ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1610 by gezelter, Wed Oct 20 04:19:55 2004 UTC vs.
Revision 2461 by gezelter, Mon Nov 21 22:59:02 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.1 2004-10-20 04:19:55 gezelter Exp $, $Date: 2004-10-20 04:19:55 $, $Name: not supported by cvs2svn $, $Revision: 1.1 $
48 > !! @version $Id: doForces.F90,v 1.69 2005-11-21 22:58:35 gezelter Exp $, $Date: 2005-11-21 22:58:35 $, $Name: not supported by cvs2svn $, $Revision: 1.69 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
62 <  use reaction_field
21 <  use gb_pair
59 >  use sticky
60 >  use electrostatic_module
61 >  use gayberne
62 >  use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 30 | Line 72 | module doForces
72    PRIVATE
73  
74   #define __FORTRAN90
33 #include "UseTheForce/fForceField.h"
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80 +
81    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82    INTEGER, PARAMETER:: PAIR_LOOP    = 2
83  
39  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
41  logical, save :: havePolicies = .false.
85    logical, save :: haveSIMvariables = .false.
43  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 <  logical, save :: FF_uses_LJ
88 <  logical, save :: FF_uses_sticky
89 <  logical, save :: FF_uses_charges
90 <  logical, save :: FF_uses_dipoles
91 <  logical, save :: FF_uses_RF
92 <  logical, save :: FF_uses_GB
87 >  logical, save :: haveInteractionHash = .false.
88 >  logical, save :: haveGtypeCutoffMap = .false.
89 >  logical, save :: haveDefaultCutoffs = .false.
90 >  logical, save :: haveSkinThickness = .false.
91 >  logical, save :: haveElectrostaticSummationMethod = .false.
92 >  logical, save :: haveCutoffPolicy = .false.
93 >  logical, save :: VisitCutoffsAfterComputing = .false.
94 >
95 >  logical, save :: FF_uses_DirectionalAtoms
96 >  logical, save :: FF_uses_Dipoles
97 >  logical, save :: FF_uses_GayBerne
98    logical, save :: FF_uses_EAM
99 <  logical, save :: SIM_uses_LJ
100 <  logical, save :: SIM_uses_sticky
101 <  logical, save :: SIM_uses_charges
102 <  logical, save :: SIM_uses_dipoles
103 <  logical, save :: SIM_uses_RF
57 <  logical, save :: SIM_uses_GB
99 >  logical, save :: FF_uses_SC
100 >  logical, save :: FF_uses_MEAM
101 >
102 >
103 >  logical, save :: SIM_uses_DirectionalAtoms
104    logical, save :: SIM_uses_EAM
105 +  logical, save :: SIM_uses_SC
106 +  logical, save :: SIM_uses_MEAM
107    logical, save :: SIM_requires_postpair_calc
108    logical, save :: SIM_requires_prepair_calc
61  logical, save :: SIM_uses_directional_atoms
109    logical, save :: SIM_uses_PBC
63  logical, save :: SIM_uses_molecular_cutoffs
110  
111 <  real(kind=dp), save :: rlist, rlistsq
111 >  integer, save :: electrostaticSummationMethod
112 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
113  
114 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
115 +  real(kind=dp), save :: skinThickness
116 +  logical, save :: defaultDoShift
117 +
118    public :: init_FF
119 +  public :: setCutoffs
120 +  public :: cWasLame
121 +  public :: setElectrostaticMethod
122 +  public :: setCutoffPolicy
123 +  public :: setSkinThickness
124    public :: do_force_loop
69  public :: setRlistDF
125  
126   #ifdef PROFILE
127    public :: getforcetime
# Line 74 | Line 129 | module doForces
129    real :: forceTimeInitial, forceTimeFinal
130    integer :: nLoops
131   #endif
132 +  
133 +  !! Variables for cutoff mapping and interaction mapping
134 +  ! Bit hash to determine pair-pair interactions.
135 +  integer, dimension(:,:), allocatable :: InteractionHash
136 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
137 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
138 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
139  
140 <  type :: Properties
141 <     logical :: is_lj     = .false.
80 <     logical :: is_sticky = .false.
81 <     logical :: is_dp     = .false.
82 <     logical :: is_gb     = .false.
83 <     logical :: is_eam    = .false.
84 <     logical :: is_charge = .false.
85 <     real(kind=DP) :: charge = 0.0_DP
86 <     real(kind=DP) :: dipole_moment = 0.0_DP
87 <  end type Properties
140 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
141 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
142  
143 <  type(Properties), dimension(:),allocatable :: PropertyMap
143 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
144 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
145 >  type ::gtypeCutoffs
146 >     real(kind=dp) :: rcut
147 >     real(kind=dp) :: rcutsq
148 >     real(kind=dp) :: rlistsq
149 >  end type gtypeCutoffs
150 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
151  
152   contains
153  
154 <  subroutine setRlistDF( this_rlist )
94 <    
95 <    real(kind=dp) :: this_rlist
96 <
97 <    rlist = this_rlist
98 <    rlistsq = rlist * rlist
99 <    
100 <    haveRlist = .true.
101 <
102 <  end subroutine setRlistDF    
103 <
104 <  subroutine createPropertyMap(status)
154 >  subroutine createInteractionHash()
155      integer :: nAtypes
106    integer :: status
156      integer :: i
157 <    logical :: thisProperty
158 <    real (kind=DP) :: thisDPproperty
157 >    integer :: j
158 >    integer :: iHash
159 >    !! Test Types
160 >    logical :: i_is_LJ
161 >    logical :: i_is_Elect
162 >    logical :: i_is_Sticky
163 >    logical :: i_is_StickyP
164 >    logical :: i_is_GB
165 >    logical :: i_is_EAM
166 >    logical :: i_is_Shape
167 >    logical :: i_is_SC
168 >    logical :: i_is_MEAM
169 >    logical :: j_is_LJ
170 >    logical :: j_is_Elect
171 >    logical :: j_is_Sticky
172 >    logical :: j_is_StickyP
173 >    logical :: j_is_GB
174 >    logical :: j_is_EAM
175 >    logical :: j_is_Shape
176 >    logical :: j_is_SC
177 >    logical :: j_is_MEAM
178 >    real(kind=dp) :: myRcut
179  
180 <    status = 0
181 <
180 >    if (.not. associated(atypes)) then
181 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
182 >       return
183 >    endif
184 >    
185      nAtypes = getSize(atypes)
186 <
186 >    
187      if (nAtypes == 0) then
188 <       status = -1
188 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
189         return
190      end if
191 <        
192 <    if (.not. allocated(PropertyMap)) then
193 <       allocate(PropertyMap(nAtypes))
191 >
192 >    if (.not. allocated(InteractionHash)) then
193 >       allocate(InteractionHash(nAtypes,nAtypes))
194 >    else
195 >       deallocate(InteractionHash)
196 >       allocate(InteractionHash(nAtypes,nAtypes))
197      endif
198  
199 +    if (.not. allocated(atypeMaxCutoff)) then
200 +       allocate(atypeMaxCutoff(nAtypes))
201 +    else
202 +       deallocate(atypeMaxCutoff)
203 +       allocate(atypeMaxCutoff(nAtypes))
204 +    endif
205 +        
206      do i = 1, nAtypes
207 <       call getElementProperty(atypes, i, "is_LJ", thisProperty)
208 <       PropertyMap(i)%is_LJ = thisProperty
207 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
208 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
209 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
210 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
211 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
212 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
213 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
214 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
215 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
216  
217 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
129 <       PropertyMap(i)%is_Charge = thisProperty
130 <      
131 <       if (thisProperty) then
132 <          call getElementProperty(atypes, i, "charge", thisDPproperty)
133 <          PropertyMap(i)%charge = thisDPproperty
134 <       endif
217 >       do j = i, nAtypes
218  
219 <       call getElementProperty(atypes, i, "is_DP", thisProperty)
220 <       PropertyMap(i)%is_DP = thisProperty
219 >          iHash = 0
220 >          myRcut = 0.0_dp
221  
222 <       if (thisProperty) then
223 <          call getElementProperty(atypes, i, "dipole_moment", thisDPproperty)
224 <          PropertyMap(i)%dipole_moment = thisDPproperty
225 <       endif
222 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
223 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
224 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
225 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
226 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
227 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
228 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
229 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
230 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
231  
232 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
233 <       PropertyMap(i)%is_Sticky = thisProperty
234 <       call getElementProperty(atypes, i, "is_GB", thisProperty)
235 <       PropertyMap(i)%is_GB = thisProperty
236 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
237 <       PropertyMap(i)%is_EAM = thisProperty
238 <    end do
232 >          if (i_is_LJ .and. j_is_LJ) then
233 >             iHash = ior(iHash, LJ_PAIR)            
234 >          endif
235 >          
236 >          if (i_is_Elect .and. j_is_Elect) then
237 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
238 >          endif
239 >          
240 >          if (i_is_Sticky .and. j_is_Sticky) then
241 >             iHash = ior(iHash, STICKY_PAIR)
242 >          endif
243  
244 <    havePropertyMap = .true.
244 >          if (i_is_StickyP .and. j_is_StickyP) then
245 >             iHash = ior(iHash, STICKYPOWER_PAIR)
246 >          endif
247  
248 <  end subroutine createPropertyMap
248 >          if (i_is_EAM .and. j_is_EAM) then
249 >             iHash = ior(iHash, EAM_PAIR)
250 >          endif
251  
252 <  subroutine setSimVariables()
253 <    SIM_uses_LJ = SimUsesLJ()
254 <    SIM_uses_sticky = SimUsesSticky()
159 <    SIM_uses_charges = SimUsesCharges()
160 <    SIM_uses_dipoles = SimUsesDipoles()
161 <    SIM_uses_RF = SimUsesRF()
162 <    SIM_uses_GB = SimUsesGB()
163 <    SIM_uses_EAM = SimUsesEAM()
164 <    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
165 <    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
166 <    SIM_uses_directional_atoms = SimUsesDirectionalAtoms()
167 <    SIM_uses_PBC = SimUsesPBC()
168 <    !SIM_uses_molecular_cutoffs = SimUsesMolecularCutoffs()
252 >          if (i_is_SC .and. j_is_SC) then
253 >             iHash = ior(iHash, SC_PAIR)
254 >          endif
255  
256 <    haveSIMvariables = .true.
256 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
257 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
258 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
259  
260 <    return
261 <  end subroutine setSimVariables
260 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
261 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
262 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
263  
175  subroutine doReadyCheck(error)
176    integer, intent(out) :: error
264  
265 <    integer :: myStatus
265 >          InteractionHash(i,j) = iHash
266 >          InteractionHash(j,i) = iHash
267  
268 <    error = 0
268 >       end do
269 >
270 >    end do
271 >
272 >    haveInteractionHash = .true.
273 >  end subroutine createInteractionHash
274 >
275 >  subroutine createGtypeCutoffMap()
276 >
277 >    logical :: i_is_LJ
278 >    logical :: i_is_Elect
279 >    logical :: i_is_Sticky
280 >    logical :: i_is_StickyP
281 >    logical :: i_is_GB
282 >    logical :: i_is_EAM
283 >    logical :: i_is_Shape
284 >    logical :: GtypeFound
285 >
286 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
287 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
288 >    integer :: nGroupsInRow
289 >    integer :: nGroupsInCol
290 >    integer :: nGroupTypesRow,nGroupTypesCol
291 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
292 >    real(kind=dp) :: biggestAtypeCutoff
293 >
294 >    if (.not. haveInteractionHash) then
295 >       call createInteractionHash()      
296 >    endif
297 > #ifdef IS_MPI
298 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
299 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
300 > #endif
301 >    nAtypes = getSize(atypes)
302 > ! Set all of the initial cutoffs to zero.
303 >    atypeMaxCutoff = 0.0_dp
304 >    do i = 1, nAtypes
305 >       if (SimHasAtype(i)) then    
306 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
307 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
308 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
309 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
310 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
311 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
312 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
313 >          
314 >
315 >          if (haveDefaultCutoffs) then
316 >             atypeMaxCutoff(i) = defaultRcut
317 >          else
318 >             if (i_is_LJ) then          
319 >                thisRcut = getSigma(i) * 2.5_dp
320 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
321 >             endif
322 >             if (i_is_Elect) then
323 >                thisRcut = defaultRcut
324 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
325 >             endif
326 >             if (i_is_Sticky) then
327 >                thisRcut = getStickyCut(i)
328 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 >             endif
330 >             if (i_is_StickyP) then
331 >                thisRcut = getStickyPowerCut(i)
332 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 >             endif
334 >             if (i_is_GB) then
335 >                thisRcut = getGayBerneCut(i)
336 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 >             endif
338 >             if (i_is_EAM) then
339 >                thisRcut = getEAMCut(i)
340 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
341 >             endif
342 >             if (i_is_Shape) then
343 >                thisRcut = getShapeCut(i)
344 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
345 >             endif
346 >          endif
347 >                    
348 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
349 >             biggestAtypeCutoff = atypeMaxCutoff(i)
350 >          endif
351 >
352 >       endif
353 >    enddo
354      
355 <    if (.not. havePropertyMap) then
355 >    istart = 1
356 >    jstart = 1
357 > #ifdef IS_MPI
358 >    iend = nGroupsInRow
359 >    jend = nGroupsInCol
360 > #else
361 >    iend = nGroups
362 >    jend = nGroups
363 > #endif
364 >    
365 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
366 >    if(.not.allocated(groupToGtypeRow)) then
367 >     !  allocate(groupToGtype(iend))
368 >       allocate(groupToGtypeRow(iend))
369 >    else
370 >       deallocate(groupToGtypeRow)
371 >       allocate(groupToGtypeRow(iend))
372 >    endif
373 >    if(.not.allocated(groupMaxCutoffRow)) then
374 >       allocate(groupMaxCutoffRow(iend))
375 >    else
376 >       deallocate(groupMaxCutoffRow)
377 >       allocate(groupMaxCutoffRow(iend))
378 >    end if
379  
380 <       myStatus = 0
380 >    if(.not.allocated(gtypeMaxCutoffRow)) then
381 >       allocate(gtypeMaxCutoffRow(iend))
382 >    else
383 >       deallocate(gtypeMaxCutoffRow)
384 >       allocate(gtypeMaxCutoffRow(iend))
385 >    endif
386  
186       call createPropertyMap(myStatus)
387  
388 <       if (myStatus .ne. 0) then
389 <          write(default_error, *) 'createPropertyMap failed in doForces!'
390 <          error = -1
391 <          return
388 > #ifdef IS_MPI
389 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
390 >    if(.not.associated(groupToGtypeCol)) then
391 >       allocate(groupToGtypeCol(jend))
392 >    else
393 >       deallocate(groupToGtypeCol)
394 >       allocate(groupToGtypeCol(jend))
395 >    end if
396 >
397 >    if(.not.associated(groupToGtypeCol)) then
398 >       allocate(groupToGtypeCol(jend))
399 >    else
400 >       deallocate(groupToGtypeCol)
401 >       allocate(groupToGtypeCol(jend))
402 >    end if
403 >    if(.not.associated(gtypeMaxCutoffCol)) then
404 >       allocate(gtypeMaxCutoffCol(jend))
405 >    else
406 >       deallocate(gtypeMaxCutoffCol)      
407 >       allocate(gtypeMaxCutoffCol(jend))
408 >    end if
409 >
410 >       groupMaxCutoffCol = 0.0_dp
411 >       gtypeMaxCutoffCol = 0.0_dp
412 >
413 > #endif
414 >       groupMaxCutoffRow = 0.0_dp
415 >       gtypeMaxCutoffRow = 0.0_dp
416 >
417 >
418 >    !! first we do a single loop over the cutoff groups to find the
419 >    !! largest cutoff for any atypes present in this group.  We also
420 >    !! create gtypes at this point.
421 >    
422 >    tol = 1.0d-6
423 >    nGroupTypesRow = 0
424 >
425 >    do i = istart, iend      
426 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
427 >       groupMaxCutoffRow(i) = 0.0_dp
428 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
429 >          atom1 = groupListRow(ia)
430 > #ifdef IS_MPI
431 >          me_i = atid_row(atom1)
432 > #else
433 >          me_i = atid(atom1)
434 > #endif          
435 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
436 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
437 >          endif          
438 >       enddo
439 >
440 >       if (nGroupTypesRow.eq.0) then
441 >          nGroupTypesRow = nGroupTypesRow + 1
442 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
443 >          groupToGtypeRow(i) = nGroupTypesRow
444 >       else
445 >          GtypeFound = .false.
446 >          do g = 1, nGroupTypesRow
447 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
448 >                groupToGtypeRow(i) = g
449 >                GtypeFound = .true.
450 >             endif
451 >          enddo
452 >          if (.not.GtypeFound) then            
453 >             nGroupTypesRow = nGroupTypesRow + 1
454 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
455 >             groupToGtypeRow(i) = nGroupTypesRow
456 >          endif
457 >       endif
458 >    enddo    
459 >
460 > #ifdef IS_MPI
461 >    do j = jstart, jend      
462 >       n_in_j = groupStartCol(j+1) - groupStartCol(j)
463 >       groupMaxCutoffCol(j) = 0.0_dp
464 >       do ja = groupStartCol(j), groupStartCol(j+1)-1
465 >          atom1 = groupListCol(ja)
466 >
467 >          me_j = atid_col(atom1)
468 >
469 >          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
470 >             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
471 >          endif          
472 >       enddo
473 >
474 >       if (nGroupTypesCol.eq.0) then
475 >          nGroupTypesCol = nGroupTypesCol + 1
476 >          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
477 >          groupToGtypeCol(j) = nGroupTypesCol
478 >       else
479 >          GtypeFound = .false.
480 >          do g = 1, nGroupTypesCol
481 >             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
482 >                groupToGtypeCol(j) = g
483 >                GtypeFound = .true.
484 >             endif
485 >          enddo
486 >          if (.not.GtypeFound) then            
487 >             nGroupTypesCol = nGroupTypesCol + 1
488 >             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
489 >             groupToGtypeCol(j) = nGroupTypesCol
490 >          endif
491         endif
492 +    enddo    
493 +
494 + #else
495 + ! Set pointers to information we just found
496 +    nGroupTypesCol = nGroupTypesRow
497 +    groupToGtypeCol => groupToGtypeRow
498 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
499 +    groupMaxCutoffCol => groupMaxCutoffRow
500 + #endif
501 +
502 +    !! allocate the gtypeCutoffMap here.
503 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
504 +    !! then we do a double loop over all the group TYPES to find the cutoff
505 +    !! map between groups of two types
506 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
507 +
508 +    do i = 1, nGroupTypesRow      
509 +       do j = 1, nGroupTypesCol
510 +      
511 +          select case(cutoffPolicy)
512 +          case(TRADITIONAL_CUTOFF_POLICY)
513 +             thisRcut = tradRcut
514 +          case(MIX_CUTOFF_POLICY)
515 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
516 +          case(MAX_CUTOFF_POLICY)
517 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
518 +          case default
519 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
520 +             return
521 +          end select
522 +          gtypeCutoffMap(i,j)%rcut = thisRcut
523 +          
524 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
525 +
526 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
527 +
528 +          if (.not.haveSkinThickness) then
529 +             skinThickness = 1.0_dp
530 +          endif
531 +
532 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
533 +
534 +          ! sanity check
535 +
536 +          if (haveDefaultCutoffs) then
537 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
538 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
539 +             endif
540 +          endif
541 +       enddo
542 +    enddo
543 +
544 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
545 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
546 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
547 + #ifdef IS_MPI
548 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
549 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
550 + #endif
551 +    groupMaxCutoffCol => null()
552 +    gtypeMaxCutoffCol => null()
553 +    
554 +    haveGtypeCutoffMap = .true.
555 +   end subroutine createGtypeCutoffMap
556 +
557 +   subroutine setCutoffs(defRcut, defRsw)
558 +
559 +     real(kind=dp),intent(in) :: defRcut, defRsw
560 +     character(len = statusMsgSize) :: errMsg
561 +     integer :: localError
562 +
563 +     defaultRcut = defRcut
564 +     defaultRsw = defRsw
565 +    
566 +     defaultDoShift = .false.
567 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
568 +        
569 +        write(errMsg, *) &
570 +             'cutoffRadius and switchingRadius are set to the same', newline &
571 +             // tab, 'value.  OOPSE will use shifted ', newline &
572 +             // tab, 'potentials instead of switching functions.'
573 +        
574 +        call handleInfo("setCutoffs", errMsg)
575 +        
576 +        defaultDoShift = .true.
577 +        
578 +     endif
579 +
580 +     localError = 0
581 +     call setLJDefaultCutoff( defaultRcut, defaultDoShift )
582 +     call setCutoffEAM( defaultRcut, localError)
583 +     if (localError /= 0) then
584 +       write(errMsg, *) 'An error has occured in setting the EAM cutoff'
585 +       call handleError("setCutoffs", errMsg)
586 +     end if
587 +     call set_switch(GROUP_SWITCH, defaultRsw, defaultRcut)
588 +    
589 +     haveDefaultCutoffs = .true.
590 +   end subroutine setCutoffs
591 +
592 +   subroutine cWasLame()
593 +    
594 +     VisitCutoffsAfterComputing = .true.
595 +     return
596 +    
597 +   end subroutine cWasLame
598 +  
599 +   subroutine setCutoffPolicy(cutPolicy)
600 +    
601 +     integer, intent(in) :: cutPolicy
602 +    
603 +     cutoffPolicy = cutPolicy
604 +     haveCutoffPolicy = .true.
605 +
606 +     call createGtypeCutoffMap()
607 +    
608 +   end subroutine setCutoffPolicy
609 +  
610 +   subroutine setElectrostaticMethod( thisESM )
611 +
612 +     integer, intent(in) :: thisESM
613 +
614 +     electrostaticSummationMethod = thisESM
615 +     haveElectrostaticSummationMethod = .true.
616 +    
617 +   end subroutine setElectrostaticMethod
618 +
619 +   subroutine setSkinThickness( thisSkin )
620 +    
621 +     real(kind=dp), intent(in) :: thisSkin
622 +    
623 +     skinThickness = thisSkin
624 +     haveSkinThickness = .true.
625 +    
626 +     call createGtypeCutoffMap()
627 +    
628 +   end subroutine setSkinThickness
629 +      
630 +   subroutine setSimVariables()
631 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
632 +     SIM_uses_EAM = SimUsesEAM()
633 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
634 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
635 +     SIM_uses_PBC = SimUsesPBC()
636 +    
637 +     haveSIMvariables = .true.
638 +    
639 +     return
640 +   end subroutine setSimVariables
641 +
642 +  subroutine doReadyCheck(error)
643 +    integer, intent(out) :: error
644 +
645 +    integer :: myStatus
646 +
647 +    error = 0
648 +
649 +    if (.not. haveInteractionHash) then      
650 +       call createInteractionHash()      
651      endif
652  
653 <    if (.not. haveSIMvariables) then
654 <       call setSimVariables()
653 >    if (.not. haveGtypeCutoffMap) then        
654 >       call createGtypeCutoffMap()      
655      endif
656  
657 <    if (.not. haveRlist) then
658 <       write(default_error, *) 'rList has not been set in doForces!'
659 <       error = -1
202 <       return
657 >
658 >    if (VisitCutoffsAfterComputing) then
659 >       call set_switch(GROUP_SWITCH, largestRcut, largestRcut)      
660      endif
661  
662 <    if (SIM_uses_LJ .and. FF_uses_LJ) then
663 <       if (.not. havePolicies) then
664 <          write(default_error, *) 'LJ mixing Policies have not been set in doForces!'
208 <          error = -1
209 <          return
210 <       endif
662 >
663 >    if (.not. haveSIMvariables) then
664 >       call setSimVariables()
665      endif
666  
667 +  !  if (.not. haveRlist) then
668 +  !     write(default_error, *) 'rList has not been set in doForces!'
669 +  !     error = -1
670 +  !     return
671 +  !  endif
672 +
673      if (.not. haveNeighborList) then
674         write(default_error, *) 'neighbor list has not been initialized in doForces!'
675         error = -1
# Line 231 | Line 691 | contains
691   #endif
692      return
693    end subroutine doReadyCheck
234    
694  
236  subroutine init_FF(LJMIXPOLICY, use_RF_c, thisStat)
695  
696 <    integer, intent(in) :: LJMIXPOLICY
239 <    logical, intent(in) :: use_RF_c
696 >  subroutine init_FF(thisStat)
697  
698      integer, intent(out) :: thisStat  
699      integer :: my_status, nMatches
700      integer, pointer :: MatchList(:) => null()
244    real(kind=dp) :: rcut, rrf, rt, dielect
701  
702      !! assume things are copacetic, unless they aren't
703      thisStat = 0
704  
249    !! Fortran's version of a cast:
250    FF_uses_RF = use_RF_c
251    
705      !! init_FF is called *after* all of the atom types have been
706      !! defined in atype_module using the new_atype subroutine.
707      !!
708      !! this will scan through the known atypes and figure out what
709      !! interactions are used by the force field.    
710 <  
711 <    FF_uses_LJ = .false.
712 <    FF_uses_sticky = .false.
713 <    FF_uses_charges = .false.
261 <    FF_uses_dipoles = .false.
262 <    FF_uses_GB = .false.
710 >
711 >    FF_uses_DirectionalAtoms = .false.
712 >    FF_uses_Dipoles = .false.
713 >    FF_uses_GayBerne = .false.
714      FF_uses_EAM = .false.
264    
265    call getMatchingElementList(atypes, "is_LJ", .true., nMatches, MatchList)
266    if (nMatches .gt. 0) FF_uses_LJ = .true.
715  
716 <    call getMatchingElementList(atypes, "is_Charge", .true., nMatches, MatchList)
717 <    if (nMatches .gt. 0) FF_uses_charges = .true.  
716 >    call getMatchingElementList(atypes, "is_Directional", .true., &
717 >         nMatches, MatchList)
718 >    if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
719  
720 <    call getMatchingElementList(atypes, "is_DP", .true., nMatches, MatchList)
721 <    if (nMatches .gt. 0) FF_uses_dipoles = .true.
720 >    call getMatchingElementList(atypes, "is_Dipole", .true., &
721 >         nMatches, MatchList)
722 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
723      
724 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
725 <         MatchList)
726 <    if (nMatches .gt. 0) FF_uses_Sticky = .true.
727 <    
278 <    call getMatchingElementList(atypes, "is_GB", .true., nMatches, MatchList)
279 <    if (nMatches .gt. 0) FF_uses_GB = .true.
280 <    
724 >    call getMatchingElementList(atypes, "is_GayBerne", .true., &
725 >         nMatches, MatchList)
726 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
727 >
728      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
729      if (nMatches .gt. 0) FF_uses_EAM = .true.
283    
284    !! Assume sanity (for the sake of argument)
285    haveSaneForceField = .true.
730  
287    !! check to make sure the FF_uses_RF setting makes sense
288    
289    if (FF_uses_dipoles) then
290       if (FF_uses_RF) then
291          dielect = getDielect()
292          call initialize_rf(dielect)
293       endif
294    else
295       if (FF_uses_RF) then          
296          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
297          thisStat = -1
298          haveSaneForceField = .false.
299          return
300       endif
301    endif
731  
732 <    if (FF_uses_LJ) then
304 <      
305 <       select case (LJMIXPOLICY)
306 <       case (LB_MIXING_RULE)
307 <          call init_lj_FF(LB_MIXING_RULE, my_status)            
308 <       case (EXPLICIT_MIXING_RULE)
309 <          call init_lj_FF(EXPLICIT_MIXING_RULE, my_status)
310 <       case default
311 <          write(default_error,*) 'unknown LJ Mixing Policy!'
312 <          thisStat = -1
313 <          haveSaneForceField = .false.
314 <          return            
315 <       end select
316 <       if (my_status /= 0) then
317 <          thisStat = -1
318 <          haveSaneForceField = .false.
319 <          return
320 <       end if
321 <       havePolicies = .true.
322 <    endif
732 >    haveSaneForceField = .true.
733  
324    if (FF_uses_sticky) then
325       call check_sticky_FF(my_status)
326       if (my_status /= 0) then
327          thisStat = -1
328          haveSaneForceField = .false.
329          return
330       end if
331    endif
332
333
734      if (FF_uses_EAM) then
735 <         call init_EAM_FF(my_status)
735 >       call init_EAM_FF(my_status)
736         if (my_status /= 0) then
737            write(default_error, *) "init_EAM_FF returned a bad status"
738            thisStat = -1
# Line 341 | Line 741 | contains
741         end if
742      endif
743  
344    if (FF_uses_GB) then
345       call check_gb_pair_FF(my_status)
346       if (my_status .ne. 0) then
347          thisStat = -1
348          haveSaneForceField = .false.
349          return
350       endif
351    endif
352
353    if (FF_uses_GB .and. FF_uses_LJ) then
354    endif
744      if (.not. haveNeighborList) then
745         !! Create neighbor lists
746         call expandNeighborList(nLocal, my_status)
# Line 363 | Line 752 | contains
752         haveNeighborList = .true.
753      endif
754  
366    
367    
755    end subroutine init_FF
369  
756  
757 +
758    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
759    !------------------------------------------------------------->
760 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
760 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
761         do_pot_c, do_stress_c, error)
762      !! Position array provided by C, dimensioned by getNlocal
763      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 379 | Line 766 | contains
766      !! Rotation Matrix for each long range particle in simulation.
767      real( kind = dp), dimension(9, nLocal) :: A    
768      !! Unit vectors for dipoles (lab frame)
769 <    real( kind = dp ), dimension(3,nLocal) :: u_l
769 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
770      !! Force array provided by C, dimensioned by getNlocal
771      real ( kind = dp ), dimension(3,nLocal) :: f
772      !! Torsion array provided by C, dimensioned by getNlocal
# Line 387 | Line 774 | contains
774  
775      !! Stress Tensor
776      real( kind = dp), dimension(9) :: tau  
777 <    real ( kind = dp ) :: pot
777 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
778      logical ( kind = 2) :: do_pot_c, do_stress_c
779      logical :: do_pot
780      logical :: do_stress
781      logical :: in_switching_region
782   #ifdef IS_MPI
783 <    real( kind = DP ) :: pot_local
783 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
784      integer :: nAtomsInRow
785      integer :: nAtomsInCol
786      integer :: nprocs
# Line 408 | Line 795 | contains
795      integer :: nlist
796      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
797      real( kind = DP ) :: sw, dswdr, swderiv, mf
798 +    real( kind = DP ) :: rVal
799      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
800      real(kind=dp) :: rfpot, mu_i, virial
801 +    real(kind=dp):: rCut
802      integer :: me_i, me_j, n_in_i, n_in_j
803      logical :: is_dp_i
804      integer :: neighborListSize
# Line 417 | Line 806 | contains
806      integer :: localError
807      integer :: propPack_i, propPack_j
808      integer :: loopStart, loopEnd, loop
809 +    integer :: iHash
810 +    integer :: i1
811 +  
812  
421    real(kind=dp) :: listSkin = 1.0  
422    
813      !! initialize local variables  
814 <    
814 >
815   #ifdef IS_MPI
816      pot_local = 0.0_dp
817      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 431 | Line 821 | contains
821   #else
822      natoms = nlocal
823   #endif
824 <    
824 >
825      call doReadyCheck(localError)
826      if ( localError .ne. 0 ) then
827         call handleError("do_force_loop", "Not Initialized")
# Line 439 | Line 829 | contains
829         return
830      end if
831      call zero_work_arrays()
832 <        
832 >
833      do_pot = do_pot_c
834      do_stress = do_stress_c
835 <    
835 >
836      ! Gather all information needed by all force loops:
837 <    
837 >
838   #ifdef IS_MPI    
839 <    
839 >
840      call gather(q, q_Row, plan_atom_row_3d)
841      call gather(q, q_Col, plan_atom_col_3d)
842  
843      call gather(q_group, q_group_Row, plan_group_row_3d)
844      call gather(q_group, q_group_Col, plan_group_col_3d)
845 <        
846 <    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
847 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
848 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
849 <      
845 >
846 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
847 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
848 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
849 >
850         call gather(A, A_Row, plan_atom_row_rotation)
851         call gather(A, A_Col, plan_atom_col_rotation)
852      endif
853 <    
853 >
854   #endif
855 <    
855 >
856      !! Begin force loop timing:
857   #ifdef PROFILE
858      call cpu_time(forceTimeInitial)
859      nloops = nloops + 1
860   #endif
861 <    
861 >
862      loopEnd = PAIR_LOOP
863      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
864         loopStart = PREPAIR_LOOP
# Line 482 | Line 872 | contains
872         ! (but only on the first time through):
873         if (loop .eq. loopStart) then
874   #ifdef IS_MPI
875 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
876 <             update_nlist)
875 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
876 >               update_nlist)
877   #else
878 <          call checkNeighborList(nGroups, q_group, listSkin, &
879 <             update_nlist)
878 >          call checkNeighborList(nGroups, q_group, skinThickness, &
879 >               update_nlist)
880   #endif
881         endif
882 <      
882 >
883         if (update_nlist) then
884            !! save current configuration and construct neighbor list
885   #ifdef IS_MPI
# Line 500 | Line 890 | contains
890            neighborListSize = size(list)
891            nlist = 0
892         endif
893 <      
893 >
894         istart = 1
895   #ifdef IS_MPI
896         iend = nGroupsInRow
# Line 510 | Line 900 | contains
900         outer: do i = istart, iend
901  
902            if (update_nlist) point(i) = nlist + 1
903 <          
903 >
904            n_in_i = groupStartRow(i+1) - groupStartRow(i)
905 <          
905 >
906            if (update_nlist) then
907   #ifdef IS_MPI
908               jstart = 1
# Line 527 | Line 917 | contains
917               ! make sure group i has neighbors
918               if (jstart .gt. jend) cycle outer
919            endif
920 <          
920 >
921            do jnab = jstart, jend
922               if (update_nlist) then
923                  j = jnab
# Line 536 | Line 926 | contains
926               endif
927  
928   #ifdef IS_MPI
929 +             me_j = atid_col(j)
930               call get_interatomic_vector(q_group_Row(:,i), &
931                    q_group_Col(:,j), d_grp, rgrpsq)
932   #else
933 +             me_j = atid(j)
934               call get_interatomic_vector(q_group(:,i), &
935                    q_group(:,j), d_grp, rgrpsq)
936 < #endif
936 > #endif      
937  
938 <             if (rgrpsq < rlistsq) then
938 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
939                  if (update_nlist) then
940                     nlist = nlist + 1
941 <                  
941 >
942                     if (nlist > neighborListSize) then
943   #ifdef IS_MPI                
944                        call expandNeighborList(nGroupsInRow, listerror)
# Line 560 | Line 952 | contains
952                        end if
953                        neighborListSize = size(list)
954                     endif
955 <                  
955 >
956                     list(nlist) = j
957                  endif
958 +
959 +
960                  
961 <                if (loop .eq. PAIR_LOOP) then
962 <                   vij = 0.0d0
963 <                   fij(1:3) = 0.0d0
964 <                endif
965 <                
966 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
967 <                     in_switching_region)
574 <                
575 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
576 <                
577 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
961 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
962 >
963 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
964 >                   if (loop .eq. PAIR_LOOP) then
965 >                      vij = 0.0d0
966 >                      fij(1:3) = 0.0d0
967 >                   endif
968                    
969 <                   atom1 = groupListRow(ia)
969 >                   call get_switch(rgrpsq, sw, dswdr, rgrp, &
970 >                        group_switch, in_switching_region)
971                    
972 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
972 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
973 >                  
974 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
975                        
976 <                      atom2 = groupListCol(jb)
976 >                      atom1 = groupListRow(ia)
977                        
978 <                      if (skipThisPair(atom1, atom2)) cycle inner
979 <
980 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
981 <                         d_atm(1:3) = d_grp(1:3)
982 <                         ratmsq = rgrpsq
983 <                      else
978 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
979 >                        
980 >                         atom2 = groupListCol(jb)
981 >                        
982 >                         if (skipThisPair(atom1, atom2))  cycle inner
983 >                        
984 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
985 >                            d_atm(1:3) = d_grp(1:3)
986 >                            ratmsq = rgrpsq
987 >                         else
988   #ifdef IS_MPI
989 <                         call get_interatomic_vector(q_Row(:,atom1), &
990 <                              q_Col(:,atom2), d_atm, ratmsq)
989 >                            call get_interatomic_vector(q_Row(:,atom1), &
990 >                                 q_Col(:,atom2), d_atm, ratmsq)
991   #else
992 <                         call get_interatomic_vector(q(:,atom1), &
993 <                              q(:,atom2), d_atm, ratmsq)
992 >                            call get_interatomic_vector(q(:,atom1), &
993 >                                 q(:,atom2), d_atm, ratmsq)
994   #endif
995 <                      endif
996 <
997 <                      if (loop .eq. PREPAIR_LOOP) then
995 >                         endif
996 >                        
997 >                         if (loop .eq. PREPAIR_LOOP) then
998   #ifdef IS_MPI                      
999 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1000 <                              rgrpsq, d_grp, do_pot, do_stress, &
1001 <                              u_l, A, f, t, pot_local)
999 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1000 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1001 >                                 eFrame, A, f, t, pot_local)
1002   #else
1003 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1004 <                              rgrpsq, d_grp, do_pot, do_stress, &
1005 <                              u_l, A, f, t, pot)
1003 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1004 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1005 >                                 eFrame, A, f, t, pot)
1006   #endif                                              
1007 <                      else
1007 >                         else
1008   #ifdef IS_MPI                      
1009 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1010 <                              do_pot, &
1011 <                              u_l, A, f, t, pot_local, vpair, fpair)
1009 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1010 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1011 >                                 fpair, d_grp, rgrp, rCut)
1012   #else
1013 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1014 <                              do_pot,  &
1015 <                              u_l, A, f, t, pot, vpair, fpair)
1013 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1014 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1015 >                                 d_grp, rgrp, rCut)
1016   #endif
1017 +                            vij = vij + vpair
1018 +                            fij(1:3) = fij(1:3) + fpair(1:3)
1019 +                         endif
1020 +                      enddo inner
1021 +                   enddo
1022  
1023 <                         vij = vij + vpair
1024 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1025 <                      endif
1026 <                   enddo inner
1027 <                enddo
1028 <                
1029 <                if (loop .eq. PAIR_LOOP) then
1030 <                   if (in_switching_region) then
1031 <                      swderiv = vij*dswdr/rgrp
1032 <                      fij(1) = fij(1) + swderiv*d_grp(1)
631 <                      fij(2) = fij(2) + swderiv*d_grp(2)
632 <                      fij(3) = fij(3) + swderiv*d_grp(3)
633 <                      
634 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
635 <                         atom1=groupListRow(ia)
636 <                         mf = mfactRow(atom1)
1023 >                   if (loop .eq. PAIR_LOOP) then
1024 >                      if (in_switching_region) then
1025 >                         swderiv = vij*dswdr/rgrp
1026 >                         fij(1) = fij(1) + swderiv*d_grp(1)
1027 >                         fij(2) = fij(2) + swderiv*d_grp(2)
1028 >                         fij(3) = fij(3) + swderiv*d_grp(3)
1029 >                        
1030 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1031 >                            atom1=groupListRow(ia)
1032 >                            mf = mfactRow(atom1)
1033   #ifdef IS_MPI
1034 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1035 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1036 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1034 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1035 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1036 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1037   #else
1038 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1039 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1040 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1038 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1039 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1040 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1041   #endif
1042 <                      enddo
1043 <                      
1044 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1045 <                         atom2=groupListCol(jb)
1046 <                         mf = mfactCol(atom2)
1042 >                         enddo
1043 >                        
1044 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1045 >                            atom2=groupListCol(jb)
1046 >                            mf = mfactCol(atom2)
1047   #ifdef IS_MPI
1048 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1049 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1050 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1048 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1049 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1050 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1051   #else
1052 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1053 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1054 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1052 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1053 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1054 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1055   #endif
1056 <                      enddo
1056 >                         enddo
1057 >                      endif
1058 >
1059 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1060                     endif
662                  
663                   if (do_stress) call add_stress_tensor(d_grp, fij)
1061                  endif
1062 <             end if
1062 >             endif
1063            enddo
1064 +          
1065         enddo outer
1066 <      
1066 >
1067         if (update_nlist) then
1068   #ifdef IS_MPI
1069            point(nGroupsInRow + 1) = nlist + 1
# Line 679 | Line 1077 | contains
1077               update_nlist = .false.                              
1078            endif
1079         endif
1080 <            
1080 >
1081         if (loop .eq. PREPAIR_LOOP) then
1082            call do_preforce(nlocal, pot)
1083         endif
1084 <      
1084 >
1085      enddo
1086 <    
1086 >
1087      !! Do timing
1088   #ifdef PROFILE
1089      call cpu_time(forceTimeFinal)
1090      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1091   #endif    
1092 <    
1092 >
1093   #ifdef IS_MPI
1094      !!distribute forces
1095 <    
1095 >
1096      f_temp = 0.0_dp
1097      call scatter(f_Row,f_temp,plan_atom_row_3d)
1098      do i = 1,nlocal
1099         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1100      end do
1101 <    
1101 >
1102      f_temp = 0.0_dp
1103      call scatter(f_Col,f_temp,plan_atom_col_3d)
1104      do i = 1,nlocal
1105         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1106      end do
1107 <    
1108 <    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
1107 >
1108 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1109         t_temp = 0.0_dp
1110         call scatter(t_Row,t_temp,plan_atom_row_3d)
1111         do i = 1,nlocal
# Line 715 | Line 1113 | contains
1113         end do
1114         t_temp = 0.0_dp
1115         call scatter(t_Col,t_temp,plan_atom_col_3d)
1116 <      
1116 >
1117         do i = 1,nlocal
1118            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1119         end do
1120      endif
1121 <    
1121 >
1122      if (do_pot) then
1123         ! scatter/gather pot_row into the members of my column
1124 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1125 <      
1124 >       do i = 1,LR_POT_TYPES
1125 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1126 >       end do
1127         ! scatter/gather pot_local into all other procs
1128         ! add resultant to get total pot
1129         do i = 1, nlocal
1130 <          pot_local = pot_local + pot_Temp(i)
1130 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1131 >               + pot_Temp(1:LR_POT_TYPES,i)
1132         enddo
1133 <      
1133 >
1134         pot_Temp = 0.0_DP
1135 <      
1136 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1135 >       do i = 1,LR_POT_TYPES
1136 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1137 >       end do
1138         do i = 1, nlocal
1139 <          pot_local = pot_local + pot_Temp(i)
1139 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1140 >               + pot_Temp(1:LR_POT_TYPES,i)
1141         enddo
1142 <      
1142 >
1143      endif
1144   #endif
1145 <    
1146 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1147 <      
746 <       if (FF_uses_RF .and. SIM_uses_RF) then
1145 >
1146 >    if (SIM_requires_postpair_calc) then
1147 >       do i = 1, nlocal            
1148            
1149 < #ifdef IS_MPI
1150 <          call scatter(rf_Row,rf,plan_atom_row_3d)
750 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
751 <          do i = 1,nlocal
752 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
753 <          end do
754 < #endif
1149 >          ! we loop only over the local atoms, so we don't need row and column
1150 >          ! lookups for the types
1151            
1152 <          do i = 1, nLocal
1153 <            
1154 <             rfpot = 0.0_DP
1152 >          me_i = atid(i)
1153 >          
1154 >          ! is the atom electrostatic?  See if it would have an
1155 >          ! electrostatic interaction with itself
1156 >          iHash = InteractionHash(me_i,me_i)
1157 >
1158 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1159   #ifdef IS_MPI
1160 <             me_i = atid_row(i)
1160 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1161 >                  t, do_pot)
1162   #else
1163 <             me_i = atid(i)
1163 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1164 >                  t, do_pot)
1165   #endif
1166 +          endif
1167 +  
1168 +          
1169 +          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1170              
1171 <             if (PropertyMap(me_i)%is_DP) then
1171 >             ! loop over the excludes to accumulate RF stuff we've
1172 >             ! left out of the normal pair loop
1173 >            
1174 >             do i1 = 1, nSkipsForAtom(i)
1175 >                j = skipsForAtom(i, i1)
1176                  
1177 <                mu_i = PropertyMap(me_i)%dipole_moment
1178 <                
1179 <                !! The reaction field needs to include a self contribution
1180 <                !! to the field:
1181 <                call accumulate_self_rf(i, mu_i, u_l)
1182 <                !! Get the reaction field contribution to the
1183 <                !! potential and torques:
774 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1177 >                ! prevent overcounting of the skips
1178 >                if (i.lt.j) then
1179 >                   call get_interatomic_vector(q(:,i), &
1180 >                        q(:,j), d_atm, ratmsq)
1181 >                   rVal = dsqrt(ratmsq)
1182 >                   call get_switch(ratmsq, sw, dswdr, rVal, group_switch, &
1183 >                        in_switching_region)
1184   #ifdef IS_MPI
1185 <                pot_local = pot_local + rfpot
1185 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1186 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1187   #else
1188 <                pot = pot + rfpot
1189 <      
1188 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1189 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1190   #endif
1191 <             endif            
1192 <          enddo
1193 <       endif
1191 >                endif
1192 >             enddo
1193 >          endif
1194 >       enddo
1195      endif
1196      
786    
1197   #ifdef IS_MPI
1198      
1199      if (do_pot) then
1200 <       pot = pot + pot_local
1201 <       !! we assume the c code will do the allreduce to get the total potential
792 <       !! we could do it right here if we needed to...
1200 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1201 >            mpi_comm_world,mpi_err)            
1202      endif
1203      
1204      if (do_stress) then
# Line 807 | Line 1216 | contains
1216      endif
1217      
1218   #endif
1219 <      
1219 >    
1220    end subroutine do_force_loop
1221 <  
1221 >
1222    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1223 <       u_l, A, f, t, pot, vpair, fpair)
1223 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1224  
1225 <    real( kind = dp ) :: pot, vpair, sw
1225 >    real( kind = dp ) :: vpair, sw
1226 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1227      real( kind = dp ), dimension(3) :: fpair
1228      real( kind = dp ), dimension(nLocal)   :: mfact
1229 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1229 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1230      real( kind = dp ), dimension(9,nLocal) :: A
1231      real( kind = dp ), dimension(3,nLocal) :: f
1232      real( kind = dp ), dimension(3,nLocal) :: t
# Line 824 | Line 1234 | contains
1234      logical, intent(inout) :: do_pot
1235      integer, intent(in) :: i, j
1236      real ( kind = dp ), intent(inout) :: rijsq
1237 <    real ( kind = dp )                :: r
1237 >    real ( kind = dp ), intent(inout) :: r_grp
1238      real ( kind = dp ), intent(inout) :: d(3)
1239 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1240 +    real ( kind = dp ), intent(inout) :: rCut
1241 +    real ( kind = dp ) :: r
1242      integer :: me_i, me_j
1243  
1244 +    integer :: iHash
1245 +
1246      r = sqrt(rijsq)
1247      vpair = 0.0d0
1248      fpair(1:3) = 0.0d0
# Line 839 | Line 1254 | contains
1254      me_i = atid(i)
1255      me_j = atid(j)
1256   #endif
1257 +
1258 +    iHash = InteractionHash(me_i, me_j)
1259      
1260 <    if (FF_uses_LJ .and. SIM_uses_LJ) then
1261 <      
1262 <       if ( PropertyMap(me_i)%is_LJ .and. PropertyMap(me_j)%is_LJ ) then
846 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
847 <       endif
848 <      
1260 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1261 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1262 >            pot(VDW_POT), f, do_pot)
1263      endif
1264      
1265 <    if (FF_uses_charges .and. SIM_uses_charges) then
1266 <      
1267 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
854 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
855 <       endif
856 <      
1265 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1266 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1267 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1268      endif
1269      
1270 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
1271 <      
1272 <       if ( PropertyMap(me_i)%is_DP .and. PropertyMap(me_j)%is_DP) then
1273 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
1274 <               do_pot)
1275 <          if (FF_uses_RF .and. SIM_uses_RF) then
1276 <             call accumulate_rf(i, j, r, u_l, sw)
1277 <             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
1278 <          endif          
1279 <       endif
1270 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1271 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1272 >            pot(HB_POT), A, f, t, do_pot)
1273 >    endif
1274 >    
1275 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1276 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1277 >            pot(HB_POT), A, f, t, do_pot)
1278 >    endif
1279 >    
1280 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1281 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1282 >            pot(VDW_POT), A, f, t, do_pot)
1283 >    endif
1284 >    
1285 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1286 >       call do_gb_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1287 >            pot(VDW_POT), A, f, t, do_pot)
1288 >    endif
1289 >    
1290 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1291 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1292 >            pot(METALLIC_POT), f, do_pot)
1293 >    endif
1294 >    
1295 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1296 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1297 >            pot(VDW_POT), A, f, t, do_pot)
1298 >    endif
1299 >    
1300 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1301 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1302 >            pot(VDW_POT), A, f, t, do_pot)
1303 >    endif
1304  
1305 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1306 +       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1307 +            pot(METALLIC_POT), f, do_pot)
1308      endif
1309  
1310 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1310 >    
1311 >    
1312 >  end subroutine do_pair
1313  
1314 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1315 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, A, f, t, &
876 <               do_pot)
877 <       endif
1314 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1315 >       do_pot, do_stress, eFrame, A, f, t, pot)
1316  
1317 <    endif
1317 >    real( kind = dp ) :: sw
1318 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1319 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1320 >    real (kind=dp), dimension(9,nLocal) :: A
1321 >    real (kind=dp), dimension(3,nLocal) :: f
1322 >    real (kind=dp), dimension(3,nLocal) :: t
1323  
1324 +    logical, intent(inout) :: do_pot, do_stress
1325 +    integer, intent(in) :: i, j
1326 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1327 +    real ( kind = dp )                :: r, rc
1328 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1329  
1330 <    if (FF_uses_GB .and. SIM_uses_GB) then
883 <      
884 <       if ( PropertyMap(me_i)%is_GB .and. PropertyMap(me_j)%is_GB) then
885 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
886 <               do_pot)
887 <       endif
1330 >    integer :: me_i, me_j, iHash
1331  
1332 +    r = sqrt(rijsq)
1333 +
1334 + #ifdef IS_MPI  
1335 +    me_i = atid_row(i)
1336 +    me_j = atid_col(j)  
1337 + #else  
1338 +    me_i = atid(i)
1339 +    me_j = atid(j)  
1340 + #endif
1341 +
1342 +    iHash = InteractionHash(me_i, me_j)
1343 +
1344 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1345 +            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1346      endif
1347 <      
1348 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1349 <      
893 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
894 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
895 <               do_pot)
896 <       endif
897 <      
1347 >
1348 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1349 >            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1350      endif
1351      
1352 <  end subroutine do_pair
1352 >  end subroutine do_prepair
1353  
902  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
903       do_pot, do_stress, u_l, A, f, t, pot)
1354  
1355 <   real( kind = dp ) :: pot, sw
1356 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1357 <   real (kind=dp), dimension(9,nLocal) :: A
908 <   real (kind=dp), dimension(3,nLocal) :: f
909 <   real (kind=dp), dimension(3,nLocal) :: t
910 <  
911 <   logical, intent(inout) :: do_pot, do_stress
912 <   integer, intent(in) :: i, j
913 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
914 <   real ( kind = dp )                :: r, rc
915 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
916 <  
917 <   logical :: is_EAM_i, is_EAM_j
918 <  
919 <   integer :: me_i, me_j
920 <  
1355 >  subroutine do_preforce(nlocal,pot)
1356 >    integer :: nlocal
1357 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1358  
1359 <    r = sqrt(rijsq)
1360 <    if (SIM_uses_molecular_cutoffs) then
924 <       rc = sqrt(rcijsq)
925 <    else
926 <       rc = r
1359 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1360 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1361      endif
1362 <  
1362 >    if (FF_uses_SC .and. SIM_uses_SC) then
1363 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1364 >    endif
1365  
1366 < #ifdef IS_MPI  
1367 <   me_i = atid_row(i)
1368 <   me_j = atid_col(j)  
1369 < #else  
1370 <   me_i = atid(i)
1371 <   me_j = atid(j)  
1372 < #endif
1373 <  
1374 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1375 <      
1376 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1377 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1378 <      
1379 <   endif
1380 <  
1381 < end subroutine do_prepair
1382 <
1383 <
1384 < subroutine do_preforce(nlocal,pot)
1385 <   integer :: nlocal
1386 <   real( kind = dp ) :: pot
1387 <  
1388 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1389 <      call calc_EAM_preforce_Frho(nlocal,pot)
1390 <   endif
1391 <  
1392 <  
1393 < end subroutine do_preforce
1394 <
1395 <
1396 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1397 <  
1398 <   real (kind = dp), dimension(3) :: q_i
1399 <   real (kind = dp), dimension(3) :: q_j
1400 <   real ( kind = dp ), intent(out) :: r_sq
1401 <   real( kind = dp ) :: d(3), scaled(3)
1402 <   integer i
1403 <  
1404 <   d(1:3) = q_j(1:3) - q_i(1:3)
1405 <  
1406 <   ! Wrap back into periodic box if necessary
1407 <   if ( SIM_uses_PBC ) then
1408 <      
1409 <      if( .not.boxIsOrthorhombic ) then
1410 <         ! calc the scaled coordinates.
1411 <        
1412 <         scaled = matmul(HmatInv, d)
1413 <        
1414 <         ! wrap the scaled coordinates
1415 <        
1416 <         scaled = scaled  - anint(scaled)
1417 <        
1418 <        
1419 <         ! calc the wrapped real coordinates from the wrapped scaled
1420 <         ! coordinates
1421 <        
1422 <         d = matmul(Hmat,scaled)
1423 <        
1424 <      else
1425 <         ! calc the scaled coordinates.
1426 <        
1427 <         do i = 1, 3
1428 <            scaled(i) = d(i) * HmatInv(i,i)
1429 <            
994 <            ! wrap the scaled coordinates
995 <            
996 <            scaled(i) = scaled(i) - anint(scaled(i))
997 <            
998 <            ! calc the wrapped real coordinates from the wrapped scaled
999 <            ! coordinates
1000 <            
1001 <            d(i) = scaled(i)*Hmat(i,i)
1002 <         enddo
1003 <      endif
1004 <      
1005 <   endif
1006 <  
1007 <   r_sq = dot_product(d,d)
1008 <  
1009 < end subroutine get_interatomic_vector
1010 <
1011 < subroutine zero_work_arrays()
1012 <  
1013 < #ifdef IS_MPI
1014 <  
1015 <   q_Row = 0.0_dp
1016 <   q_Col = 0.0_dp
1366 >
1367 >  end subroutine do_preforce
1368 >
1369 >
1370 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1371 >
1372 >    real (kind = dp), dimension(3) :: q_i
1373 >    real (kind = dp), dimension(3) :: q_j
1374 >    real ( kind = dp ), intent(out) :: r_sq
1375 >    real( kind = dp ) :: d(3), scaled(3)
1376 >    integer i
1377 >
1378 >    d(1:3) = q_j(1:3) - q_i(1:3)
1379 >
1380 >    ! Wrap back into periodic box if necessary
1381 >    if ( SIM_uses_PBC ) then
1382 >
1383 >       if( .not.boxIsOrthorhombic ) then
1384 >          ! calc the scaled coordinates.
1385 >
1386 >          scaled = matmul(HmatInv, d)
1387 >
1388 >          ! wrap the scaled coordinates
1389 >
1390 >          scaled = scaled  - anint(scaled)
1391 >
1392 >
1393 >          ! calc the wrapped real coordinates from the wrapped scaled
1394 >          ! coordinates
1395 >
1396 >          d = matmul(Hmat,scaled)
1397 >
1398 >       else
1399 >          ! calc the scaled coordinates.
1400 >
1401 >          do i = 1, 3
1402 >             scaled(i) = d(i) * HmatInv(i,i)
1403 >
1404 >             ! wrap the scaled coordinates
1405 >
1406 >             scaled(i) = scaled(i) - anint(scaled(i))
1407 >
1408 >             ! calc the wrapped real coordinates from the wrapped scaled
1409 >             ! coordinates
1410 >
1411 >             d(i) = scaled(i)*Hmat(i,i)
1412 >          enddo
1413 >       endif
1414 >
1415 >    endif
1416 >
1417 >    r_sq = dot_product(d,d)
1418 >
1419 >  end subroutine get_interatomic_vector
1420 >
1421 >  subroutine zero_work_arrays()
1422 >
1423 > #ifdef IS_MPI
1424 >
1425 >    q_Row = 0.0_dp
1426 >    q_Col = 0.0_dp
1427 >
1428 >    q_group_Row = 0.0_dp
1429 >    q_group_Col = 0.0_dp  
1430  
1431 <   q_group_Row = 0.0_dp
1432 <   q_group_Col = 0.0_dp  
1433 <  
1434 <   u_l_Row = 0.0_dp
1435 <   u_l_Col = 0.0_dp
1436 <  
1437 <   A_Row = 0.0_dp
1438 <   A_Col = 0.0_dp
1439 <  
1440 <   f_Row = 0.0_dp
1441 <   f_Col = 0.0_dp
1442 <   f_Temp = 0.0_dp
1443 <  
1444 <   t_Row = 0.0_dp
1445 <   t_Col = 0.0_dp
1446 <   t_Temp = 0.0_dp
1447 <  
1448 <   pot_Row = 0.0_dp
1036 <   pot_Col = 0.0_dp
1037 <   pot_Temp = 0.0_dp
1038 <  
1039 <   rf_Row = 0.0_dp
1040 <   rf_Col = 0.0_dp
1041 <   rf_Temp = 0.0_dp
1042 <  
1431 >    eFrame_Row = 0.0_dp
1432 >    eFrame_Col = 0.0_dp
1433 >
1434 >    A_Row = 0.0_dp
1435 >    A_Col = 0.0_dp
1436 >
1437 >    f_Row = 0.0_dp
1438 >    f_Col = 0.0_dp
1439 >    f_Temp = 0.0_dp
1440 >
1441 >    t_Row = 0.0_dp
1442 >    t_Col = 0.0_dp
1443 >    t_Temp = 0.0_dp
1444 >
1445 >    pot_Row = 0.0_dp
1446 >    pot_Col = 0.0_dp
1447 >    pot_Temp = 0.0_dp
1448 >
1449   #endif
1450 <
1451 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1452 <      call clean_EAM()
1453 <   endif
1454 <  
1455 <   rf = 0.0_dp
1456 <   tau_Temp = 0.0_dp
1457 <   virial_Temp = 0.0_dp
1458 < end subroutine zero_work_arrays
1459 <
1460 < function skipThisPair(atom1, atom2) result(skip_it)
1461 <   integer, intent(in) :: atom1
1462 <   integer, intent(in), optional :: atom2
1463 <   logical :: skip_it
1464 <   integer :: unique_id_1, unique_id_2
1465 <   integer :: me_i,me_j
1466 <   integer :: i
1467 <  
1468 <   skip_it = .false.
1469 <  
1470 <   !! there are a number of reasons to skip a pair or a particle
1471 <   !! mostly we do this to exclude atoms who are involved in short
1472 <   !! range interactions (bonds, bends, torsions), but we also need
1473 <   !! to exclude some overcounted interactions that result from
1474 <   !! the parallel decomposition
1069 <  
1450 >
1451 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1452 >       call clean_EAM()
1453 >    endif
1454 >
1455 >    tau_Temp = 0.0_dp
1456 >    virial_Temp = 0.0_dp
1457 >  end subroutine zero_work_arrays
1458 >
1459 >  function skipThisPair(atom1, atom2) result(skip_it)
1460 >    integer, intent(in) :: atom1
1461 >    integer, intent(in), optional :: atom2
1462 >    logical :: skip_it
1463 >    integer :: unique_id_1, unique_id_2
1464 >    integer :: me_i,me_j
1465 >    integer :: i
1466 >
1467 >    skip_it = .false.
1468 >
1469 >    !! there are a number of reasons to skip a pair or a particle
1470 >    !! mostly we do this to exclude atoms who are involved in short
1471 >    !! range interactions (bonds, bends, torsions), but we also need
1472 >    !! to exclude some overcounted interactions that result from
1473 >    !! the parallel decomposition
1474 >
1475   #ifdef IS_MPI
1476 <   !! in MPI, we have to look up the unique IDs for each atom
1477 <   unique_id_1 = AtomRowToGlobal(atom1)
1476 >    !! in MPI, we have to look up the unique IDs for each atom
1477 >    unique_id_1 = AtomRowToGlobal(atom1)
1478   #else
1479 <   !! in the normal loop, the atom numbers are unique
1480 <   unique_id_1 = atom1
1479 >    !! in the normal loop, the atom numbers are unique
1480 >    unique_id_1 = atom1
1481   #endif
1482 <  
1483 <   !! We were called with only one atom, so just check the global exclude
1484 <   !! list for this atom
1485 <   if (.not. present(atom2)) then
1486 <      do i = 1, nExcludes_global
1487 <         if (excludesGlobal(i) == unique_id_1) then
1488 <            skip_it = .true.
1489 <            return
1490 <         end if
1491 <      end do
1492 <      return
1493 <   end if
1494 <  
1482 >
1483 >    !! We were called with only one atom, so just check the global exclude
1484 >    !! list for this atom
1485 >    if (.not. present(atom2)) then
1486 >       do i = 1, nExcludes_global
1487 >          if (excludesGlobal(i) == unique_id_1) then
1488 >             skip_it = .true.
1489 >             return
1490 >          end if
1491 >       end do
1492 >       return
1493 >    end if
1494 >
1495   #ifdef IS_MPI
1496 <   unique_id_2 = AtomColToGlobal(atom2)
1496 >    unique_id_2 = AtomColToGlobal(atom2)
1497   #else
1498 <   unique_id_2 = atom2
1498 >    unique_id_2 = atom2
1499   #endif
1500 <  
1500 >
1501   #ifdef IS_MPI
1502 <   !! this situation should only arise in MPI simulations
1503 <   if (unique_id_1 == unique_id_2) then
1504 <      skip_it = .true.
1505 <      return
1506 <   end if
1507 <  
1508 <   !! this prevents us from doing the pair on multiple processors
1509 <   if (unique_id_1 < unique_id_2) then
1510 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1511 <         skip_it = .true.
1512 <         return
1513 <      endif
1514 <   else                
1515 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1516 <         skip_it = .true.
1517 <         return
1518 <      endif
1519 <   endif
1502 >    !! this situation should only arise in MPI simulations
1503 >    if (unique_id_1 == unique_id_2) then
1504 >       skip_it = .true.
1505 >       return
1506 >    end if
1507 >
1508 >    !! this prevents us from doing the pair on multiple processors
1509 >    if (unique_id_1 < unique_id_2) then
1510 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1511 >          skip_it = .true.
1512 >          return
1513 >       endif
1514 >    else                
1515 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1516 >          skip_it = .true.
1517 >          return
1518 >       endif
1519 >    endif
1520   #endif
1521 <  
1522 <   !! the rest of these situations can happen in all simulations:
1523 <   do i = 1, nExcludes_global      
1524 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1525 <           (excludesGlobal(i) == unique_id_2)) then
1526 <         skip_it = .true.
1527 <         return
1528 <      endif
1529 <   enddo
1530 <  
1531 <   do i = 1, nSkipsForAtom(atom1)
1532 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1533 <         skip_it = .true.
1534 <         return
1535 <      endif
1536 <   end do
1537 <  
1538 <   return
1539 < end function skipThisPair
1540 <
1541 < function FF_UsesDirectionalAtoms() result(doesit)
1542 <   logical :: doesit
1543 <   doesit = FF_uses_dipoles .or. FF_uses_sticky .or. &
1544 <        FF_uses_GB .or. FF_uses_RF
1545 < end function FF_UsesDirectionalAtoms
1546 <
1547 < function FF_RequiresPrepairCalc() result(doesit)
1548 <   logical :: doesit
1549 <   doesit = FF_uses_EAM
1550 < end function FF_RequiresPrepairCalc
1551 <
1147 < function FF_RequiresPostpairCalc() result(doesit)
1148 <   logical :: doesit
1149 <   doesit = FF_uses_RF
1150 < end function FF_RequiresPostpairCalc
1151 <
1521 >
1522 >    !! the rest of these situations can happen in all simulations:
1523 >    do i = 1, nExcludes_global      
1524 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1525 >            (excludesGlobal(i) == unique_id_2)) then
1526 >          skip_it = .true.
1527 >          return
1528 >       endif
1529 >    enddo
1530 >
1531 >    do i = 1, nSkipsForAtom(atom1)
1532 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1533 >          skip_it = .true.
1534 >          return
1535 >       endif
1536 >    end do
1537 >
1538 >    return
1539 >  end function skipThisPair
1540 >
1541 >  function FF_UsesDirectionalAtoms() result(doesit)
1542 >    logical :: doesit
1543 >    doesit = FF_uses_DirectionalAtoms
1544 >  end function FF_UsesDirectionalAtoms
1545 >
1546 >  function FF_RequiresPrepairCalc() result(doesit)
1547 >    logical :: doesit
1548 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1549 >         .or. FF_uses_MEAM
1550 >  end function FF_RequiresPrepairCalc
1551 >
1552   #ifdef PROFILE
1553 < function getforcetime() result(totalforcetime)
1554 <   real(kind=dp) :: totalforcetime
1555 <   totalforcetime = forcetime
1556 < end function getforcetime
1553 >  function getforcetime() result(totalforcetime)
1554 >    real(kind=dp) :: totalforcetime
1555 >    totalforcetime = forcetime
1556 >  end function getforcetime
1557   #endif
1158
1159 !! This cleans componets of force arrays belonging only to fortran
1558  
1559 < subroutine add_stress_tensor(dpair, fpair)
1162 <  
1163 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1164 <  
1165 <   ! because the d vector is the rj - ri vector, and
1166 <   ! because fx, fy, fz are the force on atom i, we need a
1167 <   ! negative sign here:  
1168 <  
1169 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1170 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1171 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1172 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1173 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1174 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1175 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1176 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1177 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1178 <  
1179 <   virial_Temp = virial_Temp + &
1180 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1181 <  
1182 < end subroutine add_stress_tensor
1183 <
1184 < end module doForces
1559 >  !! This cleans componets of force arrays belonging only to fortran
1560  
1561 < !! Interfaces for C programs to module....
1561 >  subroutine add_stress_tensor(dpair, fpair)
1562  
1563 < subroutine initFortranFF(LJMIXPOLICY, use_RF_c, thisStat)
1189 <    use doForces, ONLY: init_FF
1190 <    integer, intent(in) :: LJMIXPOLICY
1191 <    logical, intent(in) :: use_RF_c
1563 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1564  
1565 <    integer, intent(out) :: thisStat  
1566 <    call init_FF(LJMIXPOLICY, use_RF_c, thisStat)
1565 >    ! because the d vector is the rj - ri vector, and
1566 >    ! because fx, fy, fz are the force on atom i, we need a
1567 >    ! negative sign here:  
1568  
1569 < end subroutine initFortranFF
1569 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1570 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1571 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1572 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1573 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1574 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1575 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1576 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1577 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1578  
1579 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1580 <       do_pot_c, do_stress_c, error)
1200 <      
1201 <       use definitions, ONLY: dp
1202 <       use simulation
1203 <       use doForces, ONLY: do_force_loop
1204 <    !! Position array provided by C, dimensioned by getNlocal
1205 <    real ( kind = dp ), dimension(3, nLocal) :: q
1206 <    !! molecular center-of-mass position array
1207 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1208 <    !! Rotation Matrix for each long range particle in simulation.
1209 <    real( kind = dp), dimension(9, nLocal) :: A    
1210 <    !! Unit vectors for dipoles (lab frame)
1211 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1212 <    !! Force array provided by C, dimensioned by getNlocal
1213 <    real ( kind = dp ), dimension(3,nLocal) :: f
1214 <    !! Torsion array provided by C, dimensioned by getNlocal
1215 <    real( kind = dp ), dimension(3,nLocal) :: t    
1579 >    virial_Temp = virial_Temp + &
1580 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1581  
1582 <    !! Stress Tensor
1583 <    real( kind = dp), dimension(9) :: tau  
1584 <    real ( kind = dp ) :: pot
1220 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1221 <    integer :: error
1222 <    
1223 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1224 <       do_pot_c, do_stress_c, error)
1225 <      
1226 < end subroutine doForceloop
1582 >  end subroutine add_stress_tensor
1583 >
1584 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines