ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1610 by gezelter, Wed Oct 20 04:19:55 2004 UTC vs.
Revision 2280 by gezelter, Thu Sep 1 20:17:55 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.1 2004-10-20 04:19:55 gezelter Exp $, $Date: 2004-10-20 04:19:55 $, $Name: not supported by cvs2svn $, $Revision: 1.1 $
48 > !! @version $Id: doForces.F90,v 1.34 2005-09-01 20:17:55 gezelter Exp $, $Date: 2005-09-01 20:17:55 $, $Name: not supported by cvs2svn $, $Revision: 1.34 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
19 <  use charge_charge
59 >  use sticky
60 >  use electrostatic_module
61    use reaction_field
62    use gb_pair
63 +  use shapes
64    use vector_class
65    use eam
66    use status
# Line 30 | Line 72 | module doForces
72    PRIVATE
73  
74   #define __FORTRAN90
33 #include "UseTheForce/fForceField.h"
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
39  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
41  logical, save :: havePolicies = .false.
84    logical, save :: haveSIMvariables = .false.
43  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  logical, save :: FF_uses_LJ
87 <  logical, save :: FF_uses_sticky
88 <  logical, save :: FF_uses_charges
89 <  logical, save :: FF_uses_dipoles
90 <  logical, save :: FF_uses_RF
91 <  logical, save :: FF_uses_GB
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveRlist = .false.
89 >
90 >  logical, save :: FF_uses_DirectionalAtoms
91 >  logical, save :: FF_uses_Dipoles
92 >  logical, save :: FF_uses_GayBerne
93    logical, save :: FF_uses_EAM
94 <  logical, save :: SIM_uses_LJ
95 <  logical, save :: SIM_uses_sticky
96 <  logical, save :: SIM_uses_charges
55 <  logical, save :: SIM_uses_dipoles
56 <  logical, save :: SIM_uses_RF
57 <  logical, save :: SIM_uses_GB
94 >  logical, save :: FF_uses_RF
95 >
96 >  logical, save :: SIM_uses_DirectionalAtoms
97    logical, save :: SIM_uses_EAM
98 +  logical, save :: SIM_uses_RF
99    logical, save :: SIM_requires_postpair_calc
100    logical, save :: SIM_requires_prepair_calc
61  logical, save :: SIM_uses_directional_atoms
101    logical, save :: SIM_uses_PBC
63  logical, save :: SIM_uses_molecular_cutoffs
102  
103 <  real(kind=dp), save :: rlist, rlistsq
103 >  integer, save :: corrMethod
104  
105    public :: init_FF
106 +  public :: setDefaultCutoffs
107    public :: do_force_loop
108 <  public :: setRlistDF
108 >  public :: createInteractionHash
109 >  public :: createGtypeCutoffMap
110 >  public :: getStickyCut
111 >  public :: getStickyPowerCut
112 >  public :: getGayBerneCut
113 >  public :: getEAMCut
114 >  public :: getShapeCut
115  
116   #ifdef PROFILE
117    public :: getforcetime
# Line 74 | Line 119 | module doForces
119    real :: forceTimeInitial, forceTimeFinal
120    integer :: nLoops
121   #endif
122 +  
123 +  !! Variables for cutoff mapping and interaction mapping
124 +  ! Bit hash to determine pair-pair interactions.
125 +  integer, dimension(:,:), allocatable :: InteractionHash
126 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
127 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
128 +  integer, dimension(:), allocatable :: groupToGtype
129 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
130 +  type ::gtypeCutoffs
131 +     real(kind=dp) :: rcut
132 +     real(kind=dp) :: rcutsq
133 +     real(kind=dp) :: rlistsq
134 +  end type gtypeCutoffs
135 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
136  
137 <  type :: Properties
138 <     logical :: is_lj     = .false.
139 <     logical :: is_sticky = .false.
81 <     logical :: is_dp     = .false.
82 <     logical :: is_gb     = .false.
83 <     logical :: is_eam    = .false.
84 <     logical :: is_charge = .false.
85 <     real(kind=DP) :: charge = 0.0_DP
86 <     real(kind=DP) :: dipole_moment = 0.0_DP
87 <  end type Properties
88 <
89 <  type(Properties), dimension(:),allocatable :: PropertyMap
90 <
137 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
138 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
139 >  
140   contains
141  
142 <  subroutine setRlistDF( this_rlist )
94 <    
95 <    real(kind=dp) :: this_rlist
96 <
97 <    rlist = this_rlist
98 <    rlistsq = rlist * rlist
99 <    
100 <    haveRlist = .true.
101 <
102 <  end subroutine setRlistDF    
103 <
104 <  subroutine createPropertyMap(status)
142 >  subroutine createInteractionHash(status)
143      integer :: nAtypes
144 <    integer :: status
144 >    integer, intent(out) :: status
145      integer :: i
146 <    logical :: thisProperty
147 <    real (kind=DP) :: thisDPproperty
146 >    integer :: j
147 >    integer :: iHash
148 >    !! Test Types
149 >    logical :: i_is_LJ
150 >    logical :: i_is_Elect
151 >    logical :: i_is_Sticky
152 >    logical :: i_is_StickyP
153 >    logical :: i_is_GB
154 >    logical :: i_is_EAM
155 >    logical :: i_is_Shape
156 >    logical :: j_is_LJ
157 >    logical :: j_is_Elect
158 >    logical :: j_is_Sticky
159 >    logical :: j_is_StickyP
160 >    logical :: j_is_GB
161 >    logical :: j_is_EAM
162 >    logical :: j_is_Shape
163 >    real(kind=dp) :: myRcut
164  
165 <    status = 0
165 >    status = 0  
166  
167 +    if (.not. associated(atypes)) then
168 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
169 +       status = -1
170 +       return
171 +    endif
172 +    
173      nAtypes = getSize(atypes)
174 <
174 >    
175      if (nAtypes == 0) then
176         status = -1
177         return
178      end if
179 <        
180 <    if (.not. allocated(PropertyMap)) then
181 <       allocate(PropertyMap(nAtypes))
179 >
180 >    if (.not. allocated(InteractionHash)) then
181 >       allocate(InteractionHash(nAtypes,nAtypes))
182      endif
183  
184 +    if (.not. allocated(atypeMaxCutoff)) then
185 +       allocate(atypeMaxCutoff(nAtypes))
186 +    endif
187 +        
188      do i = 1, nAtypes
189 <       call getElementProperty(atypes, i, "is_LJ", thisProperty)
190 <       PropertyMap(i)%is_LJ = thisProperty
191 <
192 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
193 <       PropertyMap(i)%is_Charge = thisProperty
194 <      
195 <       if (thisProperty) then
132 <          call getElementProperty(atypes, i, "charge", thisDPproperty)
133 <          PropertyMap(i)%charge = thisDPproperty
134 <       endif
135 <
136 <       call getElementProperty(atypes, i, "is_DP", thisProperty)
137 <       PropertyMap(i)%is_DP = thisProperty
138 <
139 <       if (thisProperty) then
140 <          call getElementProperty(atypes, i, "dipole_moment", thisDPproperty)
141 <          PropertyMap(i)%dipole_moment = thisDPproperty
142 <       endif
189 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
190 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
191 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
192 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
193 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
194 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
195 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
196  
197 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
198 <       PropertyMap(i)%is_Sticky = thisProperty
199 <       call getElementProperty(atypes, i, "is_GB", thisProperty)
200 <       PropertyMap(i)%is_GB = thisProperty
201 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
202 <       PropertyMap(i)%is_EAM = thisProperty
197 >       do j = i, nAtypes
198 >
199 >          iHash = 0
200 >          myRcut = 0.0_dp
201 >
202 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
203 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
204 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
205 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
206 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
207 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
208 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
209 >
210 >          if (i_is_LJ .and. j_is_LJ) then
211 >             iHash = ior(iHash, LJ_PAIR)            
212 >          endif
213 >          
214 >          if (i_is_Elect .and. j_is_Elect) then
215 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
216 >          endif
217 >          
218 >          if (i_is_Sticky .and. j_is_Sticky) then
219 >             iHash = ior(iHash, STICKY_PAIR)
220 >          endif
221 >
222 >          if (i_is_StickyP .and. j_is_StickyP) then
223 >             iHash = ior(iHash, STICKYPOWER_PAIR)
224 >          endif
225 >
226 >          if (i_is_EAM .and. j_is_EAM) then
227 >             iHash = ior(iHash, EAM_PAIR)
228 >          endif
229 >
230 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
231 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
232 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
233 >
234 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
235 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
236 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
237 >
238 >
239 >          InteractionHash(i,j) = iHash
240 >          InteractionHash(j,i) = iHash
241 >
242 >       end do
243 >
244      end do
245  
246 <    havePropertyMap = .true.
246 >    haveInteractionHash = .true.
247 >  end subroutine createInteractionHash
248  
249 <  end subroutine createPropertyMap
249 >  subroutine createGtypeCutoffMap(stat)
250 >
251 >    integer, intent(out), optional :: stat
252 >    logical :: i_is_LJ
253 >    logical :: i_is_Elect
254 >    logical :: i_is_Sticky
255 >    logical :: i_is_StickyP
256 >    logical :: i_is_GB
257 >    logical :: i_is_EAM
258 >    logical :: i_is_Shape
259 >
260 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
261 >    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
262 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
263 >    real(kind=dp) :: biggestAtypeCutoff
264 >
265 >    stat = 0
266 >    if (.not. haveInteractionHash) then
267 >       call createInteractionHash(myStatus)      
268 >       if (myStatus .ne. 0) then
269 >          write(default_error, *) 'createInteractionHash failed in doForces!'
270 >          stat = -1
271 >          return
272 >       endif
273 >    endif
274 >
275 >    nAtypes = getSize(atypes)
276 >    
277 >    do i = 1, nAtypes
278 >       if (SimHasAtype(i)) then          
279 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
280 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
281 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
282 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
283 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
284 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
285 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
286 >          
287 >          if (i_is_LJ) then
288 >             thisRcut = getSigma(i) * 2.5_dp
289 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
290 >          endif
291 >          if (i_is_Elect) then
292 >             thisRcut = defaultRcut
293 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
294 >          endif
295 >          if (i_is_Sticky) then
296 >             thisRcut = getStickyCut(i)
297 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
298 >          endif
299 >          if (i_is_StickyP) then
300 >             thisRcut = getStickyPowerCut(i)
301 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
302 >          endif
303 >          if (i_is_GB) then
304 >             thisRcut = getGayBerneCut(i)
305 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
306 >          endif
307 >          if (i_is_EAM) then
308 >             thisRcut = getEAMCut(i)
309 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
310 >          endif
311 >          if (i_is_Shape) then
312 >             thisRcut = getShapeCut(i)
313 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
314 >          endif
315 >          
316 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
317 >             biggestAtypeCutoff = atypeMaxCutoff(i)
318 >          endif
319 >       endif
320 >    enddo
321 >  
322 >    nGroupTypes = 0
323 >    
324 >    istart = 1
325 > #ifdef IS_MPI
326 >    iend = nGroupsInRow
327 > #else
328 >    iend = nGroups
329 > #endif
330 >
331 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
332 >    
333 >    !! first we do a single loop over the cutoff groups to find the largest cutoff for any atypes
334 >    !! present in this group.   We also create gtypes at this point.
335 >    tol = 1.0d-6
336 >    
337 >    do i = istart, iend      
338 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
339 >       groupMaxCutoff(i) = 0.0_dp
340 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
341 >          atom1 = groupListRow(ia)
342 > #ifdef IS_MPI
343 >          me_i = atid_row(atom1)
344 > #else
345 >          me_i = atid(atom1)
346 > #endif          
347 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
348 >             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
349 >          endif
350 >       enddo
351 >       if (nGroupTypes.eq.0) then
352 >          nGroupTypes = nGroupTypes + 1
353 >          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
354 >          groupToGtype(i) = nGroupTypes
355 >       else
356 >          do g = 1, nGroupTypes
357 >             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).gt.tol) then
358 >                nGroupTypes = nGroupTypes + 1
359 >                gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
360 >                groupToGtype(i) = nGroupTypes
361 >             else
362 >                groupToGtype(i) = g
363 >             endif
364 >          enddo
365 >       endif
366 >    enddo
367 >    
368 >    !! allocate the gtypeCutoffMap here.
369 >
370 >    !! then we do a double loop over all the group TYPES to find the cutoff
371 >    !! map between groups of two types
372 >    
373 >    do i = 1, nGroupTypes
374 >       do j = 1, nGroupTypes
375 >      
376 >          select case(cutoffPolicy)
377 >             case(TRADITIONAL_CUTOFF_POLICY)
378 >                thisRcut = maxval(gtypeMaxCutoff)
379 >             case(MIX_CUTOFF_POLICY)
380 >                thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
381 >             case(MAX_CUTOFF_POLICY)
382 >                thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
383 >             case default
384 >                call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
385 >                return
386 >          end select      
387 >         gtypeCutoffMap(i,j)%rcut = thisRcut
388 >         gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
389 >         skin = defaultRlist - defaultRcut
390 >         gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
391 >       enddo
392 >    enddo
393 >    
394 >    haveGtypeCutoffMap = .true.
395 >   end subroutine createGtypeCutoffMap
396  
397 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
398 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
399 +     integer, intent(in) :: cutPolicy
400 +
401 +     defaultRcut = defRcut
402 +     defaultRsw = defRsw
403 +     defaultRlist = defRlist
404 +     cutoffPolicy = cutPolicy
405 +   end subroutine setDefaultCutoffs
406 +
407 +   subroutine setCutoffPolicy(cutPolicy)
408 +
409 +     integer, intent(in) :: cutPolicy
410 +     cutoffPolicy = cutPolicy
411 +     call createGtypeCutoffMap()
412 +
413 +   end subroutine setCutoffPolicy
414 +    
415 +    
416    subroutine setSimVariables()
417 <    SIM_uses_LJ = SimUsesLJ()
158 <    SIM_uses_sticky = SimUsesSticky()
159 <    SIM_uses_charges = SimUsesCharges()
160 <    SIM_uses_dipoles = SimUsesDipoles()
161 <    SIM_uses_RF = SimUsesRF()
162 <    SIM_uses_GB = SimUsesGB()
417 >    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
418      SIM_uses_EAM = SimUsesEAM()
419 +    SIM_uses_RF = SimUsesRF()
420      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
421      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
166    SIM_uses_directional_atoms = SimUsesDirectionalAtoms()
422      SIM_uses_PBC = SimUsesPBC()
168    !SIM_uses_molecular_cutoffs = SimUsesMolecularCutoffs()
423  
424      haveSIMvariables = .true.
425  
# Line 178 | Line 432 | contains
432      integer :: myStatus
433  
434      error = 0
181    
182    if (.not. havePropertyMap) then
435  
436 <       myStatus = 0
436 >    if (.not. haveInteractionHash) then      
437 >       myStatus = 0      
438 >       call createInteractionHash(myStatus)      
439 >       if (myStatus .ne. 0) then
440 >          write(default_error, *) 'createInteractionHash failed in doForces!'
441 >          error = -1
442 >          return
443 >       endif
444 >    endif
445  
446 <       call createPropertyMap(myStatus)
447 <
446 >    if (.not. haveGtypeCutoffMap) then        
447 >       myStatus = 0      
448 >       call createGtypeCutoffMap(myStatus)      
449         if (myStatus .ne. 0) then
450 <          write(default_error, *) 'createPropertyMap failed in doForces!'
450 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
451            error = -1
452            return
453         endif
# Line 202 | Line 463 | contains
463         return
464      endif
465  
205    if (SIM_uses_LJ .and. FF_uses_LJ) then
206       if (.not. havePolicies) then
207          write(default_error, *) 'LJ mixing Policies have not been set in doForces!'
208          error = -1
209          return
210       endif
211    endif
212
466      if (.not. haveNeighborList) then
467         write(default_error, *) 'neighbor list has not been initialized in doForces!'
468         error = -1
# Line 231 | Line 484 | contains
484   #endif
485      return
486    end subroutine doReadyCheck
234    
487  
236  subroutine init_FF(LJMIXPOLICY, use_RF_c, thisStat)
488  
489 <    integer, intent(in) :: LJMIXPOLICY
239 <    logical, intent(in) :: use_RF_c
489 >  subroutine init_FF(use_RF, use_UW, use_DW, thisStat)
490  
491 +    logical, intent(in) :: use_RF
492 +    logical, intent(in) :: use_UW
493 +    logical, intent(in) :: use_DW
494      integer, intent(out) :: thisStat  
495      integer :: my_status, nMatches
496 +    integer :: corrMethod
497      integer, pointer :: MatchList(:) => null()
498      real(kind=dp) :: rcut, rrf, rt, dielect
499  
# Line 247 | Line 501 | contains
501      thisStat = 0
502  
503      !! Fortran's version of a cast:
504 <    FF_uses_RF = use_RF_c
504 >    FF_uses_RF = use_RF
505 >
506 >    !! set the electrostatic correction method
507 >    if (use_UW) then
508 >       corrMethod = 1
509 >    elseif (use_DW) then
510 >       corrMethod = 2
511 >    else
512 >       corrMethod = 0
513 >    endif
514      
515      !! init_FF is called *after* all of the atom types have been
516      !! defined in atype_module using the new_atype subroutine.
517      !!
518      !! this will scan through the known atypes and figure out what
519      !! interactions are used by the force field.    
520 <  
521 <    FF_uses_LJ = .false.
522 <    FF_uses_sticky = .false.
523 <    FF_uses_charges = .false.
261 <    FF_uses_dipoles = .false.
262 <    FF_uses_GB = .false.
520 >
521 >    FF_uses_DirectionalAtoms = .false.
522 >    FF_uses_Dipoles = .false.
523 >    FF_uses_GayBerne = .false.
524      FF_uses_EAM = .false.
264    
265    call getMatchingElementList(atypes, "is_LJ", .true., nMatches, MatchList)
266    if (nMatches .gt. 0) FF_uses_LJ = .true.
525  
526 <    call getMatchingElementList(atypes, "is_Charge", .true., nMatches, MatchList)
527 <    if (nMatches .gt. 0) FF_uses_charges = .true.  
526 >    call getMatchingElementList(atypes, "is_Directional", .true., &
527 >         nMatches, MatchList)
528 >    if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
529  
530 <    call getMatchingElementList(atypes, "is_DP", .true., nMatches, MatchList)
531 <    if (nMatches .gt. 0) FF_uses_dipoles = .true.
530 >    call getMatchingElementList(atypes, "is_Dipole", .true., &
531 >         nMatches, MatchList)
532 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
533      
534 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
535 <         MatchList)
536 <    if (nMatches .gt. 0) FF_uses_Sticky = .true.
537 <    
278 <    call getMatchingElementList(atypes, "is_GB", .true., nMatches, MatchList)
279 <    if (nMatches .gt. 0) FF_uses_GB = .true.
280 <    
534 >    call getMatchingElementList(atypes, "is_GayBerne", .true., &
535 >         nMatches, MatchList)
536 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
537 >
538      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
539      if (nMatches .gt. 0) FF_uses_EAM = .true.
540 <    
541 <    !! Assume sanity (for the sake of argument)
540 >
541 >
542      haveSaneForceField = .true.
543  
544      !! check to make sure the FF_uses_RF setting makes sense
545 <    
546 <    if (FF_uses_dipoles) then
545 >
546 >    if (FF_uses_Dipoles) then
547         if (FF_uses_RF) then
548            dielect = getDielect()
549            call initialize_rf(dielect)
# Line 298 | Line 555 | contains
555            haveSaneForceField = .false.
556            return
557         endif
301    endif
302
303    if (FF_uses_LJ) then
304      
305       select case (LJMIXPOLICY)
306       case (LB_MIXING_RULE)
307          call init_lj_FF(LB_MIXING_RULE, my_status)            
308       case (EXPLICIT_MIXING_RULE)
309          call init_lj_FF(EXPLICIT_MIXING_RULE, my_status)
310       case default
311          write(default_error,*) 'unknown LJ Mixing Policy!'
312          thisStat = -1
313          haveSaneForceField = .false.
314          return            
315       end select
316       if (my_status /= 0) then
317          thisStat = -1
318          haveSaneForceField = .false.
319          return
320       end if
321       havePolicies = .true.
558      endif
559  
324    if (FF_uses_sticky) then
325       call check_sticky_FF(my_status)
326       if (my_status /= 0) then
327          thisStat = -1
328          haveSaneForceField = .false.
329          return
330       end if
331    endif
332
333
560      if (FF_uses_EAM) then
561 <         call init_EAM_FF(my_status)
561 >       call init_EAM_FF(my_status)
562         if (my_status /= 0) then
563            write(default_error, *) "init_EAM_FF returned a bad status"
564            thisStat = -1
# Line 341 | Line 567 | contains
567         end if
568      endif
569  
570 <    if (FF_uses_GB) then
570 >    if (FF_uses_GayBerne) then
571         call check_gb_pair_FF(my_status)
572         if (my_status .ne. 0) then
573            thisStat = -1
# Line 350 | Line 576 | contains
576         endif
577      endif
578  
353    if (FF_uses_GB .and. FF_uses_LJ) then
354    endif
579      if (.not. haveNeighborList) then
580         !! Create neighbor lists
581         call expandNeighborList(nLocal, my_status)
# Line 363 | Line 587 | contains
587         haveNeighborList = .true.
588      endif
589  
366    
367    
590    end subroutine init_FF
369  
591  
592 +
593    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
594    !------------------------------------------------------------->
595 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
595 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
596         do_pot_c, do_stress_c, error)
597      !! Position array provided by C, dimensioned by getNlocal
598      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 379 | Line 601 | contains
601      !! Rotation Matrix for each long range particle in simulation.
602      real( kind = dp), dimension(9, nLocal) :: A    
603      !! Unit vectors for dipoles (lab frame)
604 <    real( kind = dp ), dimension(3,nLocal) :: u_l
604 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
605      !! Force array provided by C, dimensioned by getNlocal
606      real ( kind = dp ), dimension(3,nLocal) :: f
607      !! Torsion array provided by C, dimensioned by getNlocal
# Line 417 | Line 639 | contains
639      integer :: localError
640      integer :: propPack_i, propPack_j
641      integer :: loopStart, loopEnd, loop
642 <
642 >    integer :: iHash
643      real(kind=dp) :: listSkin = 1.0  
644 <    
644 >
645      !! initialize local variables  
646 <    
646 >
647   #ifdef IS_MPI
648      pot_local = 0.0_dp
649      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 431 | Line 653 | contains
653   #else
654      natoms = nlocal
655   #endif
656 <    
656 >
657      call doReadyCheck(localError)
658      if ( localError .ne. 0 ) then
659         call handleError("do_force_loop", "Not Initialized")
# Line 439 | Line 661 | contains
661         return
662      end if
663      call zero_work_arrays()
664 <        
664 >
665      do_pot = do_pot_c
666      do_stress = do_stress_c
667 <    
667 >
668      ! Gather all information needed by all force loops:
669 <    
669 >
670   #ifdef IS_MPI    
671 <    
671 >
672      call gather(q, q_Row, plan_atom_row_3d)
673      call gather(q, q_Col, plan_atom_col_3d)
674  
675      call gather(q_group, q_group_Row, plan_group_row_3d)
676      call gather(q_group, q_group_Col, plan_group_col_3d)
677 <        
678 <    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
679 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
680 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
681 <      
677 >
678 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
679 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
680 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
681 >
682         call gather(A, A_Row, plan_atom_row_rotation)
683         call gather(A, A_Col, plan_atom_col_rotation)
684      endif
685 <    
685 >
686   #endif
687 <    
687 >
688      !! Begin force loop timing:
689   #ifdef PROFILE
690      call cpu_time(forceTimeInitial)
691      nloops = nloops + 1
692   #endif
693 <    
693 >
694      loopEnd = PAIR_LOOP
695      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
696         loopStart = PREPAIR_LOOP
# Line 483 | Line 705 | contains
705         if (loop .eq. loopStart) then
706   #ifdef IS_MPI
707            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
708 <             update_nlist)
708 >               update_nlist)
709   #else
710            call checkNeighborList(nGroups, q_group, listSkin, &
711 <             update_nlist)
711 >               update_nlist)
712   #endif
713         endif
714 <      
714 >
715         if (update_nlist) then
716            !! save current configuration and construct neighbor list
717   #ifdef IS_MPI
# Line 500 | Line 722 | contains
722            neighborListSize = size(list)
723            nlist = 0
724         endif
725 <      
725 >
726         istart = 1
727   #ifdef IS_MPI
728         iend = nGroupsInRow
# Line 510 | Line 732 | contains
732         outer: do i = istart, iend
733  
734            if (update_nlist) point(i) = nlist + 1
735 <          
735 >
736            n_in_i = groupStartRow(i+1) - groupStartRow(i)
737 <          
737 >
738            if (update_nlist) then
739   #ifdef IS_MPI
740               jstart = 1
# Line 527 | Line 749 | contains
749               ! make sure group i has neighbors
750               if (jstart .gt. jend) cycle outer
751            endif
752 <          
752 >
753            do jnab = jstart, jend
754               if (update_nlist) then
755                  j = jnab
# Line 536 | Line 758 | contains
758               endif
759  
760   #ifdef IS_MPI
761 +             me_j = atid_col(j)
762               call get_interatomic_vector(q_group_Row(:,i), &
763                    q_group_Col(:,j), d_grp, rgrpsq)
764   #else
765 +             me_j = atid(j)
766               call get_interatomic_vector(q_group(:,i), &
767                    q_group(:,j), d_grp, rgrpsq)
768   #endif
769  
770 <             if (rgrpsq < rlistsq) then
770 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
771                  if (update_nlist) then
772                     nlist = nlist + 1
773 <                  
773 >
774                     if (nlist > neighborListSize) then
775   #ifdef IS_MPI                
776                        call expandNeighborList(nGroupsInRow, listerror)
# Line 560 | Line 784 | contains
784                        end if
785                        neighborListSize = size(list)
786                     endif
787 <                  
787 >
788                     list(nlist) = j
789                  endif
790 <                
790 >
791                  if (loop .eq. PAIR_LOOP) then
792                     vij = 0.0d0
793                     fij(1:3) = 0.0d0
794                  endif
795 <                
795 >
796                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
797                       in_switching_region)
798 <                
798 >
799                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
800 <                
800 >
801                  do ia = groupStartRow(i), groupStartRow(i+1)-1
802 <                  
802 >
803                     atom1 = groupListRow(ia)
804 <                  
804 >
805                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
806 <                      
806 >
807                        atom2 = groupListCol(jb)
808 <                      
808 >
809                        if (skipThisPair(atom1, atom2)) cycle inner
810  
811                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 601 | Line 825 | contains
825   #ifdef IS_MPI                      
826                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
827                                rgrpsq, d_grp, do_pot, do_stress, &
828 <                              u_l, A, f, t, pot_local)
828 >                              eFrame, A, f, t, pot_local)
829   #else
830                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
831                                rgrpsq, d_grp, do_pot, do_stress, &
832 <                              u_l, A, f, t, pot)
832 >                              eFrame, A, f, t, pot)
833   #endif                                              
834                        else
835   #ifdef IS_MPI                      
836                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
837                                do_pot, &
838 <                              u_l, A, f, t, pot_local, vpair, fpair)
838 >                              eFrame, A, f, t, pot_local, vpair, fpair)
839   #else
840                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
841                                do_pot,  &
842 <                              u_l, A, f, t, pot, vpair, fpair)
842 >                              eFrame, A, f, t, pot, vpair, fpair)
843   #endif
844  
845                           vij = vij + vpair
# Line 623 | Line 847 | contains
847                        endif
848                     enddo inner
849                  enddo
850 <                
850 >
851                  if (loop .eq. PAIR_LOOP) then
852                     if (in_switching_region) then
853                        swderiv = vij*dswdr/rgrp
854                        fij(1) = fij(1) + swderiv*d_grp(1)
855                        fij(2) = fij(2) + swderiv*d_grp(2)
856                        fij(3) = fij(3) + swderiv*d_grp(3)
857 <                      
857 >
858                        do ia=groupStartRow(i), groupStartRow(i+1)-1
859                           atom1=groupListRow(ia)
860                           mf = mfactRow(atom1)
# Line 644 | Line 868 | contains
868                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
869   #endif
870                        enddo
871 <                      
871 >
872                        do jb=groupStartCol(j), groupStartCol(j+1)-1
873                           atom2=groupListCol(jb)
874                           mf = mfactCol(atom2)
# Line 659 | Line 883 | contains
883   #endif
884                        enddo
885                     endif
886 <                  
886 >
887                     if (do_stress) call add_stress_tensor(d_grp, fij)
888                  endif
889               end if
890            enddo
891         enddo outer
892 <      
892 >
893         if (update_nlist) then
894   #ifdef IS_MPI
895            point(nGroupsInRow + 1) = nlist + 1
# Line 679 | Line 903 | contains
903               update_nlist = .false.                              
904            endif
905         endif
906 <            
906 >
907         if (loop .eq. PREPAIR_LOOP) then
908            call do_preforce(nlocal, pot)
909         endif
910 <      
910 >
911      enddo
912 <    
912 >
913      !! Do timing
914   #ifdef PROFILE
915      call cpu_time(forceTimeFinal)
916      forceTime = forceTime + forceTimeFinal - forceTimeInitial
917   #endif    
918 <    
918 >
919   #ifdef IS_MPI
920      !!distribute forces
921 <    
921 >
922      f_temp = 0.0_dp
923      call scatter(f_Row,f_temp,plan_atom_row_3d)
924      do i = 1,nlocal
925         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
926      end do
927 <    
927 >
928      f_temp = 0.0_dp
929      call scatter(f_Col,f_temp,plan_atom_col_3d)
930      do i = 1,nlocal
931         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
932      end do
933 <    
934 <    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
933 >
934 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
935         t_temp = 0.0_dp
936         call scatter(t_Row,t_temp,plan_atom_row_3d)
937         do i = 1,nlocal
# Line 715 | Line 939 | contains
939         end do
940         t_temp = 0.0_dp
941         call scatter(t_Col,t_temp,plan_atom_col_3d)
942 <      
942 >
943         do i = 1,nlocal
944            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
945         end do
946      endif
947 <    
947 >
948      if (do_pot) then
949         ! scatter/gather pot_row into the members of my column
950         call scatter(pot_Row, pot_Temp, plan_atom_row)
951 <      
951 >
952         ! scatter/gather pot_local into all other procs
953         ! add resultant to get total pot
954         do i = 1, nlocal
955            pot_local = pot_local + pot_Temp(i)
956         enddo
957 <      
957 >
958         pot_Temp = 0.0_DP
959 <      
959 >
960         call scatter(pot_Col, pot_Temp, plan_atom_col)
961         do i = 1, nlocal
962            pot_local = pot_local + pot_Temp(i)
963         enddo
964 <      
964 >
965      endif
966   #endif
967 <    
967 >
968      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
969 <      
969 >
970         if (FF_uses_RF .and. SIM_uses_RF) then
971 <          
971 >
972   #ifdef IS_MPI
973            call scatter(rf_Row,rf,plan_atom_row_3d)
974            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 752 | Line 976 | contains
976               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
977            end do
978   #endif
979 <          
979 >
980            do i = 1, nLocal
981 <            
981 >
982               rfpot = 0.0_DP
983   #ifdef IS_MPI
984               me_i = atid_row(i)
985   #else
986               me_i = atid(i)
987   #endif
988 +             iHash = InteractionHash(me_i,me_j)
989              
990 <             if (PropertyMap(me_i)%is_DP) then
991 <                
992 <                mu_i = PropertyMap(me_i)%dipole_moment
993 <                
990 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
991 >
992 >                mu_i = getDipoleMoment(me_i)
993 >
994                  !! The reaction field needs to include a self contribution
995                  !! to the field:
996 <                call accumulate_self_rf(i, mu_i, u_l)
996 >                call accumulate_self_rf(i, mu_i, eFrame)
997                  !! Get the reaction field contribution to the
998                  !! potential and torques:
999 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
999 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1000   #ifdef IS_MPI
1001                  pot_local = pot_local + rfpot
1002   #else
1003                  pot = pot + rfpot
1004 <      
1004 >
1005   #endif
1006 <             endif            
1006 >             endif
1007            enddo
1008         endif
1009      endif
1010 <    
1011 <    
1010 >
1011 >
1012   #ifdef IS_MPI
1013 <    
1013 >
1014      if (do_pot) then
1015         pot = pot + pot_local
1016         !! we assume the c code will do the allreduce to get the total potential
1017         !! we could do it right here if we needed to...
1018      endif
1019 <    
1019 >
1020      if (do_stress) then
1021         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1022              mpi_comm_world,mpi_err)
1023         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1024              mpi_comm_world,mpi_err)
1025      endif
1026 <    
1026 >
1027   #else
1028 <    
1028 >
1029      if (do_stress) then
1030         tau = tau_Temp
1031         virial = virial_Temp
1032      endif
1033 <    
1033 >
1034   #endif
1035 <      
1035 >
1036    end subroutine do_force_loop
1037 <  
1037 >
1038    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1039 <       u_l, A, f, t, pot, vpair, fpair)
1039 >       eFrame, A, f, t, pot, vpair, fpair)
1040  
1041      real( kind = dp ) :: pot, vpair, sw
1042      real( kind = dp ), dimension(3) :: fpair
1043      real( kind = dp ), dimension(nLocal)   :: mfact
1044 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1044 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1045      real( kind = dp ), dimension(9,nLocal) :: A
1046      real( kind = dp ), dimension(3,nLocal) :: f
1047      real( kind = dp ), dimension(3,nLocal) :: t
# Line 826 | Line 1051 | contains
1051      real ( kind = dp ), intent(inout) :: rijsq
1052      real ( kind = dp )                :: r
1053      real ( kind = dp ), intent(inout) :: d(3)
1054 +    real ( kind = dp ) :: ebalance
1055      integer :: me_i, me_j
1056  
1057 +    integer :: iHash
1058 +
1059      r = sqrt(rijsq)
1060      vpair = 0.0d0
1061      fpair(1:3) = 0.0d0
# Line 839 | Line 1067 | contains
1067      me_i = atid(i)
1068      me_j = atid(j)
1069   #endif
842    
843    if (FF_uses_LJ .and. SIM_uses_LJ) then
844      
845       if ( PropertyMap(me_i)%is_LJ .and. PropertyMap(me_j)%is_LJ ) then
846          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
847       endif
848      
849    endif
850    
851    if (FF_uses_charges .and. SIM_uses_charges) then
852      
853       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
854          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
855       endif
856      
857    endif
858    
859    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
860      
861       if ( PropertyMap(me_i)%is_DP .and. PropertyMap(me_j)%is_DP) then
862          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
863               do_pot)
864          if (FF_uses_RF .and. SIM_uses_RF) then
865             call accumulate_rf(i, j, r, u_l, sw)
866             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
867          endif          
868       endif
1070  
1071 +    iHash = InteractionHash(me_i, me_j)
1072 +
1073 +    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1074 +       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1075      endif
1076  
1077 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1077 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1078 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1079 >            pot, eFrame, f, t, do_pot, corrMethod)
1080  
1081 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1082 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, A, f, t, &
1083 <               do_pot)
1081 >       if (FF_uses_RF .and. SIM_uses_RF) then
1082 >
1083 >          ! CHECK ME (RF needs to know about all electrostatic types)
1084 >          call accumulate_rf(i, j, r, eFrame, sw)
1085 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1086         endif
1087  
1088      endif
1089  
1090 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1091 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1092 +            pot, A, f, t, do_pot)
1093 +    endif
1094  
1095 <    if (FF_uses_GB .and. SIM_uses_GB) then
1096 <      
1097 <       if ( PropertyMap(me_i)%is_GB .and. PropertyMap(me_j)%is_GB) then
1098 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
886 <               do_pot)
887 <       endif
1095 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1096 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1097 >            pot, A, f, t, do_pot)
1098 >    endif
1099  
1100 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1101 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1102 +            pot, A, f, t, do_pot)
1103      endif
1104 <      
1105 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1106 <      
1107 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
894 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
895 <               do_pot)
896 <       endif
897 <      
1104 >    
1105 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1106 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1107 > !           pot, A, f, t, do_pot)
1108      endif
1109 +
1110 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1111 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1112 +            do_pot)
1113 +    endif
1114 +
1115 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1116 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1117 +            pot, A, f, t, do_pot)
1118 +    endif
1119 +
1120 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1121 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1122 +            pot, A, f, t, do_pot)
1123 +    endif
1124      
1125    end subroutine do_pair
1126  
1127    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1128 <       do_pot, do_stress, u_l, A, f, t, pot)
1128 >       do_pot, do_stress, eFrame, A, f, t, pot)
1129  
1130 <   real( kind = dp ) :: pot, sw
1131 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1132 <   real (kind=dp), dimension(9,nLocal) :: A
1133 <   real (kind=dp), dimension(3,nLocal) :: f
1134 <   real (kind=dp), dimension(3,nLocal) :: t
910 <  
911 <   logical, intent(inout) :: do_pot, do_stress
912 <   integer, intent(in) :: i, j
913 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
914 <   real ( kind = dp )                :: r, rc
915 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
916 <  
917 <   logical :: is_EAM_i, is_EAM_j
918 <  
919 <   integer :: me_i, me_j
920 <  
1130 >    real( kind = dp ) :: pot, sw
1131 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1132 >    real (kind=dp), dimension(9,nLocal) :: A
1133 >    real (kind=dp), dimension(3,nLocal) :: f
1134 >    real (kind=dp), dimension(3,nLocal) :: t
1135  
1136 <    r = sqrt(rijsq)
1137 <    if (SIM_uses_molecular_cutoffs) then
1138 <       rc = sqrt(rcijsq)
1139 <    else
1140 <       rc = r
927 <    endif
928 <  
1136 >    logical, intent(inout) :: do_pot, do_stress
1137 >    integer, intent(in) :: i, j
1138 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1139 >    real ( kind = dp )                :: r, rc
1140 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1141  
1142 +    integer :: me_i, me_j, iHash
1143 +
1144   #ifdef IS_MPI  
1145 <   me_i = atid_row(i)
1146 <   me_j = atid_col(j)  
1145 >    me_i = atid_row(i)
1146 >    me_j = atid_col(j)  
1147   #else  
1148 <   me_i = atid(i)
1149 <   me_j = atid(j)  
1148 >    me_i = atid(i)
1149 >    me_j = atid(j)  
1150   #endif
1151 <  
1152 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1153 <      
1154 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1155 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1156 <      
1157 <   endif
1158 <  
1159 < end subroutine do_prepair
1160 <
1161 <
1162 < subroutine do_preforce(nlocal,pot)
1163 <   integer :: nlocal
1164 <   real( kind = dp ) :: pot
1165 <  
1166 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1167 <      call calc_EAM_preforce_Frho(nlocal,pot)
1168 <   endif
1169 <  
1170 <  
1171 < end subroutine do_preforce
1172 <
1173 <
1174 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1175 <  
1176 <   real (kind = dp), dimension(3) :: q_i
1177 <   real (kind = dp), dimension(3) :: q_j
1178 <   real ( kind = dp ), intent(out) :: r_sq
1179 <   real( kind = dp ) :: d(3), scaled(3)
1180 <   integer i
1181 <  
1182 <   d(1:3) = q_j(1:3) - q_i(1:3)
1183 <  
1184 <   ! Wrap back into periodic box if necessary
1185 <   if ( SIM_uses_PBC ) then
1186 <      
1187 <      if( .not.boxIsOrthorhombic ) then
1188 <         ! calc the scaled coordinates.
1189 <        
1190 <         scaled = matmul(HmatInv, d)
1191 <        
1192 <         ! wrap the scaled coordinates
1193 <        
1194 <         scaled = scaled  - anint(scaled)
1195 <        
1196 <        
1197 <         ! calc the wrapped real coordinates from the wrapped scaled
1198 <         ! coordinates
1199 <        
1200 <         d = matmul(Hmat,scaled)
1201 <        
1202 <      else
1203 <         ! calc the scaled coordinates.
1204 <        
1205 <         do i = 1, 3
1206 <            scaled(i) = d(i) * HmatInv(i,i)
1207 <            
1208 <            ! wrap the scaled coordinates
1209 <            
1210 <            scaled(i) = scaled(i) - anint(scaled(i))
1211 <            
1212 <            ! calc the wrapped real coordinates from the wrapped scaled
1213 <            ! coordinates
1214 <            
1215 <            d(i) = scaled(i)*Hmat(i,i)
1216 <         enddo
1217 <      endif
1218 <      
1219 <   endif
1220 <  
1221 <   r_sq = dot_product(d,d)
1222 <  
1223 < end subroutine get_interatomic_vector
1224 <
1225 < subroutine zero_work_arrays()
1012 <  
1151 >
1152 >    iHash = InteractionHash(me_i, me_j)
1153 >
1154 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1155 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1156 >    endif
1157 >    
1158 >  end subroutine do_prepair
1159 >
1160 >
1161 >  subroutine do_preforce(nlocal,pot)
1162 >    integer :: nlocal
1163 >    real( kind = dp ) :: pot
1164 >
1165 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1166 >       call calc_EAM_preforce_Frho(nlocal,pot)
1167 >    endif
1168 >
1169 >
1170 >  end subroutine do_preforce
1171 >
1172 >
1173 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1174 >
1175 >    real (kind = dp), dimension(3) :: q_i
1176 >    real (kind = dp), dimension(3) :: q_j
1177 >    real ( kind = dp ), intent(out) :: r_sq
1178 >    real( kind = dp ) :: d(3), scaled(3)
1179 >    integer i
1180 >
1181 >    d(1:3) = q_j(1:3) - q_i(1:3)
1182 >
1183 >    ! Wrap back into periodic box if necessary
1184 >    if ( SIM_uses_PBC ) then
1185 >
1186 >       if( .not.boxIsOrthorhombic ) then
1187 >          ! calc the scaled coordinates.
1188 >
1189 >          scaled = matmul(HmatInv, d)
1190 >
1191 >          ! wrap the scaled coordinates
1192 >
1193 >          scaled = scaled  - anint(scaled)
1194 >
1195 >
1196 >          ! calc the wrapped real coordinates from the wrapped scaled
1197 >          ! coordinates
1198 >
1199 >          d = matmul(Hmat,scaled)
1200 >
1201 >       else
1202 >          ! calc the scaled coordinates.
1203 >
1204 >          do i = 1, 3
1205 >             scaled(i) = d(i) * HmatInv(i,i)
1206 >
1207 >             ! wrap the scaled coordinates
1208 >
1209 >             scaled(i) = scaled(i) - anint(scaled(i))
1210 >
1211 >             ! calc the wrapped real coordinates from the wrapped scaled
1212 >             ! coordinates
1213 >
1214 >             d(i) = scaled(i)*Hmat(i,i)
1215 >          enddo
1216 >       endif
1217 >
1218 >    endif
1219 >
1220 >    r_sq = dot_product(d,d)
1221 >
1222 >  end subroutine get_interatomic_vector
1223 >
1224 >  subroutine zero_work_arrays()
1225 >
1226   #ifdef IS_MPI
1014  
1015   q_Row = 0.0_dp
1016   q_Col = 0.0_dp
1227  
1228 <   q_group_Row = 0.0_dp
1229 <   q_group_Col = 0.0_dp  
1230 <  
1231 <   u_l_Row = 0.0_dp
1232 <   u_l_Col = 0.0_dp
1233 <  
1234 <   A_Row = 0.0_dp
1235 <   A_Col = 0.0_dp
1236 <  
1237 <   f_Row = 0.0_dp
1238 <   f_Col = 0.0_dp
1239 <   f_Temp = 0.0_dp
1240 <  
1241 <   t_Row = 0.0_dp
1242 <   t_Col = 0.0_dp
1243 <   t_Temp = 0.0_dp
1244 <  
1245 <   pot_Row = 0.0_dp
1246 <   pot_Col = 0.0_dp
1247 <   pot_Temp = 0.0_dp
1248 <  
1249 <   rf_Row = 0.0_dp
1250 <   rf_Col = 0.0_dp
1251 <   rf_Temp = 0.0_dp
1252 <  
1228 >    q_Row = 0.0_dp
1229 >    q_Col = 0.0_dp
1230 >
1231 >    q_group_Row = 0.0_dp
1232 >    q_group_Col = 0.0_dp  
1233 >
1234 >    eFrame_Row = 0.0_dp
1235 >    eFrame_Col = 0.0_dp
1236 >
1237 >    A_Row = 0.0_dp
1238 >    A_Col = 0.0_dp
1239 >
1240 >    f_Row = 0.0_dp
1241 >    f_Col = 0.0_dp
1242 >    f_Temp = 0.0_dp
1243 >
1244 >    t_Row = 0.0_dp
1245 >    t_Col = 0.0_dp
1246 >    t_Temp = 0.0_dp
1247 >
1248 >    pot_Row = 0.0_dp
1249 >    pot_Col = 0.0_dp
1250 >    pot_Temp = 0.0_dp
1251 >
1252 >    rf_Row = 0.0_dp
1253 >    rf_Col = 0.0_dp
1254 >    rf_Temp = 0.0_dp
1255 >
1256   #endif
1257 <
1258 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1259 <      call clean_EAM()
1260 <   endif
1261 <  
1262 <   rf = 0.0_dp
1263 <   tau_Temp = 0.0_dp
1264 <   virial_Temp = 0.0_dp
1265 < end subroutine zero_work_arrays
1266 <
1267 < function skipThisPair(atom1, atom2) result(skip_it)
1268 <   integer, intent(in) :: atom1
1269 <   integer, intent(in), optional :: atom2
1270 <   logical :: skip_it
1271 <   integer :: unique_id_1, unique_id_2
1272 <   integer :: me_i,me_j
1273 <   integer :: i
1274 <  
1275 <   skip_it = .false.
1276 <  
1277 <   !! there are a number of reasons to skip a pair or a particle
1278 <   !! mostly we do this to exclude atoms who are involved in short
1279 <   !! range interactions (bonds, bends, torsions), but we also need
1280 <   !! to exclude some overcounted interactions that result from
1281 <   !! the parallel decomposition
1282 <  
1257 >
1258 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1259 >       call clean_EAM()
1260 >    endif
1261 >
1262 >    rf = 0.0_dp
1263 >    tau_Temp = 0.0_dp
1264 >    virial_Temp = 0.0_dp
1265 >  end subroutine zero_work_arrays
1266 >
1267 >  function skipThisPair(atom1, atom2) result(skip_it)
1268 >    integer, intent(in) :: atom1
1269 >    integer, intent(in), optional :: atom2
1270 >    logical :: skip_it
1271 >    integer :: unique_id_1, unique_id_2
1272 >    integer :: me_i,me_j
1273 >    integer :: i
1274 >
1275 >    skip_it = .false.
1276 >
1277 >    !! there are a number of reasons to skip a pair or a particle
1278 >    !! mostly we do this to exclude atoms who are involved in short
1279 >    !! range interactions (bonds, bends, torsions), but we also need
1280 >    !! to exclude some overcounted interactions that result from
1281 >    !! the parallel decomposition
1282 >
1283   #ifdef IS_MPI
1284 <   !! in MPI, we have to look up the unique IDs for each atom
1285 <   unique_id_1 = AtomRowToGlobal(atom1)
1284 >    !! in MPI, we have to look up the unique IDs for each atom
1285 >    unique_id_1 = AtomRowToGlobal(atom1)
1286   #else
1287 <   !! in the normal loop, the atom numbers are unique
1288 <   unique_id_1 = atom1
1287 >    !! in the normal loop, the atom numbers are unique
1288 >    unique_id_1 = atom1
1289   #endif
1290 <  
1291 <   !! We were called with only one atom, so just check the global exclude
1292 <   !! list for this atom
1293 <   if (.not. present(atom2)) then
1294 <      do i = 1, nExcludes_global
1295 <         if (excludesGlobal(i) == unique_id_1) then
1296 <            skip_it = .true.
1297 <            return
1298 <         end if
1299 <      end do
1300 <      return
1301 <   end if
1302 <  
1290 >
1291 >    !! We were called with only one atom, so just check the global exclude
1292 >    !! list for this atom
1293 >    if (.not. present(atom2)) then
1294 >       do i = 1, nExcludes_global
1295 >          if (excludesGlobal(i) == unique_id_1) then
1296 >             skip_it = .true.
1297 >             return
1298 >          end if
1299 >       end do
1300 >       return
1301 >    end if
1302 >
1303   #ifdef IS_MPI
1304 <   unique_id_2 = AtomColToGlobal(atom2)
1304 >    unique_id_2 = AtomColToGlobal(atom2)
1305   #else
1306 <   unique_id_2 = atom2
1306 >    unique_id_2 = atom2
1307   #endif
1308 <  
1308 >
1309   #ifdef IS_MPI
1310 <   !! this situation should only arise in MPI simulations
1311 <   if (unique_id_1 == unique_id_2) then
1312 <      skip_it = .true.
1313 <      return
1314 <   end if
1315 <  
1316 <   !! this prevents us from doing the pair on multiple processors
1317 <   if (unique_id_1 < unique_id_2) then
1318 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1319 <         skip_it = .true.
1320 <         return
1321 <      endif
1322 <   else                
1323 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1324 <         skip_it = .true.
1325 <         return
1326 <      endif
1327 <   endif
1310 >    !! this situation should only arise in MPI simulations
1311 >    if (unique_id_1 == unique_id_2) then
1312 >       skip_it = .true.
1313 >       return
1314 >    end if
1315 >
1316 >    !! this prevents us from doing the pair on multiple processors
1317 >    if (unique_id_1 < unique_id_2) then
1318 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1319 >          skip_it = .true.
1320 >          return
1321 >       endif
1322 >    else                
1323 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1324 >          skip_it = .true.
1325 >          return
1326 >       endif
1327 >    endif
1328   #endif
1329 <  
1330 <   !! the rest of these situations can happen in all simulations:
1331 <   do i = 1, nExcludes_global      
1332 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1333 <           (excludesGlobal(i) == unique_id_2)) then
1334 <         skip_it = .true.
1335 <         return
1336 <      endif
1337 <   enddo
1338 <  
1339 <   do i = 1, nSkipsForAtom(atom1)
1340 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1341 <         skip_it = .true.
1342 <         return
1343 <      endif
1344 <   end do
1345 <  
1346 <   return
1347 < end function skipThisPair
1348 <
1349 < function FF_UsesDirectionalAtoms() result(doesit)
1350 <   logical :: doesit
1351 <   doesit = FF_uses_dipoles .or. FF_uses_sticky .or. &
1352 <        FF_uses_GB .or. FF_uses_RF
1353 < end function FF_UsesDirectionalAtoms
1354 <
1355 < function FF_RequiresPrepairCalc() result(doesit)
1356 <   logical :: doesit
1357 <   doesit = FF_uses_EAM
1358 < end function FF_RequiresPrepairCalc
1359 <
1360 < function FF_RequiresPostpairCalc() result(doesit)
1361 <   logical :: doesit
1362 <   doesit = FF_uses_RF
1363 < end function FF_RequiresPostpairCalc
1151 <
1329 >
1330 >    !! the rest of these situations can happen in all simulations:
1331 >    do i = 1, nExcludes_global      
1332 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1333 >            (excludesGlobal(i) == unique_id_2)) then
1334 >          skip_it = .true.
1335 >          return
1336 >       endif
1337 >    enddo
1338 >
1339 >    do i = 1, nSkipsForAtom(atom1)
1340 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1341 >          skip_it = .true.
1342 >          return
1343 >       endif
1344 >    end do
1345 >
1346 >    return
1347 >  end function skipThisPair
1348 >
1349 >  function FF_UsesDirectionalAtoms() result(doesit)
1350 >    logical :: doesit
1351 >    doesit = FF_uses_DirectionalAtoms
1352 >  end function FF_UsesDirectionalAtoms
1353 >
1354 >  function FF_RequiresPrepairCalc() result(doesit)
1355 >    logical :: doesit
1356 >    doesit = FF_uses_EAM
1357 >  end function FF_RequiresPrepairCalc
1358 >
1359 >  function FF_RequiresPostpairCalc() result(doesit)
1360 >    logical :: doesit
1361 >    doesit = FF_uses_RF
1362 >  end function FF_RequiresPostpairCalc
1363 >
1364   #ifdef PROFILE
1365 < function getforcetime() result(totalforcetime)
1366 <   real(kind=dp) :: totalforcetime
1367 <   totalforcetime = forcetime
1368 < end function getforcetime
1365 >  function getforcetime() result(totalforcetime)
1366 >    real(kind=dp) :: totalforcetime
1367 >    totalforcetime = forcetime
1368 >  end function getforcetime
1369   #endif
1158
1159 !! This cleans componets of force arrays belonging only to fortran
1370  
1371 < subroutine add_stress_tensor(dpair, fpair)
1162 <  
1163 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1164 <  
1165 <   ! because the d vector is the rj - ri vector, and
1166 <   ! because fx, fy, fz are the force on atom i, we need a
1167 <   ! negative sign here:  
1168 <  
1169 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1170 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1171 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1172 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1173 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1174 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1175 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1176 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1177 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1178 <  
1179 <   virial_Temp = virial_Temp + &
1180 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1181 <  
1182 < end subroutine add_stress_tensor
1183 <
1184 < end module doForces
1371 >  !! This cleans componets of force arrays belonging only to fortran
1372  
1373 < !! Interfaces for C programs to module....
1373 >  subroutine add_stress_tensor(dpair, fpair)
1374  
1375 < subroutine initFortranFF(LJMIXPOLICY, use_RF_c, thisStat)
1189 <    use doForces, ONLY: init_FF
1190 <    integer, intent(in) :: LJMIXPOLICY
1191 <    logical, intent(in) :: use_RF_c
1375 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1376  
1377 <    integer, intent(out) :: thisStat  
1378 <    call init_FF(LJMIXPOLICY, use_RF_c, thisStat)
1377 >    ! because the d vector is the rj - ri vector, and
1378 >    ! because fx, fy, fz are the force on atom i, we need a
1379 >    ! negative sign here:  
1380  
1381 < end subroutine initFortranFF
1381 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1382 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1383 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1384 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1385 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1386 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1387 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1388 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1389 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1390  
1391 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1392 <       do_pot_c, do_stress_c, error)
1200 <      
1201 <       use definitions, ONLY: dp
1202 <       use simulation
1203 <       use doForces, ONLY: do_force_loop
1204 <    !! Position array provided by C, dimensioned by getNlocal
1205 <    real ( kind = dp ), dimension(3, nLocal) :: q
1206 <    !! molecular center-of-mass position array
1207 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1208 <    !! Rotation Matrix for each long range particle in simulation.
1209 <    real( kind = dp), dimension(9, nLocal) :: A    
1210 <    !! Unit vectors for dipoles (lab frame)
1211 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1212 <    !! Force array provided by C, dimensioned by getNlocal
1213 <    real ( kind = dp ), dimension(3,nLocal) :: f
1214 <    !! Torsion array provided by C, dimensioned by getNlocal
1215 <    real( kind = dp ), dimension(3,nLocal) :: t    
1391 >    virial_Temp = virial_Temp + &
1392 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1393  
1394 <    !! Stress Tensor
1395 <    real( kind = dp), dimension(9) :: tau  
1396 <    real ( kind = dp ) :: pot
1220 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1221 <    integer :: error
1222 <    
1223 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1224 <       do_pot_c, do_stress_c, error)
1225 <      
1226 < end subroutine doForceloop
1394 >  end subroutine add_stress_tensor
1395 >
1396 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines