ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1628 by gezelter, Thu Oct 21 20:15:31 2004 UTC vs.
Revision 2306 by chrisfen, Fri Sep 16 20:37:05 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.2 2004-10-21 20:15:22 gezelter Exp $, $Date: 2004-10-21 20:15:22 $, $Name: not supported by cvs2svn $, $Revision: 1.2 $
48 > !! @version $Id: doForces.F90,v 1.45 2005-09-16 20:36:55 chrisfen Exp $, $Date: 2005-09-16 20:36:55 $, $Name: not supported by cvs2svn $, $Revision: 1.45 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
59 >  use sticky
60 >  use electrostatic_module
61 >  use reaction_field_module
62    use gb_pair
63 +  use shapes
64    use vector_class
65    use eam
66    use status
# Line 31 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
38  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
41  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  logical, save :: FF_uses_LJ
87 <  logical, save :: FF_uses_sticky
88 <  logical, save :: FF_uses_charges
89 <  logical, save :: FF_uses_dipoles
90 <  logical, save :: FF_uses_RF
91 <  logical, save :: FF_uses_GB
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveRlist = .false.
89 >
90 >  logical, save :: FF_uses_DirectionalAtoms
91 >  logical, save :: FF_uses_Dipoles
92 >  logical, save :: FF_uses_GayBerne
93    logical, save :: FF_uses_EAM
94 <  logical, save :: SIM_uses_LJ
95 <  logical, save :: SIM_uses_sticky
52 <  logical, save :: SIM_uses_charges
53 <  logical, save :: SIM_uses_dipoles
54 <  logical, save :: SIM_uses_RF
55 <  logical, save :: SIM_uses_GB
94 >
95 >  logical, save :: SIM_uses_DirectionalAtoms
96    logical, save :: SIM_uses_EAM
97    logical, save :: SIM_requires_postpair_calc
98    logical, save :: SIM_requires_prepair_calc
59  logical, save :: SIM_uses_directional_atoms
99    logical, save :: SIM_uses_PBC
61  logical, save :: SIM_uses_molecular_cutoffs
100  
101 <  real(kind=dp), save :: rlist, rlistsq
101 >  integer, save :: electrostaticSummationMethod
102  
103    public :: init_FF
104 +  public :: setDefaultCutoffs
105    public :: do_force_loop
106 <  public :: setRlistDF
106 >  public :: createInteractionHash
107 >  public :: createGtypeCutoffMap
108 >  public :: getStickyCut
109 >  public :: getStickyPowerCut
110 >  public :: getGayBerneCut
111 >  public :: getEAMCut
112 >  public :: getShapeCut
113  
114   #ifdef PROFILE
115    public :: getforcetime
# Line 72 | Line 117 | module doForces
117    real :: forceTimeInitial, forceTimeFinal
118    integer :: nLoops
119   #endif
120 +  
121 +  !! Variables for cutoff mapping and interaction mapping
122 +  ! Bit hash to determine pair-pair interactions.
123 +  integer, dimension(:,:), allocatable :: InteractionHash
124 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
125 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
126 +  integer, dimension(:), allocatable :: groupToGtype
127 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
128 +  type ::gtypeCutoffs
129 +     real(kind=dp) :: rcut
130 +     real(kind=dp) :: rcutsq
131 +     real(kind=dp) :: rlistsq
132 +  end type gtypeCutoffs
133 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
134  
135 <  type :: Properties
136 <     logical :: is_lj     = .false.
137 <     logical :: is_sticky = .false.
138 <     logical :: is_dp     = .false.
80 <     logical :: is_gb     = .false.
81 <     logical :: is_eam    = .false.
82 <     logical :: is_charge = .false.
83 <     real(kind=DP) :: charge = 0.0_DP
84 <     real(kind=DP) :: dipole_moment = 0.0_DP
85 <  end type Properties
86 <
87 <  type(Properties), dimension(:),allocatable :: PropertyMap
88 <
135 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
136 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
137 >  real(kind=dp),save :: rcuti
138 >  
139   contains
140  
141 <  subroutine setRlistDF( this_rlist )
92 <    
93 <    real(kind=dp) :: this_rlist
94 <
95 <    rlist = this_rlist
96 <    rlistsq = rlist * rlist
97 <    
98 <    haveRlist = .true.
99 <
100 <  end subroutine setRlistDF    
101 <
102 <  subroutine createPropertyMap(status)
141 >  subroutine createInteractionHash(status)
142      integer :: nAtypes
143 <    integer :: status
143 >    integer, intent(out) :: status
144      integer :: i
145 <    logical :: thisProperty
146 <    real (kind=DP) :: thisDPproperty
145 >    integer :: j
146 >    integer :: iHash
147 >    !! Test Types
148 >    logical :: i_is_LJ
149 >    logical :: i_is_Elect
150 >    logical :: i_is_Sticky
151 >    logical :: i_is_StickyP
152 >    logical :: i_is_GB
153 >    logical :: i_is_EAM
154 >    logical :: i_is_Shape
155 >    logical :: j_is_LJ
156 >    logical :: j_is_Elect
157 >    logical :: j_is_Sticky
158 >    logical :: j_is_StickyP
159 >    logical :: j_is_GB
160 >    logical :: j_is_EAM
161 >    logical :: j_is_Shape
162 >    real(kind=dp) :: myRcut
163  
164 <    status = 0
164 >    status = 0  
165  
166 +    if (.not. associated(atypes)) then
167 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
168 +       status = -1
169 +       return
170 +    endif
171 +    
172      nAtypes = getSize(atypes)
173 <
173 >    
174      if (nAtypes == 0) then
175         status = -1
176         return
177      end if
178 <        
179 <    if (.not. allocated(PropertyMap)) then
180 <       allocate(PropertyMap(nAtypes))
178 >
179 >    if (.not. allocated(InteractionHash)) then
180 >       allocate(InteractionHash(nAtypes,nAtypes))
181      endif
182  
183 +    if (.not. allocated(atypeMaxCutoff)) then
184 +       allocate(atypeMaxCutoff(nAtypes))
185 +    endif
186 +        
187      do i = 1, nAtypes
188 <       call getElementProperty(atypes, i, "is_LJ", thisProperty)
189 <       PropertyMap(i)%is_LJ = thisProperty
190 <
191 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
192 <       PropertyMap(i)%is_Charge = thisProperty
193 <      
194 <       if (thisProperty) then
130 <          call getElementProperty(atypes, i, "charge", thisDPproperty)
131 <          PropertyMap(i)%charge = thisDPproperty
132 <       endif
133 <
134 <       call getElementProperty(atypes, i, "is_DP", thisProperty)
135 <       PropertyMap(i)%is_DP = thisProperty
136 <
137 <       if (thisProperty) then
138 <          call getElementProperty(atypes, i, "dipole_moment", thisDPproperty)
139 <          PropertyMap(i)%dipole_moment = thisDPproperty
140 <       endif
188 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
189 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
190 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
191 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
192 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
193 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
194 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
195  
196 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
197 <       PropertyMap(i)%is_Sticky = thisProperty
198 <       call getElementProperty(atypes, i, "is_GB", thisProperty)
199 <       PropertyMap(i)%is_GB = thisProperty
200 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
201 <       PropertyMap(i)%is_EAM = thisProperty
196 >       do j = i, nAtypes
197 >
198 >          iHash = 0
199 >          myRcut = 0.0_dp
200 >
201 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
202 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
203 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
204 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
205 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
206 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
207 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
208 >
209 >          if (i_is_LJ .and. j_is_LJ) then
210 >             iHash = ior(iHash, LJ_PAIR)            
211 >          endif
212 >          
213 >          if (i_is_Elect .and. j_is_Elect) then
214 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
215 >          endif
216 >          
217 >          if (i_is_Sticky .and. j_is_Sticky) then
218 >             iHash = ior(iHash, STICKY_PAIR)
219 >          endif
220 >
221 >          if (i_is_StickyP .and. j_is_StickyP) then
222 >             iHash = ior(iHash, STICKYPOWER_PAIR)
223 >          endif
224 >
225 >          if (i_is_EAM .and. j_is_EAM) then
226 >             iHash = ior(iHash, EAM_PAIR)
227 >          endif
228 >
229 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
230 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
231 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
232 >
233 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
234 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
235 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
236 >
237 >
238 >          InteractionHash(i,j) = iHash
239 >          InteractionHash(j,i) = iHash
240 >
241 >       end do
242 >
243      end do
244  
245 <    havePropertyMap = .true.
245 >    haveInteractionHash = .true.
246 >  end subroutine createInteractionHash
247  
248 <  end subroutine createPropertyMap
248 >  subroutine createGtypeCutoffMap(stat)
249 >
250 >    integer, intent(out), optional :: stat
251 >    logical :: i_is_LJ
252 >    logical :: i_is_Elect
253 >    logical :: i_is_Sticky
254 >    logical :: i_is_StickyP
255 >    logical :: i_is_GB
256 >    logical :: i_is_EAM
257 >    logical :: i_is_Shape
258 >    logical :: GtypeFound
259 >
260 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
261 >    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
262 >    integer :: nGroupsInRow
263 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
264 >    real(kind=dp) :: biggestAtypeCutoff
265 >
266 >    stat = 0
267 >    if (.not. haveInteractionHash) then
268 >       call createInteractionHash(myStatus)      
269 >       if (myStatus .ne. 0) then
270 >          write(default_error, *) 'createInteractionHash failed in doForces!'
271 >          stat = -1
272 >          return
273 >       endif
274 >    endif
275 > #ifdef IS_MPI
276 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
277 > #endif
278 >    nAtypes = getSize(atypes)
279 > ! Set all of the initial cutoffs to zero.
280 >    atypeMaxCutoff = 0.0_dp
281 >    do i = 1, nAtypes
282 >       if (SimHasAtype(i)) then    
283 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
284 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
285 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
286 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
287 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
288 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
289 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
290 >          
291 >
292 >          if (i_is_LJ) then
293 >             thisRcut = getSigma(i) * 2.5_dp
294 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
295 >          endif
296 >          if (i_is_Elect) then
297 >             thisRcut = defaultRcut
298 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
299 >          endif
300 >          if (i_is_Sticky) then
301 >             thisRcut = getStickyCut(i)
302 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
303 >          endif
304 >          if (i_is_StickyP) then
305 >             thisRcut = getStickyPowerCut(i)
306 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
307 >          endif
308 >          if (i_is_GB) then
309 >             thisRcut = getGayBerneCut(i)
310 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
311 >          endif
312 >          if (i_is_EAM) then
313 >             thisRcut = getEAMCut(i)
314 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
315 >          endif
316 >          if (i_is_Shape) then
317 >             thisRcut = getShapeCut(i)
318 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
319 >          endif
320 >          
321 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
322 >             biggestAtypeCutoff = atypeMaxCutoff(i)
323 >          endif
324 >       endif
325 >    enddo
326 >  
327 >    nGroupTypes = 0
328 >    
329 >    istart = 1
330 > #ifdef IS_MPI
331 >    iend = nGroupsInRow
332 > #else
333 >    iend = nGroups
334 > #endif
335 >    
336 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
337 >    if(.not.allocated(groupToGtype)) then
338 >       allocate(groupToGtype(iend))
339 >       allocate(groupMaxCutoff(iend))
340 >       allocate(gtypeMaxCutoff(iend))
341 >       groupMaxCutoff = 0.0_dp
342 >       gtypeMaxCutoff = 0.0_dp
343 >    endif
344 >    !! first we do a single loop over the cutoff groups to find the
345 >    !! largest cutoff for any atypes present in this group.  We also
346 >    !! create gtypes at this point.
347 >    
348 >    tol = 1.0d-6
349 >    
350 >    do i = istart, iend      
351 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
352 >       groupMaxCutoff(i) = 0.0_dp
353 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
354 >          atom1 = groupListRow(ia)
355 > #ifdef IS_MPI
356 >          me_i = atid_row(atom1)
357 > #else
358 >          me_i = atid(atom1)
359 > #endif          
360 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
361 >             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
362 >          endif          
363 >       enddo
364 >
365 >       if (nGroupTypes.eq.0) then
366 >          nGroupTypes = nGroupTypes + 1
367 >          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
368 >          groupToGtype(i) = nGroupTypes
369 >       else
370 >          GtypeFound = .false.
371 >          do g = 1, nGroupTypes
372 >             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).lt.tol) then
373 >                groupToGtype(i) = g
374 >                GtypeFound = .true.
375 >             endif
376 >          enddo
377 >          if (.not.GtypeFound) then            
378 >             nGroupTypes = nGroupTypes + 1
379 >             gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
380 >             groupToGtype(i) = nGroupTypes
381 >          endif
382 >       endif
383 >    enddo    
384  
385 +    !! allocate the gtypeCutoffMap here.
386 +    allocate(gtypeCutoffMap(nGroupTypes,nGroupTypes))
387 +    !! then we do a double loop over all the group TYPES to find the cutoff
388 +    !! map between groups of two types
389 +    
390 +    do i = 1, nGroupTypes
391 +       do j = 1, nGroupTypes
392 +      
393 +          select case(cutoffPolicy)
394 +          case(TRADITIONAL_CUTOFF_POLICY)
395 +             thisRcut = maxval(gtypeMaxCutoff)
396 +          case(MIX_CUTOFF_POLICY)
397 +             thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
398 +          case(MAX_CUTOFF_POLICY)
399 +             thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
400 +          case default
401 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
402 +             return
403 +          end select
404 +          gtypeCutoffMap(i,j)%rcut = thisRcut
405 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
406 +          skin = defaultRlist - defaultRcut
407 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
408 +
409 +       enddo
410 +    enddo
411 +    
412 +    haveGtypeCutoffMap = .true.
413 +   end subroutine createGtypeCutoffMap
414 +
415 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
416 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
417 +     integer, intent(in) :: cutPolicy
418 +
419 +     defaultRcut = defRcut
420 +     defaultRsw = defRsw
421 +     defaultRlist = defRlist
422 +     cutoffPolicy = cutPolicy
423 +     rcuti = 1.0_dp / defaultRcut
424 +   end subroutine setDefaultCutoffs
425 +
426 +   subroutine setCutoffPolicy(cutPolicy)
427 +
428 +     integer, intent(in) :: cutPolicy
429 +     cutoffPolicy = cutPolicy
430 +     call createGtypeCutoffMap()
431 +   end subroutine setCutoffPolicy
432 +    
433 +    
434    subroutine setSimVariables()
435 <    SIM_uses_LJ = SimUsesLJ()
156 <    SIM_uses_sticky = SimUsesSticky()
157 <    SIM_uses_charges = SimUsesCharges()
158 <    SIM_uses_dipoles = SimUsesDipoles()
159 <    SIM_uses_RF = SimUsesRF()
160 <    SIM_uses_GB = SimUsesGB()
435 >    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
436      SIM_uses_EAM = SimUsesEAM()
437      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
438      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
164    SIM_uses_directional_atoms = SimUsesDirectionalAtoms()
439      SIM_uses_PBC = SimUsesPBC()
166    !SIM_uses_molecular_cutoffs = SimUsesMolecularCutoffs()
440  
441      haveSIMvariables = .true.
442  
# Line 176 | Line 449 | contains
449      integer :: myStatus
450  
451      error = 0
179    
180    if (.not. havePropertyMap) then
452  
453 <       myStatus = 0
453 >    if (.not. haveInteractionHash) then      
454 >       myStatus = 0      
455 >       call createInteractionHash(myStatus)      
456 >       if (myStatus .ne. 0) then
457 >          write(default_error, *) 'createInteractionHash failed in doForces!'
458 >          error = -1
459 >          return
460 >       endif
461 >    endif
462  
463 <       call createPropertyMap(myStatus)
464 <
463 >    if (.not. haveGtypeCutoffMap) then        
464 >       myStatus = 0      
465 >       call createGtypeCutoffMap(myStatus)      
466         if (myStatus .ne. 0) then
467 <          write(default_error, *) 'createPropertyMap failed in doForces!'
467 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
468            error = -1
469            return
470         endif
# Line 194 | Line 474 | contains
474         call setSimVariables()
475      endif
476  
477 <    if (.not. haveRlist) then
478 <       write(default_error, *) 'rList has not been set in doForces!'
479 <       error = -1
480 <       return
481 <    endif
477 >  !  if (.not. haveRlist) then
478 >  !     write(default_error, *) 'rList has not been set in doForces!'
479 >  !     error = -1
480 >  !     return
481 >  !  endif
482  
483      if (.not. haveNeighborList) then
484         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 221 | Line 501 | contains
501   #endif
502      return
503    end subroutine doReadyCheck
224    
504  
226  subroutine init_FF(use_RF_c, thisStat)
505  
506 <    logical, intent(in) :: use_RF_c
506 >  subroutine init_FF(thisESM, dampingAlpha, thisStat)
507  
508 +    integer, intent(in) :: thisESM
509 +    real(kind=dp), intent(in) :: dampingAlpha
510      integer, intent(out) :: thisStat  
511      integer :: my_status, nMatches
512      integer, pointer :: MatchList(:) => null()
# Line 235 | Line 515 | contains
515      !! assume things are copacetic, unless they aren't
516      thisStat = 0
517  
518 <    !! Fortran's version of a cast:
519 <    FF_uses_RF = use_RF_c
240 <    
518 >    electrostaticSummationMethod = thisESM
519 >
520      !! init_FF is called *after* all of the atom types have been
521      !! defined in atype_module using the new_atype subroutine.
522      !!
523      !! this will scan through the known atypes and figure out what
524      !! interactions are used by the force field.    
525 <  
526 <    FF_uses_LJ = .false.
527 <    FF_uses_sticky = .false.
528 <    FF_uses_charges = .false.
250 <    FF_uses_dipoles = .false.
251 <    FF_uses_GB = .false.
525 >
526 >    FF_uses_DirectionalAtoms = .false.
527 >    FF_uses_Dipoles = .false.
528 >    FF_uses_GayBerne = .false.
529      FF_uses_EAM = .false.
530 +
531 +    call getMatchingElementList(atypes, "is_Directional", .true., &
532 +         nMatches, MatchList)
533 +    if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
534 +
535 +    call getMatchingElementList(atypes, "is_Dipole", .true., &
536 +         nMatches, MatchList)
537 +    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
538      
539 <    call getMatchingElementList(atypes, "is_LJ", .true., nMatches, MatchList)
540 <    if (nMatches .gt. 0) FF_uses_LJ = .true.
541 <    
542 <    call getMatchingElementList(atypes, "is_Charge", .true., nMatches, MatchList)
258 <    if (nMatches .gt. 0) FF_uses_charges = .true.  
259 <    
260 <    call getMatchingElementList(atypes, "is_DP", .true., nMatches, MatchList)
261 <    if (nMatches .gt. 0) FF_uses_dipoles = .true.
262 <    
263 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
264 <         MatchList)
265 <    if (nMatches .gt. 0) FF_uses_Sticky = .true.
266 <    
267 <    call getMatchingElementList(atypes, "is_GB", .true., nMatches, MatchList)
268 <    if (nMatches .gt. 0) FF_uses_GB = .true.
269 <    
539 >    call getMatchingElementList(atypes, "is_GayBerne", .true., &
540 >         nMatches, MatchList)
541 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
542 >
543      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
544      if (nMatches .gt. 0) FF_uses_EAM = .true.
545 <    
546 <    !! Assume sanity (for the sake of argument)
545 >
546 >
547      haveSaneForceField = .true.
548 <    
549 <    !! check to make sure the FF_uses_RF setting makes sense
550 <    
551 <    if (FF_uses_dipoles) then
552 <       if (FF_uses_RF) then
548 >
549 >    !! check to make sure the reaction field setting makes sense
550 >
551 >    if (FF_uses_Dipoles) then
552 >       if (electrostaticSummationMethod == 3) then
553            dielect = getDielect()
554            call initialize_rf(dielect)
555         endif
556      else
557 <       if (FF_uses_RF) then          
557 >       if (electrostaticSummationMethod == 3) then
558            write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
559            thisStat = -1
560            haveSaneForceField = .false.
561            return
562         endif
290    endif
291
292    if (FF_uses_sticky) then
293       call check_sticky_FF(my_status)
294       if (my_status /= 0) then
295          thisStat = -1
296          haveSaneForceField = .false.
297          return
298       end if
563      endif
564  
565      if (FF_uses_EAM) then
566 <         call init_EAM_FF(my_status)
566 >       call init_EAM_FF(my_status)
567         if (my_status /= 0) then
568            write(default_error, *) "init_EAM_FF returned a bad status"
569            thisStat = -1
# Line 308 | Line 572 | contains
572         end if
573      endif
574  
575 <    if (FF_uses_GB) then
575 >    if (FF_uses_GayBerne) then
576         call check_gb_pair_FF(my_status)
577         if (my_status .ne. 0) then
578            thisStat = -1
# Line 317 | Line 581 | contains
581         endif
582      endif
583  
320    if (FF_uses_GB .and. FF_uses_LJ) then
321    endif
322
584      if (.not. haveNeighborList) then
585         !! Create neighbor lists
586         call expandNeighborList(nLocal, my_status)
# Line 329 | Line 590 | contains
590            return
591         endif
592         haveNeighborList = .true.
593 <    endif    
594 <    
593 >    endif
594 >
595    end subroutine init_FF
596 <  
596 >
597  
598    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
599    !------------------------------------------------------------->
600 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
600 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
601         do_pot_c, do_stress_c, error)
602      !! Position array provided by C, dimensioned by getNlocal
603      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 345 | Line 606 | contains
606      !! Rotation Matrix for each long range particle in simulation.
607      real( kind = dp), dimension(9, nLocal) :: A    
608      !! Unit vectors for dipoles (lab frame)
609 <    real( kind = dp ), dimension(3,nLocal) :: u_l
609 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
610      !! Force array provided by C, dimensioned by getNlocal
611      real ( kind = dp ), dimension(3,nLocal) :: f
612      !! Torsion array provided by C, dimensioned by getNlocal
# Line 383 | Line 644 | contains
644      integer :: localError
645      integer :: propPack_i, propPack_j
646      integer :: loopStart, loopEnd, loop
647 <
647 >    integer :: iHash
648      real(kind=dp) :: listSkin = 1.0  
649 <    
649 >
650      !! initialize local variables  
651 <    
651 >
652   #ifdef IS_MPI
653      pot_local = 0.0_dp
654      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 397 | Line 658 | contains
658   #else
659      natoms = nlocal
660   #endif
661 <    
661 >
662      call doReadyCheck(localError)
663      if ( localError .ne. 0 ) then
664         call handleError("do_force_loop", "Not Initialized")
# Line 405 | Line 666 | contains
666         return
667      end if
668      call zero_work_arrays()
669 <        
669 >
670      do_pot = do_pot_c
671      do_stress = do_stress_c
672 <    
672 >
673      ! Gather all information needed by all force loops:
674 <    
674 >
675   #ifdef IS_MPI    
676 <    
676 >
677      call gather(q, q_Row, plan_atom_row_3d)
678      call gather(q, q_Col, plan_atom_col_3d)
679  
680      call gather(q_group, q_group_Row, plan_group_row_3d)
681      call gather(q_group, q_group_Col, plan_group_col_3d)
682 <        
683 <    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
684 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
685 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
686 <      
682 >
683 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
684 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
685 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
686 >
687         call gather(A, A_Row, plan_atom_row_rotation)
688         call gather(A, A_Col, plan_atom_col_rotation)
689      endif
690 <    
690 >
691   #endif
692 <    
692 >
693      !! Begin force loop timing:
694   #ifdef PROFILE
695      call cpu_time(forceTimeInitial)
696      nloops = nloops + 1
697   #endif
698 <    
698 >
699      loopEnd = PAIR_LOOP
700      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
701         loopStart = PREPAIR_LOOP
# Line 449 | Line 710 | contains
710         if (loop .eq. loopStart) then
711   #ifdef IS_MPI
712            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
713 <             update_nlist)
713 >               update_nlist)
714   #else
715            call checkNeighborList(nGroups, q_group, listSkin, &
716 <             update_nlist)
716 >               update_nlist)
717   #endif
718         endif
719 <      
719 >
720         if (update_nlist) then
721            !! save current configuration and construct neighbor list
722   #ifdef IS_MPI
# Line 466 | Line 727 | contains
727            neighborListSize = size(list)
728            nlist = 0
729         endif
730 <      
730 >
731         istart = 1
732   #ifdef IS_MPI
733         iend = nGroupsInRow
# Line 476 | Line 737 | contains
737         outer: do i = istart, iend
738  
739            if (update_nlist) point(i) = nlist + 1
740 <          
740 >
741            n_in_i = groupStartRow(i+1) - groupStartRow(i)
742 <          
742 >
743            if (update_nlist) then
744   #ifdef IS_MPI
745               jstart = 1
# Line 493 | Line 754 | contains
754               ! make sure group i has neighbors
755               if (jstart .gt. jend) cycle outer
756            endif
757 <          
757 >
758            do jnab = jstart, jend
759               if (update_nlist) then
760                  j = jnab
# Line 502 | Line 763 | contains
763               endif
764  
765   #ifdef IS_MPI
766 +             me_j = atid_col(j)
767               call get_interatomic_vector(q_group_Row(:,i), &
768                    q_group_Col(:,j), d_grp, rgrpsq)
769   #else
770 +             me_j = atid(j)
771               call get_interatomic_vector(q_group(:,i), &
772                    q_group(:,j), d_grp, rgrpsq)
773   #endif
774  
775 <             if (rgrpsq < rlistsq) then
775 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
776                  if (update_nlist) then
777                     nlist = nlist + 1
778 <                  
778 >
779                     if (nlist > neighborListSize) then
780   #ifdef IS_MPI                
781                        call expandNeighborList(nGroupsInRow, listerror)
# Line 526 | Line 789 | contains
789                        end if
790                        neighborListSize = size(list)
791                     endif
792 <                  
792 >
793                     list(nlist) = j
794                  endif
795 <                
795 >
796                  if (loop .eq. PAIR_LOOP) then
797                     vij = 0.0d0
798                     fij(1:3) = 0.0d0
799                  endif
800 <                
800 >
801                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
802                       in_switching_region)
803 <                
803 >
804                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
805 <                
805 >
806                  do ia = groupStartRow(i), groupStartRow(i+1)-1
807 <                  
807 >
808                     atom1 = groupListRow(ia)
809 <                  
809 >
810                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
811 <                      
811 >
812                        atom2 = groupListCol(jb)
813 <                      
813 >
814                        if (skipThisPair(atom1, atom2)) cycle inner
815  
816                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 567 | Line 830 | contains
830   #ifdef IS_MPI                      
831                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
832                                rgrpsq, d_grp, do_pot, do_stress, &
833 <                              u_l, A, f, t, pot_local)
833 >                              eFrame, A, f, t, pot_local)
834   #else
835                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
836                                rgrpsq, d_grp, do_pot, do_stress, &
837 <                              u_l, A, f, t, pot)
837 >                              eFrame, A, f, t, pot)
838   #endif                                              
839                        else
840   #ifdef IS_MPI                      
841                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
842                                do_pot, &
843 <                              u_l, A, f, t, pot_local, vpair, fpair)
843 >                              eFrame, A, f, t, pot_local, vpair, fpair)
844   #else
845                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
846                                do_pot,  &
847 <                              u_l, A, f, t, pot, vpair, fpair)
847 >                              eFrame, A, f, t, pot, vpair, fpair)
848   #endif
849  
850                           vij = vij + vpair
# Line 589 | Line 852 | contains
852                        endif
853                     enddo inner
854                  enddo
855 <                
855 >
856                  if (loop .eq. PAIR_LOOP) then
857                     if (in_switching_region) then
858                        swderiv = vij*dswdr/rgrp
859                        fij(1) = fij(1) + swderiv*d_grp(1)
860                        fij(2) = fij(2) + swderiv*d_grp(2)
861                        fij(3) = fij(3) + swderiv*d_grp(3)
862 <                      
862 >
863                        do ia=groupStartRow(i), groupStartRow(i+1)-1
864                           atom1=groupListRow(ia)
865                           mf = mfactRow(atom1)
# Line 610 | Line 873 | contains
873                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
874   #endif
875                        enddo
876 <                      
876 >
877                        do jb=groupStartCol(j), groupStartCol(j+1)-1
878                           atom2=groupListCol(jb)
879                           mf = mfactCol(atom2)
# Line 625 | Line 888 | contains
888   #endif
889                        enddo
890                     endif
891 <                  
891 >
892                     if (do_stress) call add_stress_tensor(d_grp, fij)
893                  endif
894               end if
895            enddo
896         enddo outer
897 <      
897 >
898         if (update_nlist) then
899   #ifdef IS_MPI
900            point(nGroupsInRow + 1) = nlist + 1
# Line 645 | Line 908 | contains
908               update_nlist = .false.                              
909            endif
910         endif
911 <            
911 >
912         if (loop .eq. PREPAIR_LOOP) then
913            call do_preforce(nlocal, pot)
914         endif
915 <      
915 >
916      enddo
917 <    
917 >
918      !! Do timing
919   #ifdef PROFILE
920      call cpu_time(forceTimeFinal)
921      forceTime = forceTime + forceTimeFinal - forceTimeInitial
922   #endif    
923 <    
923 >
924   #ifdef IS_MPI
925      !!distribute forces
926 <    
926 >
927      f_temp = 0.0_dp
928      call scatter(f_Row,f_temp,plan_atom_row_3d)
929      do i = 1,nlocal
930         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
931      end do
932 <    
932 >
933      f_temp = 0.0_dp
934      call scatter(f_Col,f_temp,plan_atom_col_3d)
935      do i = 1,nlocal
936         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
937      end do
938 <    
939 <    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
938 >
939 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
940         t_temp = 0.0_dp
941         call scatter(t_Row,t_temp,plan_atom_row_3d)
942         do i = 1,nlocal
# Line 681 | Line 944 | contains
944         end do
945         t_temp = 0.0_dp
946         call scatter(t_Col,t_temp,plan_atom_col_3d)
947 <      
947 >
948         do i = 1,nlocal
949            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
950         end do
951      endif
952 <    
952 >
953      if (do_pot) then
954         ! scatter/gather pot_row into the members of my column
955         call scatter(pot_Row, pot_Temp, plan_atom_row)
956 <      
956 >
957         ! scatter/gather pot_local into all other procs
958         ! add resultant to get total pot
959         do i = 1, nlocal
960            pot_local = pot_local + pot_Temp(i)
961         enddo
962 <      
962 >
963         pot_Temp = 0.0_DP
964 <      
964 >
965         call scatter(pot_Col, pot_Temp, plan_atom_col)
966         do i = 1, nlocal
967            pot_local = pot_local + pot_Temp(i)
968         enddo
969 <      
969 >
970      endif
971   #endif
972 <    
972 >
973      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
974 <      
975 <       if (FF_uses_RF .and. SIM_uses_RF) then
976 <          
974 >
975 >       if (electrostaticSummationMethod == 3) then
976 >
977   #ifdef IS_MPI
978            call scatter(rf_Row,rf,plan_atom_row_3d)
979            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 718 | Line 981 | contains
981               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
982            end do
983   #endif
984 <          
984 >
985            do i = 1, nLocal
986 <            
986 >
987               rfpot = 0.0_DP
988   #ifdef IS_MPI
989               me_i = atid_row(i)
990   #else
991               me_i = atid(i)
992   #endif
993 +             iHash = InteractionHash(me_i,me_j)
994              
995 <             if (PropertyMap(me_i)%is_DP) then
996 <                
997 <                mu_i = PropertyMap(me_i)%dipole_moment
998 <                
995 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
996 >
997 >                mu_i = getDipoleMoment(me_i)
998 >
999                  !! The reaction field needs to include a self contribution
1000                  !! to the field:
1001 <                call accumulate_self_rf(i, mu_i, u_l)
1001 >                call accumulate_self_rf(i, mu_i, eFrame)
1002                  !! Get the reaction field contribution to the
1003                  !! potential and torques:
1004 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1004 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1005   #ifdef IS_MPI
1006                  pot_local = pot_local + rfpot
1007   #else
1008                  pot = pot + rfpot
1009 <      
1009 >
1010   #endif
1011 <             endif            
1011 >             endif
1012            enddo
1013         endif
1014      endif
1015 <    
1016 <    
1015 >
1016 >
1017   #ifdef IS_MPI
1018 <    
1018 >
1019      if (do_pot) then
1020         pot = pot + pot_local
1021         !! we assume the c code will do the allreduce to get the total potential
1022         !! we could do it right here if we needed to...
1023      endif
1024 <    
1024 >
1025      if (do_stress) then
1026         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1027              mpi_comm_world,mpi_err)
1028         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1029              mpi_comm_world,mpi_err)
1030      endif
1031 <    
1031 >
1032   #else
1033 <    
1033 >
1034      if (do_stress) then
1035         tau = tau_Temp
1036         virial = virial_Temp
1037      endif
1038 <    
1038 >
1039   #endif
1040 <      
1040 >
1041    end subroutine do_force_loop
1042 <  
1042 >
1043    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1044 <       u_l, A, f, t, pot, vpair, fpair)
1044 >       eFrame, A, f, t, pot, vpair, fpair)
1045  
1046      real( kind = dp ) :: pot, vpair, sw
1047      real( kind = dp ), dimension(3) :: fpair
1048      real( kind = dp ), dimension(nLocal)   :: mfact
1049 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1049 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1050      real( kind = dp ), dimension(9,nLocal) :: A
1051      real( kind = dp ), dimension(3,nLocal) :: f
1052      real( kind = dp ), dimension(3,nLocal) :: t
# Line 794 | Line 1058 | contains
1058      real ( kind = dp ), intent(inout) :: d(3)
1059      integer :: me_i, me_j
1060  
1061 +    integer :: iHash
1062 +
1063      r = sqrt(rijsq)
1064      vpair = 0.0d0
1065      fpair(1:3) = 0.0d0
# Line 805 | Line 1071 | contains
1071      me_i = atid(i)
1072      me_j = atid(j)
1073   #endif
808    
809    if (FF_uses_LJ .and. SIM_uses_LJ) then
810      
811       if ( PropertyMap(me_i)%is_LJ .and. PropertyMap(me_j)%is_LJ ) then
812          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
813       endif
814      
815    endif
816    
817    if (FF_uses_charges .and. SIM_uses_charges) then
818      
819       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
820          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
821       endif
822      
823    endif
824    
825    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
826      
827       if ( PropertyMap(me_i)%is_DP .and. PropertyMap(me_j)%is_DP) then
828          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
829               do_pot)
830          if (FF_uses_RF .and. SIM_uses_RF) then
831             call accumulate_rf(i, j, r, u_l, sw)
832             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
833          endif          
834       endif
1074  
1075 +    iHash = InteractionHash(me_i, me_j)
1076 +
1077 +    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1078 +       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1079      endif
1080  
1081 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1081 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1082 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1083 >            pot, eFrame, f, t, do_pot)
1084  
1085 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1086 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, A, f, t, &
1087 <               do_pot)
1085 >       if (electrostaticSummationMethod == 3) then
1086 >
1087 >          ! CHECK ME (RF needs to know about all electrostatic types)
1088 >          call accumulate_rf(i, j, r, eFrame, sw)
1089 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1090         endif
1091  
1092      endif
1093  
1094 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1095 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1096 +            pot, A, f, t, do_pot)
1097 +    endif
1098  
1099 <    if (FF_uses_GB .and. SIM_uses_GB) then
1100 <      
1101 <       if ( PropertyMap(me_i)%is_GB .and. PropertyMap(me_j)%is_GB) then
1102 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
852 <               do_pot)
853 <       endif
1099 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1100 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1101 >            pot, A, f, t, do_pot)
1102 >    endif
1103  
1104 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1105 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1106 +            pot, A, f, t, do_pot)
1107      endif
1108 <      
1109 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1110 <      
1111 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
860 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
861 <               do_pot)
862 <       endif
863 <      
1108 >    
1109 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1110 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1111 > !           pot, A, f, t, do_pot)
1112      endif
1113 +
1114 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1115 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1116 +            do_pot)
1117 +    endif
1118 +
1119 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1120 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1121 +            pot, A, f, t, do_pot)
1122 +    endif
1123 +
1124 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1125 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1126 +            pot, A, f, t, do_pot)
1127 +    endif
1128      
1129    end subroutine do_pair
1130  
1131    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1132 <       do_pot, do_stress, u_l, A, f, t, pot)
1132 >       do_pot, do_stress, eFrame, A, f, t, pot)
1133  
1134 <   real( kind = dp ) :: pot, sw
1135 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1136 <   real (kind=dp), dimension(9,nLocal) :: A
1137 <   real (kind=dp), dimension(3,nLocal) :: f
1138 <   real (kind=dp), dimension(3,nLocal) :: t
876 <  
877 <   logical, intent(inout) :: do_pot, do_stress
878 <   integer, intent(in) :: i, j
879 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
880 <   real ( kind = dp )                :: r, rc
881 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
882 <  
883 <   logical :: is_EAM_i, is_EAM_j
884 <  
885 <   integer :: me_i, me_j
886 <  
1134 >    real( kind = dp ) :: pot, sw
1135 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1136 >    real (kind=dp), dimension(9,nLocal) :: A
1137 >    real (kind=dp), dimension(3,nLocal) :: f
1138 >    real (kind=dp), dimension(3,nLocal) :: t
1139  
1140 +    logical, intent(inout) :: do_pot, do_stress
1141 +    integer, intent(in) :: i, j
1142 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1143 +    real ( kind = dp )                :: r, rc
1144 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1145 +
1146 +    integer :: me_i, me_j, iHash
1147 +
1148      r = sqrt(rijsq)
889    if (SIM_uses_molecular_cutoffs) then
890       rc = sqrt(rcijsq)
891    else
892       rc = r
893    endif
894  
1149  
1150   #ifdef IS_MPI  
1151 <   me_i = atid_row(i)
1152 <   me_j = atid_col(j)  
1151 >    me_i = atid_row(i)
1152 >    me_j = atid_col(j)  
1153   #else  
1154 <   me_i = atid(i)
1155 <   me_j = atid(j)  
1154 >    me_i = atid(i)
1155 >    me_j = atid(j)  
1156   #endif
1157 <  
1158 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1159 <      
1160 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1161 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1162 <      
1163 <   endif
1164 <  
1165 < end subroutine do_prepair
1166 <
1167 <
1168 < subroutine do_preforce(nlocal,pot)
1169 <   integer :: nlocal
1170 <   real( kind = dp ) :: pot
1171 <  
1172 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1173 <      call calc_EAM_preforce_Frho(nlocal,pot)
1174 <   endif
1175 <  
1176 <  
1177 < end subroutine do_preforce
1178 <
1179 <
1180 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1181 <  
1182 <   real (kind = dp), dimension(3) :: q_i
1183 <   real (kind = dp), dimension(3) :: q_j
1184 <   real ( kind = dp ), intent(out) :: r_sq
1185 <   real( kind = dp ) :: d(3), scaled(3)
1186 <   integer i
1187 <  
1188 <   d(1:3) = q_j(1:3) - q_i(1:3)
1189 <  
1190 <   ! Wrap back into periodic box if necessary
1191 <   if ( SIM_uses_PBC ) then
1192 <      
1193 <      if( .not.boxIsOrthorhombic ) then
1194 <         ! calc the scaled coordinates.
1195 <        
1196 <         scaled = matmul(HmatInv, d)
1197 <        
1198 <         ! wrap the scaled coordinates
1199 <        
1200 <         scaled = scaled  - anint(scaled)
1201 <        
1202 <        
1203 <         ! calc the wrapped real coordinates from the wrapped scaled
1204 <         ! coordinates
1205 <        
1206 <         d = matmul(Hmat,scaled)
1207 <        
1208 <      else
1209 <         ! calc the scaled coordinates.
1210 <        
1211 <         do i = 1, 3
1212 <            scaled(i) = d(i) * HmatInv(i,i)
1213 <            
1214 <            ! wrap the scaled coordinates
1215 <            
1216 <            scaled(i) = scaled(i) - anint(scaled(i))
1217 <            
1218 <            ! calc the wrapped real coordinates from the wrapped scaled
1219 <            ! coordinates
1220 <            
1221 <            d(i) = scaled(i)*Hmat(i,i)
1222 <         enddo
1223 <      endif
1224 <      
1225 <   endif
1226 <  
1227 <   r_sq = dot_product(d,d)
1228 <  
1229 < end subroutine get_interatomic_vector
1230 <
1231 < subroutine zero_work_arrays()
978 <  
1157 >
1158 >    iHash = InteractionHash(me_i, me_j)
1159 >
1160 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1161 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1162 >    endif
1163 >    
1164 >  end subroutine do_prepair
1165 >
1166 >
1167 >  subroutine do_preforce(nlocal,pot)
1168 >    integer :: nlocal
1169 >    real( kind = dp ) :: pot
1170 >
1171 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1172 >       call calc_EAM_preforce_Frho(nlocal,pot)
1173 >    endif
1174 >
1175 >
1176 >  end subroutine do_preforce
1177 >
1178 >
1179 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1180 >
1181 >    real (kind = dp), dimension(3) :: q_i
1182 >    real (kind = dp), dimension(3) :: q_j
1183 >    real ( kind = dp ), intent(out) :: r_sq
1184 >    real( kind = dp ) :: d(3), scaled(3)
1185 >    integer i
1186 >
1187 >    d(1:3) = q_j(1:3) - q_i(1:3)
1188 >
1189 >    ! Wrap back into periodic box if necessary
1190 >    if ( SIM_uses_PBC ) then
1191 >
1192 >       if( .not.boxIsOrthorhombic ) then
1193 >          ! calc the scaled coordinates.
1194 >
1195 >          scaled = matmul(HmatInv, d)
1196 >
1197 >          ! wrap the scaled coordinates
1198 >
1199 >          scaled = scaled  - anint(scaled)
1200 >
1201 >
1202 >          ! calc the wrapped real coordinates from the wrapped scaled
1203 >          ! coordinates
1204 >
1205 >          d = matmul(Hmat,scaled)
1206 >
1207 >       else
1208 >          ! calc the scaled coordinates.
1209 >
1210 >          do i = 1, 3
1211 >             scaled(i) = d(i) * HmatInv(i,i)
1212 >
1213 >             ! wrap the scaled coordinates
1214 >
1215 >             scaled(i) = scaled(i) - anint(scaled(i))
1216 >
1217 >             ! calc the wrapped real coordinates from the wrapped scaled
1218 >             ! coordinates
1219 >
1220 >             d(i) = scaled(i)*Hmat(i,i)
1221 >          enddo
1222 >       endif
1223 >
1224 >    endif
1225 >
1226 >    r_sq = dot_product(d,d)
1227 >
1228 >  end subroutine get_interatomic_vector
1229 >
1230 >  subroutine zero_work_arrays()
1231 >
1232   #ifdef IS_MPI
980  
981   q_Row = 0.0_dp
982   q_Col = 0.0_dp
1233  
1234 <   q_group_Row = 0.0_dp
1235 <   q_group_Col = 0.0_dp  
1236 <  
1237 <   u_l_Row = 0.0_dp
1238 <   u_l_Col = 0.0_dp
1239 <  
1240 <   A_Row = 0.0_dp
1241 <   A_Col = 0.0_dp
1242 <  
1243 <   f_Row = 0.0_dp
1244 <   f_Col = 0.0_dp
1245 <   f_Temp = 0.0_dp
1246 <  
1247 <   t_Row = 0.0_dp
1248 <   t_Col = 0.0_dp
1249 <   t_Temp = 0.0_dp
1250 <  
1251 <   pot_Row = 0.0_dp
1252 <   pot_Col = 0.0_dp
1253 <   pot_Temp = 0.0_dp
1254 <  
1255 <   rf_Row = 0.0_dp
1256 <   rf_Col = 0.0_dp
1257 <   rf_Temp = 0.0_dp
1258 <  
1234 >    q_Row = 0.0_dp
1235 >    q_Col = 0.0_dp
1236 >
1237 >    q_group_Row = 0.0_dp
1238 >    q_group_Col = 0.0_dp  
1239 >
1240 >    eFrame_Row = 0.0_dp
1241 >    eFrame_Col = 0.0_dp
1242 >
1243 >    A_Row = 0.0_dp
1244 >    A_Col = 0.0_dp
1245 >
1246 >    f_Row = 0.0_dp
1247 >    f_Col = 0.0_dp
1248 >    f_Temp = 0.0_dp
1249 >
1250 >    t_Row = 0.0_dp
1251 >    t_Col = 0.0_dp
1252 >    t_Temp = 0.0_dp
1253 >
1254 >    pot_Row = 0.0_dp
1255 >    pot_Col = 0.0_dp
1256 >    pot_Temp = 0.0_dp
1257 >
1258 >    rf_Row = 0.0_dp
1259 >    rf_Col = 0.0_dp
1260 >    rf_Temp = 0.0_dp
1261 >
1262   #endif
1263 <
1264 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1265 <      call clean_EAM()
1266 <   endif
1267 <  
1268 <   rf = 0.0_dp
1269 <   tau_Temp = 0.0_dp
1270 <   virial_Temp = 0.0_dp
1271 < end subroutine zero_work_arrays
1272 <
1273 < function skipThisPair(atom1, atom2) result(skip_it)
1274 <   integer, intent(in) :: atom1
1275 <   integer, intent(in), optional :: atom2
1276 <   logical :: skip_it
1277 <   integer :: unique_id_1, unique_id_2
1278 <   integer :: me_i,me_j
1279 <   integer :: i
1280 <  
1281 <   skip_it = .false.
1282 <  
1283 <   !! there are a number of reasons to skip a pair or a particle
1284 <   !! mostly we do this to exclude atoms who are involved in short
1285 <   !! range interactions (bonds, bends, torsions), but we also need
1286 <   !! to exclude some overcounted interactions that result from
1287 <   !! the parallel decomposition
1288 <  
1263 >
1264 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1265 >       call clean_EAM()
1266 >    endif
1267 >
1268 >    rf = 0.0_dp
1269 >    tau_Temp = 0.0_dp
1270 >    virial_Temp = 0.0_dp
1271 >  end subroutine zero_work_arrays
1272 >
1273 >  function skipThisPair(atom1, atom2) result(skip_it)
1274 >    integer, intent(in) :: atom1
1275 >    integer, intent(in), optional :: atom2
1276 >    logical :: skip_it
1277 >    integer :: unique_id_1, unique_id_2
1278 >    integer :: me_i,me_j
1279 >    integer :: i
1280 >
1281 >    skip_it = .false.
1282 >
1283 >    !! there are a number of reasons to skip a pair or a particle
1284 >    !! mostly we do this to exclude atoms who are involved in short
1285 >    !! range interactions (bonds, bends, torsions), but we also need
1286 >    !! to exclude some overcounted interactions that result from
1287 >    !! the parallel decomposition
1288 >
1289   #ifdef IS_MPI
1290 <   !! in MPI, we have to look up the unique IDs for each atom
1291 <   unique_id_1 = AtomRowToGlobal(atom1)
1290 >    !! in MPI, we have to look up the unique IDs for each atom
1291 >    unique_id_1 = AtomRowToGlobal(atom1)
1292   #else
1293 <   !! in the normal loop, the atom numbers are unique
1294 <   unique_id_1 = atom1
1293 >    !! in the normal loop, the atom numbers are unique
1294 >    unique_id_1 = atom1
1295   #endif
1296 <  
1297 <   !! We were called with only one atom, so just check the global exclude
1298 <   !! list for this atom
1299 <   if (.not. present(atom2)) then
1300 <      do i = 1, nExcludes_global
1301 <         if (excludesGlobal(i) == unique_id_1) then
1302 <            skip_it = .true.
1303 <            return
1304 <         end if
1305 <      end do
1306 <      return
1307 <   end if
1308 <  
1296 >
1297 >    !! We were called with only one atom, so just check the global exclude
1298 >    !! list for this atom
1299 >    if (.not. present(atom2)) then
1300 >       do i = 1, nExcludes_global
1301 >          if (excludesGlobal(i) == unique_id_1) then
1302 >             skip_it = .true.
1303 >             return
1304 >          end if
1305 >       end do
1306 >       return
1307 >    end if
1308 >
1309   #ifdef IS_MPI
1310 <   unique_id_2 = AtomColToGlobal(atom2)
1310 >    unique_id_2 = AtomColToGlobal(atom2)
1311   #else
1312 <   unique_id_2 = atom2
1312 >    unique_id_2 = atom2
1313   #endif
1314 <  
1314 >
1315   #ifdef IS_MPI
1316 <   !! this situation should only arise in MPI simulations
1317 <   if (unique_id_1 == unique_id_2) then
1318 <      skip_it = .true.
1319 <      return
1320 <   end if
1321 <  
1322 <   !! this prevents us from doing the pair on multiple processors
1323 <   if (unique_id_1 < unique_id_2) then
1324 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1325 <         skip_it = .true.
1326 <         return
1327 <      endif
1328 <   else                
1329 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1330 <         skip_it = .true.
1331 <         return
1332 <      endif
1333 <   endif
1316 >    !! this situation should only arise in MPI simulations
1317 >    if (unique_id_1 == unique_id_2) then
1318 >       skip_it = .true.
1319 >       return
1320 >    end if
1321 >
1322 >    !! this prevents us from doing the pair on multiple processors
1323 >    if (unique_id_1 < unique_id_2) then
1324 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1325 >          skip_it = .true.
1326 >          return
1327 >       endif
1328 >    else                
1329 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1330 >          skip_it = .true.
1331 >          return
1332 >       endif
1333 >    endif
1334   #endif
1335 <  
1336 <   !! the rest of these situations can happen in all simulations:
1337 <   do i = 1, nExcludes_global      
1338 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1339 <           (excludesGlobal(i) == unique_id_2)) then
1340 <         skip_it = .true.
1341 <         return
1342 <      endif
1343 <   enddo
1344 <  
1345 <   do i = 1, nSkipsForAtom(atom1)
1346 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1347 <         skip_it = .true.
1348 <         return
1349 <      endif
1350 <   end do
1351 <  
1352 <   return
1353 < end function skipThisPair
1354 <
1355 < function FF_UsesDirectionalAtoms() result(doesit)
1356 <   logical :: doesit
1357 <   doesit = FF_uses_dipoles .or. FF_uses_sticky .or. &
1358 <        FF_uses_GB .or. FF_uses_RF
1359 < end function FF_UsesDirectionalAtoms
1360 <
1361 < function FF_RequiresPrepairCalc() result(doesit)
1362 <   logical :: doesit
1363 <   doesit = FF_uses_EAM
1364 < end function FF_RequiresPrepairCalc
1365 <
1366 < function FF_RequiresPostpairCalc() result(doesit)
1367 <   logical :: doesit
1368 <   doesit = FF_uses_RF
1369 < end function FF_RequiresPostpairCalc
1117 <
1335 >
1336 >    !! the rest of these situations can happen in all simulations:
1337 >    do i = 1, nExcludes_global      
1338 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1339 >            (excludesGlobal(i) == unique_id_2)) then
1340 >          skip_it = .true.
1341 >          return
1342 >       endif
1343 >    enddo
1344 >
1345 >    do i = 1, nSkipsForAtom(atom1)
1346 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1347 >          skip_it = .true.
1348 >          return
1349 >       endif
1350 >    end do
1351 >
1352 >    return
1353 >  end function skipThisPair
1354 >
1355 >  function FF_UsesDirectionalAtoms() result(doesit)
1356 >    logical :: doesit
1357 >    doesit = FF_uses_DirectionalAtoms
1358 >  end function FF_UsesDirectionalAtoms
1359 >
1360 >  function FF_RequiresPrepairCalc() result(doesit)
1361 >    logical :: doesit
1362 >    doesit = FF_uses_EAM
1363 >  end function FF_RequiresPrepairCalc
1364 >
1365 >  function FF_RequiresPostpairCalc() result(doesit)
1366 >    logical :: doesit
1367 >    if (electrostaticSummationMethod == 3) doesit = .true.
1368 >  end function FF_RequiresPostpairCalc
1369 >
1370   #ifdef PROFILE
1371 < function getforcetime() result(totalforcetime)
1372 <   real(kind=dp) :: totalforcetime
1373 <   totalforcetime = forcetime
1374 < end function getforcetime
1371 >  function getforcetime() result(totalforcetime)
1372 >    real(kind=dp) :: totalforcetime
1373 >    totalforcetime = forcetime
1374 >  end function getforcetime
1375   #endif
1124
1125 !! This cleans componets of force arrays belonging only to fortran
1376  
1377 < subroutine add_stress_tensor(dpair, fpair)
1128 <  
1129 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1130 <  
1131 <   ! because the d vector is the rj - ri vector, and
1132 <   ! because fx, fy, fz are the force on atom i, we need a
1133 <   ! negative sign here:  
1134 <  
1135 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1136 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1137 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1138 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1139 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1140 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1141 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1142 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1143 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1144 <  
1145 <   virial_Temp = virial_Temp + &
1146 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1147 <  
1148 < end subroutine add_stress_tensor
1149 <
1150 < end module doForces
1377 >  !! This cleans componets of force arrays belonging only to fortran
1378  
1379 < !! Interfaces for C programs to module....
1379 >  subroutine add_stress_tensor(dpair, fpair)
1380  
1381 < subroutine initFortranFF(use_RF_c, thisStat)
1155 <    use doForces, ONLY: init_FF
1156 <    logical, intent(in) :: use_RF_c
1381 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1382  
1383 <    integer, intent(out) :: thisStat  
1384 <    call init_FF(use_RF_c, thisStat)
1383 >    ! because the d vector is the rj - ri vector, and
1384 >    ! because fx, fy, fz are the force on atom i, we need a
1385 >    ! negative sign here:  
1386  
1387 < end subroutine initFortranFF
1387 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1388 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1389 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1390 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1391 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1392 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1393 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1394 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1395 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1396  
1397 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1398 <       do_pot_c, do_stress_c, error)
1165 <      
1166 <       use definitions, ONLY: dp
1167 <       use simulation
1168 <       use doForces, ONLY: do_force_loop
1169 <    !! Position array provided by C, dimensioned by getNlocal
1170 <    real ( kind = dp ), dimension(3, nLocal) :: q
1171 <    !! molecular center-of-mass position array
1172 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1173 <    !! Rotation Matrix for each long range particle in simulation.
1174 <    real( kind = dp), dimension(9, nLocal) :: A    
1175 <    !! Unit vectors for dipoles (lab frame)
1176 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1177 <    !! Force array provided by C, dimensioned by getNlocal
1178 <    real ( kind = dp ), dimension(3,nLocal) :: f
1179 <    !! Torsion array provided by C, dimensioned by getNlocal
1180 <    real( kind = dp ), dimension(3,nLocal) :: t    
1397 >    virial_Temp = virial_Temp + &
1398 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1399  
1400 <    !! Stress Tensor
1401 <    real( kind = dp), dimension(9) :: tau  
1402 <    real ( kind = dp ) :: pot
1185 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1186 <    integer :: error
1187 <    
1188 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1189 <       do_pot_c, do_stress_c, error)
1190 <      
1191 < end subroutine doForceloop
1400 >  end subroutine add_stress_tensor
1401 >
1402 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines