ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1650 by gezelter, Tue Oct 26 22:24:52 2004 UTC vs.
Revision 2288 by chuckv, Wed Sep 7 22:44:48 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.5 2004-10-26 22:24:44 gezelter Exp $, $Date: 2004-10-26 22:24:44 $, $Name: not supported by cvs2svn $, $Revision: 1.5 $
48 > !! @version $Id: doForces.F90,v 1.40 2005-09-07 22:44:48 chuckv Exp $, $Date: 2005-09-07 22:44:48 $, $Name: not supported by cvs2svn $, $Revision: 1.40 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
19 <  use charge_charge
59 >  use sticky
60 >  use electrostatic_module
61    use reaction_field
62    use gb_pair
63    use shapes
# Line 32 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
39  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveRlist = .false.
89 >
90    logical, save :: FF_uses_DirectionalAtoms
91 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
91 >  logical, save :: FF_uses_Dipoles
92    logical, save :: FF_uses_GayBerne
93    logical, save :: FF_uses_EAM
53  logical, save :: FF_uses_Shapes
54  logical, save :: FF_uses_FLARB
94    logical, save :: FF_uses_RF
95  
96    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
97    logical, save :: SIM_uses_EAM
65  logical, save :: SIM_uses_Shapes
66  logical, save :: SIM_uses_FLARB
98    logical, save :: SIM_uses_RF
99    logical, save :: SIM_requires_postpair_calc
100    logical, save :: SIM_requires_prepair_calc
101    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
102  
103 <  real(kind=dp), save :: rlist, rlistsq
103 >  integer, save :: corrMethod
104  
105    public :: init_FF
106 +  public :: setDefaultCutoffs
107    public :: do_force_loop
108 <  public :: setRlistDF
108 >  public :: createInteractionHash
109 >  public :: createGtypeCutoffMap
110 >  public :: getStickyCut
111 >  public :: getStickyPowerCut
112 >  public :: getGayBerneCut
113 >  public :: getEAMCut
114 >  public :: getShapeCut
115  
116   #ifdef PROFILE
117    public :: getforcetime
# Line 82 | Line 119 | module doForces
119    real :: forceTimeInitial, forceTimeFinal
120    integer :: nLoops
121   #endif
122 +  
123 +  !! Variables for cutoff mapping and interaction mapping
124 +  ! Bit hash to determine pair-pair interactions.
125 +  integer, dimension(:,:), allocatable :: InteractionHash
126 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
127 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
128 +  integer, dimension(:), allocatable :: groupToGtype
129 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
130 +  type ::gtypeCutoffs
131 +     real(kind=dp) :: rcut
132 +     real(kind=dp) :: rcutsq
133 +     real(kind=dp) :: rlistsq
134 +  end type gtypeCutoffs
135 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
136  
137 <  type :: Properties
138 <     logical :: is_Directional   = .false.
139 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
98 <
99 <  type(Properties), dimension(:),allocatable :: PropertyMap
100 <
137 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
138 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
139 >  
140   contains
141  
142 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
142 >  subroutine createInteractionHash(status)
143      integer :: nAtypes
144 <    integer :: status
144 >    integer, intent(out) :: status
145      integer :: i
146 <    logical :: thisProperty
147 <    real (kind=DP) :: thisDPproperty
146 >    integer :: j
147 >    integer :: iHash
148 >    !! Test Types
149 >    logical :: i_is_LJ
150 >    logical :: i_is_Elect
151 >    logical :: i_is_Sticky
152 >    logical :: i_is_StickyP
153 >    logical :: i_is_GB
154 >    logical :: i_is_EAM
155 >    logical :: i_is_Shape
156 >    logical :: j_is_LJ
157 >    logical :: j_is_Elect
158 >    logical :: j_is_Sticky
159 >    logical :: j_is_StickyP
160 >    logical :: j_is_GB
161 >    logical :: j_is_EAM
162 >    logical :: j_is_Shape
163 >    real(kind=dp) :: myRcut
164  
165 <    status = 0
165 >    status = 0  
166  
167 +    if (.not. associated(atypes)) then
168 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
169 +       status = -1
170 +       return
171 +    endif
172 +    
173      nAtypes = getSize(atypes)
174 <
174 >    
175      if (nAtypes == 0) then
176         status = -1
177         return
178      end if
179 <        
180 <    if (.not. allocated(PropertyMap)) then
181 <       allocate(PropertyMap(nAtypes))
179 >
180 >    if (.not. allocated(InteractionHash)) then
181 >       allocate(InteractionHash(nAtypes,nAtypes))
182      endif
183  
184 +    if (.not. allocated(atypeMaxCutoff)) then
185 +       allocate(atypeMaxCutoff(nAtypes))
186 +    endif
187 +        
188      do i = 1, nAtypes
189 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
190 <       PropertyMap(i)%is_Directional = thisProperty
189 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
190 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
191 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
192 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
193 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
194 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
195 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
196  
197 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
197 >       do j = i, nAtypes
198  
199 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
200 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
199 >          iHash = 0
200 >          myRcut = 0.0_dp
201  
202 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
203 <       PropertyMap(i)%is_Sticky = thisProperty
202 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
203 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
204 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
205 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
206 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
207 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
208 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
209  
210 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
211 <       PropertyMap(i)%is_GayBerne = thisProperty
210 >          if (i_is_LJ .and. j_is_LJ) then
211 >             iHash = ior(iHash, LJ_PAIR)            
212 >          endif
213 >          
214 >          if (i_is_Elect .and. j_is_Elect) then
215 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
216 >          endif
217 >          
218 >          if (i_is_Sticky .and. j_is_Sticky) then
219 >             iHash = ior(iHash, STICKY_PAIR)
220 >          endif
221  
222 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
223 <       PropertyMap(i)%is_EAM = thisProperty
222 >          if (i_is_StickyP .and. j_is_StickyP) then
223 >             iHash = ior(iHash, STICKYPOWER_PAIR)
224 >          endif
225  
226 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
227 <       PropertyMap(i)%is_Shape = thisProperty
226 >          if (i_is_EAM .and. j_is_EAM) then
227 >             iHash = ior(iHash, EAM_PAIR)
228 >          endif
229  
230 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
231 <       PropertyMap(i)%is_FLARB = thisProperty
230 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
231 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
232 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
233 >
234 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
235 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
236 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
237 >
238 >
239 >          InteractionHash(i,j) = iHash
240 >          InteractionHash(j,i) = iHash
241 >
242 >       end do
243 >
244      end do
245  
246 <    havePropertyMap = .true.
246 >    haveInteractionHash = .true.
247 >  end subroutine createInteractionHash
248  
249 <  end subroutine createPropertyMap
249 >  subroutine createGtypeCutoffMap(stat)
250 >
251 >    integer, intent(out), optional :: stat
252 >    logical :: i_is_LJ
253 >    logical :: i_is_Elect
254 >    logical :: i_is_Sticky
255 >    logical :: i_is_StickyP
256 >    logical :: i_is_GB
257 >    logical :: i_is_EAM
258 >    logical :: i_is_Shape
259 >    logical :: GtypeFound
260 >
261 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
262 >    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
263 >    integer :: nGroupsInRow
264 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
265 >    real(kind=dp) :: biggestAtypeCutoff
266 >
267 >    stat = 0
268 >    if (.not. haveInteractionHash) then
269 >       call createInteractionHash(myStatus)      
270 >       if (myStatus .ne. 0) then
271 >          write(default_error, *) 'createInteractionHash failed in doForces!'
272 >          stat = -1
273 >          return
274 >       endif
275 >    endif
276 > #ifdef IS_MPI
277 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
278 > #endif
279 >    nAtypes = getSize(atypes)
280 >    
281 >    do i = 1, nAtypes
282 >       if (SimHasAtype(i)) then    
283 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
284 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
285 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
286 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
287 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
288 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
289 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
290 >          
291 >          atypeMaxCutoff(i) = 0.0_dp
292 >          if (i_is_LJ) then
293 >             thisRcut = getSigma(i) * 2.5_dp
294 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
295 >          endif
296 >          if (i_is_Elect) then
297 >             thisRcut = defaultRcut
298 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
299 >          endif
300 >          if (i_is_Sticky) then
301 >             thisRcut = getStickyCut(i)
302 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
303 >          endif
304 >          if (i_is_StickyP) then
305 >             thisRcut = getStickyPowerCut(i)
306 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
307 >          endif
308 >          if (i_is_GB) then
309 >             thisRcut = getGayBerneCut(i)
310 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
311 >          endif
312 >          if (i_is_EAM) then
313 >             thisRcut = getEAMCut(i)
314 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
315 >          endif
316 >          if (i_is_Shape) then
317 >             thisRcut = getShapeCut(i)
318 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
319 >          endif
320 >          
321 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
322 >             biggestAtypeCutoff = atypeMaxCutoff(i)
323 >          endif
324 >       endif
325 >    enddo
326 >  
327 >    nGroupTypes = 0
328 >    
329 >    istart = 1
330 > #ifdef IS_MPI
331 >    iend = nGroupsInRow
332 > #else
333 >    iend = nGroups
334 > #endif
335 >    
336 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
337 >    if(.not.allocated(groupToGtype)) then
338 >       allocate(groupToGtype(iend))
339 >       allocate(groupMaxCutoff(iend))
340 >       allocate(gtypeMaxCutoff(iend))
341 >    endif
342 >    !! first we do a single loop over the cutoff groups to find the
343 >    !! largest cutoff for any atypes present in this group.  We also
344 >    !! create gtypes at this point.
345 >    
346 >    tol = 1.0d-6
347 >    
348 >    do i = istart, iend      
349 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
350 >       groupMaxCutoff(i) = 0.0_dp
351 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
352 >          atom1 = groupListRow(ia)
353 > #ifdef IS_MPI
354 >          me_i = atid_row(atom1)
355 > #else
356 >          me_i = atid(atom1)
357 > #endif          
358 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
359 >             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
360 >          endif          
361 >       enddo
362 >
363 >       if (nGroupTypes.eq.0) then
364 >          nGroupTypes = nGroupTypes + 1
365 >          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
366 >          groupToGtype(i) = nGroupTypes
367 >       else
368 >          GtypeFound = .false.
369 >          do g = 1, nGroupTypes
370 >             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).lt.tol) then
371 >                groupToGtype(i) = g
372 >                GtypeFound = .true.
373 >             endif
374 >          enddo
375 >          if (.not.GtypeFound) then            
376 >             nGroupTypes = nGroupTypes + 1
377 >             gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
378 >             groupToGtype(i) = nGroupTypes
379 >          endif
380 >       endif
381 >    enddo    
382 >
383 >    !! allocate the gtypeCutoffMap here.
384 >    allocate(gtypeCutoffMap(nGroupTypes,nGroupTypes))
385 >    !! then we do a double loop over all the group TYPES to find the cutoff
386 >    !! map between groups of two types
387 >    
388 >    do i = 1, nGroupTypes
389 >       do j = 1, nGroupTypes
390 >      
391 >          select case(cutoffPolicy)
392 >          case(TRADITIONAL_CUTOFF_POLICY)
393 >             thisRcut = maxval(gtypeMaxCutoff)
394 >          case(MIX_CUTOFF_POLICY)
395 >             thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
396 >          case(MAX_CUTOFF_POLICY)
397 >             thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
398 >          case default
399 >             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
400 >             return
401 >          end select
402 >          gtypeCutoffMap(i,j)%rcut = thisRcut
403 >          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
404 >          skin = defaultRlist - defaultRcut
405 >          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
406  
407 +       enddo
408 +    enddo
409 +    
410 +    haveGtypeCutoffMap = .true.
411 +    
412 +  end subroutine createGtypeCutoffMap
413 +  
414 +  subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
415 +    real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
416 +    integer, intent(in) :: cutPolicy
417 +    
418 +    defaultRcut = defRcut
419 +    defaultRsw = defRsw
420 +    defaultRlist = defRlist
421 +    cutoffPolicy = cutPolicy
422 +  end subroutine setDefaultCutoffs
423 +  
424 +  subroutine setCutoffPolicy(cutPolicy)
425 +
426 +     integer, intent(in) :: cutPolicy
427 +     cutoffPolicy = cutPolicy
428 +     call createGtypeCutoffMap()
429 +
430 +   end subroutine setCutoffPolicy
431 +    
432 +    
433    subroutine setSimVariables()
434      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
435      SIM_uses_EAM = SimUsesEAM()
179    SIM_uses_Shapes = SimUsesShapes()
180    SIM_uses_FLARB = SimUsesFLARB()
436      SIM_uses_RF = SimUsesRF()
437      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
438      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
# Line 194 | Line 449 | contains
449      integer :: myStatus
450  
451      error = 0
197    
198    if (.not. havePropertyMap) then
452  
453 <       myStatus = 0
453 >    if (.not. haveInteractionHash) then      
454 >       myStatus = 0      
455 >       call createInteractionHash(myStatus)      
456 >       if (myStatus .ne. 0) then
457 >          write(default_error, *) 'createInteractionHash failed in doForces!'
458 >          error = -1
459 >          return
460 >       endif
461 >    endif
462  
463 <       call createPropertyMap(myStatus)
464 <
463 >    if (.not. haveGtypeCutoffMap) then        
464 >       myStatus = 0      
465 >       call createGtypeCutoffMap(myStatus)      
466         if (myStatus .ne. 0) then
467 <          write(default_error, *) 'createPropertyMap failed in doForces!'
467 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
468            error = -1
469            return
470         endif
# Line 212 | Line 474 | contains
474         call setSimVariables()
475      endif
476  
477 <    if (.not. haveRlist) then
478 <       write(default_error, *) 'rList has not been set in doForces!'
479 <       error = -1
480 <       return
481 <    endif
477 >  !  if (.not. haveRlist) then
478 >  !     write(default_error, *) 'rList has not been set in doForces!'
479 >  !     error = -1
480 >  !     return
481 >  !  endif
482  
483      if (.not. haveNeighborList) then
484         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 239 | Line 501 | contains
501   #endif
502      return
503    end subroutine doReadyCheck
242    
504  
244  subroutine init_FF(use_RF_c, thisStat)
505  
506 <    logical, intent(in) :: use_RF_c
506 >  subroutine init_FF(use_RF, use_UW, use_DW, thisStat)
507  
508 +    logical, intent(in) :: use_RF
509 +    logical, intent(in) :: use_UW
510 +    logical, intent(in) :: use_DW
511      integer, intent(out) :: thisStat  
512      integer :: my_status, nMatches
513 +    integer :: corrMethod
514      integer, pointer :: MatchList(:) => null()
515      real(kind=dp) :: rcut, rrf, rt, dielect
516  
# Line 254 | Line 518 | contains
518      thisStat = 0
519  
520      !! Fortran's version of a cast:
521 <    FF_uses_RF = use_RF_c
521 >    FF_uses_RF = use_RF
522 >
523 >    !! set the electrostatic correction method
524 >    if (use_UW) then
525 >       corrMethod = 1
526 >    elseif (use_DW) then
527 >       corrMethod = 2
528 >    else
529 >       corrMethod = 0
530 >    endif
531      
532      !! init_FF is called *after* all of the atom types have been
533      !! defined in atype_module using the new_atype subroutine.
534      !!
535      !! this will scan through the known atypes and figure out what
536      !! interactions are used by the force field.    
537 <  
537 >
538      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
539      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
540      FF_uses_GayBerne = .false.
541      FF_uses_EAM = .false.
542 <    FF_uses_Shapes = .false.
274 <    FF_uses_FLARB = .false.
275 <    
542 >
543      call getMatchingElementList(atypes, "is_Directional", .true., &
544           nMatches, MatchList)
545      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
546  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
547      call getMatchingElementList(atypes, "is_Dipole", .true., &
548           nMatches, MatchList)
549 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
549 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
550      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
551      call getMatchingElementList(atypes, "is_GayBerne", .true., &
552           nMatches, MatchList)
553 <    if (nMatches .gt. 0) then
554 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
553 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
554 >
555      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
556      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
557  
329    call getMatchingElementList(atypes, "is_FLARB", .true., &
330         nMatches, MatchList)
331    if (nMatches .gt. 0) FF_uses_FLARB = .true.
558  
333    !! Assume sanity (for the sake of argument)
559      haveSaneForceField = .true.
560 <    
560 >
561      !! check to make sure the FF_uses_RF setting makes sense
562 <    
563 <    if (FF_uses_dipoles) then
562 >
563 >    if (FF_uses_Dipoles) then
564         if (FF_uses_RF) then
565            dielect = getDielect()
566            call initialize_rf(dielect)
# Line 347 | Line 572 | contains
572            haveSaneForceField = .false.
573            return
574         endif
350    endif
351
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
575      endif
576  
577      if (FF_uses_EAM) then
578 <         call init_EAM_FF(my_status)
578 >       call init_EAM_FF(my_status)
579         if (my_status /= 0) then
580            write(default_error, *) "init_EAM_FF returned a bad status"
581            thisStat = -1
# Line 377 | Line 593 | contains
593         endif
594      endif
595  
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
596      if (.not. haveNeighborList) then
597         !! Create neighbor lists
598         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 602 | contains
602            return
603         endif
604         haveNeighborList = .true.
605 <    endif    
606 <    
605 >    endif
606 >
607    end subroutine init_FF
395  
608  
609 +
610    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
611    !------------------------------------------------------------->
612 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
612 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
613         do_pot_c, do_stress_c, error)
614      !! Position array provided by C, dimensioned by getNlocal
615      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 618 | contains
618      !! Rotation Matrix for each long range particle in simulation.
619      real( kind = dp), dimension(9, nLocal) :: A    
620      !! Unit vectors for dipoles (lab frame)
621 <    real( kind = dp ), dimension(3,nLocal) :: u_l
621 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
622      !! Force array provided by C, dimensioned by getNlocal
623      real ( kind = dp ), dimension(3,nLocal) :: f
624      !! Torsion array provided by C, dimensioned by getNlocal
# Line 443 | Line 656 | contains
656      integer :: localError
657      integer :: propPack_i, propPack_j
658      integer :: loopStart, loopEnd, loop
659 <
659 >    integer :: iHash
660      real(kind=dp) :: listSkin = 1.0  
661 <    
661 >
662      !! initialize local variables  
663 <    
663 >
664   #ifdef IS_MPI
665      pot_local = 0.0_dp
666      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 670 | contains
670   #else
671      natoms = nlocal
672   #endif
673 <    
673 >
674      call doReadyCheck(localError)
675      if ( localError .ne. 0 ) then
676         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 678 | contains
678         return
679      end if
680      call zero_work_arrays()
681 <        
681 >
682      do_pot = do_pot_c
683      do_stress = do_stress_c
684 <    
684 >
685      ! Gather all information needed by all force loops:
686 <    
686 >
687   #ifdef IS_MPI    
688 <    
688 >
689      call gather(q, q_Row, plan_atom_row_3d)
690      call gather(q, q_Col, plan_atom_col_3d)
691  
692      call gather(q_group, q_group_Row, plan_group_row_3d)
693      call gather(q_group, q_group_Col, plan_group_col_3d)
694 <        
694 >
695      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
696 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
697 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
698 <      
696 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
697 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
698 >
699         call gather(A, A_Row, plan_atom_row_rotation)
700         call gather(A, A_Col, plan_atom_col_rotation)
701      endif
702 <    
702 >
703   #endif
704 <    
704 >
705      !! Begin force loop timing:
706   #ifdef PROFILE
707      call cpu_time(forceTimeInitial)
708      nloops = nloops + 1
709   #endif
710 <    
710 >
711      loopEnd = PAIR_LOOP
712      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
713         loopStart = PREPAIR_LOOP
# Line 509 | Line 722 | contains
722         if (loop .eq. loopStart) then
723   #ifdef IS_MPI
724            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
725 <             update_nlist)
725 >               update_nlist)
726   #else
727            call checkNeighborList(nGroups, q_group, listSkin, &
728 <             update_nlist)
728 >               update_nlist)
729   #endif
730         endif
731 <      
731 >
732         if (update_nlist) then
733            !! save current configuration and construct neighbor list
734   #ifdef IS_MPI
# Line 526 | Line 739 | contains
739            neighborListSize = size(list)
740            nlist = 0
741         endif
742 <      
742 >
743         istart = 1
744   #ifdef IS_MPI
745         iend = nGroupsInRow
# Line 536 | Line 749 | contains
749         outer: do i = istart, iend
750  
751            if (update_nlist) point(i) = nlist + 1
752 <          
752 >
753            n_in_i = groupStartRow(i+1) - groupStartRow(i)
754 <          
754 >
755            if (update_nlist) then
756   #ifdef IS_MPI
757               jstart = 1
# Line 553 | Line 766 | contains
766               ! make sure group i has neighbors
767               if (jstart .gt. jend) cycle outer
768            endif
769 <          
769 >
770            do jnab = jstart, jend
771               if (update_nlist) then
772                  j = jnab
# Line 562 | Line 775 | contains
775               endif
776  
777   #ifdef IS_MPI
778 +             me_j = atid_col(j)
779               call get_interatomic_vector(q_group_Row(:,i), &
780                    q_group_Col(:,j), d_grp, rgrpsq)
781   #else
782 +             me_j = atid(j)
783               call get_interatomic_vector(q_group(:,i), &
784                    q_group(:,j), d_grp, rgrpsq)
785   #endif
786  
787 <             if (rgrpsq < rlistsq) then
787 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
788                  if (update_nlist) then
789                     nlist = nlist + 1
790 <                  
790 >
791                     if (nlist > neighborListSize) then
792   #ifdef IS_MPI                
793                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 801 | contains
801                        end if
802                        neighborListSize = size(list)
803                     endif
804 <                  
804 >
805                     list(nlist) = j
806                  endif
807 <                
807 >
808                  if (loop .eq. PAIR_LOOP) then
809                     vij = 0.0d0
810                     fij(1:3) = 0.0d0
811                  endif
812 <                
812 >
813                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
814                       in_switching_region)
815 <                
815 >
816                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
817 <                
817 >
818                  do ia = groupStartRow(i), groupStartRow(i+1)-1
819 <                  
819 >
820                     atom1 = groupListRow(ia)
821 <                  
821 >
822                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
823 <                      
823 >
824                        atom2 = groupListCol(jb)
825 <                      
825 >
826                        if (skipThisPair(atom1, atom2)) cycle inner
827  
828                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 627 | Line 842 | contains
842   #ifdef IS_MPI                      
843                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
844                                rgrpsq, d_grp, do_pot, do_stress, &
845 <                              u_l, A, f, t, pot_local)
845 >                              eFrame, A, f, t, pot_local)
846   #else
847                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
848                                rgrpsq, d_grp, do_pot, do_stress, &
849 <                              u_l, A, f, t, pot)
849 >                              eFrame, A, f, t, pot)
850   #endif                                              
851                        else
852   #ifdef IS_MPI                      
853                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
854                                do_pot, &
855 <                              u_l, A, f, t, pot_local, vpair, fpair)
855 >                              eFrame, A, f, t, pot_local, vpair, fpair)
856   #else
857                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
858                                do_pot,  &
859 <                              u_l, A, f, t, pot, vpair, fpair)
859 >                              eFrame, A, f, t, pot, vpair, fpair)
860   #endif
861  
862                           vij = vij + vpair
# Line 649 | Line 864 | contains
864                        endif
865                     enddo inner
866                  enddo
867 <                
867 >
868                  if (loop .eq. PAIR_LOOP) then
869                     if (in_switching_region) then
870                        swderiv = vij*dswdr/rgrp
871                        fij(1) = fij(1) + swderiv*d_grp(1)
872                        fij(2) = fij(2) + swderiv*d_grp(2)
873                        fij(3) = fij(3) + swderiv*d_grp(3)
874 <                      
874 >
875                        do ia=groupStartRow(i), groupStartRow(i+1)-1
876                           atom1=groupListRow(ia)
877                           mf = mfactRow(atom1)
# Line 670 | Line 885 | contains
885                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
886   #endif
887                        enddo
888 <                      
888 >
889                        do jb=groupStartCol(j), groupStartCol(j+1)-1
890                           atom2=groupListCol(jb)
891                           mf = mfactCol(atom2)
# Line 685 | Line 900 | contains
900   #endif
901                        enddo
902                     endif
903 <                  
903 >
904                     if (do_stress) call add_stress_tensor(d_grp, fij)
905                  endif
906               end if
907            enddo
908         enddo outer
909 <      
909 >
910         if (update_nlist) then
911   #ifdef IS_MPI
912            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 920 | contains
920               update_nlist = .false.                              
921            endif
922         endif
923 <            
923 >
924         if (loop .eq. PREPAIR_LOOP) then
925            call do_preforce(nlocal, pot)
926         endif
927 <      
927 >
928      enddo
929 <    
929 >
930      !! Do timing
931   #ifdef PROFILE
932      call cpu_time(forceTimeFinal)
933      forceTime = forceTime + forceTimeFinal - forceTimeInitial
934   #endif    
935 <    
935 >
936   #ifdef IS_MPI
937      !!distribute forces
938 <    
938 >
939      f_temp = 0.0_dp
940      call scatter(f_Row,f_temp,plan_atom_row_3d)
941      do i = 1,nlocal
942         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
943      end do
944 <    
944 >
945      f_temp = 0.0_dp
946      call scatter(f_Col,f_temp,plan_atom_col_3d)
947      do i = 1,nlocal
948         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
949      end do
950 <    
950 >
951      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
952         t_temp = 0.0_dp
953         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 956 | contains
956         end do
957         t_temp = 0.0_dp
958         call scatter(t_Col,t_temp,plan_atom_col_3d)
959 <      
959 >
960         do i = 1,nlocal
961            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
962         end do
963      endif
964 <    
964 >
965      if (do_pot) then
966         ! scatter/gather pot_row into the members of my column
967         call scatter(pot_Row, pot_Temp, plan_atom_row)
968 <      
968 >
969         ! scatter/gather pot_local into all other procs
970         ! add resultant to get total pot
971         do i = 1, nlocal
972            pot_local = pot_local + pot_Temp(i)
973         enddo
974 <      
974 >
975         pot_Temp = 0.0_DP
976 <      
976 >
977         call scatter(pot_Col, pot_Temp, plan_atom_col)
978         do i = 1, nlocal
979            pot_local = pot_local + pot_Temp(i)
980         enddo
981 <      
981 >
982      endif
983   #endif
984 <    
984 >
985      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
986 <      
986 >
987         if (FF_uses_RF .and. SIM_uses_RF) then
988 <          
988 >
989   #ifdef IS_MPI
990            call scatter(rf_Row,rf,plan_atom_row_3d)
991            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 778 | Line 993 | contains
993               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
994            end do
995   #endif
996 <          
996 >
997            do i = 1, nLocal
998 <            
998 >
999               rfpot = 0.0_DP
1000   #ifdef IS_MPI
1001               me_i = atid_row(i)
1002   #else
1003               me_i = atid(i)
1004   #endif
1005 +             iHash = InteractionHash(me_i,me_j)
1006              
1007 <             if (PropertyMap(me_i)%is_Dipole) then
1008 <                
1007 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1008 >
1009                  mu_i = getDipoleMoment(me_i)
1010 <                
1010 >
1011                  !! The reaction field needs to include a self contribution
1012                  !! to the field:
1013 <                call accumulate_self_rf(i, mu_i, u_l)
1013 >                call accumulate_self_rf(i, mu_i, eFrame)
1014                  !! Get the reaction field contribution to the
1015                  !! potential and torques:
1016 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1016 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1017   #ifdef IS_MPI
1018                  pot_local = pot_local + rfpot
1019   #else
1020                  pot = pot + rfpot
1021 <      
1021 >
1022   #endif
1023 <             endif            
1023 >             endif
1024            enddo
1025         endif
1026      endif
1027 <    
1028 <    
1027 >
1028 >
1029   #ifdef IS_MPI
1030 <    
1030 >
1031      if (do_pot) then
1032         pot = pot + pot_local
1033         !! we assume the c code will do the allreduce to get the total potential
1034         !! we could do it right here if we needed to...
1035      endif
1036 <    
1036 >
1037      if (do_stress) then
1038         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1039              mpi_comm_world,mpi_err)
1040         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1041              mpi_comm_world,mpi_err)
1042      endif
1043 <    
1043 >
1044   #else
1045 <    
1045 >
1046      if (do_stress) then
1047         tau = tau_Temp
1048         virial = virial_Temp
1049      endif
1050 <    
1050 >
1051   #endif
1052 <      
1052 >
1053    end subroutine do_force_loop
1054 <  
1054 >
1055    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1056 <       u_l, A, f, t, pot, vpair, fpair)
1056 >       eFrame, A, f, t, pot, vpair, fpair)
1057  
1058      real( kind = dp ) :: pot, vpair, sw
1059      real( kind = dp ), dimension(3) :: fpair
1060      real( kind = dp ), dimension(nLocal)   :: mfact
1061 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1061 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1062      real( kind = dp ), dimension(9,nLocal) :: A
1063      real( kind = dp ), dimension(3,nLocal) :: f
1064      real( kind = dp ), dimension(3,nLocal) :: t
# Line 852 | Line 1068 | contains
1068      real ( kind = dp ), intent(inout) :: rijsq
1069      real ( kind = dp )                :: r
1070      real ( kind = dp ), intent(inout) :: d(3)
1071 +    real ( kind = dp ) :: ebalance
1072      integer :: me_i, me_j
1073  
1074 +    integer :: iHash
1075 +
1076      r = sqrt(rijsq)
1077      vpair = 0.0d0
1078      fpair(1:3) = 0.0d0
# Line 865 | Line 1084 | contains
1084      me_i = atid(i)
1085      me_j = atid(j)
1086   #endif
868    
869    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
870      
871       if ( PropertyMap(me_i)%is_LennardJones .and. &
872            PropertyMap(me_j)%is_LennardJones ) then
873          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
874       endif
875      
876    endif
877    
878    if (FF_uses_charges .and. SIM_uses_charges) then
879      
880       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
881          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
882               pot, f, do_pot)
883       endif
884      
885    endif
886    
887    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
888      
889       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
890          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
891               pot, u_l, f, t, do_pot)
892          if (FF_uses_RF .and. SIM_uses_RF) then
893             call accumulate_rf(i, j, r, u_l, sw)
894             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
895          endif
896       endif
1087  
1088 +    iHash = InteractionHash(me_i, me_j)
1089 +
1090 +    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1091 +       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1092      endif
1093  
1094 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1094 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1095 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1096 >            pot, eFrame, f, t, do_pot, corrMethod)
1097  
1098 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1099 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1100 <               pot, A, f, t, do_pot)
1098 >       if (FF_uses_RF .and. SIM_uses_RF) then
1099 >
1100 >          ! CHECK ME (RF needs to know about all electrostatic types)
1101 >          call accumulate_rf(i, j, r, eFrame, sw)
1102 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1103         endif
1104 <      
1104 >
1105      endif
1106  
1107 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1108 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1109 +            pot, A, f, t, do_pot)
1110 +    endif
1111  
1112 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1113 <      
1114 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
913 <            PropertyMap(me_j)%is_GayBerne) then
914 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
915 <               pot, u_l, f, t, do_pot)
916 <       endif
917 <      
1112 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1113 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1114 >            pot, A, f, t, do_pot)
1115      endif
1116 +
1117 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1118 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1119 +            pot, A, f, t, do_pot)
1120 +    endif
1121      
1122 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1123 <      
1124 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
923 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
924 <               do_pot)
925 <       endif
926 <      
1122 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1123 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1124 > !           pot, A, f, t, do_pot)
1125      endif
1126  
1127 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1128 <      
1129 <       if ( PropertyMap(me_i)%is_Shape .and. &
932 <            PropertyMap(me_j)%is_Shape ) then
933 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
934 <               pot, A, f, t, do_pot)
935 <       endif
936 <      
1127 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1128 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1129 >            do_pot)
1130      endif
1131 +
1132 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1133 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1134 +            pot, A, f, t, do_pot)
1135 +    endif
1136 +
1137 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1138 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1139 +            pot, A, f, t, do_pot)
1140 +    endif
1141      
1142    end subroutine do_pair
1143  
1144    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1145 <       do_pot, do_stress, u_l, A, f, t, pot)
1145 >       do_pot, do_stress, eFrame, A, f, t, pot)
1146  
1147 <   real( kind = dp ) :: pot, sw
1148 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1149 <   real (kind=dp), dimension(9,nLocal) :: A
1150 <   real (kind=dp), dimension(3,nLocal) :: f
1151 <   real (kind=dp), dimension(3,nLocal) :: t
949 <  
950 <   logical, intent(inout) :: do_pot, do_stress
951 <   integer, intent(in) :: i, j
952 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
953 <   real ( kind = dp )                :: r, rc
954 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
955 <  
956 <   logical :: is_EAM_i, is_EAM_j
957 <  
958 <   integer :: me_i, me_j
959 <  
1147 >    real( kind = dp ) :: pot, sw
1148 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1149 >    real (kind=dp), dimension(9,nLocal) :: A
1150 >    real (kind=dp), dimension(3,nLocal) :: f
1151 >    real (kind=dp), dimension(3,nLocal) :: t
1152  
1153 <    r = sqrt(rijsq)
1154 <    if (SIM_uses_molecular_cutoffs) then
1155 <       rc = sqrt(rcijsq)
1156 <    else
1157 <       rc = r
966 <    endif
967 <  
1153 >    logical, intent(inout) :: do_pot, do_stress
1154 >    integer, intent(in) :: i, j
1155 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1156 >    real ( kind = dp )                :: r, rc
1157 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1158  
1159 +    integer :: me_i, me_j, iHash
1160 +
1161   #ifdef IS_MPI  
1162 <   me_i = atid_row(i)
1163 <   me_j = atid_col(j)  
1162 >    me_i = atid_row(i)
1163 >    me_j = atid_col(j)  
1164   #else  
1165 <   me_i = atid(i)
1166 <   me_j = atid(j)  
1165 >    me_i = atid(i)
1166 >    me_j = atid(j)  
1167   #endif
1168 <  
1169 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1170 <      
1171 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1172 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1173 <      
1174 <   endif
1175 <  
1176 < end subroutine do_prepair
1177 <
1178 <
1179 < subroutine do_preforce(nlocal,pot)
1180 <   integer :: nlocal
1181 <   real( kind = dp ) :: pot
1182 <  
1183 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1184 <      call calc_EAM_preforce_Frho(nlocal,pot)
1185 <   endif
1186 <  
1187 <  
1188 < end subroutine do_preforce
1189 <
1190 <
1191 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1192 <  
1193 <   real (kind = dp), dimension(3) :: q_i
1194 <   real (kind = dp), dimension(3) :: q_j
1195 <   real ( kind = dp ), intent(out) :: r_sq
1196 <   real( kind = dp ) :: d(3), scaled(3)
1197 <   integer i
1198 <  
1199 <   d(1:3) = q_j(1:3) - q_i(1:3)
1200 <  
1201 <   ! Wrap back into periodic box if necessary
1202 <   if ( SIM_uses_PBC ) then
1203 <      
1204 <      if( .not.boxIsOrthorhombic ) then
1205 <         ! calc the scaled coordinates.
1206 <        
1207 <         scaled = matmul(HmatInv, d)
1208 <        
1209 <         ! wrap the scaled coordinates
1210 <        
1211 <         scaled = scaled  - anint(scaled)
1212 <        
1213 <        
1214 <         ! calc the wrapped real coordinates from the wrapped scaled
1215 <         ! coordinates
1216 <        
1217 <         d = matmul(Hmat,scaled)
1218 <        
1219 <      else
1220 <         ! calc the scaled coordinates.
1221 <        
1222 <         do i = 1, 3
1223 <            scaled(i) = d(i) * HmatInv(i,i)
1224 <            
1225 <            ! wrap the scaled coordinates
1226 <            
1227 <            scaled(i) = scaled(i) - anint(scaled(i))
1228 <            
1229 <            ! calc the wrapped real coordinates from the wrapped scaled
1230 <            ! coordinates
1231 <            
1232 <            d(i) = scaled(i)*Hmat(i,i)
1233 <         enddo
1234 <      endif
1235 <      
1236 <   endif
1237 <  
1238 <   r_sq = dot_product(d,d)
1239 <  
1240 < end subroutine get_interatomic_vector
1241 <
1242 < subroutine zero_work_arrays()
1051 <  
1168 >
1169 >    iHash = InteractionHash(me_i, me_j)
1170 >
1171 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1172 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1173 >    endif
1174 >    
1175 >  end subroutine do_prepair
1176 >
1177 >
1178 >  subroutine do_preforce(nlocal,pot)
1179 >    integer :: nlocal
1180 >    real( kind = dp ) :: pot
1181 >
1182 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1183 >       call calc_EAM_preforce_Frho(nlocal,pot)
1184 >    endif
1185 >
1186 >
1187 >  end subroutine do_preforce
1188 >
1189 >
1190 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1191 >
1192 >    real (kind = dp), dimension(3) :: q_i
1193 >    real (kind = dp), dimension(3) :: q_j
1194 >    real ( kind = dp ), intent(out) :: r_sq
1195 >    real( kind = dp ) :: d(3), scaled(3)
1196 >    integer i
1197 >
1198 >    d(1:3) = q_j(1:3) - q_i(1:3)
1199 >
1200 >    ! Wrap back into periodic box if necessary
1201 >    if ( SIM_uses_PBC ) then
1202 >
1203 >       if( .not.boxIsOrthorhombic ) then
1204 >          ! calc the scaled coordinates.
1205 >
1206 >          scaled = matmul(HmatInv, d)
1207 >
1208 >          ! wrap the scaled coordinates
1209 >
1210 >          scaled = scaled  - anint(scaled)
1211 >
1212 >
1213 >          ! calc the wrapped real coordinates from the wrapped scaled
1214 >          ! coordinates
1215 >
1216 >          d = matmul(Hmat,scaled)
1217 >
1218 >       else
1219 >          ! calc the scaled coordinates.
1220 >
1221 >          do i = 1, 3
1222 >             scaled(i) = d(i) * HmatInv(i,i)
1223 >
1224 >             ! wrap the scaled coordinates
1225 >
1226 >             scaled(i) = scaled(i) - anint(scaled(i))
1227 >
1228 >             ! calc the wrapped real coordinates from the wrapped scaled
1229 >             ! coordinates
1230 >
1231 >             d(i) = scaled(i)*Hmat(i,i)
1232 >          enddo
1233 >       endif
1234 >
1235 >    endif
1236 >
1237 >    r_sq = dot_product(d,d)
1238 >
1239 >  end subroutine get_interatomic_vector
1240 >
1241 >  subroutine zero_work_arrays()
1242 >
1243   #ifdef IS_MPI
1053  
1054   q_Row = 0.0_dp
1055   q_Col = 0.0_dp
1244  
1245 <   q_group_Row = 0.0_dp
1246 <   q_group_Col = 0.0_dp  
1247 <  
1248 <   u_l_Row = 0.0_dp
1249 <   u_l_Col = 0.0_dp
1250 <  
1251 <   A_Row = 0.0_dp
1252 <   A_Col = 0.0_dp
1253 <  
1254 <   f_Row = 0.0_dp
1255 <   f_Col = 0.0_dp
1256 <   f_Temp = 0.0_dp
1257 <  
1258 <   t_Row = 0.0_dp
1259 <   t_Col = 0.0_dp
1260 <   t_Temp = 0.0_dp
1261 <  
1262 <   pot_Row = 0.0_dp
1263 <   pot_Col = 0.0_dp
1264 <   pot_Temp = 0.0_dp
1265 <  
1266 <   rf_Row = 0.0_dp
1267 <   rf_Col = 0.0_dp
1268 <   rf_Temp = 0.0_dp
1269 <  
1245 >    q_Row = 0.0_dp
1246 >    q_Col = 0.0_dp
1247 >
1248 >    q_group_Row = 0.0_dp
1249 >    q_group_Col = 0.0_dp  
1250 >
1251 >    eFrame_Row = 0.0_dp
1252 >    eFrame_Col = 0.0_dp
1253 >
1254 >    A_Row = 0.0_dp
1255 >    A_Col = 0.0_dp
1256 >
1257 >    f_Row = 0.0_dp
1258 >    f_Col = 0.0_dp
1259 >    f_Temp = 0.0_dp
1260 >
1261 >    t_Row = 0.0_dp
1262 >    t_Col = 0.0_dp
1263 >    t_Temp = 0.0_dp
1264 >
1265 >    pot_Row = 0.0_dp
1266 >    pot_Col = 0.0_dp
1267 >    pot_Temp = 0.0_dp
1268 >
1269 >    rf_Row = 0.0_dp
1270 >    rf_Col = 0.0_dp
1271 >    rf_Temp = 0.0_dp
1272 >
1273   #endif
1274 <
1275 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1276 <      call clean_EAM()
1277 <   endif
1278 <  
1279 <   rf = 0.0_dp
1280 <   tau_Temp = 0.0_dp
1281 <   virial_Temp = 0.0_dp
1282 < end subroutine zero_work_arrays
1283 <
1284 < function skipThisPair(atom1, atom2) result(skip_it)
1285 <   integer, intent(in) :: atom1
1286 <   integer, intent(in), optional :: atom2
1287 <   logical :: skip_it
1288 <   integer :: unique_id_1, unique_id_2
1289 <   integer :: me_i,me_j
1290 <   integer :: i
1291 <  
1292 <   skip_it = .false.
1293 <  
1294 <   !! there are a number of reasons to skip a pair or a particle
1295 <   !! mostly we do this to exclude atoms who are involved in short
1296 <   !! range interactions (bonds, bends, torsions), but we also need
1297 <   !! to exclude some overcounted interactions that result from
1298 <   !! the parallel decomposition
1299 <  
1274 >
1275 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1276 >       call clean_EAM()
1277 >    endif
1278 >
1279 >    rf = 0.0_dp
1280 >    tau_Temp = 0.0_dp
1281 >    virial_Temp = 0.0_dp
1282 >  end subroutine zero_work_arrays
1283 >
1284 >  function skipThisPair(atom1, atom2) result(skip_it)
1285 >    integer, intent(in) :: atom1
1286 >    integer, intent(in), optional :: atom2
1287 >    logical :: skip_it
1288 >    integer :: unique_id_1, unique_id_2
1289 >    integer :: me_i,me_j
1290 >    integer :: i
1291 >
1292 >    skip_it = .false.
1293 >
1294 >    !! there are a number of reasons to skip a pair or a particle
1295 >    !! mostly we do this to exclude atoms who are involved in short
1296 >    !! range interactions (bonds, bends, torsions), but we also need
1297 >    !! to exclude some overcounted interactions that result from
1298 >    !! the parallel decomposition
1299 >
1300   #ifdef IS_MPI
1301 <   !! in MPI, we have to look up the unique IDs for each atom
1302 <   unique_id_1 = AtomRowToGlobal(atom1)
1301 >    !! in MPI, we have to look up the unique IDs for each atom
1302 >    unique_id_1 = AtomRowToGlobal(atom1)
1303   #else
1304 <   !! in the normal loop, the atom numbers are unique
1305 <   unique_id_1 = atom1
1304 >    !! in the normal loop, the atom numbers are unique
1305 >    unique_id_1 = atom1
1306   #endif
1307 <  
1308 <   !! We were called with only one atom, so just check the global exclude
1309 <   !! list for this atom
1310 <   if (.not. present(atom2)) then
1311 <      do i = 1, nExcludes_global
1312 <         if (excludesGlobal(i) == unique_id_1) then
1313 <            skip_it = .true.
1314 <            return
1315 <         end if
1316 <      end do
1317 <      return
1318 <   end if
1319 <  
1307 >
1308 >    !! We were called with only one atom, so just check the global exclude
1309 >    !! list for this atom
1310 >    if (.not. present(atom2)) then
1311 >       do i = 1, nExcludes_global
1312 >          if (excludesGlobal(i) == unique_id_1) then
1313 >             skip_it = .true.
1314 >             return
1315 >          end if
1316 >       end do
1317 >       return
1318 >    end if
1319 >
1320   #ifdef IS_MPI
1321 <   unique_id_2 = AtomColToGlobal(atom2)
1321 >    unique_id_2 = AtomColToGlobal(atom2)
1322   #else
1323 <   unique_id_2 = atom2
1323 >    unique_id_2 = atom2
1324   #endif
1325 <  
1325 >
1326   #ifdef IS_MPI
1327 <   !! this situation should only arise in MPI simulations
1328 <   if (unique_id_1 == unique_id_2) then
1329 <      skip_it = .true.
1330 <      return
1331 <   end if
1332 <  
1333 <   !! this prevents us from doing the pair on multiple processors
1334 <   if (unique_id_1 < unique_id_2) then
1335 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1336 <         skip_it = .true.
1337 <         return
1338 <      endif
1339 <   else                
1340 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1341 <         skip_it = .true.
1342 <         return
1343 <      endif
1344 <   endif
1327 >    !! this situation should only arise in MPI simulations
1328 >    if (unique_id_1 == unique_id_2) then
1329 >       skip_it = .true.
1330 >       return
1331 >    end if
1332 >
1333 >    !! this prevents us from doing the pair on multiple processors
1334 >    if (unique_id_1 < unique_id_2) then
1335 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1336 >          skip_it = .true.
1337 >          return
1338 >       endif
1339 >    else                
1340 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1341 >          skip_it = .true.
1342 >          return
1343 >       endif
1344 >    endif
1345   #endif
1346 <  
1347 <   !! the rest of these situations can happen in all simulations:
1348 <   do i = 1, nExcludes_global      
1349 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1350 <           (excludesGlobal(i) == unique_id_2)) then
1351 <         skip_it = .true.
1352 <         return
1353 <      endif
1354 <   enddo
1355 <  
1356 <   do i = 1, nSkipsForAtom(atom1)
1357 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1358 <         skip_it = .true.
1359 <         return
1360 <      endif
1361 <   end do
1362 <  
1363 <   return
1364 < end function skipThisPair
1365 <
1366 < function FF_UsesDirectionalAtoms() result(doesit)
1367 <   logical :: doesit
1368 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1369 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1370 < end function FF_UsesDirectionalAtoms
1371 <
1372 < function FF_RequiresPrepairCalc() result(doesit)
1373 <   logical :: doesit
1374 <   doesit = FF_uses_EAM
1375 < end function FF_RequiresPrepairCalc
1376 <
1377 < function FF_RequiresPostpairCalc() result(doesit)
1378 <   logical :: doesit
1379 <   doesit = FF_uses_RF
1380 < end function FF_RequiresPostpairCalc
1190 <
1346 >
1347 >    !! the rest of these situations can happen in all simulations:
1348 >    do i = 1, nExcludes_global      
1349 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1350 >            (excludesGlobal(i) == unique_id_2)) then
1351 >          skip_it = .true.
1352 >          return
1353 >       endif
1354 >    enddo
1355 >
1356 >    do i = 1, nSkipsForAtom(atom1)
1357 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1358 >          skip_it = .true.
1359 >          return
1360 >       endif
1361 >    end do
1362 >
1363 >    return
1364 >  end function skipThisPair
1365 >
1366 >  function FF_UsesDirectionalAtoms() result(doesit)
1367 >    logical :: doesit
1368 >    doesit = FF_uses_DirectionalAtoms
1369 >  end function FF_UsesDirectionalAtoms
1370 >
1371 >  function FF_RequiresPrepairCalc() result(doesit)
1372 >    logical :: doesit
1373 >    doesit = FF_uses_EAM
1374 >  end function FF_RequiresPrepairCalc
1375 >
1376 >  function FF_RequiresPostpairCalc() result(doesit)
1377 >    logical :: doesit
1378 >    doesit = FF_uses_RF
1379 >  end function FF_RequiresPostpairCalc
1380 >
1381   #ifdef PROFILE
1382 < function getforcetime() result(totalforcetime)
1383 <   real(kind=dp) :: totalforcetime
1384 <   totalforcetime = forcetime
1385 < end function getforcetime
1382 >  function getforcetime() result(totalforcetime)
1383 >    real(kind=dp) :: totalforcetime
1384 >    totalforcetime = forcetime
1385 >  end function getforcetime
1386   #endif
1197
1198 !! This cleans componets of force arrays belonging only to fortran
1387  
1388 < subroutine add_stress_tensor(dpair, fpair)
1201 <  
1202 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1203 <  
1204 <   ! because the d vector is the rj - ri vector, and
1205 <   ! because fx, fy, fz are the force on atom i, we need a
1206 <   ! negative sign here:  
1207 <  
1208 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1209 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1210 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1211 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1212 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1213 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1214 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1215 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1216 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1217 <  
1218 <   virial_Temp = virial_Temp + &
1219 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1220 <  
1221 < end subroutine add_stress_tensor
1222 <
1223 < end module doForces
1388 >  !! This cleans componets of force arrays belonging only to fortran
1389  
1390 < !! Interfaces for C programs to module....
1390 >  subroutine add_stress_tensor(dpair, fpair)
1391  
1392 < subroutine initFortranFF(use_RF_c, thisStat)
1228 <    use doForces, ONLY: init_FF
1229 <    logical, intent(in) :: use_RF_c
1392 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1393  
1394 <    integer, intent(out) :: thisStat  
1395 <    call init_FF(use_RF_c, thisStat)
1394 >    ! because the d vector is the rj - ri vector, and
1395 >    ! because fx, fy, fz are the force on atom i, we need a
1396 >    ! negative sign here:  
1397  
1398 < end subroutine initFortranFF
1398 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1399 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1400 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1401 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1402 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1403 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1404 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1405 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1406 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1407  
1408 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1409 <       do_pot_c, do_stress_c, error)
1238 <      
1239 <       use definitions, ONLY: dp
1240 <       use simulation
1241 <       use doForces, ONLY: do_force_loop
1242 <    !! Position array provided by C, dimensioned by getNlocal
1243 <    real ( kind = dp ), dimension(3, nLocal) :: q
1244 <    !! molecular center-of-mass position array
1245 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1246 <    !! Rotation Matrix for each long range particle in simulation.
1247 <    real( kind = dp), dimension(9, nLocal) :: A    
1248 <    !! Unit vectors for dipoles (lab frame)
1249 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1250 <    !! Force array provided by C, dimensioned by getNlocal
1251 <    real ( kind = dp ), dimension(3,nLocal) :: f
1252 <    !! Torsion array provided by C, dimensioned by getNlocal
1253 <    real( kind = dp ), dimension(3,nLocal) :: t    
1408 >    virial_Temp = virial_Temp + &
1409 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1410  
1411 <    !! Stress Tensor
1412 <    real( kind = dp), dimension(9) :: tau  
1413 <    real ( kind = dp ) :: pot
1258 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1259 <    integer :: error
1260 <    
1261 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1262 <       do_pot_c, do_stress_c, error)
1263 <      
1264 < end subroutine doForceloop
1411 >  end subroutine add_stress_tensor
1412 >
1413 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines