbor list skin thickness
526 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
527 +
528 +          ! sanity check
529 +
530 +          if (haveDefaultCutoffs) then
531 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
532 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
533 +             endif
534 +          endif
535 +       enddo
536 +    enddo
537 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
538 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
539 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
540 + #ifdef IS_MPI
541 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
542 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
543 + #endif
544 +    groupMaxCutoffCol => null()
545 +    gtypeMaxCutoffCol => null()
546 +    
547 +    haveGtypeCutoffMap = .true.
548 +   end subroutine createGtypeCutoffMap
549 +
550 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
551 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
552 +     integer, intent(in) :: cutPolicy
553 +
554 +     defaultRcut = defRcut
555 +     defaultRsw = defRsw
556 +     defaultRlist = defRlist
557 +     cutoffPolicy = cutPolicy
558 +
559 +     haveDefaultCutoffs = .true.
560 +   end subroutine setDefaultCutoffs
561 +
562 +   subroutine setCutoffPolicy(cutPolicy)
563 +
564 +     integer, intent(in) :: cutPolicy
565 +     cutoffPolicy = cutPolicy
566 +     call createGtypeCutoffMap()
567 +   end subroutine setCutoffPolicy
568 +    
569 +    
570    subroutine setSimVariables()
571      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
572      SIM_uses_EAM = SimUsesEAM()
179    SIM_uses_Shapes = SimUsesShapes()
180    SIM_uses_FLARB = SimUsesFLARB()
181    SIM_uses_RF = SimUsesRF()
573      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
574      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
575      SIM_uses_PBC = SimUsesPBC()
# Line 194 | Line 585 | contains
585      integer :: myStatus
586  
587      error = 0
197    
198    if (.not. havePropertyMap) then
588  
589 <       myStatus = 0
589 >    if (.not. haveInteractionHash) then      
590 >       myStatus = 0      
591 >       call createInteractionHash(myStatus)      
592 >       if (myStatus .ne. 0) then
593 >          write(default_error, *) 'createInteractionHash failed in doForces!'
594 >          error = -1
595 >          return
596 >       endif
597 >    endif
598  
599 <       call createPropertyMap(myStatus)
600 <
599 >    if (.not. haveGtypeCutoffMap) then        
600 >       myStatus = 0      
601 >       call createGtypeCutoffMap(myStatus)      
602         if (myStatus .ne. 0) then
603 <          write(default_error, *) 'createPropertyMap failed in doForces!'
603 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
604            error = -1
605            return
606         endif
# Line 212 | Line 610 | contains
610         call setSimVariables()
611      endif
612  
613 <    if (.not. haveRlist) then
614 <       write(default_error, *) 'rList has not been set in doForces!'
615 <       error = -1
616 <       return
617 <    endif
613 >  !  if (.not. haveRlist) then
614 >  !     write(default_error, *) 'rList has not been set in doForces!'
615 >  !     error = -1
616 >  !     return
617 >  !  endif
618  
619      if (.not. haveNeighborList) then
620         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 239 | Line 637 | contains
637   #endif
638      return
639    end subroutine doReadyCheck
242    
640  
244  subroutine init_FF(use_RF_c, thisStat)
641  
642 <    logical, intent(in) :: use_RF_c
642 >  subroutine init_FF(thisESM, thisStat)
643  
644 +    integer, intent(in) :: thisESM
645      integer, intent(out) :: thisStat  
646      integer :: my_status, nMatches
647      integer, pointer :: MatchList(:) => null()
# Line 253 | Line 650 | contains
650      !! assume things are copacetic, unless they aren't
651      thisStat = 0
652  
653 <    !! Fortran's version of a cast:
654 <    FF_uses_RF = use_RF_c
258 <    
653 >    electrostaticSummationMethod = thisESM
654 >
655      !! init_FF is called *after* all of the atom types have been
656      !! defined in atype_module using the new_atype subroutine.
657      !!
658      !! this will scan through the known atypes and figure out what
659      !! interactions are used by the force field.    
660 <  
660 >
661      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
662      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
663      FF_uses_GayBerne = .false.
664      FF_uses_EAM = .false.
665 <    FF_uses_Shapes = .false.
274 <    FF_uses_FLARB = .false.
275 <    
665 >
666      call getMatchingElementList(atypes, "is_Directional", .true., &
667           nMatches, MatchList)
668      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
669  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
670      call getMatchingElementList(atypes, "is_Dipole", .true., &
671           nMatches, MatchList)
672 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
672 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
673      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
674      call getMatchingElementList(atypes, "is_GayBerne", .true., &
675           nMatches, MatchList)
676 <    if (nMatches .gt. 0) then
677 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
676 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
677 >
678      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
679      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
680  
329    call getMatchingElementList(atypes, "is_FLARB", .true., &
330         nMatches, MatchList)
331    if (nMatches .gt. 0) FF_uses_FLARB = .true.
681  
333    !! Assume sanity (for the sake of argument)
682      haveSaneForceField = .true.
683 <    
684 <    !! check to make sure the FF_uses_RF setting makes sense
685 <    
686 <    if (FF_uses_dipoles) then
687 <       if (FF_uses_RF) then
683 >
684 >    !! check to make sure the reaction field setting makes sense
685 >
686 >    if (FF_uses_Dipoles) then
687 >       if (electrostaticSummationMethod == REACTION_FIELD) then
688            dielect = getDielect()
689            call initialize_rf(dielect)
690         endif
691      else
692 <       if (FF_uses_RF) then          
692 >       if (electrostaticSummationMethod == REACTION_FIELD) then
693            write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
694            thisStat = -1
695            haveSaneForceField = .false.
696            return
697         endif
350    endif
351
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
698      endif
699  
700      if (FF_uses_EAM) then
701 <         call init_EAM_FF(my_status)
701 >       call init_EAM_FF(my_status)
702         if (my_status /= 0) then
703            write(default_error, *) "init_EAM_FF returned a bad status"
704            thisStat = -1
# Line 377 | Line 716 | contains
716         endif
717      endif
718  
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
719      if (.not. haveNeighborList) then
720         !! Create neighbor lists
721         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 725 | contains
725            return
726         endif
727         haveNeighborList = .true.
728 <    endif    
729 <    
728 >    endif
729 >
730    end subroutine init_FF
395  
731  
732 +
733    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
734    !------------------------------------------------------------->
735 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
735 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
736         do_pot_c, do_stress_c, error)
737      !! Position array provided by C, dimensioned by getNlocal
738      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 741 | contains
741      !! Rotation Matrix for each long range particle in simulation.
742      real( kind = dp), dimension(9, nLocal) :: A    
743      !! Unit vectors for dipoles (lab frame)
744 <    real( kind = dp ), dimension(3,nLocal) :: u_l
744 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
745      !! Force array provided by C, dimensioned by getNlocal
746      real ( kind = dp ), dimension(3,nLocal) :: f
747      !! Torsion array provided by C, dimensioned by getNlocal
# Line 413 | Line 749 | contains
749  
750      !! Stress Tensor
751      real( kind = dp), dimension(9) :: tau  
752 <    real ( kind = dp ) :: pot
752 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
753      logical ( kind = 2) :: do_pot_c, do_stress_c
754      logical :: do_pot
755      logical :: do_stress
756      logical :: in_switching_region
757   #ifdef IS_MPI
758 <    real( kind = DP ) :: pot_local
758 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
759      integer :: nAtomsInRow
760      integer :: nAtomsInCol
761      integer :: nprocs
# Line 443 | Line 779 | contains
779      integer :: localError
780      integer :: propPack_i, propPack_j
781      integer :: loopStart, loopEnd, loop
782 +    integer :: iHash
783 +  
784  
447    real(kind=dp) :: listSkin = 1.0  
448    
785      !! initialize local variables  
786 <    
786 >
787   #ifdef IS_MPI
788      pot_local = 0.0_dp
789      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 793 | contains
793   #else
794      natoms = nlocal
795   #endif
796 <    
796 >
797      call doReadyCheck(localError)
798      if ( localError .ne. 0 ) then
799         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 801 | contains
801         return
802      end if
803      call zero_work_arrays()
804 <        
804 >
805      do_pot = do_pot_c
806      do_stress = do_stress_c
807 <    
807 >
808      ! Gather all information needed by all force loops:
809 <    
809 >
810   #ifdef IS_MPI    
811 <    
811 >
812      call gather(q, q_Row, plan_atom_row_3d)
813      call gather(q, q_Col, plan_atom_col_3d)
814  
815      call gather(q_group, q_group_Row, plan_group_row_3d)
816      call gather(q_group, q_group_Col, plan_group_col_3d)
817 <        
817 >
818      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
819 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
820 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
821 <      
819 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
820 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
821 >
822         call gather(A, A_Row, plan_atom_row_rotation)
823         call gather(A, A_Col, plan_atom_col_rotation)
824      endif
825 <    
825 >
826   #endif
827 <    
827 >
828      !! Begin force loop timing:
829   #ifdef PROFILE
830      call cpu_time(forceTimeInitial)
831      nloops = nloops + 1
832   #endif
833 <    
833 >
834      loopEnd = PAIR_LOOP
835      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
836         loopStart = PREPAIR_LOOP
# Line 509 | Line 845 | contains
845         if (loop .eq. loopStart) then
846   #ifdef IS_MPI
847            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
848 <             update_nlist)
848 >               update_nlist)
849   #else
850            call checkNeighborList(nGroups, q_group, listSkin, &
851 <             update_nlist)
851 >               update_nlist)
852   #endif
853         endif
854 <      
854 >
855         if (update_nlist) then
856            !! save current configuration and construct neighbor list
857   #ifdef IS_MPI
# Line 526 | Line 862 | contains
862            neighborListSize = size(list)
863            nlist = 0
864         endif
865 <      
865 >
866         istart = 1
867   #ifdef IS_MPI
868         iend = nGroupsInRow
# Line 536 | Line 872 | contains
872         outer: do i = istart, iend
873  
874            if (update_nlist) point(i) = nlist + 1
875 <          
875 >
876            n_in_i = groupStartRow(i+1) - groupStartRow(i)
877 <          
877 >
878            if (update_nlist) then
879   #ifdef IS_MPI
880               jstart = 1
# Line 553 | Line 889 | contains
889               ! make sure group i has neighbors
890               if (jstart .gt. jend) cycle outer
891            endif
892 <          
892 >
893            do jnab = jstart, jend
894               if (update_nlist) then
895                  j = jnab
# Line 562 | Line 898 | contains
898               endif
899  
900   #ifdef IS_MPI
901 +             me_j = atid_col(j)
902               call get_interatomic_vector(q_group_Row(:,i), &
903                    q_group_Col(:,j), d_grp, rgrpsq)
904   #else
905 +             me_j = atid(j)
906               call get_interatomic_vector(q_group(:,i), &
907                    q_group(:,j), d_grp, rgrpsq)
908 < #endif
908 > #endif      
909  
910 <             if (rgrpsq < rlistsq) then
910 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
911                  if (update_nlist) then
912                     nlist = nlist + 1
913 <                  
913 >
914                     if (nlist > neighborListSize) then
915   #ifdef IS_MPI                
916                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 924 | contains
924                        end if
925                        neighborListSize = size(list)
926                     endif
927 <                  
927 >
928                     list(nlist) = j
929                  endif
930 <                
930 >
931                  if (loop .eq. PAIR_LOOP) then
932                     vij = 0.0d0
933                     fij(1:3) = 0.0d0
934                  endif
935 <                
935 >
936                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
937                       in_switching_region)
938 <                
938 >
939                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
940 <                
940 >
941                  do ia = groupStartRow(i), groupStartRow(i+1)-1
942 <                  
942 >
943                     atom1 = groupListRow(ia)
944 <                  
944 >
945                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
946 <                      
946 >
947                        atom2 = groupListCol(jb)
948 <                      
948 >
949                        if (skipThisPair(atom1, atom2)) cycle inner
950  
951                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 627 | Line 965 | contains
965   #ifdef IS_MPI                      
966                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
967                                rgrpsq, d_grp, do_pot, do_stress, &
968 <                              u_l, A, f, t, pot_local)
968 >                              eFrame, A, f, t, pot_local)
969   #else
970                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
971                                rgrpsq, d_grp, do_pot, do_stress, &
972 <                              u_l, A, f, t, pot)
972 >                              eFrame, A, f, t, pot)
973   #endif                                              
974                        else
975   #ifdef IS_MPI                      
976                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
977                                do_pot, &
978 <                              u_l, A, f, t, pot_local, vpair, fpair)
978 >                              eFrame, A, f, t, pot_local, vpair, fpair)
979   #else
980                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
981                                do_pot,  &
982 <                              u_l, A, f, t, pot, vpair, fpair)
982 >                              eFrame, A, f, t, pot, vpair, fpair)
983   #endif
984  
985                           vij = vij + vpair
# Line 649 | Line 987 | contains
987                        endif
988                     enddo inner
989                  enddo
990 <                
990 >
991                  if (loop .eq. PAIR_LOOP) then
992                     if (in_switching_region) then
993                        swderiv = vij*dswdr/rgrp
994                        fij(1) = fij(1) + swderiv*d_grp(1)
995                        fij(2) = fij(2) + swderiv*d_grp(2)
996                        fij(3) = fij(3) + swderiv*d_grp(3)
997 <                      
997 >
998                        do ia=groupStartRow(i), groupStartRow(i+1)-1
999                           atom1=groupListRow(ia)
1000                           mf = mfactRow(atom1)
# Line 670 | Line 1008 | contains
1008                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1009   #endif
1010                        enddo
1011 <                      
1011 >
1012                        do jb=groupStartCol(j), groupStartCol(j+1)-1
1013                           atom2=groupListCol(jb)
1014                           mf = mfactCol(atom2)
# Line 685 | Line 1023 | contains
1023   #endif
1024                        enddo
1025                     endif
1026 <                  
1026 >
1027                     if (do_stress) call add_stress_tensor(d_grp, fij)
1028                  endif
1029               end if
1030            enddo
1031 +
1032         enddo outer
1033 <      
1033 >
1034         if (update_nlist) then
1035   #ifdef IS_MPI
1036            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 1044 | contains
1044               update_nlist = .false.                              
1045            endif
1046         endif
1047 <            
1047 >
1048         if (loop .eq. PREPAIR_LOOP) then
1049            call do_preforce(nlocal, pot)
1050         endif
1051 <      
1051 >
1052      enddo
1053 <    
1053 >
1054      !! Do timing
1055   #ifdef PROFILE
1056      call cpu_time(forceTimeFinal)
1057      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1058   #endif    
1059 <    
1059 >
1060   #ifdef IS_MPI
1061      !!distribute forces
1062 <    
1062 >
1063      f_temp = 0.0_dp
1064      call scatter(f_Row,f_temp,plan_atom_row_3d)
1065      do i = 1,nlocal
1066         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1067      end do
1068 <    
1068 >
1069      f_temp = 0.0_dp
1070      call scatter(f_Col,f_temp,plan_atom_col_3d)
1071      do i = 1,nlocal
1072         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1073      end do
1074 <    
1074 >
1075      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1076         t_temp = 0.0_dp
1077         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 1080 | contains
1080         end do
1081         t_temp = 0.0_dp
1082         call scatter(t_Col,t_temp,plan_atom_col_3d)
1083 <      
1083 >
1084         do i = 1,nlocal
1085            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1086         end do
1087      endif
1088 <    
1088 >
1089      if (do_pot) then
1090         ! scatter/gather pot_row into the members of my column
1091 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1092 <      
1091 >       do i = 1,LR_POT_TYPES
1092 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1093 >       end do
1094         ! scatter/gather pot_local into all other procs
1095         ! add resultant to get total pot
1096         do i = 1, nlocal
1097 <          pot_local = pot_local + pot_Temp(i)
1097 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1098 >               + pot_Temp(1:LR_POT_TYPES,i)
1099         enddo
1100 <      
1100 >
1101         pot_Temp = 0.0_DP
1102 <      
1103 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1102 >       do i = 1,LR_POT_TYPES
1103 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1104 >       end do
1105         do i = 1, nlocal
1106 <          pot_local = pot_local + pot_Temp(i)
1106 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1107 >               + pot_Temp(1:LR_POT_TYPES,i)
1108         enddo
1109 <      
1109 >
1110      endif
1111   #endif
1112 <    
1112 >
1113      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1114 <      
1115 <       if (FF_uses_RF .and. SIM_uses_RF) then
1116 <          
1114 >
1115 >       if (electrostaticSummationMethod == REACTION_FIELD) then
1116 >
1117   #ifdef IS_MPI
1118            call scatter(rf_Row,rf,plan_atom_row_3d)
1119            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 778 | Line 1121 | contains
1121               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1122            end do
1123   #endif
1124 <          
1124 >
1125            do i = 1, nLocal
1126 <            
1126 >
1127               rfpot = 0.0_DP
1128   #ifdef IS_MPI
1129               me_i = atid_row(i)
1130   #else
1131               me_i = atid(i)
1132   #endif
1133 +             iHash = InteractionHash(me_i,me_j)
1134              
1135 <             if (PropertyMap(me_i)%is_Dipole) then
1136 <                
1135 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1136 >
1137                  mu_i = getDipoleMoment(me_i)
1138 <                
1138 >
1139                  !! The reaction field needs to include a self contribution
1140                  !! to the field:
1141 <                call accumulate_self_rf(i, mu_i, u_l)
1141 >                call accumulate_self_rf(i, mu_i, eFrame)
1142                  !! Get the reaction field contribution to the
1143                  !! potential and torques:
1144 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1144 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1145   #ifdef IS_MPI
1146 <                pot_local = pot_local + rfpot
1146 >                pot_local(ELECTROSTATIC_POT) = pot_local(ELECTROSTATIC_POT) + rfpot
1147   #else
1148 <                pot = pot + rfpot
1149 <      
1148 >                pot(ELECTROSTATIC_POT) = pot(ELECTROSTATIC_POT) + rfpot
1149 >
1150   #endif
1151 <             endif            
1151 >             endif
1152            enddo
1153         endif
1154      endif
1155 <    
1156 <    
1155 >
1156 >
1157   #ifdef IS_MPI
1158 <    
1158 >
1159      if (do_pot) then
1160 <       pot = pot + pot_local
1160 >       pot(1:LR_POT_TYPES) = pot(1:LR_POT_TYPES) &
1161 >            + pot_local(1:LR_POT_TYPES)
1162         !! we assume the c code will do the allreduce to get the total potential
1163         !! we could do it right here if we needed to...
1164      endif
1165 <    
1165 >
1166      if (do_stress) then
1167         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1168              mpi_comm_world,mpi_err)
1169         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1170              mpi_comm_world,mpi_err)
1171      endif
1172 <    
1172 >
1173   #else
1174 <    
1174 >
1175      if (do_stress) then
1176         tau = tau_Temp
1177         virial = virial_Temp
1178      endif
1179 <    
1179 >
1180   #endif
1181 <      
1181 >
1182    end subroutine do_force_loop
1183 <  
1183 >
1184    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1185 <       u_l, A, f, t, pot, vpair, fpair)
1185 >       eFrame, A, f, t, pot, vpair, fpair)
1186  
1187 <    real( kind = dp ) :: pot, vpair, sw
1187 >    real( kind = dp ) :: vpair, sw
1188 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1189      real( kind = dp ), dimension(3) :: fpair
1190      real( kind = dp ), dimension(nLocal)   :: mfact
1191 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1191 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1192      real( kind = dp ), dimension(9,nLocal) :: A
1193      real( kind = dp ), dimension(3,nLocal) :: f
1194      real( kind = dp ), dimension(3,nLocal) :: t
# Line 854 | Line 1200 | contains
1200      real ( kind = dp ), intent(inout) :: d(3)
1201      integer :: me_i, me_j
1202  
1203 +    integer :: iHash
1204 +
1205      r = sqrt(rijsq)
1206      vpair = 0.0d0
1207      fpair(1:3) = 0.0d0
# Line 865 | Line 1213 | contains
1213      me_i = atid(i)
1214      me_j = atid(j)
1215   #endif
868    
869    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
870      
871       if ( PropertyMap(me_i)%is_LennardJones .and. &
872            PropertyMap(me_j)%is_LennardJones ) then
873          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
874       endif
875      
876    endif
877    
878    if (FF_uses_charges .and. SIM_uses_charges) then
879      
880       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
881          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
882               pot, f, do_pot)
883       endif
884      
885    endif
886    
887    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
888      
889       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
890          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
891               pot, u_l, f, t, do_pot)
892          if (FF_uses_RF .and. SIM_uses_RF) then
893             call accumulate_rf(i, j, r, u_l, sw)
894             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
895          endif
896       endif
1216  
1217 +    iHash = InteractionHash(me_i, me_j)
1218 +
1219 +    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1220 +       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1221 +            pot(VDW_POT), f, do_pot)
1222      endif
1223  
1224 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1224 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1225 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1226 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1227  
1228 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1229 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1230 <               pot, A, f, t, do_pot)
1228 >       if (electrostaticSummationMethod == REACTION_FIELD) then
1229 >
1230 >          ! CHECK ME (RF needs to know about all electrostatic types)
1231 >          call accumulate_rf(i, j, r, eFrame, sw)
1232 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1233         endif
1234 <      
1234 >
1235      endif
1236  
1237 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1238 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1239 +            pot(HB_POT), A, f, t, do_pot)
1240 +    endif
1241  
1242 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1243 <      
1244 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
913 <            PropertyMap(me_j)%is_GayBerne) then
914 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
915 <               pot, u_l, f, t, do_pot)
916 <       endif
917 <      
1242 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1243 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1244 >            pot(HB_POT), A, f, t, do_pot)
1245      endif
1246 +
1247 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1248 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1249 +            pot(VDW_POT), A, f, t, do_pot)
1250 +    endif
1251      
1252 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1253 <      
1254 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
923 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
924 <               do_pot)
925 <       endif
926 <      
1252 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1253 >       call do_gb_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1254 >            pot(VDW_POT), A, f, t, do_pot)
1255      endif
1256  
1257 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1258 <      
1259 <       if ( PropertyMap(me_i)%is_Shape .and. &
932 <            PropertyMap(me_j)%is_Shape ) then
933 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
934 <               pot, u_l, f, t, do_pot)
935 <       endif
936 <      
1257 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1258 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1259 >            pot(METALLIC_POT), f, do_pot)
1260      endif
1261 +
1262 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1263 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1264 +            pot(VDW_POT), A, f, t, do_pot)
1265 +    endif
1266 +
1267 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1268 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1269 +            pot(VDW_POT), A, f, t, do_pot)
1270 +    endif
1271      
1272    end subroutine do_pair
1273  
1274    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1275 <       do_pot, do_stress, u_l, A, f, t, pot)
1275 >       do_pot, do_stress, eFrame, A, f, t, pot)
1276  
1277 <   real( kind = dp ) :: pot, sw
1278 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1279 <   real (kind=dp), dimension(9,nLocal) :: A
1280 <   real (kind=dp), dimension(3,nLocal) :: f
1281 <   real (kind=dp), dimension(3,nLocal) :: t
1282 <  
950 <   logical, intent(inout) :: do_pot, do_stress
951 <   integer, intent(in) :: i, j
952 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
953 <   real ( kind = dp )                :: r, rc
954 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
955 <  
956 <   logical :: is_EAM_i, is_EAM_j
957 <  
958 <   integer :: me_i, me_j
959 <  
1277 >    real( kind = dp ) :: sw
1278 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1279 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1280 >    real (kind=dp), dimension(9,nLocal) :: A
1281 >    real (kind=dp), dimension(3,nLocal) :: f
1282 >    real (kind=dp), dimension(3,nLocal) :: t
1283  
1284 +    logical, intent(inout) :: do_pot, do_stress
1285 +    integer, intent(in) :: i, j
1286 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1287 +    real ( kind = dp )                :: r, rc
1288 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1289 +
1290 +    integer :: me_i, me_j, iHash
1291 +
1292      r = sqrt(rijsq)
962    if (SIM_uses_molecular_cutoffs) then
963       rc = sqrt(rcijsq)
964    else
965       rc = r
966    endif
967  
1293  
1294   #ifdef IS_MPI  
1295 <   me_i = atid_row(i)
1296 <   me_j = atid_col(j)  
1295 >    me_i = atid_row(i)
1296 >    me_j = atid_col(j)  
1297   #else  
1298 <   me_i = atid(i)
1299 <   me_j = atid(j)  
1298 >    me_i = atid(i)
1299 >    me_j = atid(j)  
1300   #endif
976  
977   if (FF_uses_EAM .and. SIM_uses_EAM) then
978      
979      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
980           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
981      
982   endif
983  
984 end subroutine do_prepair
985
986
987 subroutine do_preforce(nlocal,pot)
988   integer :: nlocal
989   real( kind = dp ) :: pot
990  
991   if (FF_uses_EAM .and. SIM_uses_EAM) then
992      call calc_EAM_preforce_Frho(nlocal,pot)
993   endif
994  
995  
996 end subroutine do_preforce
997
998
999 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1000  
1001   real (kind = dp), dimension(3) :: q_i
1002   real (kind = dp), dimension(3) :: q_j
1003   real ( kind = dp ), intent(out) :: r_sq
1004   real( kind = dp ) :: d(3), scaled(3)
1005   integer i
1006  
1007   d(1:3) = q_j(1:3) - q_i(1:3)
1008  
1009   ! Wrap back into periodic box if necessary
1010   if ( SIM_uses_PBC ) then
1011      
1012      if( .not.boxIsOrthorhombic ) then
1013         ! calc the scaled coordinates.
1014        
1015         scaled = matmul(HmatInv, d)
1016        
1017         ! wrap the scaled coordinates
1018        
1019         scaled = scaled  - anint(scaled)
1020        
1021        
1022         ! calc the wrapped real coordinates from the wrapped scaled
1023         ! coordinates
1024        
1025         d = matmul(Hmat,scaled)
1026        
1027      else
1028         ! calc the scaled coordinates.
1029        
1030         do i = 1, 3
1031            scaled(i) = d(i) * HmatInv(i,i)
1032            
1033            ! wrap the scaled coordinates
1034            
1035            scaled(i) = scaled(i) - anint(scaled(i))
1036            
1037            ! calc the wrapped real coordinates from the wrapped scaled
1038            ! coordinates
1039            
1040            d(i) = scaled(i)*Hmat(i,i)
1041         enddo
1042      endif
1043      
1044   endif
1045  
1046   r_sq = dot_product(d,d)
1047  
1048 end subroutine get_interatomic_vector
1049
1050 subroutine zero_work_arrays()
1051  
1052 #ifdef IS_MPI
1053  
1054   q_Row = 0.0_dp
1055   q_Col = 0.0_dp
1301  
1302 <   q_group_Row = 0.0_dp
1303 <   q_group_Col = 0.0_dp  
1304 <  
1305 <   u_l_Row = 0.0_dp
1306 <   u_l_Col = 0.0_dp
1307 <  
1308 <   A_Row = 0.0_dp
1309 <   A_Col = 0.0_dp
1310 <  
1311 <   f_Row = 0.0_dp
1312 <   f_Col = 0.0_dp
1313 <   f_Temp = 0.0_dp
1314 <  
1315 <   t_Row = 0.0_dp
1316 <   t_Col = 0.0_dp
1317 <   t_Temp = 0.0_dp
1318 <  
1319 <   pot_Row = 0.0_dp
1320 <   pot_Col = 0.0_dp
1321 <   pot_Temp = 0.0_dp
1322 <  
1323 <   rf_Row = 0.0_dp
1324 <   rf_Col = 0.0_dp
1325 <   rf_Temp = 0.0_dp
1326 <  
1327 < #endif
1328 <
1329 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1330 <      call clean_EAM()
1331 <   endif
1332 <  
1333 <   rf = 0.0_dp
1334 <   tau_Temp = 0.0_dp
1335 <   virial_Temp = 0.0_dp
1336 < end subroutine zero_work_arrays
1337 <
1338 < function skipThisPair(atom1, atom2) result(skip_it)
1339 <   integer, intent(in) :: atom1
1340 <   integer, intent(in), optional :: atom2
1341 <   logical :: skip_it
1342 <   integer :: unique_id_1, unique_id_2
1343 <   integer :: me_i,me_j
1344 <   integer :: i
1345 <  
1346 <   skip_it = .false.
1347 <  
1348 <   !! there are a number of reasons to skip a pair or a particle
1349 <   !! mostly we do this to exclude atoms who are involved in short
1350 <   !! range interactions (bonds, bends, torsions), but we also need
1351 <   !! to exclude some overcounted interactions that result from
1352 <   !! the parallel decomposition
1353 <  
1354 < #ifdef IS_MPI
1355 <   !! in MPI, we have to look up the unique IDs for each atom
1356 <   unique_id_1 = AtomRowToGlobal(atom1)
1357 < #else
1358 <   !! in the normal loop, the atom numbers are unique
1359 <   unique_id_1 = atom1
1302 >    iHash = InteractionHash(me_i, me_j)
1303 >
1304 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1305 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1306 >    endif
1307 >    
1308 >  end subroutine do_prepair
1309 >
1310 >
1311 >  subroutine do_preforce(nlocal,pot)
1312 >    integer :: nlocal
1313 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1314 >
1315 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1316 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1317 >    endif
1318 >
1319 >
1320 >  end subroutine do_preforce
1321 >
1322 >
1323 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1324 >
1325 >    real (kind = dp), dimension(3) :: q_i
1326 >    real (kind = dp), dimension(3) :: q_j
1327 >    real ( kind = dp ), intent(out) :: r_sq
1328 >    real( kind = dp ) :: d(3), scaled(3)
1329 >    integer i
1330 >
1331 >    d(1:3) = q_j(1:3) - q_i(1:3)
1332 >
1333 >    ! Wrap back into periodic box if necessary
1334 >    if ( SIM_uses_PBC ) then
1335 >
1336 >       if( .not.boxIsOrthorhombic ) then
1337 >          ! calc the scaled coordinates.
1338 >
1339 >          scaled = matmul(HmatInv, d)
1340 >
1341 >          ! wrap the scaled coordinates
1342 >
1343 >          scaled = scaled  - anint(scaled)
1344 >
1345 >
1346 >          ! calc the wrapped real coordinates from the wrapped scaled
1347 >          ! coordinates
1348 >
1349 >          d = matmul(Hmat,scaled)
1350 >
1351 >       else
1352 >          ! calc the scaled coordinates.
1353 >
1354 >          do i = 1, 3
1355 >             scaled(i) = d(i) * HmatInv(i,i)
1356 >
1357 >             ! wrap the scaled coordinates
1358 >
1359 >             scaled(i) = scaled(i) - anint(scaled(i))
1360 >
1361 >             ! calc the wrapped real coordinates from the wrapped scaled
1362 >             ! coordinates
1363 >
1364 >             d(i) = scaled(i)*Hmat(i,i)
1365 >          enddo
1366 >       endif
1367 >
1368 >    endif
1369 >
1370 >    r_sq = dot_product(d,d)
1371 >
1372 >  end subroutine get_interatomic_vector
1373 >
1374 >  subroutine zero_work_arrays()
1375 >
1376 > #ifdef IS_MPI
1377 >
1378 >    q_Row = 0.0_dp
1379 >    q_Col = 0.0_dp
1380 >
1381 >    q_group_Row = 0.0_dp
1382 >    q_group_Col = 0.0_dp  
1383 >
1384 >    eFrame_Row = 0.0_dp
1385 >    eFrame_Col = 0.0_dp
1386 >
1387 >    A_Row = 0.0_dp
1388 >    A_Col = 0.0_dp
1389 >
1390 >    f_Row = 0.0_dp
1391 >    f_Col = 0.0_dp
1392 >    f_Temp = 0.0_dp
1393 >
1394 >    t_Row = 0.0_dp
1395 >    t_Col = 0.0_dp
1396 >    t_Temp = 0.0_dp
1397 >
1398 >    pot_Row = 0.0_dp
1399 >    pot_Col = 0.0_dp
1400 >    pot_Temp = 0.0_dp
1401 >
1402 >    rf_Row = 0.0_dp
1403 >    rf_Col = 0.0_dp
1404 >    rf_Temp = 0.0_dp
1405 >
1406   #endif
1407 <  
1408 <   !! We were called with only one atom, so just check the global exclude
1409 <   !! list for this atom
1410 <   if (.not. present(atom2)) then
1411 <      do i = 1, nExcludes_global
1412 <         if (excludesGlobal(i) == unique_id_1) then
1413 <            skip_it = .true.
1414 <            return
1415 <         end if
1416 <      end do
1417 <      return
1418 <   end if
1419 <  
1407 >
1408 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1409 >       call clean_EAM()
1410 >    endif
1411 >
1412 >    rf = 0.0_dp
1413 >    tau_Temp = 0.0_dp
1414 >    virial_Temp = 0.0_dp
1415 >  end subroutine zero_work_arrays
1416 >
1417 >  function skipThisPair(atom1, atom2) result(skip_it)
1418 >    integer, intent(in) :: atom1
1419 >    integer, intent(in), optional :: atom2
1420 >    logical :: skip_it
1421 >    integer :: unique_id_1, unique_id_2
1422 >    integer :: me_i,me_j
1423 >    integer :: i
1424 >
1425 >    skip_it = .false.
1426 >
1427 >    !! there are a number of reasons to skip a pair or a particle
1428 >    !! mostly we do this to exclude atoms who are involved in short
1429 >    !! range interactions (bonds, bends, torsions), but we also need
1430 >    !! to exclude some overcounted interactions that result from
1431 >    !! the parallel decomposition
1432 >
1433   #ifdef IS_MPI
1434 <   unique_id_2 = AtomColToGlobal(atom2)
1434 >    !! in MPI, we have to look up the unique IDs for each atom
1435 >    unique_id_1 = AtomRowToGlobal(atom1)
1436   #else
1437 <   unique_id_2 = atom2
1437 >    !! in the normal loop, the atom numbers are unique
1438 >    unique_id_1 = atom1
1439   #endif
1440 <  
1440 >
1441 >    !! We were called with only one atom, so just check the global exclude
1442 >    !! list for this atom
1443 >    if (.not. present(atom2)) then
1444 >       do i = 1, nExcludes_global
1445 >          if (excludesGlobal(i) == unique_id_1) then
1446 >             skip_it = .true.
1447 >             return
1448 >          end if
1449 >       end do
1450 >       return
1451 >    end if
1452 >
1453   #ifdef IS_MPI
1454 <   !! this situation should only arise in MPI simulations
1455 <   if (unique_id_1 == unique_id_2) then
1456 <      skip_it = .true.
1139 <      return
1140 <   end if
1141 <  
1142 <   !! this prevents us from doing the pair on multiple processors
1143 <   if (unique_id_1 < unique_id_2) then
1144 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1145 <         skip_it = .true.
1146 <         return
1147 <      endif
1148 <   else                
1149 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1150 <         skip_it = .true.
1151 <         return
1152 <      endif
1153 <   endif
1454 >    unique_id_2 = AtomColToGlobal(atom2)
1455 > #else
1456 >    unique_id_2 = atom2
1457   #endif
1458 <  
1459 <   !! the rest of these situations can happen in all simulations:
1460 <   do i = 1, nExcludes_global      
1461 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1462 <           (excludesGlobal(i) == unique_id_2)) then
1463 <         skip_it = .true.
1464 <         return
1465 <      endif
1466 <   enddo
1467 <  
1468 <   do i = 1, nSkipsForAtom(atom1)
1469 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1470 <         skip_it = .true.
1471 <         return
1472 <      endif
1473 <   end do
1474 <  
1475 <   return
1476 < end function skipThisPair
1477 <
1478 < function FF_UsesDirectionalAtoms() result(doesit)
1479 <   logical :: doesit
1480 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1481 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1482 < end function FF_UsesDirectionalAtoms
1483 <
1484 < function FF_RequiresPrepairCalc() result(doesit)
1485 <   logical :: doesit
1486 <   doesit = FF_uses_EAM
1487 < end function FF_RequiresPrepairCalc
1488 <
1489 < function FF_RequiresPostpairCalc() result(doesit)
1490 <   logical :: doesit
1491 <   doesit = FF_uses_RF
1492 < end function FF_RequiresPostpairCalc
1493 <
1458 >
1459 > #ifdef IS_MPI
1460 >    !! this situation should only arise in MPI simulations
1461 >    if (unique_id_1 == unique_id_2) then
1462 >       skip_it = .true.
1463 >       return
1464 >    end if
1465 >
1466 >    !! this prevents us from doing the pair on multiple processors
1467 >    if (unique_id_1 < unique_id_2) then
1468 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1469 >          skip_it = .true.
1470 >          return
1471 >       endif
1472 >    else                
1473 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1474 >          skip_it = .true.
1475 >          return
1476 >       endif
1477 >    endif
1478 > #endif
1479 >
1480 >    !! the rest of these situations can happen in all simulations:
1481 >    do i = 1, nExcludes_global      
1482 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1483 >            (excludesGlobal(i) == unique_id_2)) then
1484 >          skip_it = .true.
1485 >          return
1486 >       endif
1487 >    enddo
1488 >
1489 >    do i = 1, nSkipsForAtom(atom1)
1490 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1491 >          skip_it = .true.
1492 >          return
1493 >       endif
1494 >    end do
1495 >
1496 >    return
1497 >  end function skipThisPair
1498 >
1499 >  function FF_UsesDirectionalAtoms() result(doesit)
1500 >    logical :: doesit
1501 >    doesit = FF_uses_DirectionalAtoms
1502 >  end function FF_UsesDirectionalAtoms
1503 >
1504 >  function FF_RequiresPrepairCalc() result(doesit)
1505 >    logical :: doesit
1506 >    doesit = FF_uses_EAM
1507 >  end function FF_RequiresPrepairCalc
1508 >
1509 >  function FF_RequiresPostpairCalc() result(doesit)
1510 >    logical :: doesit
1511 >    if (electrostaticSummationMethod == REACTION_FIELD) doesit = .true.
1512 >  end function FF_RequiresPostpairCalc
1513 >
1514   #ifdef PROFILE
1515 < function getforcetime() result(totalforcetime)
1516 <   real(kind=dp) :: totalforcetime
1517 <   totalforcetime = forcetime
1518 < end function getforcetime
1515 >  function getforcetime() result(totalforcetime)
1516 >    real(kind=dp) :: totalforcetime
1517 >    totalforcetime = forcetime
1518 >  end function getforcetime
1519   #endif
1197
1198 !! This cleans componets of force arrays belonging only to fortran
1520  
1521 < subroutine add_stress_tensor(dpair, fpair)
1201 <  
1202 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1203 <  
1204 <   ! because the d vector is the rj - ri vector, and
1205 <   ! because fx, fy, fz are the force on atom i, we need a
1206 <   ! negative sign here:  
1207 <  
1208 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1209 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1210 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1211 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1212 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1213 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1214 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1215 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1216 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1217 <  
1218 <   virial_Temp = virial_Temp + &
1219 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1220 <  
1221 < end subroutine add_stress_tensor
1222 <
1223 < end module doForces
1521 >  !! This cleans componets of force arrays belonging only to fortran
1522  
1523 < !! Interfaces for C programs to module....
1523 >  subroutine add_stress_tensor(dpair, fpair)
1524  
1525 < subroutine initFortranFF(use_RF_c, thisStat)
1228 <    use doForces, ONLY: init_FF
1229 <    logical, intent(in) :: use_RF_c
1525 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1526  
1527 <    integer, intent(out) :: thisStat  
1528 <    call init_FF(use_RF_c, thisStat)
1527 >    ! because the d vector is the rj - ri vector, and
1528 >    ! because fx, fy, fz are the force on atom i, we need a
1529 >    ! negative sign here:  
1530  
1531 < end subroutine initFortranFF
1531 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1532 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1533 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1534 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1535 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1536 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1537 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1538 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1539 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1540  
1541 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1542 <       do_pot_c, do_stress_c, error)
1238 <      
1239 <       use definitions, ONLY: dp
1240 <       use simulation
1241 <       use doForces, ONLY: do_force_loop
1242 <    !! Position array provided by C, dimensioned by getNlocal
1243 <    real ( kind = dp ), dimension(3, nLocal) :: q
1244 <    !! molecular center-of-mass position array
1245 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1246 <    !! Rotation Matrix for each long range particle in simulation.
1247 <    real( kind = dp), dimension(9, nLocal) :: A    
1248 <    !! Unit vectors for dipoles (lab frame)
1249 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1250 <    !! Force array provided by C, dimensioned by getNlocal
1251 <    real ( kind = dp ), dimension(3,nLocal) :: f
1252 <    !! Torsion array provided by C, dimensioned by getNlocal
1253 <    real( kind = dp ), dimension(3,nLocal) :: t    
1541 >    virial_Temp = virial_Temp + &
1542 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1543  
1544 <    !! Stress Tensor
1545 <    real( kind = dp), dimension(9) :: tau  
1546 <    real ( kind = dp ) :: pot
1258 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1259 <    integer :: error
1260 <    
1261 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1262 <       do_pot_c, do_stress_c, error)
1263 <      
1264 < end subroutine doForceloop
1544 >  end subroutine add_stress_tensor
1545 >
1546 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines