ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1706 by gezelter, Thu Nov 4 16:20:28 2004 UTC vs.
Revision 2512 by gezelter, Thu Dec 15 21:43:16 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.7 2004-11-04 16:20:28 gezelter Exp $, $Date: 2004-11-04 16:20:28 $, $Name: not supported by cvs2svn $, $Revision: 1.7 $
48 > !! @version $Id: doForces.F90,v 1.71 2005-12-15 21:43:16 gezelter Exp $, $Date: 2005-12-15 21:43:16 $, $Name: not supported by cvs2svn $, $Revision: 1.71 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
21 <  use gb_pair
59 >  use sticky
60 >  use electrostatic_module
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 32 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80 +
81    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82    INTEGER, PARAMETER:: PAIR_LOOP    = 2
83  
39  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 <  
87 >  logical, save :: haveInteractionHash = .false.
88 >  logical, save :: haveGtypeCutoffMap = .false.
89 >  logical, save :: haveDefaultCutoffs = .false.
90 >  logical, save :: haveSkinThickness = .false.
91 >  logical, save :: haveElectrostaticSummationMethod = .false.
92 >  logical, save :: haveCutoffPolicy = .false.
93 >  logical, save :: VisitCutoffsAfterComputing = .false.
94 >
95    logical, save :: FF_uses_DirectionalAtoms
96 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
96 >  logical, save :: FF_uses_Dipoles
97    logical, save :: FF_uses_GayBerne
98    logical, save :: FF_uses_EAM
99 <  logical, save :: FF_uses_Shapes
100 <  logical, save :: FF_uses_FLARB
101 <  logical, save :: FF_uses_RF
99 >  logical, save :: FF_uses_SC
100 >  logical, save :: FF_uses_MEAM
101 >
102  
103    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
104    logical, save :: SIM_uses_EAM
105 <  logical, save :: SIM_uses_Shapes
106 <  logical, save :: SIM_uses_FLARB
67 <  logical, save :: SIM_uses_RF
105 >  logical, save :: SIM_uses_SC
106 >  logical, save :: SIM_uses_MEAM
107    logical, save :: SIM_requires_postpair_calc
108    logical, save :: SIM_requires_prepair_calc
109    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
110  
111 <  real(kind=dp), save :: rlist, rlistsq
111 >  integer, save :: electrostaticSummationMethod
112 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
113  
114 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
115 +  real(kind=dp), save :: skinThickness
116 +  logical, save :: defaultDoShift
117 +
118    public :: init_FF
119 +  public :: setCutoffs
120 +  public :: cWasLame
121 +  public :: setElectrostaticMethod
122 +  public :: setCutoffPolicy
123 +  public :: setSkinThickness
124    public :: do_force_loop
77  public :: setRlistDF
125  
126   #ifdef PROFILE
127    public :: getforcetime
# Line 82 | Line 129 | module doForces
129    real :: forceTimeInitial, forceTimeFinal
130    integer :: nLoops
131   #endif
132 +  
133 +  !! Variables for cutoff mapping and interaction mapping
134 +  ! Bit hash to determine pair-pair interactions.
135 +  integer, dimension(:,:), allocatable :: InteractionHash
136 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
137 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
138 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
139  
140 <  type :: Properties
141 <     logical :: is_Directional   = .false.
88 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
140 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
141 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
142  
143 <  type(Properties), dimension(:),allocatable :: PropertyMap
143 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
144 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
145 >  type ::gtypeCutoffs
146 >     real(kind=dp) :: rcut
147 >     real(kind=dp) :: rcutsq
148 >     real(kind=dp) :: rlistsq
149 >  end type gtypeCutoffs
150 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
151  
152   contains
153  
154 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
154 >  subroutine createInteractionHash()
155      integer :: nAtypes
116    integer :: status
156      integer :: i
157 <    logical :: thisProperty
158 <    real (kind=DP) :: thisDPproperty
157 >    integer :: j
158 >    integer :: iHash
159 >    !! Test Types
160 >    logical :: i_is_LJ
161 >    logical :: i_is_Elect
162 >    logical :: i_is_Sticky
163 >    logical :: i_is_StickyP
164 >    logical :: i_is_GB
165 >    logical :: i_is_EAM
166 >    logical :: i_is_Shape
167 >    logical :: i_is_SC
168 >    logical :: i_is_MEAM
169 >    logical :: j_is_LJ
170 >    logical :: j_is_Elect
171 >    logical :: j_is_Sticky
172 >    logical :: j_is_StickyP
173 >    logical :: j_is_GB
174 >    logical :: j_is_EAM
175 >    logical :: j_is_Shape
176 >    logical :: j_is_SC
177 >    logical :: j_is_MEAM
178 >    real(kind=dp) :: myRcut
179  
180 <    status = 0
181 <
180 >    if (.not. associated(atypes)) then
181 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
182 >       return
183 >    endif
184 >    
185      nAtypes = getSize(atypes)
186 <
186 >    
187      if (nAtypes == 0) then
188 <       status = -1
188 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
189         return
190      end if
191 <        
192 <    if (.not. allocated(PropertyMap)) then
193 <       allocate(PropertyMap(nAtypes))
191 >
192 >    if (.not. allocated(InteractionHash)) then
193 >       allocate(InteractionHash(nAtypes,nAtypes))
194 >    else
195 >       deallocate(InteractionHash)
196 >       allocate(InteractionHash(nAtypes,nAtypes))
197      endif
198  
199 +    if (.not. allocated(atypeMaxCutoff)) then
200 +       allocate(atypeMaxCutoff(nAtypes))
201 +    else
202 +       deallocate(atypeMaxCutoff)
203 +       allocate(atypeMaxCutoff(nAtypes))
204 +    endif
205 +        
206      do i = 1, nAtypes
207 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
208 <       PropertyMap(i)%is_Directional = thisProperty
207 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
208 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
209 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
210 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
211 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
212 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
213 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
214 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
215 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
216  
217 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
217 >       do j = i, nAtypes
218  
219 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
220 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
219 >          iHash = 0
220 >          myRcut = 0.0_dp
221  
222 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
223 <       PropertyMap(i)%is_Sticky = thisProperty
222 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
223 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
224 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
225 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
226 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
227 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
228 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
229 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
230 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
231  
232 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
233 <       PropertyMap(i)%is_GayBerne = thisProperty
232 >          if (i_is_LJ .and. j_is_LJ) then
233 >             iHash = ior(iHash, LJ_PAIR)            
234 >          endif
235 >          
236 >          if (i_is_Elect .and. j_is_Elect) then
237 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
238 >          endif
239 >          
240 >          if (i_is_Sticky .and. j_is_Sticky) then
241 >             iHash = ior(iHash, STICKY_PAIR)
242 >          endif
243  
244 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
245 <       PropertyMap(i)%is_EAM = thisProperty
244 >          if (i_is_StickyP .and. j_is_StickyP) then
245 >             iHash = ior(iHash, STICKYPOWER_PAIR)
246 >          endif
247  
248 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
249 <       PropertyMap(i)%is_Shape = thisProperty
248 >          if (i_is_EAM .and. j_is_EAM) then
249 >             iHash = ior(iHash, EAM_PAIR)
250 >          endif
251  
252 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
253 <       PropertyMap(i)%is_FLARB = thisProperty
252 >          if (i_is_SC .and. j_is_SC) then
253 >             iHash = ior(iHash, SC_PAIR)
254 >          endif
255 >
256 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
257 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
258 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
259 >
260 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
261 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
262 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
263 >
264 >
265 >          InteractionHash(i,j) = iHash
266 >          InteractionHash(j,i) = iHash
267 >
268 >       end do
269 >
270      end do
271  
272 <    havePropertyMap = .true.
272 >    haveInteractionHash = .true.
273 >  end subroutine createInteractionHash
274  
275 <  end subroutine createPropertyMap
275 >  subroutine createGtypeCutoffMap()
276  
277 <  subroutine setSimVariables()
278 <    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
279 <    SIM_uses_LennardJones = SimUsesLennardJones()
280 <    SIM_uses_Electrostatics = SimUsesElectrostatics()
281 <    SIM_uses_Charges = SimUsesCharges()
282 <    SIM_uses_Dipoles = SimUsesDipoles()
283 <    SIM_uses_Sticky = SimUsesSticky()
284 <    SIM_uses_GayBerne = SimUsesGayBerne()
178 <    SIM_uses_EAM = SimUsesEAM()
179 <    SIM_uses_Shapes = SimUsesShapes()
180 <    SIM_uses_FLARB = SimUsesFLARB()
181 <    SIM_uses_RF = SimUsesRF()
182 <    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
183 <    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
184 <    SIM_uses_PBC = SimUsesPBC()
277 >    logical :: i_is_LJ
278 >    logical :: i_is_Elect
279 >    logical :: i_is_Sticky
280 >    logical :: i_is_StickyP
281 >    logical :: i_is_GB
282 >    logical :: i_is_EAM
283 >    logical :: i_is_Shape
284 >    logical :: GtypeFound
285  
286 <    haveSIMvariables = .true.
286 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
287 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
288 >    integer :: nGroupsInRow
289 >    integer :: nGroupsInCol
290 >    integer :: nGroupTypesRow,nGroupTypesCol
291 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
292 >    real(kind=dp) :: biggestAtypeCutoff
293  
294 <    return
295 <  end subroutine setSimVariables
294 >    if (.not. haveInteractionHash) then
295 >       call createInteractionHash()      
296 >    endif
297 > #ifdef IS_MPI
298 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
299 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
300 > #endif
301 >    nAtypes = getSize(atypes)
302 > ! Set all of the initial cutoffs to zero.
303 >    atypeMaxCutoff = 0.0_dp
304 >    do i = 1, nAtypes
305 >       if (SimHasAtype(i)) then    
306 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
307 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
308 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
309 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
310 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
311 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
312 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
313 >          
314 >
315 >          if (haveDefaultCutoffs) then
316 >             atypeMaxCutoff(i) = defaultRcut
317 >          else
318 >             if (i_is_LJ) then          
319 >                thisRcut = getSigma(i) * 2.5_dp
320 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
321 >             endif
322 >             if (i_is_Elect) then
323 >                thisRcut = defaultRcut
324 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
325 >             endif
326 >             if (i_is_Sticky) then
327 >                thisRcut = getStickyCut(i)
328 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 >             endif
330 >             if (i_is_StickyP) then
331 >                thisRcut = getStickyPowerCut(i)
332 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 >             endif
334 >             if (i_is_GB) then
335 >                thisRcut = getGayBerneCut(i)
336 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 >             endif
338 >             if (i_is_EAM) then
339 >                thisRcut = getEAMCut(i)
340 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
341 >             endif
342 >             if (i_is_Shape) then
343 >                thisRcut = getShapeCut(i)
344 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
345 >             endif
346 >          endif
347 >                    
348 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
349 >             biggestAtypeCutoff = atypeMaxCutoff(i)
350 >          endif
351  
352 <  subroutine doReadyCheck(error)
353 <    integer, intent(out) :: error
352 >       endif
353 >    enddo
354 >    
355 >    istart = 1
356 >    jstart = 1
357 > #ifdef IS_MPI
358 >    iend = nGroupsInRow
359 >    jend = nGroupsInCol
360 > #else
361 >    iend = nGroups
362 >    jend = nGroups
363 > #endif
364 >    
365 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
366 >    if(.not.allocated(groupToGtypeRow)) then
367 >     !  allocate(groupToGtype(iend))
368 >       allocate(groupToGtypeRow(iend))
369 >    else
370 >       deallocate(groupToGtypeRow)
371 >       allocate(groupToGtypeRow(iend))
372 >    endif
373 >    if(.not.allocated(groupMaxCutoffRow)) then
374 >       allocate(groupMaxCutoffRow(iend))
375 >    else
376 >       deallocate(groupMaxCutoffRow)
377 >       allocate(groupMaxCutoffRow(iend))
378 >    end if
379  
380 <    integer :: myStatus
380 >    if(.not.allocated(gtypeMaxCutoffRow)) then
381 >       allocate(gtypeMaxCutoffRow(iend))
382 >    else
383 >       deallocate(gtypeMaxCutoffRow)
384 >       allocate(gtypeMaxCutoffRow(iend))
385 >    endif
386  
387 <    error = 0
387 >
388 > #ifdef IS_MPI
389 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
390 >    if(.not.associated(groupToGtypeCol)) then
391 >       allocate(groupToGtypeCol(jend))
392 >    else
393 >       deallocate(groupToGtypeCol)
394 >       allocate(groupToGtypeCol(jend))
395 >    end if
396 >
397 >    if(.not.associated(groupToGtypeCol)) then
398 >       allocate(groupToGtypeCol(jend))
399 >    else
400 >       deallocate(groupToGtypeCol)
401 >       allocate(groupToGtypeCol(jend))
402 >    end if
403 >    if(.not.associated(gtypeMaxCutoffCol)) then
404 >       allocate(gtypeMaxCutoffCol(jend))
405 >    else
406 >       deallocate(gtypeMaxCutoffCol)      
407 >       allocate(gtypeMaxCutoffCol(jend))
408 >    end if
409 >
410 >       groupMaxCutoffCol = 0.0_dp
411 >       gtypeMaxCutoffCol = 0.0_dp
412 >
413 > #endif
414 >       groupMaxCutoffRow = 0.0_dp
415 >       gtypeMaxCutoffRow = 0.0_dp
416 >
417 >
418 >    !! first we do a single loop over the cutoff groups to find the
419 >    !! largest cutoff for any atypes present in this group.  We also
420 >    !! create gtypes at this point.
421      
422 <    if (.not. havePropertyMap) then
422 >    tol = 1.0d-6
423 >    nGroupTypesRow = 0
424  
425 <       myStatus = 0
425 >    do i = istart, iend      
426 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
427 >       groupMaxCutoffRow(i) = 0.0_dp
428 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
429 >          atom1 = groupListRow(ia)
430 > #ifdef IS_MPI
431 >          me_i = atid_row(atom1)
432 > #else
433 >          me_i = atid(atom1)
434 > #endif          
435 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
436 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
437 >          endif          
438 >       enddo
439 >       if (nGroupTypesRow.eq.0) then
440 >          nGroupTypesRow = nGroupTypesRow + 1
441 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
442 >          groupToGtypeRow(i) = nGroupTypesRow
443 >       else
444 >          GtypeFound = .false.
445 >          do g = 1, nGroupTypesRow
446 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
447 >                groupToGtypeRow(i) = g
448 >                GtypeFound = .true.
449 >             endif
450 >          enddo
451 >          if (.not.GtypeFound) then            
452 >             nGroupTypesRow = nGroupTypesRow + 1
453 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
454 >             groupToGtypeRow(i) = nGroupTypesRow
455 >          endif
456 >       endif
457 >    enddo    
458  
459 <       call createPropertyMap(myStatus)
459 > #ifdef IS_MPI
460 >    do j = jstart, jend      
461 >       n_in_j = groupStartCol(j+1) - groupStartCol(j)
462 >       groupMaxCutoffCol(j) = 0.0_dp
463 >       do ja = groupStartCol(j), groupStartCol(j+1)-1
464 >          atom1 = groupListCol(ja)
465  
466 <       if (myStatus .ne. 0) then
467 <          write(default_error, *) 'createPropertyMap failed in doForces!'
468 <          error = -1
469 <          return
466 >          me_j = atid_col(atom1)
467 >
468 >          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
469 >             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
470 >          endif          
471 >       enddo
472 >
473 >       if (nGroupTypesCol.eq.0) then
474 >          nGroupTypesCol = nGroupTypesCol + 1
475 >          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
476 >          groupToGtypeCol(j) = nGroupTypesCol
477 >       else
478 >          GtypeFound = .false.
479 >          do g = 1, nGroupTypesCol
480 >             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
481 >                groupToGtypeCol(j) = g
482 >                GtypeFound = .true.
483 >             endif
484 >          enddo
485 >          if (.not.GtypeFound) then            
486 >             nGroupTypesCol = nGroupTypesCol + 1
487 >             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
488 >             groupToGtypeCol(j) = nGroupTypesCol
489 >          endif
490         endif
491 +    enddo    
492 +
493 + #else
494 + ! Set pointers to information we just found
495 +    nGroupTypesCol = nGroupTypesRow
496 +    groupToGtypeCol => groupToGtypeRow
497 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
498 +    groupMaxCutoffCol => groupMaxCutoffRow
499 + #endif
500 +
501 +    !! allocate the gtypeCutoffMap here.
502 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
503 +    !! then we do a double loop over all the group TYPES to find the cutoff
504 +    !! map between groups of two types
505 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
506 +
507 +    do i = 1, nGroupTypesRow      
508 +       do j = 1, nGroupTypesCol
509 +      
510 +          select case(cutoffPolicy)
511 +          case(TRADITIONAL_CUTOFF_POLICY)
512 +             thisRcut = tradRcut
513 +          case(MIX_CUTOFF_POLICY)
514 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
515 +          case(MAX_CUTOFF_POLICY)
516 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
517 +          case default
518 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
519 +             return
520 +          end select
521 +          gtypeCutoffMap(i,j)%rcut = thisRcut
522 +          
523 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
524 +
525 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
526 +
527 +          if (.not.haveSkinThickness) then
528 +             skinThickness = 1.0_dp
529 +          endif
530 +
531 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
532 +
533 +          ! sanity check
534 +
535 +          if (haveDefaultCutoffs) then
536 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
537 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
538 +             endif
539 +          endif
540 +       enddo
541 +    enddo
542 +
543 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
544 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
545 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
546 + #ifdef IS_MPI
547 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
548 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
549 + #endif
550 +    groupMaxCutoffCol => null()
551 +    gtypeMaxCutoffCol => null()
552 +    
553 +    haveGtypeCutoffMap = .true.
554 +   end subroutine createGtypeCutoffMap
555 +
556 +   subroutine setCutoffs(defRcut, defRsw)
557 +
558 +     real(kind=dp),intent(in) :: defRcut, defRsw
559 +     character(len = statusMsgSize) :: errMsg
560 +     integer :: localError
561 +
562 +     defaultRcut = defRcut
563 +     defaultRsw = defRsw
564 +    
565 +     defaultDoShift = .false.
566 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
567 +        
568 +        write(errMsg, *) &
569 +             'cutoffRadius and switchingRadius are set to the same', newline &
570 +             // tab, 'value.  OOPSE will use shifted ', newline &
571 +             // tab, 'potentials instead of switching functions.'
572 +        
573 +        call handleInfo("setCutoffs", errMsg)
574 +        
575 +        defaultDoShift = .true.
576 +        
577 +     endif
578 +
579 +     localError = 0
580 +     call setLJDefaultCutoff( defaultRcut, defaultDoShift )
581 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
582 +     call setCutoffEAM( defaultRcut, localError)
583 +     if (localError /= 0) then
584 +       write(errMsg, *) 'An error has occured in setting the EAM cutoff'
585 +       call handleError("setCutoffs", errMsg)
586 +     end if
587 +     call set_switch(GROUP_SWITCH, defaultRsw, defaultRcut)
588 +
589 +     haveDefaultCutoffs = .true.
590 +     haveGtypeCutoffMap = .false.
591 +   end subroutine setCutoffs
592 +
593 +   subroutine cWasLame()
594 +    
595 +     VisitCutoffsAfterComputing = .true.
596 +     return
597 +    
598 +   end subroutine cWasLame
599 +  
600 +   subroutine setCutoffPolicy(cutPolicy)
601 +    
602 +     integer, intent(in) :: cutPolicy
603 +    
604 +     cutoffPolicy = cutPolicy
605 +     haveCutoffPolicy = .true.
606 +     haveGtypeCutoffMap = .false.
607 +    
608 +   end subroutine setCutoffPolicy
609 +  
610 +   subroutine setElectrostaticMethod( thisESM )
611 +
612 +     integer, intent(in) :: thisESM
613 +
614 +     electrostaticSummationMethod = thisESM
615 +     haveElectrostaticSummationMethod = .true.
616 +    
617 +   end subroutine setElectrostaticMethod
618 +
619 +   subroutine setSkinThickness( thisSkin )
620 +    
621 +     real(kind=dp), intent(in) :: thisSkin
622 +    
623 +     skinThickness = thisSkin
624 +     haveSkinThickness = .true.    
625 +     haveGtypeCutoffMap = .false.
626 +    
627 +   end subroutine setSkinThickness
628 +      
629 +   subroutine setSimVariables()
630 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
631 +     SIM_uses_EAM = SimUsesEAM()
632 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
633 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
634 +     SIM_uses_PBC = SimUsesPBC()
635 +    
636 +     haveSIMvariables = .true.
637 +    
638 +     return
639 +   end subroutine setSimVariables
640 +
641 +  subroutine doReadyCheck(error)
642 +    integer, intent(out) :: error
643 +
644 +    integer :: myStatus
645 +
646 +    error = 0
647 +
648 +    if (.not. haveInteractionHash) then      
649 +       call createInteractionHash()      
650      endif
651  
652 +    if (.not. haveGtypeCutoffMap) then        
653 +       call createGtypeCutoffMap()      
654 +    endif
655 +
656 +
657 +    if (VisitCutoffsAfterComputing) then
658 +       call set_switch(GROUP_SWITCH, largestRcut, largestRcut)      
659 +    endif
660 +
661 +
662      if (.not. haveSIMvariables) then
663         call setSimVariables()
664      endif
665  
666 <    if (.not. haveRlist) then
667 <       write(default_error, *) 'rList has not been set in doForces!'
668 <       error = -1
669 <       return
670 <    endif
666 >  !  if (.not. haveRlist) then
667 >  !     write(default_error, *) 'rList has not been set in doForces!'
668 >  !     error = -1
669 >  !     return
670 >  !  endif
671  
672      if (.not. haveNeighborList) then
673         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 239 | Line 690 | contains
690   #endif
691      return
692    end subroutine doReadyCheck
242    
693  
244  subroutine init_FF(use_RF_c, thisStat)
694  
695 <    logical, intent(in) :: use_RF_c
695 >  subroutine init_FF(thisStat)
696  
697      integer, intent(out) :: thisStat  
698      integer :: my_status, nMatches
699      integer, pointer :: MatchList(:) => null()
251    real(kind=dp) :: rcut, rrf, rt, dielect
700  
701      !! assume things are copacetic, unless they aren't
702      thisStat = 0
703  
256    !! Fortran's version of a cast:
257    FF_uses_RF = use_RF_c
258    
704      !! init_FF is called *after* all of the atom types have been
705      !! defined in atype_module using the new_atype subroutine.
706      !!
707      !! this will scan through the known atypes and figure out what
708      !! interactions are used by the force field.    
709 <  
709 >
710      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
711      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
712      FF_uses_GayBerne = .false.
713      FF_uses_EAM = .false.
714 <    FF_uses_Shapes = .false.
274 <    FF_uses_FLARB = .false.
275 <    
714 >
715      call getMatchingElementList(atypes, "is_Directional", .true., &
716           nMatches, MatchList)
717      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
718  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
719      call getMatchingElementList(atypes, "is_Dipole", .true., &
720           nMatches, MatchList)
721 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
721 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
722      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
723      call getMatchingElementList(atypes, "is_GayBerne", .true., &
724           nMatches, MatchList)
725 <    if (nMatches .gt. 0) then
726 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
725 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
726 >
727      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
728      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
729  
329    call getMatchingElementList(atypes, "is_FLARB", .true., &
330         nMatches, MatchList)
331    if (nMatches .gt. 0) FF_uses_FLARB = .true.
730  
333    !! Assume sanity (for the sake of argument)
731      haveSaneForceField = .true.
335    
336    !! check to make sure the FF_uses_RF setting makes sense
337    
338    if (FF_uses_dipoles) then
339       if (FF_uses_RF) then
340          dielect = getDielect()
341          call initialize_rf(dielect)
342       endif
343    else
344       if (FF_uses_RF) then          
345          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
346          thisStat = -1
347          haveSaneForceField = .false.
348          return
349       endif
350    endif
732  
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
359    endif
360
733      if (FF_uses_EAM) then
734 <         call init_EAM_FF(my_status)
734 >       call init_EAM_FF(my_status)
735         if (my_status /= 0) then
736            write(default_error, *) "init_EAM_FF returned a bad status"
737            thisStat = -1
# Line 368 | Line 740 | contains
740         end if
741      endif
742  
371    if (FF_uses_GayBerne) then
372       call check_gb_pair_FF(my_status)
373       if (my_status .ne. 0) then
374          thisStat = -1
375          haveSaneForceField = .false.
376          return
377       endif
378    endif
379
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
743      if (.not. haveNeighborList) then
744         !! Create neighbor lists
745         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 749 | contains
749            return
750         endif
751         haveNeighborList = .true.
752 <    endif    
753 <    
752 >    endif
753 >
754    end subroutine init_FF
395  
755  
756 +
757    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
758    !------------------------------------------------------------->
759 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
759 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
760         do_pot_c, do_stress_c, error)
761      !! Position array provided by C, dimensioned by getNlocal
762      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 765 | contains
765      !! Rotation Matrix for each long range particle in simulation.
766      real( kind = dp), dimension(9, nLocal) :: A    
767      !! Unit vectors for dipoles (lab frame)
768 <    real( kind = dp ), dimension(3,nLocal) :: u_l
768 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
769      !! Force array provided by C, dimensioned by getNlocal
770      real ( kind = dp ), dimension(3,nLocal) :: f
771      !! Torsion array provided by C, dimensioned by getNlocal
# Line 413 | Line 773 | contains
773  
774      !! Stress Tensor
775      real( kind = dp), dimension(9) :: tau  
776 <    real ( kind = dp ) :: pot
776 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
777      logical ( kind = 2) :: do_pot_c, do_stress_c
778      logical :: do_pot
779      logical :: do_stress
780      logical :: in_switching_region
781   #ifdef IS_MPI
782 <    real( kind = DP ) :: pot_local
782 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
783      integer :: nAtomsInRow
784      integer :: nAtomsInCol
785      integer :: nprocs
# Line 434 | Line 794 | contains
794      integer :: nlist
795      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
796      real( kind = DP ) :: sw, dswdr, swderiv, mf
797 +    real( kind = DP ) :: rVal
798      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
799      real(kind=dp) :: rfpot, mu_i, virial
800 +    real(kind=dp):: rCut
801      integer :: me_i, me_j, n_in_i, n_in_j
802      logical :: is_dp_i
803      integer :: neighborListSize
# Line 443 | Line 805 | contains
805      integer :: localError
806      integer :: propPack_i, propPack_j
807      integer :: loopStart, loopEnd, loop
808 +    integer :: iHash
809 +    integer :: i1
810 +  
811  
447    real(kind=dp) :: listSkin = 1.0  
448    
812      !! initialize local variables  
813 <    
813 >
814   #ifdef IS_MPI
815      pot_local = 0.0_dp
816      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 820 | contains
820   #else
821      natoms = nlocal
822   #endif
823 <    
823 >
824      call doReadyCheck(localError)
825      if ( localError .ne. 0 ) then
826         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 828 | contains
828         return
829      end if
830      call zero_work_arrays()
831 <        
831 >
832      do_pot = do_pot_c
833      do_stress = do_stress_c
834 <    
834 >
835      ! Gather all information needed by all force loops:
836 <    
836 >
837   #ifdef IS_MPI    
838 <    
838 >
839      call gather(q, q_Row, plan_atom_row_3d)
840      call gather(q, q_Col, plan_atom_col_3d)
841  
842      call gather(q_group, q_group_Row, plan_group_row_3d)
843      call gather(q_group, q_group_Col, plan_group_col_3d)
844 <        
844 >
845      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
846 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
847 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
848 <      
846 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
847 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
848 >
849         call gather(A, A_Row, plan_atom_row_rotation)
850         call gather(A, A_Col, plan_atom_col_rotation)
851      endif
852 <    
852 >
853   #endif
854 <    
854 >
855      !! Begin force loop timing:
856   #ifdef PROFILE
857      call cpu_time(forceTimeInitial)
858      nloops = nloops + 1
859   #endif
860 <    
860 >
861      loopEnd = PAIR_LOOP
862      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
863         loopStart = PREPAIR_LOOP
# Line 508 | Line 871 | contains
871         ! (but only on the first time through):
872         if (loop .eq. loopStart) then
873   #ifdef IS_MPI
874 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
875 <             update_nlist)
874 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
875 >               update_nlist)
876   #else
877 <          call checkNeighborList(nGroups, q_group, listSkin, &
878 <             update_nlist)
877 >          call checkNeighborList(nGroups, q_group, skinThickness, &
878 >               update_nlist)
879   #endif
880         endif
881 <      
881 >
882         if (update_nlist) then
883            !! save current configuration and construct neighbor list
884   #ifdef IS_MPI
# Line 526 | Line 889 | contains
889            neighborListSize = size(list)
890            nlist = 0
891         endif
892 <      
892 >
893         istart = 1
894   #ifdef IS_MPI
895         iend = nGroupsInRow
# Line 536 | Line 899 | contains
899         outer: do i = istart, iend
900  
901            if (update_nlist) point(i) = nlist + 1
902 <          
902 >
903            n_in_i = groupStartRow(i+1) - groupStartRow(i)
904 <          
904 >
905            if (update_nlist) then
906   #ifdef IS_MPI
907               jstart = 1
# Line 553 | Line 916 | contains
916               ! make sure group i has neighbors
917               if (jstart .gt. jend) cycle outer
918            endif
919 <          
919 >
920            do jnab = jstart, jend
921               if (update_nlist) then
922                  j = jnab
# Line 562 | Line 925 | contains
925               endif
926  
927   #ifdef IS_MPI
928 +             me_j = atid_col(j)
929               call get_interatomic_vector(q_group_Row(:,i), &
930                    q_group_Col(:,j), d_grp, rgrpsq)
931   #else
932 +             me_j = atid(j)
933               call get_interatomic_vector(q_group(:,i), &
934                    q_group(:,j), d_grp, rgrpsq)
935 < #endif
935 > #endif      
936  
937 <             if (rgrpsq < rlistsq) then
937 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
938                  if (update_nlist) then
939                     nlist = nlist + 1
940 <                  
940 >
941                     if (nlist > neighborListSize) then
942   #ifdef IS_MPI                
943                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 951 | contains
951                        end if
952                        neighborListSize = size(list)
953                     endif
954 <                  
954 >
955                     list(nlist) = j
956                  endif
957 +
958 +
959                  
960 <                if (loop .eq. PAIR_LOOP) then
961 <                   vij = 0.0d0
962 <                   fij(1:3) = 0.0d0
963 <                endif
964 <                
965 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
966 <                     in_switching_region)
600 <                
601 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
602 <                
603 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
960 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
961 >
962 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
963 >                   if (loop .eq. PAIR_LOOP) then
964 >                      vij = 0.0d0
965 >                      fij(1:3) = 0.0d0
966 >                   endif
967                    
968 <                   atom1 = groupListRow(ia)
968 >                   call get_switch(rgrpsq, sw, dswdr, rgrp, &
969 >                        group_switch, in_switching_region)
970                    
971 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
971 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
972 >                  
973 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
974                        
975 <                      atom2 = groupListCol(jb)
975 >                      atom1 = groupListRow(ia)
976                        
977 <                      if (skipThisPair(atom1, atom2)) cycle inner
978 <
979 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
980 <                         d_atm(1:3) = d_grp(1:3)
981 <                         ratmsq = rgrpsq
982 <                      else
977 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
978 >                        
979 >                         atom2 = groupListCol(jb)
980 >                        
981 >                         if (skipThisPair(atom1, atom2))  cycle inner
982 >                        
983 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
984 >                            d_atm(1:3) = d_grp(1:3)
985 >                            ratmsq = rgrpsq
986 >                         else
987   #ifdef IS_MPI
988 <                         call get_interatomic_vector(q_Row(:,atom1), &
989 <                              q_Col(:,atom2), d_atm, ratmsq)
988 >                            call get_interatomic_vector(q_Row(:,atom1), &
989 >                                 q_Col(:,atom2), d_atm, ratmsq)
990   #else
991 <                         call get_interatomic_vector(q(:,atom1), &
992 <                              q(:,atom2), d_atm, ratmsq)
991 >                            call get_interatomic_vector(q(:,atom1), &
992 >                                 q(:,atom2), d_atm, ratmsq)
993   #endif
994 <                      endif
995 <
996 <                      if (loop .eq. PREPAIR_LOOP) then
994 >                         endif
995 >                        
996 >                         if (loop .eq. PREPAIR_LOOP) then
997   #ifdef IS_MPI                      
998 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
999 <                              rgrpsq, d_grp, do_pot, do_stress, &
1000 <                              u_l, A, f, t, pot_local)
998 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
999 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1000 >                                 eFrame, A, f, t, pot_local)
1001   #else
1002 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1003 <                              rgrpsq, d_grp, do_pot, do_stress, &
1004 <                              u_l, A, f, t, pot)
1002 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1003 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1004 >                                 eFrame, A, f, t, pot)
1005   #endif                                              
1006 <                      else
1006 >                         else
1007   #ifdef IS_MPI                      
1008 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1009 <                              do_pot, &
1010 <                              u_l, A, f, t, pot_local, vpair, fpair)
1008 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1009 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1010 >                                 fpair, d_grp, rgrp, rCut)
1011   #else
1012 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1013 <                              do_pot,  &
1014 <                              u_l, A, f, t, pot, vpair, fpair)
1012 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1013 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1014 >                                 d_grp, rgrp, rCut)
1015   #endif
1016 <
1017 <                         vij = vij + vpair
1018 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1019 <                      endif
1020 <                   enddo inner
1021 <                enddo
1022 <                
1023 <                if (loop .eq. PAIR_LOOP) then
1024 <                   if (in_switching_region) then
1025 <                      swderiv = vij*dswdr/rgrp
1026 <                      fij(1) = fij(1) + swderiv*d_grp(1)
1027 <                      fij(2) = fij(2) + swderiv*d_grp(2)
1028 <                      fij(3) = fij(3) + swderiv*d_grp(3)
1029 <                      
1030 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
1031 <                         atom1=groupListRow(ia)
662 <                         mf = mfactRow(atom1)
1016 >                            vij = vij + vpair
1017 >                            fij(1:3) = fij(1:3) + fpair(1:3)
1018 >                         endif
1019 >                      enddo inner
1020 >                   enddo
1021 >
1022 >                   if (loop .eq. PAIR_LOOP) then
1023 >                      if (in_switching_region) then
1024 >                         swderiv = vij*dswdr/rgrp
1025 >                         fij(1) = fij(1) + swderiv*d_grp(1)
1026 >                         fij(2) = fij(2) + swderiv*d_grp(2)
1027 >                         fij(3) = fij(3) + swderiv*d_grp(3)
1028 >                        
1029 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1030 >                            atom1=groupListRow(ia)
1031 >                            mf = mfactRow(atom1)
1032   #ifdef IS_MPI
1033 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1034 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1035 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1033 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1034 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1035 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1036   #else
1037 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1038 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1039 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1037 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1038 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1039 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1040   #endif
1041 <                      enddo
1042 <                      
1043 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1044 <                         atom2=groupListCol(jb)
1045 <                         mf = mfactCol(atom2)
1041 >                         enddo
1042 >                        
1043 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1044 >                            atom2=groupListCol(jb)
1045 >                            mf = mfactCol(atom2)
1046   #ifdef IS_MPI
1047 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1048 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1049 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1047 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1048 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1049 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1050   #else
1051 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1052 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1053 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1051 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1052 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1053 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1054   #endif
1055 <                      enddo
1055 >                         enddo
1056 >                      endif
1057 >
1058 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1059                     endif
688                  
689                   if (do_stress) call add_stress_tensor(d_grp, fij)
1060                  endif
1061 <             end if
1061 >             endif
1062            enddo
1063 +          
1064         enddo outer
1065 <      
1065 >
1066         if (update_nlist) then
1067   #ifdef IS_MPI
1068            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 1076 | contains
1076               update_nlist = .false.                              
1077            endif
1078         endif
1079 <            
1079 >
1080         if (loop .eq. PREPAIR_LOOP) then
1081            call do_preforce(nlocal, pot)
1082         endif
1083 <      
1083 >
1084      enddo
1085 <    
1085 >
1086      !! Do timing
1087   #ifdef PROFILE
1088      call cpu_time(forceTimeFinal)
1089      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1090   #endif    
1091 <    
1091 >
1092   #ifdef IS_MPI
1093      !!distribute forces
1094 <    
1094 >
1095      f_temp = 0.0_dp
1096      call scatter(f_Row,f_temp,plan_atom_row_3d)
1097      do i = 1,nlocal
1098         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1099      end do
1100 <    
1100 >
1101      f_temp = 0.0_dp
1102      call scatter(f_Col,f_temp,plan_atom_col_3d)
1103      do i = 1,nlocal
1104         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1105      end do
1106 <    
1106 >
1107      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1108         t_temp = 0.0_dp
1109         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 1112 | contains
1112         end do
1113         t_temp = 0.0_dp
1114         call scatter(t_Col,t_temp,plan_atom_col_3d)
1115 <      
1115 >
1116         do i = 1,nlocal
1117            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1118         end do
1119      endif
1120 <    
1120 >
1121      if (do_pot) then
1122         ! scatter/gather pot_row into the members of my column
1123 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1124 <      
1123 >       do i = 1,LR_POT_TYPES
1124 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1125 >       end do
1126         ! scatter/gather pot_local into all other procs
1127         ! add resultant to get total pot
1128         do i = 1, nlocal
1129 <          pot_local = pot_local + pot_Temp(i)
1129 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1130 >               + pot_Temp(1:LR_POT_TYPES,i)
1131         enddo
1132 <      
1132 >
1133         pot_Temp = 0.0_DP
1134 <      
1135 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1134 >       do i = 1,LR_POT_TYPES
1135 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1136 >       end do
1137         do i = 1, nlocal
1138 <          pot_local = pot_local + pot_Temp(i)
1138 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1139 >               + pot_Temp(1:LR_POT_TYPES,i)
1140         enddo
1141 <      
1141 >
1142      endif
1143   #endif
1144 <    
1145 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1146 <      
772 <       if (FF_uses_RF .and. SIM_uses_RF) then
1144 >
1145 >    if (SIM_requires_postpair_calc) then
1146 >       do i = 1, nlocal            
1147            
1148 < #ifdef IS_MPI
1149 <          call scatter(rf_Row,rf,plan_atom_row_3d)
776 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
777 <          do i = 1,nlocal
778 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
779 <          end do
780 < #endif
1148 >          ! we loop only over the local atoms, so we don't need row and column
1149 >          ! lookups for the types
1150            
1151 <          do i = 1, nLocal
1152 <            
1153 <             rfpot = 0.0_DP
1151 >          me_i = atid(i)
1152 >          
1153 >          ! is the atom electrostatic?  See if it would have an
1154 >          ! electrostatic interaction with itself
1155 >          iHash = InteractionHash(me_i,me_i)
1156 >
1157 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1158   #ifdef IS_MPI
1159 <             me_i = atid_row(i)
1159 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1160 >                  t, do_pot)
1161   #else
1162 <             me_i = atid(i)
1162 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1163 >                  t, do_pot)
1164   #endif
1165 +          endif
1166 +  
1167 +          
1168 +          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1169              
1170 <             if (PropertyMap(me_i)%is_Dipole) then
1170 >             ! loop over the excludes to accumulate RF stuff we've
1171 >             ! left out of the normal pair loop
1172 >            
1173 >             do i1 = 1, nSkipsForAtom(i)
1174 >                j = skipsForAtom(i, i1)
1175                  
1176 <                mu_i = getDipoleMoment(me_i)
1177 <                
1178 <                !! The reaction field needs to include a self contribution
1179 <                !! to the field:
1180 <                call accumulate_self_rf(i, mu_i, u_l)
1181 <                !! Get the reaction field contribution to the
1182 <                !! potential and torques:
800 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1176 >                ! prevent overcounting of the skips
1177 >                if (i.lt.j) then
1178 >                   call get_interatomic_vector(q(:,i), &
1179 >                        q(:,j), d_atm, ratmsq)
1180 >                   rVal = dsqrt(ratmsq)
1181 >                   call get_switch(ratmsq, sw, dswdr, rVal, group_switch, &
1182 >                        in_switching_region)
1183   #ifdef IS_MPI
1184 <                pot_local = pot_local + rfpot
1184 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1185 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1186   #else
1187 <                pot = pot + rfpot
1188 <      
1187 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1188 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1189   #endif
1190 <             endif            
1191 <          enddo
1192 <       endif
1190 >                endif
1191 >             enddo
1192 >          endif
1193 >       enddo
1194      endif
1195      
812    
1196   #ifdef IS_MPI
1197      
1198      if (do_pot) then
1199 <       pot = pot + pot_local
1200 <       !! we assume the c code will do the allreduce to get the total potential
818 <       !! we could do it right here if we needed to...
1199 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1200 >            mpi_comm_world,mpi_err)            
1201      endif
1202      
1203      if (do_stress) then
# Line 833 | Line 1215 | contains
1215      endif
1216      
1217   #endif
1218 <      
1218 >    
1219    end subroutine do_force_loop
1220 <  
1220 >
1221    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1222 <       u_l, A, f, t, pot, vpair, fpair)
1222 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1223  
1224 <    real( kind = dp ) :: pot, vpair, sw
1224 >    real( kind = dp ) :: vpair, sw
1225 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1226      real( kind = dp ), dimension(3) :: fpair
1227      real( kind = dp ), dimension(nLocal)   :: mfact
1228 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1228 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1229      real( kind = dp ), dimension(9,nLocal) :: A
1230      real( kind = dp ), dimension(3,nLocal) :: f
1231      real( kind = dp ), dimension(3,nLocal) :: t
# Line 850 | Line 1233 | contains
1233      logical, intent(inout) :: do_pot
1234      integer, intent(in) :: i, j
1235      real ( kind = dp ), intent(inout) :: rijsq
1236 <    real ( kind = dp )                :: r
1236 >    real ( kind = dp ), intent(inout) :: r_grp
1237      real ( kind = dp ), intent(inout) :: d(3)
1238 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1239 +    real ( kind = dp ), intent(inout) :: rCut
1240 +    real ( kind = dp ) :: r
1241      integer :: me_i, me_j
1242  
1243 +    integer :: iHash
1244 +
1245      r = sqrt(rijsq)
1246      vpair = 0.0d0
1247      fpair(1:3) = 0.0d0
# Line 866 | Line 1254 | contains
1254      me_j = atid(j)
1255   #endif
1256  
1257 <    write(*,*) i, j, me_i, me_j
1257 >    iHash = InteractionHash(me_i, me_j)
1258      
1259 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1260 <      
1261 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
874 <            PropertyMap(me_j)%is_LennardJones ) then
875 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
876 <       endif
877 <      
1259 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1260 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1261 >            pot(VDW_POT), f, do_pot)
1262      endif
1263      
1264 <    if (FF_uses_charges .and. SIM_uses_charges) then
1265 <      
1266 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
883 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
884 <               pot, f, do_pot)
885 <       endif
886 <      
1264 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1265 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1266 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1267      endif
1268      
1269 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
1270 <      
1271 <       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
1272 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1273 <               pot, u_l, f, t, do_pot)
1274 <          if (FF_uses_RF .and. SIM_uses_RF) then
1275 <             call accumulate_rf(i, j, r, u_l, sw)
1276 <             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
1277 <          endif
1278 <       endif
1269 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1270 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1271 >            pot(HB_POT), A, f, t, do_pot)
1272 >    endif
1273 >    
1274 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1275 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1276 >            pot(HB_POT), A, f, t, do_pot)
1277 >    endif
1278 >    
1279 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1280 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1281 >            pot(VDW_POT), A, f, t, do_pot)
1282 >    endif
1283 >    
1284 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1285 >       call do_gb_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1286 >            pot(VDW_POT), A, f, t, do_pot)
1287 >    endif
1288 >    
1289 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1290 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1291 >            pot(METALLIC_POT), f, do_pot)
1292 >    endif
1293 >    
1294 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1295 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1296 >            pot(VDW_POT), A, f, t, do_pot)
1297 >    endif
1298 >    
1299 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1300 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1301 >            pot(VDW_POT), A, f, t, do_pot)
1302 >    endif
1303  
1304 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1305 +       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1306 +            pot(METALLIC_POT), f, do_pot)
1307      endif
1308  
1309 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1309 >    
1310 >    
1311 >  end subroutine do_pair
1312  
1313 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1314 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
906 <               pot, A, f, t, do_pot)
907 <       endif
908 <      
909 <    endif
1313 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1314 >       do_pot, do_stress, eFrame, A, f, t, pot)
1315  
1316 +    real( kind = dp ) :: sw
1317 +    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1318 +    real( kind = dp ), dimension(9,nLocal) :: eFrame
1319 +    real (kind=dp), dimension(9,nLocal) :: A
1320 +    real (kind=dp), dimension(3,nLocal) :: f
1321 +    real (kind=dp), dimension(3,nLocal) :: t
1322  
1323 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1324 <      
1325 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
1326 <            PropertyMap(me_j)%is_GayBerne) then
1327 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1328 <               pot, u_l, f, t, do_pot)
1329 <       endif
1330 <      
1323 >    logical, intent(inout) :: do_pot, do_stress
1324 >    integer, intent(in) :: i, j
1325 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1326 >    real ( kind = dp )                :: r, rc
1327 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1328 >
1329 >    integer :: me_i, me_j, iHash
1330 >
1331 >    r = sqrt(rijsq)
1332 >
1333 > #ifdef IS_MPI  
1334 >    me_i = atid_row(i)
1335 >    me_j = atid_col(j)  
1336 > #else  
1337 >    me_i = atid(i)
1338 >    me_j = atid(j)  
1339 > #endif
1340 >
1341 >    iHash = InteractionHash(me_i, me_j)
1342 >
1343 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1344 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1345      endif
1346 +
1347 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1348 +            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1349 +    endif
1350      
1351 +  end subroutine do_prepair
1352 +
1353 +
1354 +  subroutine do_preforce(nlocal,pot)
1355 +    integer :: nlocal
1356 +    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1357 +
1358      if (FF_uses_EAM .and. SIM_uses_EAM) then
1359 <      
924 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
925 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
926 <               do_pot)
927 <       endif
928 <      
1359 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1360      endif
1361 +    if (FF_uses_SC .and. SIM_uses_SC) then
1362 +       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1363 +    endif
1364  
1365  
1366 <    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1366 >  end subroutine do_preforce
1367  
1368 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1369 <       if ( PropertyMap(me_i)%is_Shape .and. &
1370 <            PropertyMap(me_j)%is_Shape ) then
1371 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1372 <               pot, A, f, t, do_pot)
1368 >
1369 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1370 >
1371 >    real (kind = dp), dimension(3) :: q_i
1372 >    real (kind = dp), dimension(3) :: q_j
1373 >    real ( kind = dp ), intent(out) :: r_sq
1374 >    real( kind = dp ) :: d(3), scaled(3)
1375 >    integer i
1376 >
1377 >    d(1:3) = q_j(1:3) - q_i(1:3)
1378 >
1379 >    ! Wrap back into periodic box if necessary
1380 >    if ( SIM_uses_PBC ) then
1381 >
1382 >       if( .not.boxIsOrthorhombic ) then
1383 >          ! calc the scaled coordinates.
1384 >
1385 >          scaled = matmul(HmatInv, d)
1386 >
1387 >          ! wrap the scaled coordinates
1388 >
1389 >          scaled = scaled  - anint(scaled)
1390 >
1391 >
1392 >          ! calc the wrapped real coordinates from the wrapped scaled
1393 >          ! coordinates
1394 >
1395 >          d = matmul(Hmat,scaled)
1396 >
1397 >       else
1398 >          ! calc the scaled coordinates.
1399 >
1400 >          do i = 1, 3
1401 >             scaled(i) = d(i) * HmatInv(i,i)
1402 >
1403 >             ! wrap the scaled coordinates
1404 >
1405 >             scaled(i) = scaled(i) - anint(scaled(i))
1406 >
1407 >             ! calc the wrapped real coordinates from the wrapped scaled
1408 >             ! coordinates
1409 >
1410 >             d(i) = scaled(i)*Hmat(i,i)
1411 >          enddo
1412         endif
1413 <      
1413 >
1414      endif
942    
943  end subroutine do_pair
1415  
1416 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
946 <       do_pot, do_stress, u_l, A, f, t, pot)
1416 >    r_sq = dot_product(d,d)
1417  
1418 <   real( kind = dp ) :: pot, sw
949 <   real( kind = dp ), dimension(3,nLocal) :: u_l
950 <   real (kind=dp), dimension(9,nLocal) :: A
951 <   real (kind=dp), dimension(3,nLocal) :: f
952 <   real (kind=dp), dimension(3,nLocal) :: t
953 <  
954 <   logical, intent(inout) :: do_pot, do_stress
955 <   integer, intent(in) :: i, j
956 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
957 <   real ( kind = dp )                :: r, rc
958 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
959 <  
960 <   logical :: is_EAM_i, is_EAM_j
961 <  
962 <   integer :: me_i, me_j
963 <  
1418 >  end subroutine get_interatomic_vector
1419  
1420 <    r = sqrt(rijsq)
966 <    if (SIM_uses_molecular_cutoffs) then
967 <       rc = sqrt(rcijsq)
968 <    else
969 <       rc = r
970 <    endif
971 <  
1420 >  subroutine zero_work_arrays()
1421  
1422 < #ifdef IS_MPI  
1423 <   me_i = atid_row(i)
1424 <   me_j = atid_col(j)  
1425 < #else  
1426 <   me_i = atid(i)
1427 <   me_j = atid(j)  
1428 < #endif
980 <  
981 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
982 <      
983 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
984 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
985 <      
986 <   endif
987 <  
988 < end subroutine do_prepair
989 <
990 <
991 < subroutine do_preforce(nlocal,pot)
992 <   integer :: nlocal
993 <   real( kind = dp ) :: pot
994 <  
995 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
996 <      call calc_EAM_preforce_Frho(nlocal,pot)
997 <   endif
998 <  
999 <  
1000 < end subroutine do_preforce
1001 <
1002 <
1003 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1004 <  
1005 <   real (kind = dp), dimension(3) :: q_i
1006 <   real (kind = dp), dimension(3) :: q_j
1007 <   real ( kind = dp ), intent(out) :: r_sq
1008 <   real( kind = dp ) :: d(3), scaled(3)
1009 <   integer i
1010 <  
1011 <   d(1:3) = q_j(1:3) - q_i(1:3)
1012 <  
1013 <   ! Wrap back into periodic box if necessary
1014 <   if ( SIM_uses_PBC ) then
1015 <      
1016 <      if( .not.boxIsOrthorhombic ) then
1017 <         ! calc the scaled coordinates.
1018 <        
1019 <         scaled = matmul(HmatInv, d)
1020 <        
1021 <         ! wrap the scaled coordinates
1022 <        
1023 <         scaled = scaled  - anint(scaled)
1024 <        
1025 <        
1026 <         ! calc the wrapped real coordinates from the wrapped scaled
1027 <         ! coordinates
1028 <        
1029 <         d = matmul(Hmat,scaled)
1030 <        
1031 <      else
1032 <         ! calc the scaled coordinates.
1033 <        
1034 <         do i = 1, 3
1035 <            scaled(i) = d(i) * HmatInv(i,i)
1036 <            
1037 <            ! wrap the scaled coordinates
1038 <            
1039 <            scaled(i) = scaled(i) - anint(scaled(i))
1040 <            
1041 <            ! calc the wrapped real coordinates from the wrapped scaled
1042 <            ! coordinates
1043 <            
1044 <            d(i) = scaled(i)*Hmat(i,i)
1045 <         enddo
1046 <      endif
1047 <      
1048 <   endif
1049 <  
1050 <   r_sq = dot_product(d,d)
1051 <  
1052 < end subroutine get_interatomic_vector
1053 <
1054 < subroutine zero_work_arrays()
1055 <  
1056 < #ifdef IS_MPI
1057 <  
1058 <   q_Row = 0.0_dp
1059 <   q_Col = 0.0_dp
1422 > #ifdef IS_MPI
1423 >
1424 >    q_Row = 0.0_dp
1425 >    q_Col = 0.0_dp
1426 >
1427 >    q_group_Row = 0.0_dp
1428 >    q_group_Col = 0.0_dp  
1429  
1430 <   q_group_Row = 0.0_dp
1431 <   q_group_Col = 0.0_dp  
1432 <  
1433 <   u_l_Row = 0.0_dp
1434 <   u_l_Col = 0.0_dp
1435 <  
1436 <   A_Row = 0.0_dp
1437 <   A_Col = 0.0_dp
1438 <  
1439 <   f_Row = 0.0_dp
1440 <   f_Col = 0.0_dp
1441 <   f_Temp = 0.0_dp
1442 <  
1443 <   t_Row = 0.0_dp
1444 <   t_Col = 0.0_dp
1445 <   t_Temp = 0.0_dp
1446 <  
1447 <   pot_Row = 0.0_dp
1079 <   pot_Col = 0.0_dp
1080 <   pot_Temp = 0.0_dp
1081 <  
1082 <   rf_Row = 0.0_dp
1083 <   rf_Col = 0.0_dp
1084 <   rf_Temp = 0.0_dp
1085 <  
1430 >    eFrame_Row = 0.0_dp
1431 >    eFrame_Col = 0.0_dp
1432 >
1433 >    A_Row = 0.0_dp
1434 >    A_Col = 0.0_dp
1435 >
1436 >    f_Row = 0.0_dp
1437 >    f_Col = 0.0_dp
1438 >    f_Temp = 0.0_dp
1439 >
1440 >    t_Row = 0.0_dp
1441 >    t_Col = 0.0_dp
1442 >    t_Temp = 0.0_dp
1443 >
1444 >    pot_Row = 0.0_dp
1445 >    pot_Col = 0.0_dp
1446 >    pot_Temp = 0.0_dp
1447 >
1448   #endif
1449 <
1450 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1451 <      call clean_EAM()
1452 <   endif
1453 <  
1454 <   rf = 0.0_dp
1455 <   tau_Temp = 0.0_dp
1456 <   virial_Temp = 0.0_dp
1457 < end subroutine zero_work_arrays
1458 <
1459 < function skipThisPair(atom1, atom2) result(skip_it)
1460 <   integer, intent(in) :: atom1
1461 <   integer, intent(in), optional :: atom2
1462 <   logical :: skip_it
1463 <   integer :: unique_id_1, unique_id_2
1464 <   integer :: me_i,me_j
1465 <   integer :: i
1466 <  
1467 <   skip_it = .false.
1468 <  
1469 <   !! there are a number of reasons to skip a pair or a particle
1470 <   !! mostly we do this to exclude atoms who are involved in short
1471 <   !! range interactions (bonds, bends, torsions), but we also need
1472 <   !! to exclude some overcounted interactions that result from
1473 <   !! the parallel decomposition
1112 <  
1449 >
1450 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1451 >       call clean_EAM()
1452 >    endif
1453 >
1454 >    tau_Temp = 0.0_dp
1455 >    virial_Temp = 0.0_dp
1456 >  end subroutine zero_work_arrays
1457 >
1458 >  function skipThisPair(atom1, atom2) result(skip_it)
1459 >    integer, intent(in) :: atom1
1460 >    integer, intent(in), optional :: atom2
1461 >    logical :: skip_it
1462 >    integer :: unique_id_1, unique_id_2
1463 >    integer :: me_i,me_j
1464 >    integer :: i
1465 >
1466 >    skip_it = .false.
1467 >
1468 >    !! there are a number of reasons to skip a pair or a particle
1469 >    !! mostly we do this to exclude atoms who are involved in short
1470 >    !! range interactions (bonds, bends, torsions), but we also need
1471 >    !! to exclude some overcounted interactions that result from
1472 >    !! the parallel decomposition
1473 >
1474   #ifdef IS_MPI
1475 <   !! in MPI, we have to look up the unique IDs for each atom
1476 <   unique_id_1 = AtomRowToGlobal(atom1)
1475 >    !! in MPI, we have to look up the unique IDs for each atom
1476 >    unique_id_1 = AtomRowToGlobal(atom1)
1477   #else
1478 <   !! in the normal loop, the atom numbers are unique
1479 <   unique_id_1 = atom1
1478 >    !! in the normal loop, the atom numbers are unique
1479 >    unique_id_1 = atom1
1480   #endif
1481 <  
1482 <   !! We were called with only one atom, so just check the global exclude
1483 <   !! list for this atom
1484 <   if (.not. present(atom2)) then
1485 <      do i = 1, nExcludes_global
1486 <         if (excludesGlobal(i) == unique_id_1) then
1487 <            skip_it = .true.
1488 <            return
1489 <         end if
1490 <      end do
1491 <      return
1492 <   end if
1493 <  
1481 >
1482 >    !! We were called with only one atom, so just check the global exclude
1483 >    !! list for this atom
1484 >    if (.not. present(atom2)) then
1485 >       do i = 1, nExcludes_global
1486 >          if (excludesGlobal(i) == unique_id_1) then
1487 >             skip_it = .true.
1488 >             return
1489 >          end if
1490 >       end do
1491 >       return
1492 >    end if
1493 >
1494   #ifdef IS_MPI
1495 <   unique_id_2 = AtomColToGlobal(atom2)
1495 >    unique_id_2 = AtomColToGlobal(atom2)
1496   #else
1497 <   unique_id_2 = atom2
1497 >    unique_id_2 = atom2
1498   #endif
1499 <  
1499 >
1500   #ifdef IS_MPI
1501 <   !! this situation should only arise in MPI simulations
1502 <   if (unique_id_1 == unique_id_2) then
1503 <      skip_it = .true.
1504 <      return
1505 <   end if
1506 <  
1507 <   !! this prevents us from doing the pair on multiple processors
1508 <   if (unique_id_1 < unique_id_2) then
1509 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1510 <         skip_it = .true.
1511 <         return
1512 <      endif
1513 <   else                
1514 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1515 <         skip_it = .true.
1516 <         return
1517 <      endif
1518 <   endif
1501 >    !! this situation should only arise in MPI simulations
1502 >    if (unique_id_1 == unique_id_2) then
1503 >       skip_it = .true.
1504 >       return
1505 >    end if
1506 >
1507 >    !! this prevents us from doing the pair on multiple processors
1508 >    if (unique_id_1 < unique_id_2) then
1509 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1510 >          skip_it = .true.
1511 >          return
1512 >       endif
1513 >    else                
1514 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1515 >          skip_it = .true.
1516 >          return
1517 >       endif
1518 >    endif
1519   #endif
1520 <  
1521 <   !! the rest of these situations can happen in all simulations:
1522 <   do i = 1, nExcludes_global      
1523 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1524 <           (excludesGlobal(i) == unique_id_2)) then
1525 <         skip_it = .true.
1526 <         return
1527 <      endif
1528 <   enddo
1529 <  
1530 <   do i = 1, nSkipsForAtom(atom1)
1531 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1532 <         skip_it = .true.
1533 <         return
1534 <      endif
1535 <   end do
1536 <  
1537 <   return
1538 < end function skipThisPair
1539 <
1540 < function FF_UsesDirectionalAtoms() result(doesit)
1541 <   logical :: doesit
1542 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1543 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1544 < end function FF_UsesDirectionalAtoms
1545 <
1546 < function FF_RequiresPrepairCalc() result(doesit)
1547 <   logical :: doesit
1548 <   doesit = FF_uses_EAM
1549 < end function FF_RequiresPrepairCalc
1550 <
1190 < function FF_RequiresPostpairCalc() result(doesit)
1191 <   logical :: doesit
1192 <   doesit = FF_uses_RF
1193 < end function FF_RequiresPostpairCalc
1194 <
1520 >
1521 >    !! the rest of these situations can happen in all simulations:
1522 >    do i = 1, nExcludes_global      
1523 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1524 >            (excludesGlobal(i) == unique_id_2)) then
1525 >          skip_it = .true.
1526 >          return
1527 >       endif
1528 >    enddo
1529 >
1530 >    do i = 1, nSkipsForAtom(atom1)
1531 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1532 >          skip_it = .true.
1533 >          return
1534 >       endif
1535 >    end do
1536 >
1537 >    return
1538 >  end function skipThisPair
1539 >
1540 >  function FF_UsesDirectionalAtoms() result(doesit)
1541 >    logical :: doesit
1542 >    doesit = FF_uses_DirectionalAtoms
1543 >  end function FF_UsesDirectionalAtoms
1544 >
1545 >  function FF_RequiresPrepairCalc() result(doesit)
1546 >    logical :: doesit
1547 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1548 >         .or. FF_uses_MEAM
1549 >  end function FF_RequiresPrepairCalc
1550 >
1551   #ifdef PROFILE
1552 < function getforcetime() result(totalforcetime)
1553 <   real(kind=dp) :: totalforcetime
1554 <   totalforcetime = forcetime
1555 < end function getforcetime
1552 >  function getforcetime() result(totalforcetime)
1553 >    real(kind=dp) :: totalforcetime
1554 >    totalforcetime = forcetime
1555 >  end function getforcetime
1556   #endif
1201
1202 !! This cleans componets of force arrays belonging only to fortran
1557  
1558 < subroutine add_stress_tensor(dpair, fpair)
1205 <  
1206 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1207 <  
1208 <   ! because the d vector is the rj - ri vector, and
1209 <   ! because fx, fy, fz are the force on atom i, we need a
1210 <   ! negative sign here:  
1211 <  
1212 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1213 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1214 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1215 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1216 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1217 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1218 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1219 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1220 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1221 <  
1222 <   virial_Temp = virial_Temp + &
1223 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1224 <  
1225 < end subroutine add_stress_tensor
1226 <
1227 < end module doForces
1558 >  !! This cleans componets of force arrays belonging only to fortran
1559  
1560 < !! Interfaces for C programs to module....
1560 >  subroutine add_stress_tensor(dpair, fpair)
1561  
1562 < subroutine initFortranFF(use_RF_c, thisStat)
1232 <    use doForces, ONLY: init_FF
1233 <    logical, intent(in) :: use_RF_c
1562 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1563  
1564 <    integer, intent(out) :: thisStat  
1565 <    call init_FF(use_RF_c, thisStat)
1564 >    ! because the d vector is the rj - ri vector, and
1565 >    ! because fx, fy, fz are the force on atom i, we need a
1566 >    ! negative sign here:  
1567  
1568 < end subroutine initFortranFF
1568 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1569 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1570 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1571 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1572 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1573 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1574 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1575 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1576 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1577  
1578 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1579 <       do_pot_c, do_stress_c, error)
1242 <      
1243 <       use definitions, ONLY: dp
1244 <       use simulation
1245 <       use doForces, ONLY: do_force_loop
1246 <    !! Position array provided by C, dimensioned by getNlocal
1247 <    real ( kind = dp ), dimension(3, nLocal) :: q
1248 <    !! molecular center-of-mass position array
1249 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1250 <    !! Rotation Matrix for each long range particle in simulation.
1251 <    real( kind = dp), dimension(9, nLocal) :: A    
1252 <    !! Unit vectors for dipoles (lab frame)
1253 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1254 <    !! Force array provided by C, dimensioned by getNlocal
1255 <    real ( kind = dp ), dimension(3,nLocal) :: f
1256 <    !! Torsion array provided by C, dimensioned by getNlocal
1257 <    real( kind = dp ), dimension(3,nLocal) :: t    
1578 >    virial_Temp = virial_Temp + &
1579 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1580  
1581 <    !! Stress Tensor
1582 <    real( kind = dp), dimension(9) :: tau  
1583 <    real ( kind = dp ) :: pot
1262 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1263 <    integer :: error
1264 <    
1265 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1266 <       do_pot_c, do_stress_c, error)
1267 <      
1268 < end subroutine doForceloop
1581 >  end subroutine add_stress_tensor
1582 >
1583 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines