ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1650 by gezelter, Tue Oct 26 22:24:52 2004 UTC vs.
Revision 2323 by chuckv, Fri Sep 23 20:31:02 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.5 2004-10-26 22:24:44 gezelter Exp $, $Date: 2004-10-26 22:24:44 $, $Name: not supported by cvs2svn $, $Revision: 1.5 $
48 > !! @version $Id: doForces.F90,v 1.49 2005-09-23 20:31:02 chuckv Exp $, $Date: 2005-09-23 20:31:02 $, $Name: not supported by cvs2svn $, $Revision: 1.49 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
59 >  use sticky
60 >  use electrostatic_module
61 >  use reaction_field_module
62    use gb_pair
63    use shapes
64    use vector_class
# Line 32 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80 +
81    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82    INTEGER, PARAMETER:: PAIR_LOOP    = 2
83  
39  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 <  
87 >  logical, save :: haveInteractionHash = .false.
88 >  logical, save :: haveGtypeCutoffMap = .false.
89 >  logical, save :: haveDefaultCutoffs = .false.
90 >  logical, save :: haveRlist = .false.
91 >
92    logical, save :: FF_uses_DirectionalAtoms
93 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
93 >  logical, save :: FF_uses_Dipoles
94    logical, save :: FF_uses_GayBerne
95    logical, save :: FF_uses_EAM
53  logical, save :: FF_uses_Shapes
54  logical, save :: FF_uses_FLARB
55  logical, save :: FF_uses_RF
96  
97    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
98    logical, save :: SIM_uses_EAM
65  logical, save :: SIM_uses_Shapes
66  logical, save :: SIM_uses_FLARB
67  logical, save :: SIM_uses_RF
99    logical, save :: SIM_requires_postpair_calc
100    logical, save :: SIM_requires_prepair_calc
101    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
102  
103 <  real(kind=dp), save :: rlist, rlistsq
103 >  integer, save :: electrostaticSummationMethod
104  
105    public :: init_FF
106 +  public :: setDefaultCutoffs
107    public :: do_force_loop
108 <  public :: setRlistDF
108 >  public :: createInteractionHash
109 >  public :: createGtypeCutoffMap
110 >  public :: getStickyCut
111 >  public :: getStickyPowerCut
112 >  public :: getGayBerneCut
113 >  public :: getEAMCut
114 >  public :: getShapeCut
115  
116   #ifdef PROFILE
117    public :: getforcetime
# Line 82 | Line 119 | module doForces
119    real :: forceTimeInitial, forceTimeFinal
120    integer :: nLoops
121   #endif
122 +  
123 +  !! Variables for cutoff mapping and interaction mapping
124 +  ! Bit hash to determine pair-pair interactions.
125 +  integer, dimension(:,:), allocatable :: InteractionHash
126 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
127 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
128 +  integer, dimension(:), allocatable :: groupToGtype
129 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
130 +  type ::gtypeCutoffs
131 +     real(kind=dp) :: rcut
132 +     real(kind=dp) :: rcutsq
133 +     real(kind=dp) :: rlistsq
134 +  end type gtypeCutoffs
135 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
136  
137 <  type :: Properties
138 <     logical :: is_Directional   = .false.
139 <     logical :: is_LennardJones  = .false.
140 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
98 <
99 <  type(Properties), dimension(:),allocatable :: PropertyMap
100 <
137 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
138 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
139 >  real(kind=dp),save :: listSkin
140 >  
141   contains
142  
143 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
143 >  subroutine createInteractionHash(status)
144      integer :: nAtypes
145 <    integer :: status
145 >    integer, intent(out) :: status
146      integer :: i
147 <    logical :: thisProperty
148 <    real (kind=DP) :: thisDPproperty
147 >    integer :: j
148 >    integer :: iHash
149 >    !! Test Types
150 >    logical :: i_is_LJ
151 >    logical :: i_is_Elect
152 >    logical :: i_is_Sticky
153 >    logical :: i_is_StickyP
154 >    logical :: i_is_GB
155 >    logical :: i_is_EAM
156 >    logical :: i_is_Shape
157 >    logical :: j_is_LJ
158 >    logical :: j_is_Elect
159 >    logical :: j_is_Sticky
160 >    logical :: j_is_StickyP
161 >    logical :: j_is_GB
162 >    logical :: j_is_EAM
163 >    logical :: j_is_Shape
164 >    real(kind=dp) :: myRcut
165  
166 <    status = 0
166 >    status = 0  
167  
168 +    if (.not. associated(atypes)) then
169 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
170 +       status = -1
171 +       return
172 +    endif
173 +    
174      nAtypes = getSize(atypes)
175 <
175 >    
176      if (nAtypes == 0) then
177         status = -1
178         return
179      end if
180 <        
181 <    if (.not. allocated(PropertyMap)) then
182 <       allocate(PropertyMap(nAtypes))
180 >
181 >    if (.not. allocated(InteractionHash)) then
182 >       allocate(InteractionHash(nAtypes,nAtypes))
183      endif
184  
185 +    if (.not. allocated(atypeMaxCutoff)) then
186 +       allocate(atypeMaxCutoff(nAtypes))
187 +    endif
188 +        
189      do i = 1, nAtypes
190 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
191 <       PropertyMap(i)%is_Directional = thisProperty
190 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
191 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
192 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
193 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
194 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
195 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
196 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
197  
198 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
198 >       do j = i, nAtypes
199  
200 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
201 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
200 >          iHash = 0
201 >          myRcut = 0.0_dp
202  
203 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
204 <       PropertyMap(i)%is_Sticky = thisProperty
203 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
204 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
205 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
206 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
207 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
208 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
209 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
210  
211 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
212 <       PropertyMap(i)%is_GayBerne = thisProperty
211 >          if (i_is_LJ .and. j_is_LJ) then
212 >             iHash = ior(iHash, LJ_PAIR)            
213 >          endif
214 >          
215 >          if (i_is_Elect .and. j_is_Elect) then
216 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
217 >          endif
218 >          
219 >          if (i_is_Sticky .and. j_is_Sticky) then
220 >             iHash = ior(iHash, STICKY_PAIR)
221 >          endif
222  
223 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
224 <       PropertyMap(i)%is_EAM = thisProperty
223 >          if (i_is_StickyP .and. j_is_StickyP) then
224 >             iHash = ior(iHash, STICKYPOWER_PAIR)
225 >          endif
226  
227 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
228 <       PropertyMap(i)%is_Shape = thisProperty
227 >          if (i_is_EAM .and. j_is_EAM) then
228 >             iHash = ior(iHash, EAM_PAIR)
229 >          endif
230  
231 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
232 <       PropertyMap(i)%is_FLARB = thisProperty
231 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
232 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
233 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
234 >
235 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
236 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
237 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
238 >
239 >
240 >          InteractionHash(i,j) = iHash
241 >          InteractionHash(j,i) = iHash
242 >
243 >       end do
244 >
245      end do
246  
247 <    havePropertyMap = .true.
247 >    haveInteractionHash = .true.
248 >  end subroutine createInteractionHash
249  
250 <  end subroutine createPropertyMap
250 >  subroutine createGtypeCutoffMap(stat)
251 >
252 >    integer, intent(out), optional :: stat
253 >    logical :: i_is_LJ
254 >    logical :: i_is_Elect
255 >    logical :: i_is_Sticky
256 >    logical :: i_is_StickyP
257 >    logical :: i_is_GB
258 >    logical :: i_is_EAM
259 >    logical :: i_is_Shape
260 >    logical :: GtypeFound
261 >
262 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
263 >    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
264 >    integer :: nGroupsInRow
265 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
266 >    real(kind=dp) :: biggestAtypeCutoff
267 >
268 >    stat = 0
269 >    if (.not. haveInteractionHash) then
270 >       call createInteractionHash(myStatus)      
271 >       if (myStatus .ne. 0) then
272 >          write(default_error, *) 'createInteractionHash failed in doForces!'
273 >          stat = -1
274 >          return
275 >       endif
276 >    endif
277 > #ifdef IS_MPI
278 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
279 > #endif
280 >    nAtypes = getSize(atypes)
281 > ! Set all of the initial cutoffs to zero.
282 >    atypeMaxCutoff = 0.0_dp
283 >    do i = 1, nAtypes
284 >       if (SimHasAtype(i)) then    
285 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
286 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
287 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
288 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
289 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
290 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
291 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
292 >          
293 >
294 >          if (haveDefaultCutoffs) then
295 >             atypeMaxCutoff(i) = defaultRcut
296 >          else
297 >             if (i_is_LJ) then          
298 >                thisRcut = getSigma(i) * 2.5_dp
299 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
300 >             endif
301 >             if (i_is_Elect) then
302 >                thisRcut = defaultRcut
303 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
304 >             endif
305 >             if (i_is_Sticky) then
306 >                thisRcut = getStickyCut(i)
307 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
308 >             endif
309 >             if (i_is_StickyP) then
310 >                thisRcut = getStickyPowerCut(i)
311 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
312 >             endif
313 >             if (i_is_GB) then
314 >                thisRcut = getGayBerneCut(i)
315 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
316 >             endif
317 >             if (i_is_EAM) then
318 >                thisRcut = getEAMCut(i)
319 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
320 >             endif
321 >             if (i_is_Shape) then
322 >                thisRcut = getShapeCut(i)
323 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
324 >             endif
325 >          endif
326 >          
327 >          
328 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
329 >             biggestAtypeCutoff = atypeMaxCutoff(i)
330 >          endif
331 >
332 >       endif
333 >    enddo
334 >  
335 >    nGroupTypes = 0
336 >    
337 >    istart = 1
338 > #ifdef IS_MPI
339 >    iend = nGroupsInRow
340 > #else
341 >    iend = nGroups
342 > #endif
343 >    
344 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
345 >    if(.not.allocated(groupToGtype)) then
346 >       allocate(groupToGtype(iend))
347 >       allocate(groupMaxCutoff(iend))
348 >       allocate(gtypeMaxCutoff(iend))
349 >       groupMaxCutoff = 0.0_dp
350 >       gtypeMaxCutoff = 0.0_dp
351 >    endif
352 >    !! first we do a single loop over the cutoff groups to find the
353 >    !! largest cutoff for any atypes present in this group.  We also
354 >    !! create gtypes at this point.
355 >    
356 >    tol = 1.0d-6
357 >    
358 >    do i = istart, iend      
359 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
360 >       groupMaxCutoff(i) = 0.0_dp
361 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
362 >          atom1 = groupListRow(ia)
363 > #ifdef IS_MPI
364 >          me_i = atid_row(atom1)
365 > #else
366 >          me_i = atid(atom1)
367 > #endif          
368 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
369 >             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
370 >          endif          
371 >       enddo
372 >
373 >       if (nGroupTypes.eq.0) then
374 >          nGroupTypes = nGroupTypes + 1
375 >          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
376 >          groupToGtype(i) = nGroupTypes
377 >       else
378 >          GtypeFound = .false.
379 >          do g = 1, nGroupTypes
380 >             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).lt.tol) then
381 >                groupToGtype(i) = g
382 >                GtypeFound = .true.
383 >             endif
384 >          enddo
385 >          if (.not.GtypeFound) then            
386 >             nGroupTypes = nGroupTypes + 1
387 >             gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
388 >             groupToGtype(i) = nGroupTypes
389 >          endif
390 >       endif
391 >    enddo    
392  
393 +    !! allocate the gtypeCutoffMap here.
394 +    allocate(gtypeCutoffMap(nGroupTypes,nGroupTypes))
395 +    !! then we do a double loop over all the group TYPES to find the cutoff
396 +    !! map between groups of two types
397 +    
398 +    do i = 1, nGroupTypes
399 +       do j = 1, nGroupTypes
400 +      
401 +          select case(cutoffPolicy)
402 +          case(TRADITIONAL_CUTOFF_POLICY)
403 +             thisRcut = maxval(gtypeMaxCutoff)
404 +          case(MIX_CUTOFF_POLICY)
405 +             thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
406 +          case(MAX_CUTOFF_POLICY)
407 +             thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
408 +          case default
409 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
410 +             return
411 +          end select
412 +          gtypeCutoffMap(i,j)%rcut = thisRcut
413 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
414 +          skin = defaultRlist - defaultRcut
415 +          listSkin = skin ! set neighbor list skin thickness
416 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
417 +
418 +          ! sanity check
419 +
420 +          if (haveDefaultCutoffs) then
421 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
422 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
423 +             endif
424 +          endif
425 +       enddo
426 +    enddo
427 +
428 +    haveGtypeCutoffMap = .true.
429 +   end subroutine createGtypeCutoffMap
430 +
431 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
432 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
433 +     integer, intent(in) :: cutPolicy
434 +
435 +     defaultRcut = defRcut
436 +     defaultRsw = defRsw
437 +     defaultRlist = defRlist
438 +     cutoffPolicy = cutPolicy
439 +
440 +     haveDefaultCutoffs = .true.
441 +   end subroutine setDefaultCutoffs
442 +
443 +   subroutine setCutoffPolicy(cutPolicy)
444 +
445 +     integer, intent(in) :: cutPolicy
446 +     cutoffPolicy = cutPolicy
447 +     call createGtypeCutoffMap()
448 +   end subroutine setCutoffPolicy
449 +    
450 +    
451    subroutine setSimVariables()
452      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
453      SIM_uses_EAM = SimUsesEAM()
179    SIM_uses_Shapes = SimUsesShapes()
180    SIM_uses_FLARB = SimUsesFLARB()
181    SIM_uses_RF = SimUsesRF()
454      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
455      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
456      SIM_uses_PBC = SimUsesPBC()
# Line 194 | Line 466 | contains
466      integer :: myStatus
467  
468      error = 0
197    
198    if (.not. havePropertyMap) then
469  
470 <       myStatus = 0
470 >    if (.not. haveInteractionHash) then      
471 >       myStatus = 0      
472 >       call createInteractionHash(myStatus)      
473 >       if (myStatus .ne. 0) then
474 >          write(default_error, *) 'createInteractionHash failed in doForces!'
475 >          error = -1
476 >          return
477 >       endif
478 >    endif
479  
480 <       call createPropertyMap(myStatus)
481 <
480 >    if (.not. haveGtypeCutoffMap) then        
481 >       myStatus = 0      
482 >       call createGtypeCutoffMap(myStatus)      
483         if (myStatus .ne. 0) then
484 <          write(default_error, *) 'createPropertyMap failed in doForces!'
484 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
485            error = -1
486            return
487         endif
# Line 212 | Line 491 | contains
491         call setSimVariables()
492      endif
493  
494 <    if (.not. haveRlist) then
495 <       write(default_error, *) 'rList has not been set in doForces!'
496 <       error = -1
497 <       return
498 <    endif
494 >  !  if (.not. haveRlist) then
495 >  !     write(default_error, *) 'rList has not been set in doForces!'
496 >  !     error = -1
497 >  !     return
498 >  !  endif
499  
500      if (.not. haveNeighborList) then
501         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 239 | Line 518 | contains
518   #endif
519      return
520    end subroutine doReadyCheck
242    
521  
244  subroutine init_FF(use_RF_c, thisStat)
522  
523 <    logical, intent(in) :: use_RF_c
523 >  subroutine init_FF(thisESM, thisStat)
524  
525 +    integer, intent(in) :: thisESM
526      integer, intent(out) :: thisStat  
527      integer :: my_status, nMatches
528      integer, pointer :: MatchList(:) => null()
# Line 253 | Line 531 | contains
531      !! assume things are copacetic, unless they aren't
532      thisStat = 0
533  
534 <    !! Fortran's version of a cast:
535 <    FF_uses_RF = use_RF_c
258 <    
534 >    electrostaticSummationMethod = thisESM
535 >
536      !! init_FF is called *after* all of the atom types have been
537      !! defined in atype_module using the new_atype subroutine.
538      !!
539      !! this will scan through the known atypes and figure out what
540      !! interactions are used by the force field.    
541 <  
541 >
542      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
543      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
544      FF_uses_GayBerne = .false.
545      FF_uses_EAM = .false.
546 <    FF_uses_Shapes = .false.
274 <    FF_uses_FLARB = .false.
275 <    
546 >
547      call getMatchingElementList(atypes, "is_Directional", .true., &
548           nMatches, MatchList)
549      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
550  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
551      call getMatchingElementList(atypes, "is_Dipole", .true., &
552           nMatches, MatchList)
553 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
553 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
554      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
555      call getMatchingElementList(atypes, "is_GayBerne", .true., &
556           nMatches, MatchList)
557 <    if (nMatches .gt. 0) then
558 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
557 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
558 >
559      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
560      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
561  
329    call getMatchingElementList(atypes, "is_FLARB", .true., &
330         nMatches, MatchList)
331    if (nMatches .gt. 0) FF_uses_FLARB = .true.
562  
333    !! Assume sanity (for the sake of argument)
563      haveSaneForceField = .true.
564 <    
565 <    !! check to make sure the FF_uses_RF setting makes sense
566 <    
567 <    if (FF_uses_dipoles) then
568 <       if (FF_uses_RF) then
564 >
565 >    !! check to make sure the reaction field setting makes sense
566 >
567 >    if (FF_uses_Dipoles) then
568 >       if (electrostaticSummationMethod == REACTION_FIELD) then
569            dielect = getDielect()
570            call initialize_rf(dielect)
571         endif
572      else
573 <       if (FF_uses_RF) then          
573 >       if (electrostaticSummationMethod == REACTION_FIELD) then
574            write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
575            thisStat = -1
576            haveSaneForceField = .false.
577            return
578         endif
350    endif
351
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
579      endif
580  
581      if (FF_uses_EAM) then
582 <         call init_EAM_FF(my_status)
582 >       call init_EAM_FF(my_status)
583         if (my_status /= 0) then
584            write(default_error, *) "init_EAM_FF returned a bad status"
585            thisStat = -1
# Line 377 | Line 597 | contains
597         endif
598      endif
599  
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
600      if (.not. haveNeighborList) then
601         !! Create neighbor lists
602         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 606 | contains
606            return
607         endif
608         haveNeighborList = .true.
609 <    endif    
610 <    
609 >    endif
610 >
611    end subroutine init_FF
395  
612  
613 +
614    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
615    !------------------------------------------------------------->
616 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
616 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
617         do_pot_c, do_stress_c, error)
618      !! Position array provided by C, dimensioned by getNlocal
619      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 622 | contains
622      !! Rotation Matrix for each long range particle in simulation.
623      real( kind = dp), dimension(9, nLocal) :: A    
624      !! Unit vectors for dipoles (lab frame)
625 <    real( kind = dp ), dimension(3,nLocal) :: u_l
625 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
626      !! Force array provided by C, dimensioned by getNlocal
627      real ( kind = dp ), dimension(3,nLocal) :: f
628      !! Torsion array provided by C, dimensioned by getNlocal
# Line 443 | Line 660 | contains
660      integer :: localError
661      integer :: propPack_i, propPack_j
662      integer :: loopStart, loopEnd, loop
663 +    integer :: iHash
664 +  
665  
447    real(kind=dp) :: listSkin = 1.0  
448    
666      !! initialize local variables  
667 <    
667 >
668   #ifdef IS_MPI
669      pot_local = 0.0_dp
670      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 674 | contains
674   #else
675      natoms = nlocal
676   #endif
677 <    
677 >
678      call doReadyCheck(localError)
679      if ( localError .ne. 0 ) then
680         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 682 | contains
682         return
683      end if
684      call zero_work_arrays()
685 <        
685 >
686      do_pot = do_pot_c
687      do_stress = do_stress_c
688 <    
688 >
689      ! Gather all information needed by all force loops:
690 <    
690 >
691   #ifdef IS_MPI    
692 <    
692 >
693      call gather(q, q_Row, plan_atom_row_3d)
694      call gather(q, q_Col, plan_atom_col_3d)
695  
696      call gather(q_group, q_group_Row, plan_group_row_3d)
697      call gather(q_group, q_group_Col, plan_group_col_3d)
698 <        
698 >
699      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
700 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
701 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
702 <      
700 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
701 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
702 >
703         call gather(A, A_Row, plan_atom_row_rotation)
704         call gather(A, A_Col, plan_atom_col_rotation)
705      endif
706 <    
706 >
707   #endif
708 <    
708 >
709      !! Begin force loop timing:
710   #ifdef PROFILE
711      call cpu_time(forceTimeInitial)
712      nloops = nloops + 1
713   #endif
714 <    
714 >
715      loopEnd = PAIR_LOOP
716      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
717         loopStart = PREPAIR_LOOP
# Line 509 | Line 726 | contains
726         if (loop .eq. loopStart) then
727   #ifdef IS_MPI
728            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
729 <             update_nlist)
729 >               update_nlist)
730   #else
731            call checkNeighborList(nGroups, q_group, listSkin, &
732 <             update_nlist)
732 >               update_nlist)
733   #endif
734         endif
735 <      
735 >
736         if (update_nlist) then
737            !! save current configuration and construct neighbor list
738   #ifdef IS_MPI
# Line 526 | Line 743 | contains
743            neighborListSize = size(list)
744            nlist = 0
745         endif
746 <      
746 >
747         istart = 1
748   #ifdef IS_MPI
749         iend = nGroupsInRow
# Line 536 | Line 753 | contains
753         outer: do i = istart, iend
754  
755            if (update_nlist) point(i) = nlist + 1
756 <          
756 >
757            n_in_i = groupStartRow(i+1) - groupStartRow(i)
758 <          
758 >
759            if (update_nlist) then
760   #ifdef IS_MPI
761               jstart = 1
# Line 553 | Line 770 | contains
770               ! make sure group i has neighbors
771               if (jstart .gt. jend) cycle outer
772            endif
773 <          
773 >
774            do jnab = jstart, jend
775               if (update_nlist) then
776                  j = jnab
# Line 562 | Line 779 | contains
779               endif
780  
781   #ifdef IS_MPI
782 +             me_j = atid_col(j)
783               call get_interatomic_vector(q_group_Row(:,i), &
784                    q_group_Col(:,j), d_grp, rgrpsq)
785   #else
786 +             me_j = atid(j)
787               call get_interatomic_vector(q_group(:,i), &
788                    q_group(:,j), d_grp, rgrpsq)
789 < #endif
789 > #endif      
790  
791 <             if (rgrpsq < rlistsq) then
791 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
792                  if (update_nlist) then
793                     nlist = nlist + 1
794 <                  
794 >
795                     if (nlist > neighborListSize) then
796   #ifdef IS_MPI                
797                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 805 | contains
805                        end if
806                        neighborListSize = size(list)
807                     endif
808 <                  
808 >
809                     list(nlist) = j
810                  endif
811 <                
811 >
812                  if (loop .eq. PAIR_LOOP) then
813                     vij = 0.0d0
814                     fij(1:3) = 0.0d0
815                  endif
816 <                
816 >
817                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
818                       in_switching_region)
819 <                
819 >
820                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
821 <                
821 >
822                  do ia = groupStartRow(i), groupStartRow(i+1)-1
823 <                  
823 >
824                     atom1 = groupListRow(ia)
825 <                  
825 >
826                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
827 <                      
827 >
828                        atom2 = groupListCol(jb)
829 <                      
829 >
830                        if (skipThisPair(atom1, atom2)) cycle inner
831  
832                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 627 | Line 846 | contains
846   #ifdef IS_MPI                      
847                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
848                                rgrpsq, d_grp, do_pot, do_stress, &
849 <                              u_l, A, f, t, pot_local)
849 >                              eFrame, A, f, t, pot_local)
850   #else
851                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
852                                rgrpsq, d_grp, do_pot, do_stress, &
853 <                              u_l, A, f, t, pot)
853 >                              eFrame, A, f, t, pot)
854   #endif                                              
855                        else
856   #ifdef IS_MPI                      
857                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
858                                do_pot, &
859 <                              u_l, A, f, t, pot_local, vpair, fpair)
859 >                              eFrame, A, f, t, pot_local, vpair, fpair)
860   #else
861                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
862                                do_pot,  &
863 <                              u_l, A, f, t, pot, vpair, fpair)
863 >                              eFrame, A, f, t, pot, vpair, fpair)
864   #endif
865  
866                           vij = vij + vpair
# Line 649 | Line 868 | contains
868                        endif
869                     enddo inner
870                  enddo
871 <                
871 >
872                  if (loop .eq. PAIR_LOOP) then
873                     if (in_switching_region) then
874                        swderiv = vij*dswdr/rgrp
875                        fij(1) = fij(1) + swderiv*d_grp(1)
876                        fij(2) = fij(2) + swderiv*d_grp(2)
877                        fij(3) = fij(3) + swderiv*d_grp(3)
878 <                      
878 >
879                        do ia=groupStartRow(i), groupStartRow(i+1)-1
880                           atom1=groupListRow(ia)
881                           mf = mfactRow(atom1)
# Line 670 | Line 889 | contains
889                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
890   #endif
891                        enddo
892 <                      
892 >
893                        do jb=groupStartCol(j), groupStartCol(j+1)-1
894                           atom2=groupListCol(jb)
895                           mf = mfactCol(atom2)
# Line 685 | Line 904 | contains
904   #endif
905                        enddo
906                     endif
907 <                  
907 >
908                     if (do_stress) call add_stress_tensor(d_grp, fij)
909                  endif
910               end if
911            enddo
912         enddo outer
913 <      
913 >
914         if (update_nlist) then
915   #ifdef IS_MPI
916            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 924 | contains
924               update_nlist = .false.                              
925            endif
926         endif
927 <            
927 >
928         if (loop .eq. PREPAIR_LOOP) then
929            call do_preforce(nlocal, pot)
930         endif
931 <      
931 >
932      enddo
933 <    
933 >
934      !! Do timing
935   #ifdef PROFILE
936      call cpu_time(forceTimeFinal)
937      forceTime = forceTime + forceTimeFinal - forceTimeInitial
938   #endif    
939 <    
939 >
940   #ifdef IS_MPI
941      !!distribute forces
942 <    
942 >
943      f_temp = 0.0_dp
944      call scatter(f_Row,f_temp,plan_atom_row_3d)
945      do i = 1,nlocal
946         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
947      end do
948 <    
948 >
949      f_temp = 0.0_dp
950      call scatter(f_Col,f_temp,plan_atom_col_3d)
951      do i = 1,nlocal
952         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
953      end do
954 <    
954 >
955      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
956         t_temp = 0.0_dp
957         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 960 | contains
960         end do
961         t_temp = 0.0_dp
962         call scatter(t_Col,t_temp,plan_atom_col_3d)
963 <      
963 >
964         do i = 1,nlocal
965            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
966         end do
967      endif
968 <    
968 >
969      if (do_pot) then
970         ! scatter/gather pot_row into the members of my column
971         call scatter(pot_Row, pot_Temp, plan_atom_row)
972 <      
972 >
973         ! scatter/gather pot_local into all other procs
974         ! add resultant to get total pot
975         do i = 1, nlocal
976            pot_local = pot_local + pot_Temp(i)
977         enddo
978 <      
978 >
979         pot_Temp = 0.0_DP
980 <      
980 >
981         call scatter(pot_Col, pot_Temp, plan_atom_col)
982         do i = 1, nlocal
983            pot_local = pot_local + pot_Temp(i)
984         enddo
985 <      
985 >
986      endif
987   #endif
988 <    
988 >
989      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
990 <      
991 <       if (FF_uses_RF .and. SIM_uses_RF) then
992 <          
990 >
991 >       if (electrostaticSummationMethod == REACTION_FIELD) then
992 >
993   #ifdef IS_MPI
994            call scatter(rf_Row,rf,plan_atom_row_3d)
995            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 778 | Line 997 | contains
997               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
998            end do
999   #endif
1000 <          
1000 >
1001            do i = 1, nLocal
1002 <            
1002 >
1003               rfpot = 0.0_DP
1004   #ifdef IS_MPI
1005               me_i = atid_row(i)
1006   #else
1007               me_i = atid(i)
1008   #endif
1009 +             iHash = InteractionHash(me_i,me_j)
1010              
1011 <             if (PropertyMap(me_i)%is_Dipole) then
1012 <                
1011 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1012 >
1013                  mu_i = getDipoleMoment(me_i)
1014 <                
1014 >
1015                  !! The reaction field needs to include a self contribution
1016                  !! to the field:
1017 <                call accumulate_self_rf(i, mu_i, u_l)
1017 >                call accumulate_self_rf(i, mu_i, eFrame)
1018                  !! Get the reaction field contribution to the
1019                  !! potential and torques:
1020 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1020 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1021   #ifdef IS_MPI
1022                  pot_local = pot_local + rfpot
1023   #else
1024                  pot = pot + rfpot
1025 <      
1025 >
1026   #endif
1027 <             endif            
1027 >             endif
1028            enddo
1029         endif
1030      endif
1031 <    
1032 <    
1031 >
1032 >
1033   #ifdef IS_MPI
1034 <    
1034 >
1035      if (do_pot) then
1036         pot = pot + pot_local
1037         !! we assume the c code will do the allreduce to get the total potential
1038         !! we could do it right here if we needed to...
1039      endif
1040 <    
1040 >
1041      if (do_stress) then
1042         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1043              mpi_comm_world,mpi_err)
1044         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1045              mpi_comm_world,mpi_err)
1046      endif
1047 <    
1047 >
1048   #else
1049 <    
1049 >
1050      if (do_stress) then
1051         tau = tau_Temp
1052         virial = virial_Temp
1053      endif
1054 <    
1054 >
1055   #endif
1056 <      
1056 >
1057    end subroutine do_force_loop
1058 <  
1058 >
1059    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1060 <       u_l, A, f, t, pot, vpair, fpair)
1060 >       eFrame, A, f, t, pot, vpair, fpair)
1061  
1062      real( kind = dp ) :: pot, vpair, sw
1063      real( kind = dp ), dimension(3) :: fpair
1064      real( kind = dp ), dimension(nLocal)   :: mfact
1065 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1065 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1066      real( kind = dp ), dimension(9,nLocal) :: A
1067      real( kind = dp ), dimension(3,nLocal) :: f
1068      real( kind = dp ), dimension(3,nLocal) :: t
# Line 854 | Line 1074 | contains
1074      real ( kind = dp ), intent(inout) :: d(3)
1075      integer :: me_i, me_j
1076  
1077 +    integer :: iHash
1078 +
1079      r = sqrt(rijsq)
1080      vpair = 0.0d0
1081      fpair(1:3) = 0.0d0
# Line 865 | Line 1087 | contains
1087      me_i = atid(i)
1088      me_j = atid(j)
1089   #endif
868    
869    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
870      
871       if ( PropertyMap(me_i)%is_LennardJones .and. &
872            PropertyMap(me_j)%is_LennardJones ) then
873          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
874       endif
875      
876    endif
877    
878    if (FF_uses_charges .and. SIM_uses_charges) then
879      
880       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
881          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
882               pot, f, do_pot)
883       endif
884      
885    endif
886    
887    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
888      
889       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
890          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
891               pot, u_l, f, t, do_pot)
892          if (FF_uses_RF .and. SIM_uses_RF) then
893             call accumulate_rf(i, j, r, u_l, sw)
894             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
895          endif
896       endif
1090  
1091 +    iHash = InteractionHash(me_i, me_j)
1092 +
1093 +    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1094 +       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1095      endif
1096  
1097 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1097 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1098 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1099 >            pot, eFrame, f, t, do_pot)
1100  
1101 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1102 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1103 <               pot, A, f, t, do_pot)
1101 >       if (electrostaticSummationMethod == REACTION_FIELD) then
1102 >
1103 >          ! CHECK ME (RF needs to know about all electrostatic types)
1104 >          call accumulate_rf(i, j, r, eFrame, sw)
1105 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1106         endif
1107 <      
1107 >
1108      endif
1109  
1110 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1111 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1112 +            pot, A, f, t, do_pot)
1113 +    endif
1114  
1115 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1116 <      
1117 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
913 <            PropertyMap(me_j)%is_GayBerne) then
914 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
915 <               pot, u_l, f, t, do_pot)
916 <       endif
917 <      
1115 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1116 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1117 >            pot, A, f, t, do_pot)
1118      endif
1119 +
1120 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1121 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1122 +            pot, A, f, t, do_pot)
1123 +    endif
1124      
1125 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1126 <      
1127 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
923 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
924 <               do_pot)
925 <       endif
926 <      
1125 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1126 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1127 > !           pot, A, f, t, do_pot)
1128      endif
1129  
1130 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1131 <      
1132 <       if ( PropertyMap(me_i)%is_Shape .and. &
932 <            PropertyMap(me_j)%is_Shape ) then
933 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
934 <               pot, A, f, t, do_pot)
935 <       endif
936 <      
1130 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1131 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1132 >            do_pot)
1133      endif
1134 +
1135 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1136 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1137 +            pot, A, f, t, do_pot)
1138 +    endif
1139 +
1140 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1141 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1142 +            pot, A, f, t, do_pot)
1143 +    endif
1144      
1145    end subroutine do_pair
1146  
1147    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1148 <       do_pot, do_stress, u_l, A, f, t, pot)
1148 >       do_pot, do_stress, eFrame, A, f, t, pot)
1149  
1150 <   real( kind = dp ) :: pot, sw
1151 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1152 <   real (kind=dp), dimension(9,nLocal) :: A
1153 <   real (kind=dp), dimension(3,nLocal) :: f
1154 <   real (kind=dp), dimension(3,nLocal) :: t
949 <  
950 <   logical, intent(inout) :: do_pot, do_stress
951 <   integer, intent(in) :: i, j
952 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
953 <   real ( kind = dp )                :: r, rc
954 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
955 <  
956 <   logical :: is_EAM_i, is_EAM_j
957 <  
958 <   integer :: me_i, me_j
959 <  
1150 >    real( kind = dp ) :: pot, sw
1151 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1152 >    real (kind=dp), dimension(9,nLocal) :: A
1153 >    real (kind=dp), dimension(3,nLocal) :: f
1154 >    real (kind=dp), dimension(3,nLocal) :: t
1155  
1156 +    logical, intent(inout) :: do_pot, do_stress
1157 +    integer, intent(in) :: i, j
1158 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1159 +    real ( kind = dp )                :: r, rc
1160 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1161 +
1162 +    integer :: me_i, me_j, iHash
1163 +
1164      r = sqrt(rijsq)
962    if (SIM_uses_molecular_cutoffs) then
963       rc = sqrt(rcijsq)
964    else
965       rc = r
966    endif
967  
1165  
1166   #ifdef IS_MPI  
1167 <   me_i = atid_row(i)
1168 <   me_j = atid_col(j)  
1167 >    me_i = atid_row(i)
1168 >    me_j = atid_col(j)  
1169   #else  
1170 <   me_i = atid(i)
1171 <   me_j = atid(j)  
1170 >    me_i = atid(i)
1171 >    me_j = atid(j)  
1172   #endif
1173 <  
1174 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1175 <      
1176 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1177 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1178 <      
1179 <   endif
1180 <  
1181 < end subroutine do_prepair
1182 <
1183 <
1184 < subroutine do_preforce(nlocal,pot)
1185 <   integer :: nlocal
1186 <   real( kind = dp ) :: pot
1187 <  
1188 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1189 <      call calc_EAM_preforce_Frho(nlocal,pot)
1190 <   endif
1191 <  
1192 <  
1193 < end subroutine do_preforce
1194 <
1195 <
1196 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1197 <  
1198 <   real (kind = dp), dimension(3) :: q_i
1199 <   real (kind = dp), dimension(3) :: q_j
1200 <   real ( kind = dp ), intent(out) :: r_sq
1201 <   real( kind = dp ) :: d(3), scaled(3)
1202 <   integer i
1203 <  
1204 <   d(1:3) = q_j(1:3) - q_i(1:3)
1205 <  
1206 <   ! Wrap back into periodic box if necessary
1207 <   if ( SIM_uses_PBC ) then
1208 <      
1209 <      if( .not.boxIsOrthorhombic ) then
1210 <         ! calc the scaled coordinates.
1211 <        
1212 <         scaled = matmul(HmatInv, d)
1213 <        
1214 <         ! wrap the scaled coordinates
1215 <        
1216 <         scaled = scaled  - anint(scaled)
1217 <        
1218 <        
1219 <         ! calc the wrapped real coordinates from the wrapped scaled
1220 <         ! coordinates
1221 <        
1222 <         d = matmul(Hmat,scaled)
1223 <        
1224 <      else
1225 <         ! calc the scaled coordinates.
1226 <        
1227 <         do i = 1, 3
1228 <            scaled(i) = d(i) * HmatInv(i,i)
1229 <            
1230 <            ! wrap the scaled coordinates
1231 <            
1232 <            scaled(i) = scaled(i) - anint(scaled(i))
1233 <            
1234 <            ! calc the wrapped real coordinates from the wrapped scaled
1235 <            ! coordinates
1236 <            
1237 <            d(i) = scaled(i)*Hmat(i,i)
1238 <         enddo
1239 <      endif
1240 <      
1241 <   endif
1242 <  
1243 <   r_sq = dot_product(d,d)
1244 <  
1245 < end subroutine get_interatomic_vector
1246 <
1247 < subroutine zero_work_arrays()
1051 <  
1173 >
1174 >    iHash = InteractionHash(me_i, me_j)
1175 >
1176 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1177 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1178 >    endif
1179 >    
1180 >  end subroutine do_prepair
1181 >
1182 >
1183 >  subroutine do_preforce(nlocal,pot)
1184 >    integer :: nlocal
1185 >    real( kind = dp ) :: pot
1186 >
1187 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1188 >       call calc_EAM_preforce_Frho(nlocal,pot)
1189 >    endif
1190 >
1191 >
1192 >  end subroutine do_preforce
1193 >
1194 >
1195 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1196 >
1197 >    real (kind = dp), dimension(3) :: q_i
1198 >    real (kind = dp), dimension(3) :: q_j
1199 >    real ( kind = dp ), intent(out) :: r_sq
1200 >    real( kind = dp ) :: d(3), scaled(3)
1201 >    integer i
1202 >
1203 >    d(1:3) = q_j(1:3) - q_i(1:3)
1204 >
1205 >    ! Wrap back into periodic box if necessary
1206 >    if ( SIM_uses_PBC ) then
1207 >
1208 >       if( .not.boxIsOrthorhombic ) then
1209 >          ! calc the scaled coordinates.
1210 >
1211 >          scaled = matmul(HmatInv, d)
1212 >
1213 >          ! wrap the scaled coordinates
1214 >
1215 >          scaled = scaled  - anint(scaled)
1216 >
1217 >
1218 >          ! calc the wrapped real coordinates from the wrapped scaled
1219 >          ! coordinates
1220 >
1221 >          d = matmul(Hmat,scaled)
1222 >
1223 >       else
1224 >          ! calc the scaled coordinates.
1225 >
1226 >          do i = 1, 3
1227 >             scaled(i) = d(i) * HmatInv(i,i)
1228 >
1229 >             ! wrap the scaled coordinates
1230 >
1231 >             scaled(i) = scaled(i) - anint(scaled(i))
1232 >
1233 >             ! calc the wrapped real coordinates from the wrapped scaled
1234 >             ! coordinates
1235 >
1236 >             d(i) = scaled(i)*Hmat(i,i)
1237 >          enddo
1238 >       endif
1239 >
1240 >    endif
1241 >
1242 >    r_sq = dot_product(d,d)
1243 >
1244 >  end subroutine get_interatomic_vector
1245 >
1246 >  subroutine zero_work_arrays()
1247 >
1248   #ifdef IS_MPI
1053  
1054   q_Row = 0.0_dp
1055   q_Col = 0.0_dp
1249  
1250 <   q_group_Row = 0.0_dp
1251 <   q_group_Col = 0.0_dp  
1252 <  
1253 <   u_l_Row = 0.0_dp
1254 <   u_l_Col = 0.0_dp
1255 <  
1256 <   A_Row = 0.0_dp
1257 <   A_Col = 0.0_dp
1258 <  
1259 <   f_Row = 0.0_dp
1260 <   f_Col = 0.0_dp
1261 <   f_Temp = 0.0_dp
1262 <  
1263 <   t_Row = 0.0_dp
1264 <   t_Col = 0.0_dp
1265 <   t_Temp = 0.0_dp
1266 <  
1267 <   pot_Row = 0.0_dp
1268 <   pot_Col = 0.0_dp
1269 <   pot_Temp = 0.0_dp
1270 <  
1271 <   rf_Row = 0.0_dp
1272 <   rf_Col = 0.0_dp
1273 <   rf_Temp = 0.0_dp
1274 <  
1250 >    q_Row = 0.0_dp
1251 >    q_Col = 0.0_dp
1252 >
1253 >    q_group_Row = 0.0_dp
1254 >    q_group_Col = 0.0_dp  
1255 >
1256 >    eFrame_Row = 0.0_dp
1257 >    eFrame_Col = 0.0_dp
1258 >
1259 >    A_Row = 0.0_dp
1260 >    A_Col = 0.0_dp
1261 >
1262 >    f_Row = 0.0_dp
1263 >    f_Col = 0.0_dp
1264 >    f_Temp = 0.0_dp
1265 >
1266 >    t_Row = 0.0_dp
1267 >    t_Col = 0.0_dp
1268 >    t_Temp = 0.0_dp
1269 >
1270 >    pot_Row = 0.0_dp
1271 >    pot_Col = 0.0_dp
1272 >    pot_Temp = 0.0_dp
1273 >
1274 >    rf_Row = 0.0_dp
1275 >    rf_Col = 0.0_dp
1276 >    rf_Temp = 0.0_dp
1277 >
1278   #endif
1279 <
1280 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1281 <      call clean_EAM()
1282 <   endif
1283 <  
1284 <   rf = 0.0_dp
1285 <   tau_Temp = 0.0_dp
1286 <   virial_Temp = 0.0_dp
1287 < end subroutine zero_work_arrays
1288 <
1289 < function skipThisPair(atom1, atom2) result(skip_it)
1290 <   integer, intent(in) :: atom1
1291 <   integer, intent(in), optional :: atom2
1292 <   logical :: skip_it
1293 <   integer :: unique_id_1, unique_id_2
1294 <   integer :: me_i,me_j
1295 <   integer :: i
1296 <  
1297 <   skip_it = .false.
1298 <  
1299 <   !! there are a number of reasons to skip a pair or a particle
1300 <   !! mostly we do this to exclude atoms who are involved in short
1301 <   !! range interactions (bonds, bends, torsions), but we also need
1302 <   !! to exclude some overcounted interactions that result from
1303 <   !! the parallel decomposition
1304 <  
1279 >
1280 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1281 >       call clean_EAM()
1282 >    endif
1283 >
1284 >    rf = 0.0_dp
1285 >    tau_Temp = 0.0_dp
1286 >    virial_Temp = 0.0_dp
1287 >  end subroutine zero_work_arrays
1288 >
1289 >  function skipThisPair(atom1, atom2) result(skip_it)
1290 >    integer, intent(in) :: atom1
1291 >    integer, intent(in), optional :: atom2
1292 >    logical :: skip_it
1293 >    integer :: unique_id_1, unique_id_2
1294 >    integer :: me_i,me_j
1295 >    integer :: i
1296 >
1297 >    skip_it = .false.
1298 >
1299 >    !! there are a number of reasons to skip a pair or a particle
1300 >    !! mostly we do this to exclude atoms who are involved in short
1301 >    !! range interactions (bonds, bends, torsions), but we also need
1302 >    !! to exclude some overcounted interactions that result from
1303 >    !! the parallel decomposition
1304 >
1305   #ifdef IS_MPI
1306 <   !! in MPI, we have to look up the unique IDs for each atom
1307 <   unique_id_1 = AtomRowToGlobal(atom1)
1306 >    !! in MPI, we have to look up the unique IDs for each atom
1307 >    unique_id_1 = AtomRowToGlobal(atom1)
1308   #else
1309 <   !! in the normal loop, the atom numbers are unique
1310 <   unique_id_1 = atom1
1309 >    !! in the normal loop, the atom numbers are unique
1310 >    unique_id_1 = atom1
1311   #endif
1312 <  
1313 <   !! We were called with only one atom, so just check the global exclude
1314 <   !! list for this atom
1315 <   if (.not. present(atom2)) then
1316 <      do i = 1, nExcludes_global
1317 <         if (excludesGlobal(i) == unique_id_1) then
1318 <            skip_it = .true.
1319 <            return
1320 <         end if
1321 <      end do
1322 <      return
1323 <   end if
1324 <  
1312 >
1313 >    !! We were called with only one atom, so just check the global exclude
1314 >    !! list for this atom
1315 >    if (.not. present(atom2)) then
1316 >       do i = 1, nExcludes_global
1317 >          if (excludesGlobal(i) == unique_id_1) then
1318 >             skip_it = .true.
1319 >             return
1320 >          end if
1321 >       end do
1322 >       return
1323 >    end if
1324 >
1325   #ifdef IS_MPI
1326 <   unique_id_2 = AtomColToGlobal(atom2)
1326 >    unique_id_2 = AtomColToGlobal(atom2)
1327   #else
1328 <   unique_id_2 = atom2
1328 >    unique_id_2 = atom2
1329   #endif
1330 <  
1330 >
1331   #ifdef IS_MPI
1332 <   !! this situation should only arise in MPI simulations
1333 <   if (unique_id_1 == unique_id_2) then
1334 <      skip_it = .true.
1335 <      return
1336 <   end if
1337 <  
1338 <   !! this prevents us from doing the pair on multiple processors
1339 <   if (unique_id_1 < unique_id_2) then
1340 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1341 <         skip_it = .true.
1342 <         return
1343 <      endif
1344 <   else                
1345 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1346 <         skip_it = .true.
1347 <         return
1348 <      endif
1349 <   endif
1332 >    !! this situation should only arise in MPI simulations
1333 >    if (unique_id_1 == unique_id_2) then
1334 >       skip_it = .true.
1335 >       return
1336 >    end if
1337 >
1338 >    !! this prevents us from doing the pair on multiple processors
1339 >    if (unique_id_1 < unique_id_2) then
1340 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1341 >          skip_it = .true.
1342 >          return
1343 >       endif
1344 >    else                
1345 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1346 >          skip_it = .true.
1347 >          return
1348 >       endif
1349 >    endif
1350   #endif
1351 <  
1352 <   !! the rest of these situations can happen in all simulations:
1353 <   do i = 1, nExcludes_global      
1354 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1355 <           (excludesGlobal(i) == unique_id_2)) then
1356 <         skip_it = .true.
1357 <         return
1358 <      endif
1359 <   enddo
1360 <  
1361 <   do i = 1, nSkipsForAtom(atom1)
1362 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1363 <         skip_it = .true.
1364 <         return
1365 <      endif
1366 <   end do
1367 <  
1368 <   return
1369 < end function skipThisPair
1370 <
1371 < function FF_UsesDirectionalAtoms() result(doesit)
1372 <   logical :: doesit
1373 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1374 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1375 < end function FF_UsesDirectionalAtoms
1376 <
1377 < function FF_RequiresPrepairCalc() result(doesit)
1378 <   logical :: doesit
1379 <   doesit = FF_uses_EAM
1380 < end function FF_RequiresPrepairCalc
1381 <
1382 < function FF_RequiresPostpairCalc() result(doesit)
1383 <   logical :: doesit
1384 <   doesit = FF_uses_RF
1385 < end function FF_RequiresPostpairCalc
1190 <
1351 >
1352 >    !! the rest of these situations can happen in all simulations:
1353 >    do i = 1, nExcludes_global      
1354 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1355 >            (excludesGlobal(i) == unique_id_2)) then
1356 >          skip_it = .true.
1357 >          return
1358 >       endif
1359 >    enddo
1360 >
1361 >    do i = 1, nSkipsForAtom(atom1)
1362 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1363 >          skip_it = .true.
1364 >          return
1365 >       endif
1366 >    end do
1367 >
1368 >    return
1369 >  end function skipThisPair
1370 >
1371 >  function FF_UsesDirectionalAtoms() result(doesit)
1372 >    logical :: doesit
1373 >    doesit = FF_uses_DirectionalAtoms
1374 >  end function FF_UsesDirectionalAtoms
1375 >
1376 >  function FF_RequiresPrepairCalc() result(doesit)
1377 >    logical :: doesit
1378 >    doesit = FF_uses_EAM
1379 >  end function FF_RequiresPrepairCalc
1380 >
1381 >  function FF_RequiresPostpairCalc() result(doesit)
1382 >    logical :: doesit
1383 >    if (electrostaticSummationMethod == REACTION_FIELD) doesit = .true.
1384 >  end function FF_RequiresPostpairCalc
1385 >
1386   #ifdef PROFILE
1387 < function getforcetime() result(totalforcetime)
1388 <   real(kind=dp) :: totalforcetime
1389 <   totalforcetime = forcetime
1390 < end function getforcetime
1387 >  function getforcetime() result(totalforcetime)
1388 >    real(kind=dp) :: totalforcetime
1389 >    totalforcetime = forcetime
1390 >  end function getforcetime
1391   #endif
1197
1198 !! This cleans componets of force arrays belonging only to fortran
1392  
1393 < subroutine add_stress_tensor(dpair, fpair)
1201 <  
1202 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1203 <  
1204 <   ! because the d vector is the rj - ri vector, and
1205 <   ! because fx, fy, fz are the force on atom i, we need a
1206 <   ! negative sign here:  
1207 <  
1208 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1209 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1210 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1211 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1212 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1213 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1214 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1215 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1216 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1217 <  
1218 <   virial_Temp = virial_Temp + &
1219 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1220 <  
1221 < end subroutine add_stress_tensor
1222 <
1223 < end module doForces
1393 >  !! This cleans componets of force arrays belonging only to fortran
1394  
1395 < !! Interfaces for C programs to module....
1395 >  subroutine add_stress_tensor(dpair, fpair)
1396  
1397 < subroutine initFortranFF(use_RF_c, thisStat)
1228 <    use doForces, ONLY: init_FF
1229 <    logical, intent(in) :: use_RF_c
1397 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1398  
1399 <    integer, intent(out) :: thisStat  
1400 <    call init_FF(use_RF_c, thisStat)
1399 >    ! because the d vector is the rj - ri vector, and
1400 >    ! because fx, fy, fz are the force on atom i, we need a
1401 >    ! negative sign here:  
1402  
1403 < end subroutine initFortranFF
1403 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1404 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1405 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1406 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1407 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1408 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1409 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1410 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1411 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1412  
1413 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1414 <       do_pot_c, do_stress_c, error)
1238 <      
1239 <       use definitions, ONLY: dp
1240 <       use simulation
1241 <       use doForces, ONLY: do_force_loop
1242 <    !! Position array provided by C, dimensioned by getNlocal
1243 <    real ( kind = dp ), dimension(3, nLocal) :: q
1244 <    !! molecular center-of-mass position array
1245 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1246 <    !! Rotation Matrix for each long range particle in simulation.
1247 <    real( kind = dp), dimension(9, nLocal) :: A    
1248 <    !! Unit vectors for dipoles (lab frame)
1249 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1250 <    !! Force array provided by C, dimensioned by getNlocal
1251 <    real ( kind = dp ), dimension(3,nLocal) :: f
1252 <    !! Torsion array provided by C, dimensioned by getNlocal
1253 <    real( kind = dp ), dimension(3,nLocal) :: t    
1413 >    virial_Temp = virial_Temp + &
1414 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1415  
1416 <    !! Stress Tensor
1417 <    real( kind = dp), dimension(9) :: tau  
1418 <    real ( kind = dp ) :: pot
1258 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1259 <    integer :: error
1260 <    
1261 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1262 <       do_pot_c, do_stress_c, error)
1263 <      
1264 < end subroutine doForceloop
1416 >  end subroutine add_stress_tensor
1417 >
1418 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines