ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1729 by chrisfen, Thu Nov 11 21:46:29 2004 UTC vs.
Revision 2390 by chrisfen, Wed Oct 19 19:24:40 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.8 2004-11-11 21:46:29 chrisfen Exp $, $Date: 2004-11-11 21:46:29 $, $Name: not supported by cvs2svn $, $Revision: 1.8 $
48 > !! @version $Id: doForces.F90,v 1.61 2005-10-19 19:24:29 chrisfen Exp $, $Date: 2005-10-19 19:24:29 $, $Name: not supported by cvs2svn $, $Revision: 1.61 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
21 <  use gb_pair
59 >  use sticky
60 >  use electrostatic_module
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
# Line 32 | Line 72 | module doForces
72  
73   #define __FORTRAN90
74   #include "UseTheForce/fSwitchingFunction.h"
75 + #include "UseTheForce/fCutoffPolicy.h"
76 + #include "UseTheForce/DarkSide/fInteractionMap.h"
77 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
39  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveDefaultCutoffs = .false.
89 >  logical, save :: haveRlist = .false.
90 >
91    logical, save :: FF_uses_DirectionalAtoms
92 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
92 >  logical, save :: FF_uses_Dipoles
93    logical, save :: FF_uses_GayBerne
94    logical, save :: FF_uses_EAM
53  logical, save :: FF_uses_Shapes
54  logical, save :: FF_uses_FLARB
55  logical, save :: FF_uses_RF
95  
96    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
97    logical, save :: SIM_uses_EAM
65  logical, save :: SIM_uses_Shapes
66  logical, save :: SIM_uses_FLARB
67  logical, save :: SIM_uses_RF
98    logical, save :: SIM_requires_postpair_calc
99    logical, save :: SIM_requires_prepair_calc
100    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
101  
102 <  real(kind=dp), save :: rlist, rlistsq
102 >  integer, save :: electrostaticSummationMethod
103  
104    public :: init_FF
105 +  public :: setDefaultCutoffs
106    public :: do_force_loop
107 <  public :: setRlistDF
107 >  public :: createInteractionHash
108 >  public :: createGtypeCutoffMap
109 >  public :: getStickyCut
110 >  public :: getStickyPowerCut
111 >  public :: getGayBerneCut
112 >  public :: getEAMCut
113 >  public :: getShapeCut
114  
115   #ifdef PROFILE
116    public :: getforcetime
# Line 82 | Line 118 | module doForces
118    real :: forceTimeInitial, forceTimeFinal
119    integer :: nLoops
120   #endif
121 +  
122 +  !! Variables for cutoff mapping and interaction mapping
123 +  ! Bit hash to determine pair-pair interactions.
124 +  integer, dimension(:,:), allocatable :: InteractionHash
125 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
126 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
127 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
128  
129 <  type :: Properties
130 <     logical :: is_Directional   = .false.
88 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
129 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
130 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
131  
132 <  type(Properties), dimension(:),allocatable :: PropertyMap
132 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
133 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
134 >  type ::gtypeCutoffs
135 >     real(kind=dp) :: rcut
136 >     real(kind=dp) :: rcutsq
137 >     real(kind=dp) :: rlistsq
138 >  end type gtypeCutoffs
139 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
140  
141 +  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
142 +  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
143 +  real(kind=dp),save :: listSkin
144 +  
145   contains
146  
147 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
147 >  subroutine createInteractionHash(status)
148      integer :: nAtypes
149 <    integer :: status
149 >    integer, intent(out) :: status
150      integer :: i
151 <    logical :: thisProperty
152 <    real (kind=DP) :: thisDPproperty
151 >    integer :: j
152 >    integer :: iHash
153 >    !! Test Types
154 >    logical :: i_is_LJ
155 >    logical :: i_is_Elect
156 >    logical :: i_is_Sticky
157 >    logical :: i_is_StickyP
158 >    logical :: i_is_GB
159 >    logical :: i_is_EAM
160 >    logical :: i_is_Shape
161 >    logical :: j_is_LJ
162 >    logical :: j_is_Elect
163 >    logical :: j_is_Sticky
164 >    logical :: j_is_StickyP
165 >    logical :: j_is_GB
166 >    logical :: j_is_EAM
167 >    logical :: j_is_Shape
168 >    real(kind=dp) :: myRcut
169  
170 <    status = 0
170 >    status = 0  
171  
172 +    if (.not. associated(atypes)) then
173 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
174 +       status = -1
175 +       return
176 +    endif
177 +    
178      nAtypes = getSize(atypes)
179 <
179 >    
180      if (nAtypes == 0) then
181         status = -1
182         return
183      end if
184 <        
185 <    if (.not. allocated(PropertyMap)) then
186 <       allocate(PropertyMap(nAtypes))
184 >
185 >    if (.not. allocated(InteractionHash)) then
186 >       allocate(InteractionHash(nAtypes,nAtypes))
187 >    else
188 >       deallocate(InteractionHash)
189 >       allocate(InteractionHash(nAtypes,nAtypes))
190      endif
191  
192 +    if (.not. allocated(atypeMaxCutoff)) then
193 +       allocate(atypeMaxCutoff(nAtypes))
194 +    else
195 +       deallocate(atypeMaxCutoff)
196 +       allocate(atypeMaxCutoff(nAtypes))
197 +    endif
198 +        
199      do i = 1, nAtypes
200 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
201 <       PropertyMap(i)%is_Directional = thisProperty
200 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
201 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
202 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
203 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
204 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
205 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
206 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
207  
208 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
208 >       do j = i, nAtypes
209  
210 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
211 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
210 >          iHash = 0
211 >          myRcut = 0.0_dp
212  
213 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
214 <       PropertyMap(i)%is_Sticky = thisProperty
213 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
214 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
215 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
216 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
217 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
218 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
219 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
220  
221 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
222 <       PropertyMap(i)%is_GayBerne = thisProperty
221 >          if (i_is_LJ .and. j_is_LJ) then
222 >             iHash = ior(iHash, LJ_PAIR)            
223 >          endif
224 >          
225 >          if (i_is_Elect .and. j_is_Elect) then
226 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
227 >          endif
228 >          
229 >          if (i_is_Sticky .and. j_is_Sticky) then
230 >             iHash = ior(iHash, STICKY_PAIR)
231 >          endif
232  
233 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
234 <       PropertyMap(i)%is_EAM = thisProperty
233 >          if (i_is_StickyP .and. j_is_StickyP) then
234 >             iHash = ior(iHash, STICKYPOWER_PAIR)
235 >          endif
236  
237 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
238 <       PropertyMap(i)%is_Shape = thisProperty
237 >          if (i_is_EAM .and. j_is_EAM) then
238 >             iHash = ior(iHash, EAM_PAIR)
239 >          endif
240  
241 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
242 <       PropertyMap(i)%is_FLARB = thisProperty
241 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
242 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
243 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
244 >
245 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
246 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
247 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
248 >
249 >
250 >          InteractionHash(i,j) = iHash
251 >          InteractionHash(j,i) = iHash
252 >
253 >       end do
254 >
255      end do
256  
257 <    havePropertyMap = .true.
257 >    haveInteractionHash = .true.
258 >  end subroutine createInteractionHash
259  
260 <  end subroutine createPropertyMap
260 >  subroutine createGtypeCutoffMap(stat)
261  
262 +    integer, intent(out), optional :: stat
263 +    logical :: i_is_LJ
264 +    logical :: i_is_Elect
265 +    logical :: i_is_Sticky
266 +    logical :: i_is_StickyP
267 +    logical :: i_is_GB
268 +    logical :: i_is_EAM
269 +    logical :: i_is_Shape
270 +    logical :: GtypeFound
271 +
272 +    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
273 +    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
274 +    integer :: nGroupsInRow
275 +    integer :: nGroupsInCol
276 +    integer :: nGroupTypesRow,nGroupTypesCol
277 +    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol, skin
278 +    real(kind=dp) :: biggestAtypeCutoff
279 +
280 +    stat = 0
281 +    if (.not. haveInteractionHash) then
282 +       call createInteractionHash(myStatus)      
283 +       if (myStatus .ne. 0) then
284 +          write(default_error, *) 'createInteractionHash failed in doForces!'
285 +          stat = -1
286 +          return
287 +       endif
288 +    endif
289 + #ifdef IS_MPI
290 +    nGroupsInRow = getNgroupsInRow(plan_group_row)
291 +    nGroupsInCol = getNgroupsInCol(plan_group_col)
292 + #endif
293 +    nAtypes = getSize(atypes)
294 + ! Set all of the initial cutoffs to zero.
295 +    atypeMaxCutoff = 0.0_dp
296 +    do i = 1, nAtypes
297 +       if (SimHasAtype(i)) then    
298 +          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
299 +          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
300 +          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
301 +          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
302 +          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
303 +          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
304 +          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
305 +          
306 +
307 +          if (haveDefaultCutoffs) then
308 +             atypeMaxCutoff(i) = defaultRcut
309 +          else
310 +             if (i_is_LJ) then          
311 +                thisRcut = getSigma(i) * 2.5_dp
312 +                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
313 +             endif
314 +             if (i_is_Elect) then
315 +                thisRcut = defaultRcut
316 +                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
317 +             endif
318 +             if (i_is_Sticky) then
319 +                thisRcut = getStickyCut(i)
320 +                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
321 +             endif
322 +             if (i_is_StickyP) then
323 +                thisRcut = getStickyPowerCut(i)
324 +                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
325 +             endif
326 +             if (i_is_GB) then
327 +                thisRcut = getGayBerneCut(i)
328 +                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 +             endif
330 +             if (i_is_EAM) then
331 +                thisRcut = getEAMCut(i)
332 +                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 +             endif
334 +             if (i_is_Shape) then
335 +                thisRcut = getShapeCut(i)
336 +                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 +             endif
338 +          endif
339 +          
340 +          
341 +          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
342 +             biggestAtypeCutoff = atypeMaxCutoff(i)
343 +          endif
344 +
345 +       endif
346 +    enddo
347 +  
348 +
349 +    
350 +    istart = 1
351 +    jstart = 1
352 + #ifdef IS_MPI
353 +    iend = nGroupsInRow
354 +    jend = nGroupsInCol
355 + #else
356 +    iend = nGroups
357 +    jend = nGroups
358 + #endif
359 +    
360 +    !! allocate the groupToGtype and gtypeMaxCutoff here.
361 +    if(.not.allocated(groupToGtypeRow)) then
362 +     !  allocate(groupToGtype(iend))
363 +       allocate(groupToGtypeRow(iend))
364 +    else
365 +       deallocate(groupToGtypeRow)
366 +       allocate(groupToGtypeRow(iend))
367 +    endif
368 +    if(.not.allocated(groupMaxCutoffRow)) then
369 +       allocate(groupMaxCutoffRow(iend))
370 +    else
371 +       deallocate(groupMaxCutoffRow)
372 +       allocate(groupMaxCutoffRow(iend))
373 +    end if
374 +
375 +    if(.not.allocated(gtypeMaxCutoffRow)) then
376 +       allocate(gtypeMaxCutoffRow(iend))
377 +    else
378 +       deallocate(gtypeMaxCutoffRow)
379 +       allocate(gtypeMaxCutoffRow(iend))
380 +    endif
381 +
382 +
383 + #ifdef IS_MPI
384 +       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
385 +    if(.not.associated(groupToGtypeCol)) then
386 +       allocate(groupToGtypeCol(jend))
387 +    else
388 +       deallocate(groupToGtypeCol)
389 +       allocate(groupToGtypeCol(jend))
390 +    end if
391 +
392 +    if(.not.associated(groupToGtypeCol)) then
393 +       allocate(groupToGtypeCol(jend))
394 +    else
395 +       deallocate(groupToGtypeCol)
396 +       allocate(groupToGtypeCol(jend))
397 +    end if
398 +    if(.not.associated(gtypeMaxCutoffCol)) then
399 +       allocate(gtypeMaxCutoffCol(jend))
400 +    else
401 +       deallocate(gtypeMaxCutoffCol)      
402 +       allocate(gtypeMaxCutoffCol(jend))
403 +    end if
404 +
405 +       groupMaxCutoffCol = 0.0_dp
406 +       gtypeMaxCutoffCol = 0.0_dp
407 +
408 + #endif
409 +       groupMaxCutoffRow = 0.0_dp
410 +       gtypeMaxCutoffRow = 0.0_dp
411 +
412 +
413 +    !! first we do a single loop over the cutoff groups to find the
414 +    !! largest cutoff for any atypes present in this group.  We also
415 +    !! create gtypes at this point.
416 +    
417 +    tol = 1.0d-6
418 +    nGroupTypesRow = 0
419 +
420 +    do i = istart, iend      
421 +       n_in_i = groupStartRow(i+1) - groupStartRow(i)
422 +       groupMaxCutoffRow(i) = 0.0_dp
423 +       do ia = groupStartRow(i), groupStartRow(i+1)-1
424 +          atom1 = groupListRow(ia)
425 + #ifdef IS_MPI
426 +          me_i = atid_row(atom1)
427 + #else
428 +          me_i = atid(atom1)
429 + #endif          
430 +          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
431 +             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
432 +          endif          
433 +       enddo
434 +
435 +       if (nGroupTypesRow.eq.0) then
436 +          nGroupTypesRow = nGroupTypesRow + 1
437 +          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
438 +          groupToGtypeRow(i) = nGroupTypesRow
439 +       else
440 +          GtypeFound = .false.
441 +          do g = 1, nGroupTypesRow
442 +             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
443 +                groupToGtypeRow(i) = g
444 +                GtypeFound = .true.
445 +             endif
446 +          enddo
447 +          if (.not.GtypeFound) then            
448 +             nGroupTypesRow = nGroupTypesRow + 1
449 +             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
450 +             groupToGtypeRow(i) = nGroupTypesRow
451 +          endif
452 +       endif
453 +    enddo    
454 +
455 + #ifdef IS_MPI
456 +    do j = jstart, jend      
457 +       n_in_j = groupStartCol(j+1) - groupStartCol(j)
458 +       groupMaxCutoffCol(j) = 0.0_dp
459 +       do ja = groupStartCol(j), groupStartCol(j+1)-1
460 +          atom1 = groupListCol(ja)
461 +
462 +          me_j = atid_col(atom1)
463 +
464 +          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
465 +             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
466 +          endif          
467 +       enddo
468 +
469 +       if (nGroupTypesCol.eq.0) then
470 +          nGroupTypesCol = nGroupTypesCol + 1
471 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
472 +          groupToGtypeCol(j) = nGroupTypesCol
473 +       else
474 +          GtypeFound = .false.
475 +          do g = 1, nGroupTypesCol
476 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
477 +                groupToGtypeCol(j) = g
478 +                GtypeFound = .true.
479 +             endif
480 +          enddo
481 +          if (.not.GtypeFound) then            
482 +             nGroupTypesCol = nGroupTypesCol + 1
483 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
484 +             groupToGtypeCol(j) = nGroupTypesCol
485 +          endif
486 +       endif
487 +    enddo    
488 +
489 + #else
490 + ! Set pointers to information we just found
491 +    nGroupTypesCol = nGroupTypesRow
492 +    groupToGtypeCol => groupToGtypeRow
493 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
494 +    groupMaxCutoffCol => groupMaxCutoffRow
495 + #endif
496 +
497 +
498 +
499 +
500 +
501 +    !! allocate the gtypeCutoffMap here.
502 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
503 +    !! then we do a double loop over all the group TYPES to find the cutoff
504 +    !! map between groups of two types
505 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
506 +
507 +    do i = 1, nGroupTypesRow
508 +       do j = 1, nGroupTypesCol
509 +      
510 +          select case(cutoffPolicy)
511 +          case(TRADITIONAL_CUTOFF_POLICY)
512 +             thisRcut = tradRcut
513 +          case(MIX_CUTOFF_POLICY)
514 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
515 +          case(MAX_CUTOFF_POLICY)
516 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
517 +          case default
518 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
519 +             return
520 +          end select
521 +          gtypeCutoffMap(i,j)%rcut = thisRcut
522 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
523 +          skin = defaultRlist - defaultRcut
524 +          listSkin = skin ! set neighbor list skin thickness
525 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
526 +
527 +          ! sanity check
528 +
529 +          if (haveDefaultCutoffs) then
530 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
531 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
532 +             endif
533 +          endif
534 +       enddo
535 +    enddo
536 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
537 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
538 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
539 + #ifdef IS_MPI
540 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
541 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
542 + #endif
543 +    groupMaxCutoffCol => null()
544 +    gtypeMaxCutoffCol => null()
545 +    
546 +    haveGtypeCutoffMap = .true.
547 +   end subroutine createGtypeCutoffMap
548 +
549 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
550 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
551 +     integer, intent(in) :: cutPolicy
552 +
553 +     defaultRcut = defRcut
554 +     defaultRsw = defRsw
555 +     defaultRlist = defRlist
556 +     cutoffPolicy = cutPolicy
557 +
558 +     haveDefaultCutoffs = .true.
559 +   end subroutine setDefaultCutoffs
560 +
561 +   subroutine setCutoffPolicy(cutPolicy)
562 +
563 +     integer, intent(in) :: cutPolicy
564 +     cutoffPolicy = cutPolicy
565 +     call createGtypeCutoffMap()
566 +   end subroutine setCutoffPolicy
567 +    
568 +    
569    subroutine setSimVariables()
570      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
571      SIM_uses_EAM = SimUsesEAM()
179    SIM_uses_Shapes = SimUsesShapes()
180    SIM_uses_FLARB = SimUsesFLARB()
181    SIM_uses_RF = SimUsesRF()
572      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
573      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
574      SIM_uses_PBC = SimUsesPBC()
# Line 194 | Line 584 | contains
584      integer :: myStatus
585  
586      error = 0
197    
198    if (.not. havePropertyMap) then
587  
588 <       myStatus = 0
588 >    if (.not. haveInteractionHash) then      
589 >       myStatus = 0      
590 >       call createInteractionHash(myStatus)      
591 >       if (myStatus .ne. 0) then
592 >          write(default_error, *) 'createInteractionHash failed in doForces!'
593 >          error = -1
594 >          return
595 >       endif
596 >    endif
597  
598 <       call createPropertyMap(myStatus)
599 <
598 >    if (.not. haveGtypeCutoffMap) then        
599 >       myStatus = 0      
600 >       call createGtypeCutoffMap(myStatus)      
601         if (myStatus .ne. 0) then
602 <          write(default_error, *) 'createPropertyMap failed in doForces!'
602 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
603            error = -1
604            return
605         endif
# Line 212 | Line 609 | contains
609         call setSimVariables()
610      endif
611  
612 <    if (.not. haveRlist) then
613 <       write(default_error, *) 'rList has not been set in doForces!'
614 <       error = -1
615 <       return
616 <    endif
612 >  !  if (.not. haveRlist) then
613 >  !     write(default_error, *) 'rList has not been set in doForces!'
614 >  !     error = -1
615 >  !     return
616 >  !  endif
617  
618      if (.not. haveNeighborList) then
619         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 239 | Line 636 | contains
636   #endif
637      return
638    end subroutine doReadyCheck
242    
639  
244  subroutine init_FF(use_RF_c, thisStat)
640  
641 <    logical, intent(in) :: use_RF_c
641 >  subroutine init_FF(thisESM, thisStat)
642  
643 +    integer, intent(in) :: thisESM
644      integer, intent(out) :: thisStat  
645      integer :: my_status, nMatches
646      integer, pointer :: MatchList(:) => null()
# Line 253 | Line 649 | contains
649      !! assume things are copacetic, unless they aren't
650      thisStat = 0
651  
652 <    !! Fortran's version of a cast:
653 <    FF_uses_RF = use_RF_c
258 <    
652 >    electrostaticSummationMethod = thisESM
653 >
654      !! init_FF is called *after* all of the atom types have been
655      !! defined in atype_module using the new_atype subroutine.
656      !!
657      !! this will scan through the known atypes and figure out what
658      !! interactions are used by the force field.    
659 <  
659 >
660      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
661      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
662      FF_uses_GayBerne = .false.
663      FF_uses_EAM = .false.
664 <    FF_uses_Shapes = .false.
274 <    FF_uses_FLARB = .false.
275 <    
664 >
665      call getMatchingElementList(atypes, "is_Directional", .true., &
666           nMatches, MatchList)
667      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
668  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
669      call getMatchingElementList(atypes, "is_Dipole", .true., &
670           nMatches, MatchList)
671 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
304 <    
305 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306 <         MatchList)
307 <    if (nMatches .gt. 0) then
308 <       FF_uses_Sticky = .true.
309 <       FF_uses_DirectionalAtoms = .true.
310 <    endif
671 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
672      
673      call getMatchingElementList(atypes, "is_GayBerne", .true., &
674           nMatches, MatchList)
675 <    if (nMatches .gt. 0) then
676 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
675 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
676 >
677      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
678      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
679  
329    call getMatchingElementList(atypes, "is_FLARB", .true., &
330         nMatches, MatchList)
331    if (nMatches .gt. 0) FF_uses_FLARB = .true.
680  
333    !! Assume sanity (for the sake of argument)
681      haveSaneForceField = .true.
335    
336    !! check to make sure the FF_uses_RF setting makes sense
337    
338    if (FF_uses_dipoles) then
339       if (FF_uses_RF) then
340          dielect = getDielect()
341          call initialize_rf(dielect)
342       endif
343    else
344       if (FF_uses_RF) then          
345          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
346          thisStat = -1
347          haveSaneForceField = .false.
348          return
349       endif
350    endif
682  
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
359    endif
360
683      if (FF_uses_EAM) then
684 <         call init_EAM_FF(my_status)
684 >       call init_EAM_FF(my_status)
685         if (my_status /= 0) then
686            write(default_error, *) "init_EAM_FF returned a bad status"
687            thisStat = -1
# Line 368 | Line 690 | contains
690         end if
691      endif
692  
371    if (FF_uses_GayBerne) then
372       call check_gb_pair_FF(my_status)
373       if (my_status .ne. 0) then
374          thisStat = -1
375          haveSaneForceField = .false.
376          return
377       endif
378    endif
379
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
693      if (.not. haveNeighborList) then
694         !! Create neighbor lists
695         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 699 | contains
699            return
700         endif
701         haveNeighborList = .true.
702 <    endif    
703 <    
702 >    endif
703 >
704    end subroutine init_FF
395  
705  
706 +
707    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
708    !------------------------------------------------------------->
709 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
709 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
710         do_pot_c, do_stress_c, error)
711      !! Position array provided by C, dimensioned by getNlocal
712      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 715 | contains
715      !! Rotation Matrix for each long range particle in simulation.
716      real( kind = dp), dimension(9, nLocal) :: A    
717      !! Unit vectors for dipoles (lab frame)
718 <    real( kind = dp ), dimension(3,nLocal) :: u_l
718 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
719      !! Force array provided by C, dimensioned by getNlocal
720      real ( kind = dp ), dimension(3,nLocal) :: f
721      !! Torsion array provided by C, dimensioned by getNlocal
# Line 413 | Line 723 | contains
723  
724      !! Stress Tensor
725      real( kind = dp), dimension(9) :: tau  
726 <    real ( kind = dp ) :: pot
726 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
727      logical ( kind = 2) :: do_pot_c, do_stress_c
728      logical :: do_pot
729      logical :: do_stress
730      logical :: in_switching_region
731   #ifdef IS_MPI
732 <    real( kind = DP ) :: pot_local
732 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
733      integer :: nAtomsInRow
734      integer :: nAtomsInCol
735      integer :: nprocs
# Line 443 | Line 753 | contains
753      integer :: localError
754      integer :: propPack_i, propPack_j
755      integer :: loopStart, loopEnd, loop
756 +    integer :: iHash
757 +  
758  
447    real(kind=dp) :: listSkin = 1.0  
448    
759      !! initialize local variables  
760 <    
760 >
761   #ifdef IS_MPI
762      pot_local = 0.0_dp
763      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 767 | contains
767   #else
768      natoms = nlocal
769   #endif
770 <    
770 >
771      call doReadyCheck(localError)
772      if ( localError .ne. 0 ) then
773         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 775 | contains
775         return
776      end if
777      call zero_work_arrays()
778 <        
778 >
779      do_pot = do_pot_c
780      do_stress = do_stress_c
781 <    
781 >
782      ! Gather all information needed by all force loops:
783 <    
783 >
784   #ifdef IS_MPI    
785 <    
785 >
786      call gather(q, q_Row, plan_atom_row_3d)
787      call gather(q, q_Col, plan_atom_col_3d)
788  
789      call gather(q_group, q_group_Row, plan_group_row_3d)
790      call gather(q_group, q_group_Col, plan_group_col_3d)
791 <        
791 >
792      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
793 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
794 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
795 <      
793 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
794 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
795 >
796         call gather(A, A_Row, plan_atom_row_rotation)
797         call gather(A, A_Col, plan_atom_col_rotation)
798      endif
799 <    
799 >
800   #endif
801 <    
801 >
802      !! Begin force loop timing:
803   #ifdef PROFILE
804      call cpu_time(forceTimeInitial)
805      nloops = nloops + 1
806   #endif
807 <    
807 >
808      loopEnd = PAIR_LOOP
809      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
810         loopStart = PREPAIR_LOOP
# Line 509 | Line 819 | contains
819         if (loop .eq. loopStart) then
820   #ifdef IS_MPI
821            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
822 <             update_nlist)
822 >               update_nlist)
823   #else
824            call checkNeighborList(nGroups, q_group, listSkin, &
825 <             update_nlist)
825 >               update_nlist)
826   #endif
827         endif
828 <      
828 >
829         if (update_nlist) then
830            !! save current configuration and construct neighbor list
831   #ifdef IS_MPI
# Line 526 | Line 836 | contains
836            neighborListSize = size(list)
837            nlist = 0
838         endif
839 <      
839 >
840         istart = 1
841   #ifdef IS_MPI
842         iend = nGroupsInRow
# Line 536 | Line 846 | contains
846         outer: do i = istart, iend
847  
848            if (update_nlist) point(i) = nlist + 1
849 <          
849 >
850            n_in_i = groupStartRow(i+1) - groupStartRow(i)
851 <          
851 >
852            if (update_nlist) then
853   #ifdef IS_MPI
854               jstart = 1
# Line 553 | Line 863 | contains
863               ! make sure group i has neighbors
864               if (jstart .gt. jend) cycle outer
865            endif
866 <          
866 >
867            do jnab = jstart, jend
868               if (update_nlist) then
869                  j = jnab
# Line 562 | Line 872 | contains
872               endif
873  
874   #ifdef IS_MPI
875 +             me_j = atid_col(j)
876               call get_interatomic_vector(q_group_Row(:,i), &
877                    q_group_Col(:,j), d_grp, rgrpsq)
878   #else
879 +             me_j = atid(j)
880               call get_interatomic_vector(q_group(:,i), &
881                    q_group(:,j), d_grp, rgrpsq)
882 < #endif
882 > #endif      
883  
884 <             if (rgrpsq < rlistsq) then
884 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
885                  if (update_nlist) then
886                     nlist = nlist + 1
887 <                  
887 >
888                     if (nlist > neighborListSize) then
889   #ifdef IS_MPI                
890                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 898 | contains
898                        end if
899                        neighborListSize = size(list)
900                     endif
901 <                  
901 >
902                     list(nlist) = j
903                  endif
904 <                
904 >
905                  if (loop .eq. PAIR_LOOP) then
906                     vij = 0.0d0
907                     fij(1:3) = 0.0d0
908                  endif
909 <                
909 >
910                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
911                       in_switching_region)
912 <                
912 >
913                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
914 <                
914 >
915                  do ia = groupStartRow(i), groupStartRow(i+1)-1
916 <                  
916 >
917                     atom1 = groupListRow(ia)
918 <                  
918 >
919                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
920 <                      
920 >
921                        atom2 = groupListCol(jb)
922 <                      
922 >
923                        if (skipThisPair(atom1, atom2)) cycle inner
924  
925                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 627 | Line 939 | contains
939   #ifdef IS_MPI                      
940                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
941                                rgrpsq, d_grp, do_pot, do_stress, &
942 <                              u_l, A, f, t, pot_local)
942 >                              eFrame, A, f, t, pot_local)
943   #else
944                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
945                                rgrpsq, d_grp, do_pot, do_stress, &
946 <                              u_l, A, f, t, pot)
946 >                              eFrame, A, f, t, pot)
947   #endif                                              
948                        else
949   #ifdef IS_MPI                      
950                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
951                                do_pot, &
952 <                              u_l, A, f, t, pot_local, vpair, fpair)
952 >                              eFrame, A, f, t, pot_local, vpair, fpair)
953   #else
954                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
955                                do_pot,  &
956 <                              u_l, A, f, t, pot, vpair, fpair)
956 >                              eFrame, A, f, t, pot, vpair, fpair)
957   #endif
958  
959                           vij = vij + vpair
# Line 649 | Line 961 | contains
961                        endif
962                     enddo inner
963                  enddo
964 <                
964 >
965                  if (loop .eq. PAIR_LOOP) then
966                     if (in_switching_region) then
967                        swderiv = vij*dswdr/rgrp
968                        fij(1) = fij(1) + swderiv*d_grp(1)
969                        fij(2) = fij(2) + swderiv*d_grp(2)
970                        fij(3) = fij(3) + swderiv*d_grp(3)
971 <                      
971 >
972                        do ia=groupStartRow(i), groupStartRow(i+1)-1
973                           atom1=groupListRow(ia)
974                           mf = mfactRow(atom1)
# Line 670 | Line 982 | contains
982                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
983   #endif
984                        enddo
985 <                      
985 >
986                        do jb=groupStartCol(j), groupStartCol(j+1)-1
987                           atom2=groupListCol(jb)
988                           mf = mfactCol(atom2)
# Line 685 | Line 997 | contains
997   #endif
998                        enddo
999                     endif
1000 <                  
1000 >
1001                     if (do_stress) call add_stress_tensor(d_grp, fij)
1002                  endif
1003               end if
1004            enddo
1005 +
1006         enddo outer
1007 <      
1007 >
1008         if (update_nlist) then
1009   #ifdef IS_MPI
1010            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 1018 | contains
1018               update_nlist = .false.                              
1019            endif
1020         endif
1021 <            
1021 >
1022         if (loop .eq. PREPAIR_LOOP) then
1023            call do_preforce(nlocal, pot)
1024         endif
1025 <      
1025 >
1026      enddo
1027 <    
1027 >
1028      !! Do timing
1029   #ifdef PROFILE
1030      call cpu_time(forceTimeFinal)
1031      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1032   #endif    
1033 <    
1033 >
1034   #ifdef IS_MPI
1035      !!distribute forces
1036 <    
1036 >
1037      f_temp = 0.0_dp
1038      call scatter(f_Row,f_temp,plan_atom_row_3d)
1039      do i = 1,nlocal
1040         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1041      end do
1042 <    
1042 >
1043      f_temp = 0.0_dp
1044      call scatter(f_Col,f_temp,plan_atom_col_3d)
1045      do i = 1,nlocal
1046         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1047      end do
1048 <    
1048 >
1049      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1050         t_temp = 0.0_dp
1051         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 1054 | contains
1054         end do
1055         t_temp = 0.0_dp
1056         call scatter(t_Col,t_temp,plan_atom_col_3d)
1057 <      
1057 >
1058         do i = 1,nlocal
1059            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1060         end do
1061      endif
1062 <    
1062 >
1063      if (do_pot) then
1064         ! scatter/gather pot_row into the members of my column
1065 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1066 <      
1065 >       do i = 1,LR_POT_TYPES
1066 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1067 >       end do
1068         ! scatter/gather pot_local into all other procs
1069         ! add resultant to get total pot
1070         do i = 1, nlocal
1071 <          pot_local = pot_local + pot_Temp(i)
1071 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1072 >               + pot_Temp(1:LR_POT_TYPES,i)
1073         enddo
1074 <      
1074 >
1075         pot_Temp = 0.0_DP
1076 <      
1077 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1076 >       do i = 1,LR_POT_TYPES
1077 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1078 >       end do
1079         do i = 1, nlocal
1080 <          pot_local = pot_local + pot_Temp(i)
1080 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1081 >               + pot_Temp(1:LR_POT_TYPES,i)
1082         enddo
1083 <      
1083 >
1084      endif
1085   #endif
1086 <    
1087 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1086 >
1087 >    if (SIM_requires_postpair_calc) then
1088        
772       if (FF_uses_RF .and. SIM_uses_RF) then
773          
1089   #ifdef IS_MPI
1090 <          call scatter(rf_Row,rf,plan_atom_row_3d)
1091 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
1092 <          do i = 1,nlocal
1093 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1094 <          end do
1090 >       call scatter(rf_Row,rf,plan_atom_row_3d)
1091 >       call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
1092 >       do i = 1,nlocal
1093 >          rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1094 >       end do
1095   #endif
1096 +
1097 +       do i = 1, nLocal
1098            
1099 <          do i = 1, nLocal
783 <            
784 <             rfpot = 0.0_DP
1099 >          rfpot = 0.0_DP
1100   #ifdef IS_MPI
1101 <             me_i = atid_row(i)
1101 >          me_i = atid_row(i)
1102   #else
1103 <             me_i = atid(i)
1103 >          me_i = atid(i)
1104   #endif
1105 +          iHash = InteractionHash(me_i,me_j)
1106 +          
1107 +          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1108              
1109 <             if (PropertyMap(me_i)%is_Dipole) then
1110 <                
1111 <                mu_i = getDipoleMoment(me_i)
1112 <                
1113 <                !! The reaction field needs to include a self contribution
1114 <                !! to the field:
1115 <                call accumulate_self_rf(i, mu_i, u_l)
1116 <                !! Get the reaction field contribution to the
799 <                !! potential and torques:
800 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1109 >             mu_i = getDipoleMoment(me_i)
1110 >            
1111 >             !! The reaction field needs to include a self contribution
1112 >             !! to the field:
1113 >             call accumulate_self_rf(i, mu_i, eFrame)
1114 >             !! Get the reaction field contribution to the
1115 >             !! potential and torques:
1116 >             call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1117   #ifdef IS_MPI
1118 <                pot_local = pot_local + rfpot
1118 >             pot_local(ELECTROSTATIC_POT) = pot_local(ELECTROSTATIC_POT) + rfpot
1119   #else
1120 <                pot = pot + rfpot
1121 <      
1120 >             pot(ELECTROSTATIC_POT) = pot(ELECTROSTATIC_POT) + rfpot
1121 >            
1122   #endif
1123 <             endif            
1124 <          enddo
809 <       endif
1123 >          endif
1124 >       enddo
1125      endif
1126      
812    
1127   #ifdef IS_MPI
1128 <    
1128 >
1129      if (do_pot) then
1130 <       pot = pot + pot_local
1130 >       pot(1:LR_POT_TYPES) = pot(1:LR_POT_TYPES) &
1131 >            + pot_local(1:LR_POT_TYPES)
1132         !! we assume the c code will do the allreduce to get the total potential
1133         !! we could do it right here if we needed to...
1134      endif
1135 <    
1135 >
1136      if (do_stress) then
1137         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1138              mpi_comm_world,mpi_err)
1139         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1140              mpi_comm_world,mpi_err)
1141      endif
1142 <    
1142 >
1143   #else
1144 <    
1144 >
1145      if (do_stress) then
1146         tau = tau_Temp
1147         virial = virial_Temp
1148      endif
1149 <    
1149 >
1150   #endif
1151 <      
1151 >
1152    end subroutine do_force_loop
1153 <  
1153 >
1154    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1155 <       u_l, A, f, t, pot, vpair, fpair)
1155 >       eFrame, A, f, t, pot, vpair, fpair)
1156  
1157 <    real( kind = dp ) :: pot, vpair, sw
1157 >    real( kind = dp ) :: vpair, sw
1158 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1159      real( kind = dp ), dimension(3) :: fpair
1160      real( kind = dp ), dimension(nLocal)   :: mfact
1161 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1161 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1162      real( kind = dp ), dimension(9,nLocal) :: A
1163      real( kind = dp ), dimension(3,nLocal) :: f
1164      real( kind = dp ), dimension(3,nLocal) :: t
# Line 854 | Line 1170 | contains
1170      real ( kind = dp ), intent(inout) :: d(3)
1171      integer :: me_i, me_j
1172  
1173 +    integer :: iHash
1174 +
1175      r = sqrt(rijsq)
1176      vpair = 0.0d0
1177      fpair(1:3) = 0.0d0
# Line 866 | Line 1184 | contains
1184      me_j = atid(j)
1185   #endif
1186  
1187 < !    write(*,*) i, j, me_i, me_j
870 <    
871 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
872 <      
873 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
874 <            PropertyMap(me_j)%is_LennardJones ) then
875 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
876 <       endif
877 <      
878 <    endif
879 <    
880 <    if (FF_uses_charges .and. SIM_uses_charges) then
881 <      
882 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
883 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
884 <               pot, f, do_pot)
885 <       endif
886 <      
887 <    endif
888 <    
889 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
890 <      
891 <       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
892 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
893 <               pot, u_l, f, t, do_pot)
894 <          if (FF_uses_RF .and. SIM_uses_RF) then
895 <             call accumulate_rf(i, j, r, u_l, sw)
896 <             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
897 <          endif
898 <       endif
1187 >    iHash = InteractionHash(me_i, me_j)
1188  
1189 +    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1190 +       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1191 +            pot(VDW_POT), f, do_pot)
1192      endif
1193  
1194 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1194 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1195 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1196 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1197  
1198 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1199 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1200 <               pot, A, f, t, do_pot)
1198 >       if (electrostaticSummationMethod == REACTION_FIELD) then
1199 >
1200 >          ! CHECK ME (RF needs to know about all electrostatic types)
1201 >          call accumulate_rf(i, j, r, eFrame, sw)
1202 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1203         endif
1204 <      
1204 >
1205      endif
1206  
1207 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1208 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1209 +            pot(HB_POT), A, f, t, do_pot)
1210 +    endif
1211  
1212 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1213 <      
1214 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
915 <            PropertyMap(me_j)%is_GayBerne) then
916 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
917 <               pot, u_l, f, t, do_pot)
918 <       endif
919 <      
1212 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1213 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1214 >            pot(HB_POT), A, f, t, do_pot)
1215      endif
1216 +
1217 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1218 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1219 +            pot(VDW_POT), A, f, t, do_pot)
1220 +    endif
1221      
1222 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1223 <      
1224 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
925 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
926 <               do_pot)
927 <       endif
928 <      
1222 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1223 >       call do_gb_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1224 >            pot(VDW_POT), A, f, t, do_pot)
1225      endif
1226  
1227 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1228 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1229 +            pot(METALLIC_POT), f, do_pot)
1230 +    endif
1231  
1232 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1232 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1233 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1234 >            pot(VDW_POT), A, f, t, do_pot)
1235 >    endif
1236  
1237 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1238 <       if ( PropertyMap(me_i)%is_Shape .and. &
1239 <            PropertyMap(me_j)%is_Shape ) then
937 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
938 <               pot, A, f, t, do_pot)
939 <       endif
940 <      
1237 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1238 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1239 >            pot(VDW_POT), A, f, t, do_pot)
1240      endif
1241      
1242    end subroutine do_pair
1243  
1244    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1245 <       do_pot, do_stress, u_l, A, f, t, pot)
1245 >       do_pot, do_stress, eFrame, A, f, t, pot)
1246  
1247 <   real( kind = dp ) :: pot, sw
1248 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1249 <   real (kind=dp), dimension(9,nLocal) :: A
1250 <   real (kind=dp), dimension(3,nLocal) :: f
1251 <   real (kind=dp), dimension(3,nLocal) :: t
1252 <  
954 <   logical, intent(inout) :: do_pot, do_stress
955 <   integer, intent(in) :: i, j
956 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
957 <   real ( kind = dp )                :: r, rc
958 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
959 <  
960 <   logical :: is_EAM_i, is_EAM_j
961 <  
962 <   integer :: me_i, me_j
963 <  
1247 >    real( kind = dp ) :: sw
1248 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1249 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1250 >    real (kind=dp), dimension(9,nLocal) :: A
1251 >    real (kind=dp), dimension(3,nLocal) :: f
1252 >    real (kind=dp), dimension(3,nLocal) :: t
1253  
1254 +    logical, intent(inout) :: do_pot, do_stress
1255 +    integer, intent(in) :: i, j
1256 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1257 +    real ( kind = dp )                :: r, rc
1258 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1259 +
1260 +    integer :: me_i, me_j, iHash
1261 +
1262      r = sqrt(rijsq)
966    if (SIM_uses_molecular_cutoffs) then
967       rc = sqrt(rcijsq)
968    else
969       rc = r
970    endif
971  
1263  
1264   #ifdef IS_MPI  
1265 <   me_i = atid_row(i)
1266 <   me_j = atid_col(j)  
1265 >    me_i = atid_row(i)
1266 >    me_j = atid_col(j)  
1267   #else  
1268 <   me_i = atid(i)
1269 <   me_j = atid(j)  
1268 >    me_i = atid(i)
1269 >    me_j = atid(j)  
1270   #endif
980  
981   if (FF_uses_EAM .and. SIM_uses_EAM) then
982      
983      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
984           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
985      
986   endif
987  
988 end subroutine do_prepair
989
990
991 subroutine do_preforce(nlocal,pot)
992   integer :: nlocal
993   real( kind = dp ) :: pot
994  
995   if (FF_uses_EAM .and. SIM_uses_EAM) then
996      call calc_EAM_preforce_Frho(nlocal,pot)
997   endif
998  
999  
1000 end subroutine do_preforce
1001
1002
1003 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1004  
1005   real (kind = dp), dimension(3) :: q_i
1006   real (kind = dp), dimension(3) :: q_j
1007   real ( kind = dp ), intent(out) :: r_sq
1008   real( kind = dp ) :: d(3), scaled(3)
1009   integer i
1010  
1011   d(1:3) = q_j(1:3) - q_i(1:3)
1012  
1013   ! Wrap back into periodic box if necessary
1014   if ( SIM_uses_PBC ) then
1015      
1016      if( .not.boxIsOrthorhombic ) then
1017         ! calc the scaled coordinates.
1018        
1019         scaled = matmul(HmatInv, d)
1020        
1021         ! wrap the scaled coordinates
1022        
1023         scaled = scaled  - anint(scaled)
1024        
1025        
1026         ! calc the wrapped real coordinates from the wrapped scaled
1027         ! coordinates
1028        
1029         d = matmul(Hmat,scaled)
1030        
1031      else
1032         ! calc the scaled coordinates.
1033        
1034         do i = 1, 3
1035            scaled(i) = d(i) * HmatInv(i,i)
1036            
1037            ! wrap the scaled coordinates
1038            
1039            scaled(i) = scaled(i) - anint(scaled(i))
1040            
1041            ! calc the wrapped real coordinates from the wrapped scaled
1042            ! coordinates
1043            
1044            d(i) = scaled(i)*Hmat(i,i)
1045         enddo
1046      endif
1047      
1048   endif
1049  
1050   r_sq = dot_product(d,d)
1051  
1052 end subroutine get_interatomic_vector
1053
1054 subroutine zero_work_arrays()
1055  
1056 #ifdef IS_MPI
1057  
1058   q_Row = 0.0_dp
1059   q_Col = 0.0_dp
1271  
1272 <   q_group_Row = 0.0_dp
1273 <   q_group_Col = 0.0_dp  
1274 <  
1275 <   u_l_Row = 0.0_dp
1276 <   u_l_Col = 0.0_dp
1277 <  
1278 <   A_Row = 0.0_dp
1279 <   A_Col = 0.0_dp
1280 <  
1281 <   f_Row = 0.0_dp
1282 <   f_Col = 0.0_dp
1283 <   f_Temp = 0.0_dp
1284 <  
1285 <   t_Row = 0.0_dp
1286 <   t_Col = 0.0_dp
1287 <   t_Temp = 0.0_dp
1288 <  
1289 <   pot_Row = 0.0_dp
1290 <   pot_Col = 0.0_dp
1291 <   pot_Temp = 0.0_dp
1292 <  
1293 <   rf_Row = 0.0_dp
1294 <   rf_Col = 0.0_dp
1295 <   rf_Temp = 0.0_dp
1296 <  
1297 < #endif
1298 <
1299 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1300 <      call clean_EAM()
1301 <   endif
1302 <  
1303 <   rf = 0.0_dp
1304 <   tau_Temp = 0.0_dp
1305 <   virial_Temp = 0.0_dp
1306 < end subroutine zero_work_arrays
1307 <
1308 < function skipThisPair(atom1, atom2) result(skip_it)
1309 <   integer, intent(in) :: atom1
1310 <   integer, intent(in), optional :: atom2
1311 <   logical :: skip_it
1312 <   integer :: unique_id_1, unique_id_2
1313 <   integer :: me_i,me_j
1314 <   integer :: i
1315 <  
1316 <   skip_it = .false.
1317 <  
1318 <   !! there are a number of reasons to skip a pair or a particle
1319 <   !! mostly we do this to exclude atoms who are involved in short
1320 <   !! range interactions (bonds, bends, torsions), but we also need
1321 <   !! to exclude some overcounted interactions that result from
1322 <   !! the parallel decomposition
1323 <  
1324 < #ifdef IS_MPI
1325 <   !! in MPI, we have to look up the unique IDs for each atom
1326 <   unique_id_1 = AtomRowToGlobal(atom1)
1327 < #else
1328 <   !! in the normal loop, the atom numbers are unique
1329 <   unique_id_1 = atom1
1272 >    iHash = InteractionHash(me_i, me_j)
1273 >
1274 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1275 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1276 >    endif
1277 >    
1278 >  end subroutine do_prepair
1279 >
1280 >
1281 >  subroutine do_preforce(nlocal,pot)
1282 >    integer :: nlocal
1283 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1284 >
1285 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1286 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1287 >    endif
1288 >
1289 >
1290 >  end subroutine do_preforce
1291 >
1292 >
1293 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1294 >
1295 >    real (kind = dp), dimension(3) :: q_i
1296 >    real (kind = dp), dimension(3) :: q_j
1297 >    real ( kind = dp ), intent(out) :: r_sq
1298 >    real( kind = dp ) :: d(3), scaled(3)
1299 >    integer i
1300 >
1301 >    d(1:3) = q_j(1:3) - q_i(1:3)
1302 >
1303 >    ! Wrap back into periodic box if necessary
1304 >    if ( SIM_uses_PBC ) then
1305 >
1306 >       if( .not.boxIsOrthorhombic ) then
1307 >          ! calc the scaled coordinates.
1308 >
1309 >          scaled = matmul(HmatInv, d)
1310 >
1311 >          ! wrap the scaled coordinates
1312 >
1313 >          scaled = scaled  - anint(scaled)
1314 >
1315 >
1316 >          ! calc the wrapped real coordinates from the wrapped scaled
1317 >          ! coordinates
1318 >
1319 >          d = matmul(Hmat,scaled)
1320 >
1321 >       else
1322 >          ! calc the scaled coordinates.
1323 >
1324 >          do i = 1, 3
1325 >             scaled(i) = d(i) * HmatInv(i,i)
1326 >
1327 >             ! wrap the scaled coordinates
1328 >
1329 >             scaled(i) = scaled(i) - anint(scaled(i))
1330 >
1331 >             ! calc the wrapped real coordinates from the wrapped scaled
1332 >             ! coordinates
1333 >
1334 >             d(i) = scaled(i)*Hmat(i,i)
1335 >          enddo
1336 >       endif
1337 >
1338 >    endif
1339 >
1340 >    r_sq = dot_product(d,d)
1341 >
1342 >  end subroutine get_interatomic_vector
1343 >
1344 >  subroutine zero_work_arrays()
1345 >
1346 > #ifdef IS_MPI
1347 >
1348 >    q_Row = 0.0_dp
1349 >    q_Col = 0.0_dp
1350 >
1351 >    q_group_Row = 0.0_dp
1352 >    q_group_Col = 0.0_dp  
1353 >
1354 >    eFrame_Row = 0.0_dp
1355 >    eFrame_Col = 0.0_dp
1356 >
1357 >    A_Row = 0.0_dp
1358 >    A_Col = 0.0_dp
1359 >
1360 >    f_Row = 0.0_dp
1361 >    f_Col = 0.0_dp
1362 >    f_Temp = 0.0_dp
1363 >
1364 >    t_Row = 0.0_dp
1365 >    t_Col = 0.0_dp
1366 >    t_Temp = 0.0_dp
1367 >
1368 >    pot_Row = 0.0_dp
1369 >    pot_Col = 0.0_dp
1370 >    pot_Temp = 0.0_dp
1371 >
1372 >    rf_Row = 0.0_dp
1373 >    rf_Col = 0.0_dp
1374 >    rf_Temp = 0.0_dp
1375 >
1376   #endif
1377 <  
1378 <   !! We were called with only one atom, so just check the global exclude
1379 <   !! list for this atom
1380 <   if (.not. present(atom2)) then
1381 <      do i = 1, nExcludes_global
1382 <         if (excludesGlobal(i) == unique_id_1) then
1383 <            skip_it = .true.
1384 <            return
1385 <         end if
1386 <      end do
1387 <      return
1388 <   end if
1389 <  
1377 >
1378 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1379 >       call clean_EAM()
1380 >    endif
1381 >
1382 >    rf = 0.0_dp
1383 >    tau_Temp = 0.0_dp
1384 >    virial_Temp = 0.0_dp
1385 >  end subroutine zero_work_arrays
1386 >
1387 >  function skipThisPair(atom1, atom2) result(skip_it)
1388 >    integer, intent(in) :: atom1
1389 >    integer, intent(in), optional :: atom2
1390 >    logical :: skip_it
1391 >    integer :: unique_id_1, unique_id_2
1392 >    integer :: me_i,me_j
1393 >    integer :: i
1394 >
1395 >    skip_it = .false.
1396 >
1397 >    !! there are a number of reasons to skip a pair or a particle
1398 >    !! mostly we do this to exclude atoms who are involved in short
1399 >    !! range interactions (bonds, bends, torsions), but we also need
1400 >    !! to exclude some overcounted interactions that result from
1401 >    !! the parallel decomposition
1402 >
1403   #ifdef IS_MPI
1404 <   unique_id_2 = AtomColToGlobal(atom2)
1404 >    !! in MPI, we have to look up the unique IDs for each atom
1405 >    unique_id_1 = AtomRowToGlobal(atom1)
1406   #else
1407 <   unique_id_2 = atom2
1407 >    !! in the normal loop, the atom numbers are unique
1408 >    unique_id_1 = atom1
1409   #endif
1410 <  
1410 >
1411 >    !! We were called with only one atom, so just check the global exclude
1412 >    !! list for this atom
1413 >    if (.not. present(atom2)) then
1414 >       do i = 1, nExcludes_global
1415 >          if (excludesGlobal(i) == unique_id_1) then
1416 >             skip_it = .true.
1417 >             return
1418 >          end if
1419 >       end do
1420 >       return
1421 >    end if
1422 >
1423   #ifdef IS_MPI
1424 <   !! this situation should only arise in MPI simulations
1425 <   if (unique_id_1 == unique_id_2) then
1426 <      skip_it = .true.
1143 <      return
1144 <   end if
1145 <  
1146 <   !! this prevents us from doing the pair on multiple processors
1147 <   if (unique_id_1 < unique_id_2) then
1148 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1149 <         skip_it = .true.
1150 <         return
1151 <      endif
1152 <   else                
1153 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1154 <         skip_it = .true.
1155 <         return
1156 <      endif
1157 <   endif
1424 >    unique_id_2 = AtomColToGlobal(atom2)
1425 > #else
1426 >    unique_id_2 = atom2
1427   #endif
1428 <  
1429 <   !! the rest of these situations can happen in all simulations:
1430 <   do i = 1, nExcludes_global      
1431 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1432 <           (excludesGlobal(i) == unique_id_2)) then
1433 <         skip_it = .true.
1434 <         return
1435 <      endif
1436 <   enddo
1437 <  
1438 <   do i = 1, nSkipsForAtom(atom1)
1439 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1440 <         skip_it = .true.
1441 <         return
1442 <      endif
1443 <   end do
1444 <  
1445 <   return
1446 < end function skipThisPair
1447 <
1448 < function FF_UsesDirectionalAtoms() result(doesit)
1449 <   logical :: doesit
1450 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1451 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1452 < end function FF_UsesDirectionalAtoms
1453 <
1454 < function FF_RequiresPrepairCalc() result(doesit)
1455 <   logical :: doesit
1456 <   doesit = FF_uses_EAM
1457 < end function FF_RequiresPrepairCalc
1458 <
1459 < function FF_RequiresPostpairCalc() result(doesit)
1460 <   logical :: doesit
1461 <   doesit = FF_uses_RF
1462 < end function FF_RequiresPostpairCalc
1463 <
1428 >
1429 > #ifdef IS_MPI
1430 >    !! this situation should only arise in MPI simulations
1431 >    if (unique_id_1 == unique_id_2) then
1432 >       skip_it = .true.
1433 >       return
1434 >    end if
1435 >
1436 >    !! this prevents us from doing the pair on multiple processors
1437 >    if (unique_id_1 < unique_id_2) then
1438 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1439 >          skip_it = .true.
1440 >          return
1441 >       endif
1442 >    else                
1443 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1444 >          skip_it = .true.
1445 >          return
1446 >       endif
1447 >    endif
1448 > #endif
1449 >
1450 >    !! the rest of these situations can happen in all simulations:
1451 >    do i = 1, nExcludes_global      
1452 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1453 >            (excludesGlobal(i) == unique_id_2)) then
1454 >          skip_it = .true.
1455 >          return
1456 >       endif
1457 >    enddo
1458 >
1459 >    do i = 1, nSkipsForAtom(atom1)
1460 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1461 >          skip_it = .true.
1462 >          return
1463 >       endif
1464 >    end do
1465 >
1466 >    return
1467 >  end function skipThisPair
1468 >
1469 >  function FF_UsesDirectionalAtoms() result(doesit)
1470 >    logical :: doesit
1471 >    doesit = FF_uses_DirectionalAtoms
1472 >  end function FF_UsesDirectionalAtoms
1473 >
1474 >  function FF_RequiresPrepairCalc() result(doesit)
1475 >    logical :: doesit
1476 >    doesit = FF_uses_EAM
1477 >  end function FF_RequiresPrepairCalc
1478 >
1479   #ifdef PROFILE
1480 < function getforcetime() result(totalforcetime)
1481 <   real(kind=dp) :: totalforcetime
1482 <   totalforcetime = forcetime
1483 < end function getforcetime
1480 >  function getforcetime() result(totalforcetime)
1481 >    real(kind=dp) :: totalforcetime
1482 >    totalforcetime = forcetime
1483 >  end function getforcetime
1484   #endif
1201
1202 !! This cleans componets of force arrays belonging only to fortran
1485  
1486 < subroutine add_stress_tensor(dpair, fpair)
1205 <  
1206 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1207 <  
1208 <   ! because the d vector is the rj - ri vector, and
1209 <   ! because fx, fy, fz are the force on atom i, we need a
1210 <   ! negative sign here:  
1211 <  
1212 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1213 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1214 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1215 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1216 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1217 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1218 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1219 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1220 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1221 <  
1222 <   virial_Temp = virial_Temp + &
1223 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1224 <  
1225 < end subroutine add_stress_tensor
1226 <
1227 < end module doForces
1486 >  !! This cleans componets of force arrays belonging only to fortran
1487  
1488 < !! Interfaces for C programs to module....
1488 >  subroutine add_stress_tensor(dpair, fpair)
1489  
1490 < subroutine initFortranFF(use_RF_c, thisStat)
1232 <    use doForces, ONLY: init_FF
1233 <    logical, intent(in) :: use_RF_c
1490 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1491  
1492 <    integer, intent(out) :: thisStat  
1493 <    call init_FF(use_RF_c, thisStat)
1492 >    ! because the d vector is the rj - ri vector, and
1493 >    ! because fx, fy, fz are the force on atom i, we need a
1494 >    ! negative sign here:  
1495  
1496 < end subroutine initFortranFF
1496 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1497 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1498 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1499 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1500 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1501 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1502 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1503 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1504 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1505  
1506 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1507 <       do_pot_c, do_stress_c, error)
1242 <      
1243 <       use definitions, ONLY: dp
1244 <       use simulation
1245 <       use doForces, ONLY: do_force_loop
1246 <    !! Position array provided by C, dimensioned by getNlocal
1247 <    real ( kind = dp ), dimension(3, nLocal) :: q
1248 <    !! molecular center-of-mass position array
1249 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1250 <    !! Rotation Matrix for each long range particle in simulation.
1251 <    real( kind = dp), dimension(9, nLocal) :: A    
1252 <    !! Unit vectors for dipoles (lab frame)
1253 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1254 <    !! Force array provided by C, dimensioned by getNlocal
1255 <    real ( kind = dp ), dimension(3,nLocal) :: f
1256 <    !! Torsion array provided by C, dimensioned by getNlocal
1257 <    real( kind = dp ), dimension(3,nLocal) :: t    
1506 >    virial_Temp = virial_Temp + &
1507 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1508  
1509 <    !! Stress Tensor
1510 <    real( kind = dp), dimension(9) :: tau  
1511 <    real ( kind = dp ) :: pot
1262 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1263 <    integer :: error
1264 <    
1265 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1266 <       do_pot_c, do_stress_c, error)
1267 <      
1268 < end subroutine doForceloop
1509 >  end subroutine add_stress_tensor
1510 >
1511 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines