ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1930 by gezelter, Wed Jan 12 22:41:40 2005 UTC vs.
Revision 2917 by chrisfen, Mon Jul 3 13:18:43 2006 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.9 2005-01-12 22:40:37 gezelter Exp $, $Date: 2005-01-12 22:40:37 $, $Name: not supported by cvs2svn $, $Revision: 1.9 $
48 > !! @version $Id: doForces.F90,v 1.84 2006-07-03 13:18:43 chrisfen Exp $, $Date: 2006-07-03 13:18:43 $, $Name: not supported by cvs2svn $, $Revision: 1.84 $
49  
50  
51   module doForces
# Line 57 | Line 57 | module doForces
57    use neighborLists  
58    use lj
59    use sticky
60 <  use dipole_dipole
61 <  use charge_charge
62 <  use reaction_field
63 <  use gb_pair
60 >  use electrostatic_module
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 73 | Line 72 | module doForces
72    PRIVATE
73  
74   #define __FORTRAN90
75 < #include "UseTheForce/fSwitchingFunction.h"
75 > #include "UseTheForce/fCutoffPolicy.h"
76 > #include "UseTheForce/DarkSide/fInteractionMap.h"
77 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78  
79    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
80    INTEGER, PARAMETER:: PAIR_LOOP    = 2
81  
81  logical, save :: haveRlist = .false.
82    logical, save :: haveNeighborList = .false.
83    logical, save :: haveSIMvariables = .false.
84  logical, save :: havePropertyMap = .false.
84    logical, save :: haveSaneForceField = .false.
85 <  
85 >  logical, save :: haveInteractionHash = .false.
86 >  logical, save :: haveGtypeCutoffMap = .false.
87 >  logical, save :: haveDefaultCutoffs = .false.
88 >  logical, save :: haveSkinThickness = .false.
89 >  logical, save :: haveElectrostaticSummationMethod = .false.
90 >  logical, save :: haveCutoffPolicy = .false.
91 >  logical, save :: VisitCutoffsAfterComputing = .false.
92 >  logical, save :: do_box_dipole = .false.
93 >
94    logical, save :: FF_uses_DirectionalAtoms
95 <  logical, save :: FF_uses_LennardJones
89 <  logical, save :: FF_uses_Electrostatic
90 <  logical, save :: FF_uses_charges
91 <  logical, save :: FF_uses_dipoles
92 <  logical, save :: FF_uses_sticky
95 >  logical, save :: FF_uses_Dipoles
96    logical, save :: FF_uses_GayBerne
97    logical, save :: FF_uses_EAM
98 <  logical, save :: FF_uses_Shapes
99 <  logical, save :: FF_uses_FLARB
100 <  logical, save :: FF_uses_RF
98 >  logical, save :: FF_uses_SC
99 >  logical, save :: FF_uses_MEAM
100 >
101  
102    logical, save :: SIM_uses_DirectionalAtoms
100  logical, save :: SIM_uses_LennardJones
101  logical, save :: SIM_uses_Electrostatics
102  logical, save :: SIM_uses_Charges
103  logical, save :: SIM_uses_Dipoles
104  logical, save :: SIM_uses_Sticky
105  logical, save :: SIM_uses_GayBerne
103    logical, save :: SIM_uses_EAM
104 <  logical, save :: SIM_uses_Shapes
105 <  logical, save :: SIM_uses_FLARB
109 <  logical, save :: SIM_uses_RF
104 >  logical, save :: SIM_uses_SC
105 >  logical, save :: SIM_uses_MEAM
106    logical, save :: SIM_requires_postpair_calc
107    logical, save :: SIM_requires_prepair_calc
108    logical, save :: SIM_uses_PBC
113  logical, save :: SIM_uses_molecular_cutoffs
109  
110 <  real(kind=dp), save :: rlist, rlistsq
110 >  integer, save :: electrostaticSummationMethod
111 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
112  
113 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
114 +  real(kind=dp), save :: skinThickness
115 +  logical, save :: defaultDoShift
116 +
117    public :: init_FF
118 +  public :: setCutoffs
119 +  public :: cWasLame
120 +  public :: setElectrostaticMethod
121 +  public :: setBoxDipole
122 +  public :: getBoxDipole
123 +  public :: setCutoffPolicy
124 +  public :: setSkinThickness
125    public :: do_force_loop
119  public :: setRlistDF
126  
127   #ifdef PROFILE
128    public :: getforcetime
# Line 124 | Line 130 | module doForces
130    real :: forceTimeInitial, forceTimeFinal
131    integer :: nLoops
132   #endif
133 +  
134 +  !! Variables for cutoff mapping and interaction mapping
135 +  ! Bit hash to determine pair-pair interactions.
136 +  integer, dimension(:,:), allocatable :: InteractionHash
137 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
138 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
139 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
140  
141 <  type :: Properties
142 <     logical :: is_Directional   = .false.
130 <     logical :: is_LennardJones  = .false.
131 <     logical :: is_Electrostatic = .false.
132 <     logical :: is_Charge        = .false.
133 <     logical :: is_Dipole        = .false.
134 <     logical :: is_Sticky        = .false.
135 <     logical :: is_GayBerne      = .false.
136 <     logical :: is_EAM           = .false.
137 <     logical :: is_Shape         = .false.
138 <     logical :: is_FLARB         = .false.
139 <  end type Properties
141 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
142 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
143  
144 <  type(Properties), dimension(:),allocatable :: PropertyMap
144 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
145 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
146 >  type ::gtypeCutoffs
147 >     real(kind=dp) :: rcut
148 >     real(kind=dp) :: rcutsq
149 >     real(kind=dp) :: rlistsq
150 >  end type gtypeCutoffs
151 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
152  
153 +  real(kind=dp), dimension(3) :: boxDipole
154 +
155   contains
156  
157 <  subroutine setRlistDF( this_rlist )
146 <    
147 <    real(kind=dp) :: this_rlist
148 <
149 <    rlist = this_rlist
150 <    rlistsq = rlist * rlist
151 <    
152 <    haveRlist = .true.
153 <
154 <  end subroutine setRlistDF    
155 <
156 <  subroutine createPropertyMap(status)
157 >  subroutine createInteractionHash()
158      integer :: nAtypes
158    integer :: status
159      integer :: i
160 <    logical :: thisProperty
161 <    real (kind=DP) :: thisDPproperty
160 >    integer :: j
161 >    integer :: iHash
162 >    !! Test Types
163 >    logical :: i_is_LJ
164 >    logical :: i_is_Elect
165 >    logical :: i_is_Sticky
166 >    logical :: i_is_StickyP
167 >    logical :: i_is_GB
168 >    logical :: i_is_EAM
169 >    logical :: i_is_Shape
170 >    logical :: i_is_SC
171 >    logical :: i_is_MEAM
172 >    logical :: j_is_LJ
173 >    logical :: j_is_Elect
174 >    logical :: j_is_Sticky
175 >    logical :: j_is_StickyP
176 >    logical :: j_is_GB
177 >    logical :: j_is_EAM
178 >    logical :: j_is_Shape
179 >    logical :: j_is_SC
180 >    logical :: j_is_MEAM
181 >    real(kind=dp) :: myRcut
182  
183 <    status = 0
184 <
183 >    if (.not. associated(atypes)) then
184 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
185 >       return
186 >    endif
187 >    
188      nAtypes = getSize(atypes)
189 <
189 >    
190      if (nAtypes == 0) then
191 <       status = -1
191 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
192         return
193      end if
194 <        
195 <    if (.not. allocated(PropertyMap)) then
196 <       allocate(PropertyMap(nAtypes))
194 >
195 >    if (.not. allocated(InteractionHash)) then
196 >       allocate(InteractionHash(nAtypes,nAtypes))
197 >    else
198 >       deallocate(InteractionHash)
199 >       allocate(InteractionHash(nAtypes,nAtypes))
200      endif
201  
202 +    if (.not. allocated(atypeMaxCutoff)) then
203 +       allocate(atypeMaxCutoff(nAtypes))
204 +    else
205 +       deallocate(atypeMaxCutoff)
206 +       allocate(atypeMaxCutoff(nAtypes))
207 +    endif
208 +        
209      do i = 1, nAtypes
210 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
211 <       PropertyMap(i)%is_Directional = thisProperty
210 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
211 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
212 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
213 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
214 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
215 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
216 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
217 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
218 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
219  
220 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
181 <       PropertyMap(i)%is_LennardJones = thisProperty
182 <      
183 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
184 <       PropertyMap(i)%is_Electrostatic = thisProperty
220 >       do j = i, nAtypes
221  
222 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
223 <       PropertyMap(i)%is_Charge = thisProperty
188 <      
189 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
190 <       PropertyMap(i)%is_Dipole = thisProperty
222 >          iHash = 0
223 >          myRcut = 0.0_dp
224  
225 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
226 <       PropertyMap(i)%is_Sticky = thisProperty
225 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
226 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
227 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
228 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
229 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
230 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
231 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
232 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
233 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
234  
235 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
236 <       PropertyMap(i)%is_GayBerne = thisProperty
235 >          if (i_is_LJ .and. j_is_LJ) then
236 >             iHash = ior(iHash, LJ_PAIR)            
237 >          endif
238 >          
239 >          if (i_is_Elect .and. j_is_Elect) then
240 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
241 >          endif
242 >          
243 >          if (i_is_Sticky .and. j_is_Sticky) then
244 >             iHash = ior(iHash, STICKY_PAIR)
245 >          endif
246  
247 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
248 <       PropertyMap(i)%is_EAM = thisProperty
247 >          if (i_is_StickyP .and. j_is_StickyP) then
248 >             iHash = ior(iHash, STICKYPOWER_PAIR)
249 >          endif
250  
251 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
252 <       PropertyMap(i)%is_Shape = thisProperty
251 >          if (i_is_EAM .and. j_is_EAM) then
252 >             iHash = ior(iHash, EAM_PAIR)
253 >          endif
254  
255 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
256 <       PropertyMap(i)%is_FLARB = thisProperty
257 <    end do
255 >          if (i_is_SC .and. j_is_SC) then
256 >             iHash = ior(iHash, SC_PAIR)
257 >          endif
258  
259 <    havePropertyMap = .true.
259 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
260 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
261 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
262  
263 <  end subroutine createPropertyMap
263 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
264 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
265 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
266  
212  subroutine setSimVariables()
213    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
214    SIM_uses_LennardJones = SimUsesLennardJones()
215    SIM_uses_Electrostatics = SimUsesElectrostatics()
216    SIM_uses_Charges = SimUsesCharges()
217    SIM_uses_Dipoles = SimUsesDipoles()
218    SIM_uses_Sticky = SimUsesSticky()
219    SIM_uses_GayBerne = SimUsesGayBerne()
220    SIM_uses_EAM = SimUsesEAM()
221    SIM_uses_Shapes = SimUsesShapes()
222    SIM_uses_FLARB = SimUsesFLARB()
223    SIM_uses_RF = SimUsesRF()
224    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
225    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
226    SIM_uses_PBC = SimUsesPBC()
267  
268 <    haveSIMvariables = .true.
268 >          InteractionHash(i,j) = iHash
269 >          InteractionHash(j,i) = iHash
270  
271 <    return
231 <  end subroutine setSimVariables
271 >       end do
272  
273 <  subroutine doReadyCheck(error)
234 <    integer, intent(out) :: error
273 >    end do
274  
275 <    integer :: myStatus
275 >    haveInteractionHash = .true.
276 >  end subroutine createInteractionHash
277  
278 <    error = 0
239 <    
240 <    if (.not. havePropertyMap) then
278 >  subroutine createGtypeCutoffMap()
279  
280 <       myStatus = 0
281 <
282 <       call createPropertyMap(myStatus)
283 <
284 <       if (myStatus .ne. 0) then
285 <          write(default_error, *) 'createPropertyMap failed in doForces!'
286 <          error = -1
287 <          return
280 >    logical :: i_is_LJ
281 >    logical :: i_is_Elect
282 >    logical :: i_is_Sticky
283 >    logical :: i_is_StickyP
284 >    logical :: i_is_GB
285 >    logical :: i_is_EAM
286 >    logical :: i_is_Shape
287 >    logical :: i_is_SC
288 >    logical :: GtypeFound
289 >
290 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
291 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
292 >    integer :: nGroupsInRow
293 >    integer :: nGroupsInCol
294 >    integer :: nGroupTypesRow,nGroupTypesCol
295 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
296 >    real(kind=dp) :: biggestAtypeCutoff
297 >
298 >    if (.not. haveInteractionHash) then
299 >       call createInteractionHash()      
300 >    endif
301 > #ifdef IS_MPI
302 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
303 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
304 > #endif
305 >    nAtypes = getSize(atypes)
306 > ! Set all of the initial cutoffs to zero.
307 >    atypeMaxCutoff = 0.0_dp
308 >    do i = 1, nAtypes
309 >       if (SimHasAtype(i)) then    
310 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
311 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
312 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
313 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
314 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
315 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
316 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
317 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
318 >
319 >          if (haveDefaultCutoffs) then
320 >             atypeMaxCutoff(i) = defaultRcut
321 >          else
322 >             if (i_is_LJ) then          
323 >                thisRcut = getSigma(i) * 2.5_dp
324 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
325 >             endif
326 >             if (i_is_Elect) then
327 >                thisRcut = defaultRcut
328 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 >             endif
330 >             if (i_is_Sticky) then
331 >                thisRcut = getStickyCut(i)
332 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 >             endif
334 >             if (i_is_StickyP) then
335 >                thisRcut = getStickyPowerCut(i)
336 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 >             endif
338 >             if (i_is_GB) then
339 >                thisRcut = getGayBerneCut(i)
340 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
341 >             endif
342 >             if (i_is_EAM) then
343 >                thisRcut = getEAMCut(i)
344 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
345 >             endif
346 >             if (i_is_Shape) then
347 >                thisRcut = getShapeCut(i)
348 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
349 >             endif
350 >             if (i_is_SC) then
351 >                thisRcut = getSCCut(i)
352 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
353 >             endif
354 >          endif
355 >                    
356 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
357 >             biggestAtypeCutoff = atypeMaxCutoff(i)
358 >          endif
359 >
360         endif
361 +    enddo
362 +    
363 +    istart = 1
364 +    jstart = 1
365 + #ifdef IS_MPI
366 +    iend = nGroupsInRow
367 +    jend = nGroupsInCol
368 + #else
369 +    iend = nGroups
370 +    jend = nGroups
371 + #endif
372 +    
373 +    !! allocate the groupToGtype and gtypeMaxCutoff here.
374 +    if(.not.allocated(groupToGtypeRow)) then
375 +     !  allocate(groupToGtype(iend))
376 +       allocate(groupToGtypeRow(iend))
377 +    else
378 +       deallocate(groupToGtypeRow)
379 +       allocate(groupToGtypeRow(iend))
380 +    endif
381 +    if(.not.allocated(groupMaxCutoffRow)) then
382 +       allocate(groupMaxCutoffRow(iend))
383 +    else
384 +       deallocate(groupMaxCutoffRow)
385 +       allocate(groupMaxCutoffRow(iend))
386 +    end if
387 +
388 +    if(.not.allocated(gtypeMaxCutoffRow)) then
389 +       allocate(gtypeMaxCutoffRow(iend))
390 +    else
391 +       deallocate(gtypeMaxCutoffRow)
392 +       allocate(gtypeMaxCutoffRow(iend))
393 +    endif
394 +
395 +
396 + #ifdef IS_MPI
397 +       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
398 +    if(.not.associated(groupToGtypeCol)) then
399 +       allocate(groupToGtypeCol(jend))
400 +    else
401 +       deallocate(groupToGtypeCol)
402 +       allocate(groupToGtypeCol(jend))
403 +    end if
404 +
405 +    if(.not.associated(groupMaxCutoffCol)) then
406 +       allocate(groupMaxCutoffCol(jend))
407 +    else
408 +       deallocate(groupMaxCutoffCol)
409 +       allocate(groupMaxCutoffCol(jend))
410 +    end if
411 +    if(.not.associated(gtypeMaxCutoffCol)) then
412 +       allocate(gtypeMaxCutoffCol(jend))
413 +    else
414 +       deallocate(gtypeMaxCutoffCol)      
415 +       allocate(gtypeMaxCutoffCol(jend))
416 +    end if
417 +
418 +       groupMaxCutoffCol = 0.0_dp
419 +       gtypeMaxCutoffCol = 0.0_dp
420 +
421 + #endif
422 +       groupMaxCutoffRow = 0.0_dp
423 +       gtypeMaxCutoffRow = 0.0_dp
424 +
425 +
426 +    !! first we do a single loop over the cutoff groups to find the
427 +    !! largest cutoff for any atypes present in this group.  We also
428 +    !! create gtypes at this point.
429 +    
430 +    tol = 1.0e-6_dp
431 +    nGroupTypesRow = 0
432 +    nGroupTypesCol = 0
433 +    do i = istart, iend      
434 +       n_in_i = groupStartRow(i+1) - groupStartRow(i)
435 +       groupMaxCutoffRow(i) = 0.0_dp
436 +       do ia = groupStartRow(i), groupStartRow(i+1)-1
437 +          atom1 = groupListRow(ia)
438 + #ifdef IS_MPI
439 +          me_i = atid_row(atom1)
440 + #else
441 +          me_i = atid(atom1)
442 + #endif          
443 +          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
444 +             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
445 +          endif          
446 +       enddo
447 +       if (nGroupTypesRow.eq.0) then
448 +          nGroupTypesRow = nGroupTypesRow + 1
449 +          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
450 +          groupToGtypeRow(i) = nGroupTypesRow
451 +       else
452 +          GtypeFound = .false.
453 +          do g = 1, nGroupTypesRow
454 +             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
455 +                groupToGtypeRow(i) = g
456 +                GtypeFound = .true.
457 +             endif
458 +          enddo
459 +          if (.not.GtypeFound) then            
460 +             nGroupTypesRow = nGroupTypesRow + 1
461 +             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
462 +             groupToGtypeRow(i) = nGroupTypesRow
463 +          endif
464 +       endif
465 +    enddo    
466 +
467 + #ifdef IS_MPI
468 +    do j = jstart, jend      
469 +       n_in_j = groupStartCol(j+1) - groupStartCol(j)
470 +       groupMaxCutoffCol(j) = 0.0_dp
471 +       do ja = groupStartCol(j), groupStartCol(j+1)-1
472 +          atom1 = groupListCol(ja)
473 +
474 +          me_j = atid_col(atom1)
475 +
476 +          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
477 +             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
478 +          endif          
479 +       enddo
480 +
481 +       if (nGroupTypesCol.eq.0) then
482 +          nGroupTypesCol = nGroupTypesCol + 1
483 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
484 +          groupToGtypeCol(j) = nGroupTypesCol
485 +       else
486 +          GtypeFound = .false.
487 +          do g = 1, nGroupTypesCol
488 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
489 +                groupToGtypeCol(j) = g
490 +                GtypeFound = .true.
491 +             endif
492 +          enddo
493 +          if (.not.GtypeFound) then            
494 +             nGroupTypesCol = nGroupTypesCol + 1
495 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
496 +             groupToGtypeCol(j) = nGroupTypesCol
497 +          endif
498 +       endif
499 +    enddo    
500 +
501 + #else
502 + ! Set pointers to information we just found
503 +    nGroupTypesCol = nGroupTypesRow
504 +    groupToGtypeCol => groupToGtypeRow
505 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
506 +    groupMaxCutoffCol => groupMaxCutoffRow
507 + #endif
508 +
509 +    !! allocate the gtypeCutoffMap here.
510 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
511 +    !! then we do a double loop over all the group TYPES to find the cutoff
512 +    !! map between groups of two types
513 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
514 +
515 +    do i = 1, nGroupTypesRow      
516 +       do j = 1, nGroupTypesCol
517 +      
518 +          select case(cutoffPolicy)
519 +          case(TRADITIONAL_CUTOFF_POLICY)
520 +             thisRcut = tradRcut
521 +          case(MIX_CUTOFF_POLICY)
522 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
523 +          case(MAX_CUTOFF_POLICY)
524 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
525 +          case default
526 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
527 +             return
528 +          end select
529 +          gtypeCutoffMap(i,j)%rcut = thisRcut
530 +          
531 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
532 +
533 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
534 +
535 +          if (.not.haveSkinThickness) then
536 +             skinThickness = 1.0_dp
537 +          endif
538 +
539 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
540 +
541 +          ! sanity check
542 +
543 +          if (haveDefaultCutoffs) then
544 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
545 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
546 +             endif
547 +          endif
548 +       enddo
549 +    enddo
550 +
551 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
552 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
553 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
554 + #ifdef IS_MPI
555 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
556 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
557 + #endif
558 +    groupMaxCutoffCol => null()
559 +    gtypeMaxCutoffCol => null()
560 +    
561 +    haveGtypeCutoffMap = .true.
562 +   end subroutine createGtypeCutoffMap
563 +
564 +   subroutine setCutoffs(defRcut, defRsw)
565 +
566 +     real(kind=dp),intent(in) :: defRcut, defRsw
567 +     character(len = statusMsgSize) :: errMsg
568 +     integer :: localError
569 +
570 +     defaultRcut = defRcut
571 +     defaultRsw = defRsw
572 +    
573 +     defaultDoShift = .false.
574 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
575 +        
576 +        write(errMsg, *) &
577 +             'cutoffRadius and switchingRadius are set to the same', newline &
578 +             // tab, 'value.  OOPSE will use shifted ', newline &
579 +             // tab, 'potentials instead of switching functions.'
580 +        
581 +        call handleInfo("setCutoffs", errMsg)
582 +        
583 +        defaultDoShift = .true.
584 +        
585 +     endif
586 +    
587 +     localError = 0
588 +     call setLJDefaultCutoff( defaultRcut, defaultDoShift )
589 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
590 +     call setCutoffEAM( defaultRcut )
591 +     call setCutoffSC( defaultRcut )
592 +     call set_switch(defaultRsw, defaultRcut)
593 +     call setHmatDangerousRcutValue(defaultRcut)
594 +        
595 +     haveDefaultCutoffs = .true.
596 +     haveGtypeCutoffMap = .false.
597 +
598 +   end subroutine setCutoffs
599 +
600 +   subroutine cWasLame()
601 +    
602 +     VisitCutoffsAfterComputing = .true.
603 +     return
604 +    
605 +   end subroutine cWasLame
606 +  
607 +   subroutine setCutoffPolicy(cutPolicy)
608 +    
609 +     integer, intent(in) :: cutPolicy
610 +    
611 +     cutoffPolicy = cutPolicy
612 +     haveCutoffPolicy = .true.
613 +     haveGtypeCutoffMap = .false.
614 +    
615 +   end subroutine setCutoffPolicy
616 +  
617 +   subroutine setBoxDipole()
618 +
619 +     do_box_dipole = .true.
620 +    
621 +   end subroutine setBoxDipole
622 +
623 +   subroutine getBoxDipole( box_dipole )
624 +
625 +     real(kind=dp), intent(inout), dimension(3) :: box_dipole
626 +
627 +     box_dipole = boxDipole
628 +
629 +   end subroutine getBoxDipole
630 +
631 +   subroutine setElectrostaticMethod( thisESM )
632 +
633 +     integer, intent(in) :: thisESM
634 +
635 +     electrostaticSummationMethod = thisESM
636 +     haveElectrostaticSummationMethod = .true.
637 +    
638 +   end subroutine setElectrostaticMethod
639 +
640 +   subroutine setSkinThickness( thisSkin )
641 +    
642 +     real(kind=dp), intent(in) :: thisSkin
643 +    
644 +     skinThickness = thisSkin
645 +     haveSkinThickness = .true.    
646 +     haveGtypeCutoffMap = .false.
647 +    
648 +   end subroutine setSkinThickness
649 +      
650 +   subroutine setSimVariables()
651 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
652 +     SIM_uses_EAM = SimUsesEAM()
653 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
654 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
655 +     SIM_uses_PBC = SimUsesPBC()
656 +     SIM_uses_SC = SimUsesSC()
657 +
658 +     haveSIMvariables = .true.
659 +    
660 +     return
661 +   end subroutine setSimVariables
662 +
663 +  subroutine doReadyCheck(error)
664 +    integer, intent(out) :: error
665 +    integer :: myStatus
666 +
667 +    error = 0
668 +
669 +    if (.not. haveInteractionHash) then      
670 +       call createInteractionHash()      
671      endif
672  
673 <    if (.not. haveSIMvariables) then
674 <       call setSimVariables()
673 >    if (.not. haveGtypeCutoffMap) then        
674 >       call createGtypeCutoffMap()      
675      endif
676  
677 <    if (.not. haveRlist) then
678 <       write(default_error, *) 'rList has not been set in doForces!'
679 <       error = -1
680 <       return
677 >    if (VisitCutoffsAfterComputing) then
678 >       call set_switch(largestRcut, largestRcut)      
679 >       call setHmatDangerousRcutValue(largestRcut)
680 >       call setCutoffEAM(largestRcut)
681 >       call setCutoffSC(largestRcut)
682 >       VisitCutoffsAfterComputing = .false.
683      endif
684  
685 +    if (.not. haveSIMvariables) then
686 +       call setSimVariables()
687 +    endif
688 +
689      if (.not. haveNeighborList) then
690         write(default_error, *) 'neighbor list has not been initialized in doForces!'
691         error = -1
692         return
693      end if
694 <
694 >    
695      if (.not. haveSaneForceField) then
696         write(default_error, *) 'Force Field is not sane in doForces!'
697         error = -1
698         return
699      end if
700 <
700 >    
701   #ifdef IS_MPI
702      if (.not. isMPISimSet()) then
703         write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
# Line 281 | Line 707 | contains
707   #endif
708      return
709    end subroutine doReadyCheck
284    
710  
286  subroutine init_FF(use_RF_c, thisStat)
711  
712 <    logical, intent(in) :: use_RF_c
712 >  subroutine init_FF(thisStat)
713  
714      integer, intent(out) :: thisStat  
715      integer :: my_status, nMatches
716      integer, pointer :: MatchList(:) => null()
293    real(kind=dp) :: rcut, rrf, rt, dielect
717  
718      !! assume things are copacetic, unless they aren't
719      thisStat = 0
720  
298    !! Fortran's version of a cast:
299    FF_uses_RF = use_RF_c
300    
721      !! init_FF is called *after* all of the atom types have been
722      !! defined in atype_module using the new_atype subroutine.
723      !!
724      !! this will scan through the known atypes and figure out what
725      !! interactions are used by the force field.    
726 <  
726 >
727      FF_uses_DirectionalAtoms = .false.
308    FF_uses_LennardJones = .false.
309    FF_uses_Electrostatic = .false.
310    FF_uses_Charges = .false.    
728      FF_uses_Dipoles = .false.
312    FF_uses_Sticky = .false.
729      FF_uses_GayBerne = .false.
730      FF_uses_EAM = .false.
731 <    FF_uses_Shapes = .false.
732 <    FF_uses_FLARB = .false.
317 <    
731 >    FF_uses_SC = .false.
732 >
733      call getMatchingElementList(atypes, "is_Directional", .true., &
734           nMatches, MatchList)
735      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
736  
322    call getMatchingElementList(atypes, "is_LennardJones", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
325    
326    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
327         nMatches, MatchList)
328    if (nMatches .gt. 0) then
329       FF_uses_Electrostatic = .true.
330    endif
331
332    call getMatchingElementList(atypes, "is_Charge", .true., &
333         nMatches, MatchList)
334    if (nMatches .gt. 0) then
335       FF_uses_charges = .true.  
336       FF_uses_electrostatic = .true.
337    endif
338    
737      call getMatchingElementList(atypes, "is_Dipole", .true., &
738           nMatches, MatchList)
739 <    if (nMatches .gt. 0) then
342 <       FF_uses_dipoles = .true.
343 <       FF_uses_electrostatic = .true.
344 <       FF_uses_DirectionalAtoms = .true.
345 <    endif
739 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
740      
347    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
348         MatchList)
349    if (nMatches .gt. 0) then
350       FF_uses_Sticky = .true.
351       FF_uses_DirectionalAtoms = .true.
352    endif
353    
741      call getMatchingElementList(atypes, "is_GayBerne", .true., &
742           nMatches, MatchList)
743 <    if (nMatches .gt. 0) then
744 <       FF_uses_GayBerne = .true.
358 <       FF_uses_DirectionalAtoms = .true.
359 <    endif
360 <    
743 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
744 >
745      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
746      if (nMatches .gt. 0) FF_uses_EAM = .true.
363    
364    call getMatchingElementList(atypes, "is_Shape", .true., &
365         nMatches, MatchList)
366    if (nMatches .gt. 0) then
367       FF_uses_Shapes = .true.
368       FF_uses_DirectionalAtoms = .true.
369    endif
747  
748 <    call getMatchingElementList(atypes, "is_FLARB", .true., &
749 <         nMatches, MatchList)
373 <    if (nMatches .gt. 0) FF_uses_FLARB = .true.
748 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
749 >    if (nMatches .gt. 0) FF_uses_SC = .true.
750  
751 <    !! Assume sanity (for the sake of argument)
751 >
752      haveSaneForceField = .true.
377    
378    !! check to make sure the FF_uses_RF setting makes sense
379    
380    if (FF_uses_dipoles) then
381       if (FF_uses_RF) then
382          dielect = getDielect()
383          call initialize_rf(dielect)
384       endif
385    else
386       if (FF_uses_RF) then          
387          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
388          thisStat = -1
389          haveSaneForceField = .false.
390          return
391       endif
392    endif
753  
394    !sticky module does not contain check_sticky_FF anymore
395    !if (FF_uses_sticky) then
396    !   call check_sticky_FF(my_status)
397    !   if (my_status /= 0) then
398    !      thisStat = -1
399    !      haveSaneForceField = .false.
400    !      return
401    !   end if
402    !endif
403
754      if (FF_uses_EAM) then
755 <         call init_EAM_FF(my_status)
755 >       call init_EAM_FF(my_status)
756         if (my_status /= 0) then
757            write(default_error, *) "init_EAM_FF returned a bad status"
758            thisStat = -1
# Line 411 | Line 761 | contains
761         end if
762      endif
763  
414    if (FF_uses_GayBerne) then
415       call check_gb_pair_FF(my_status)
416       if (my_status .ne. 0) then
417          thisStat = -1
418          haveSaneForceField = .false.
419          return
420       endif
421    endif
422
423    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
424    endif
425    
764      if (.not. haveNeighborList) then
765         !! Create neighbor lists
766         call expandNeighborList(nLocal, my_status)
# Line 432 | Line 770 | contains
770            return
771         endif
772         haveNeighborList = .true.
773 <    endif    
774 <    
773 >    endif
774 >
775    end subroutine init_FF
438  
776  
777 +
778    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
779    !------------------------------------------------------------->
780    subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
# Line 456 | Line 794 | contains
794  
795      !! Stress Tensor
796      real( kind = dp), dimension(9) :: tau  
797 <    real ( kind = dp ) :: pot
797 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
798      logical ( kind = 2) :: do_pot_c, do_stress_c
799      logical :: do_pot
800      logical :: do_stress
801      logical :: in_switching_region
802   #ifdef IS_MPI
803 <    real( kind = DP ) :: pot_local
803 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
804      integer :: nAtomsInRow
805      integer :: nAtomsInCol
806      integer :: nprocs
# Line 477 | Line 815 | contains
815      integer :: nlist
816      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
817      real( kind = DP ) :: sw, dswdr, swderiv, mf
818 +    real( kind = DP ) :: rVal
819      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
820      real(kind=dp) :: rfpot, mu_i, virial
821 +    real(kind=dp):: rCut
822      integer :: me_i, me_j, n_in_i, n_in_j
823      logical :: is_dp_i
824      integer :: neighborListSize
# Line 486 | Line 826 | contains
826      integer :: localError
827      integer :: propPack_i, propPack_j
828      integer :: loopStart, loopEnd, loop
829 +    integer :: iHash
830 +    integer :: i1
831  
832 <    real(kind=dp) :: listSkin = 1.0  
833 <    
832 >    !! the variables for the box dipole moment
833 > #ifdef IS_MPI
834 >    integer :: pChgCount_local
835 >    integer :: nChgCount_local
836 >    real(kind=dp) :: pChg_local
837 >    real(kind=dp) :: nChg_local
838 >    real(kind=dp), dimension(3) :: pChgPos_local
839 >    real(kind=dp), dimension(3) :: nChgPos_local
840 >    real(kind=dp), dimension(3) :: dipVec_local
841 > #endif
842 >    integer :: pChgCount
843 >    integer :: nChgCount
844 >    real(kind=dp) :: pChg
845 >    real(kind=dp) :: nChg
846 >    real(kind=dp) :: chg_value
847 >    real(kind=dp), dimension(3) :: pChgPos
848 >    real(kind=dp), dimension(3) :: nChgPos
849 >    real(kind=dp), dimension(3) :: dipVec
850 >    real(kind=dp), dimension(3) :: chgVec
851 >
852 >    !! initialize box dipole variables
853 >    if (do_box_dipole) then
854 > #ifdef IS_MPI
855 >       pChg_local = 0.0_dp
856 >       nChg_local = 0.0_dp
857 >       pChgCount_local = 0
858 >       nChgCount_local = 0
859 >       do i=1, 3
860 >          pChgPos_local = 0.0_dp
861 >          nChgPos_local = 0.0_dp
862 >          dipVec_local = 0.0_dp
863 >       enddo
864 > #endif
865 >       pChg = 0.0_dp
866 >       nChg = 0.0_dp
867 >       pChgCount = 0
868 >       nChgCount = 0
869 >       chg_value = 0.0_dp
870 >      
871 >       do i=1, 3
872 >          pChgPos(i) = 0.0_dp
873 >          nChgPos(i) = 0.0_dp
874 >          dipVec(i) = 0.0_dp
875 >          chgVec(i) = 0.0_dp
876 >          boxDipole(i) = 0.0_dp
877 >       enddo
878 >    endif
879 >
880      !! initialize local variables  
881 <    
881 >
882   #ifdef IS_MPI
883      pot_local = 0.0_dp
884      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 500 | Line 888 | contains
888   #else
889      natoms = nlocal
890   #endif
891 <    
891 >
892      call doReadyCheck(localError)
893      if ( localError .ne. 0 ) then
894         call handleError("do_force_loop", "Not Initialized")
# Line 508 | Line 896 | contains
896         return
897      end if
898      call zero_work_arrays()
899 <        
899 >
900      do_pot = do_pot_c
901      do_stress = do_stress_c
902 <    
902 >
903      ! Gather all information needed by all force loops:
904 <    
904 >
905   #ifdef IS_MPI    
906 <    
906 >
907      call gather(q, q_Row, plan_atom_row_3d)
908      call gather(q, q_Col, plan_atom_col_3d)
909  
910      call gather(q_group, q_group_Row, plan_group_row_3d)
911      call gather(q_group, q_group_Col, plan_group_col_3d)
912 <        
912 >
913      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
914         call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
915         call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
916 <      
916 >
917         call gather(A, A_Row, plan_atom_row_rotation)
918         call gather(A, A_Col, plan_atom_col_rotation)
919      endif
920 <    
920 >
921   #endif
922 <    
922 >
923      !! Begin force loop timing:
924   #ifdef PROFILE
925      call cpu_time(forceTimeInitial)
926      nloops = nloops + 1
927   #endif
928 <    
928 >
929      loopEnd = PAIR_LOOP
930      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
931         loopStart = PREPAIR_LOOP
# Line 551 | Line 939 | contains
939         ! (but only on the first time through):
940         if (loop .eq. loopStart) then
941   #ifdef IS_MPI
942 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
943 <             update_nlist)
942 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
943 >               update_nlist)
944   #else
945 <          call checkNeighborList(nGroups, q_group, listSkin, &
946 <             update_nlist)
945 >          call checkNeighborList(nGroups, q_group, skinThickness, &
946 >               update_nlist)
947   #endif
948         endif
949 <      
949 >
950         if (update_nlist) then
951            !! save current configuration and construct neighbor list
952   #ifdef IS_MPI
# Line 569 | Line 957 | contains
957            neighborListSize = size(list)
958            nlist = 0
959         endif
960 <      
960 >
961         istart = 1
962   #ifdef IS_MPI
963         iend = nGroupsInRow
# Line 579 | Line 967 | contains
967         outer: do i = istart, iend
968  
969            if (update_nlist) point(i) = nlist + 1
970 <          
970 >
971            n_in_i = groupStartRow(i+1) - groupStartRow(i)
972 <          
972 >
973            if (update_nlist) then
974   #ifdef IS_MPI
975               jstart = 1
# Line 596 | Line 984 | contains
984               ! make sure group i has neighbors
985               if (jstart .gt. jend) cycle outer
986            endif
987 <          
987 >
988            do jnab = jstart, jend
989               if (update_nlist) then
990                  j = jnab
# Line 605 | Line 993 | contains
993               endif
994  
995   #ifdef IS_MPI
996 +             me_j = atid_col(j)
997               call get_interatomic_vector(q_group_Row(:,i), &
998                    q_group_Col(:,j), d_grp, rgrpsq)
999   #else
1000 +             me_j = atid(j)
1001               call get_interatomic_vector(q_group(:,i), &
1002                    q_group(:,j), d_grp, rgrpsq)
1003 < #endif
1003 > #endif      
1004  
1005 <             if (rgrpsq < rlistsq) then
1005 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
1006                  if (update_nlist) then
1007                     nlist = nlist + 1
1008 <                  
1008 >
1009                     if (nlist > neighborListSize) then
1010   #ifdef IS_MPI                
1011                        call expandNeighborList(nGroupsInRow, listerror)
# Line 629 | Line 1019 | contains
1019                        end if
1020                        neighborListSize = size(list)
1021                     endif
1022 <                  
1022 >
1023                     list(nlist) = j
1024                  endif
1025 <                
1026 <                if (loop .eq. PAIR_LOOP) then
1027 <                   vij = 0.0d0
1028 <                   fij(1:3) = 0.0d0
1029 <                endif
1030 <                
1031 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
1032 <                     in_switching_region)
1033 <                
1034 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
645 <                
646 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
1025 >                
1026 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
1027 >
1028 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
1029 >                   if (loop .eq. PAIR_LOOP) then
1030 >                      vij = 0.0_dp
1031 >                      fij(1) = 0.0_dp
1032 >                      fij(2) = 0.0_dp
1033 >                      fij(3) = 0.0_dp
1034 >                   endif
1035                    
1036 <                   atom1 = groupListRow(ia)
1036 >                   call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
1037                    
1038 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1038 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
1039 >                  
1040 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
1041                        
1042 <                      atom2 = groupListCol(jb)
1042 >                      atom1 = groupListRow(ia)
1043                        
1044 <                      if (skipThisPair(atom1, atom2)) cycle inner
1045 <
1046 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1047 <                         d_atm(1:3) = d_grp(1:3)
1048 <                         ratmsq = rgrpsq
1049 <                      else
1044 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1045 >                        
1046 >                         atom2 = groupListCol(jb)
1047 >                        
1048 >                         if (skipThisPair(atom1, atom2))  cycle inner
1049 >                        
1050 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1051 >                            d_atm(1) = d_grp(1)
1052 >                            d_atm(2) = d_grp(2)
1053 >                            d_atm(3) = d_grp(3)
1054 >                            ratmsq = rgrpsq
1055 >                         else
1056   #ifdef IS_MPI
1057 <                         call get_interatomic_vector(q_Row(:,atom1), &
1058 <                              q_Col(:,atom2), d_atm, ratmsq)
1057 >                            call get_interatomic_vector(q_Row(:,atom1), &
1058 >                                 q_Col(:,atom2), d_atm, ratmsq)
1059   #else
1060 <                         call get_interatomic_vector(q(:,atom1), &
1061 <                              q(:,atom2), d_atm, ratmsq)
1060 >                            call get_interatomic_vector(q(:,atom1), &
1061 >                                 q(:,atom2), d_atm, ratmsq)
1062   #endif
1063 <                      endif
1064 <
1065 <                      if (loop .eq. PREPAIR_LOOP) then
1063 >                         endif
1064 >                        
1065 >                         if (loop .eq. PREPAIR_LOOP) then
1066   #ifdef IS_MPI                      
1067 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1068 <                              rgrpsq, d_grp, do_pot, do_stress, &
1069 <                              eFrame, A, f, t, pot_local)
1067 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1068 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1069 >                                 eFrame, A, f, t, pot_local)
1070   #else
1071 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1072 <                              rgrpsq, d_grp, do_pot, do_stress, &
1073 <                              eFrame, A, f, t, pot)
1071 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1072 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1073 >                                 eFrame, A, f, t, pot)
1074   #endif                                              
1075 <                      else
1075 >                         else
1076   #ifdef IS_MPI                      
1077 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1078 <                              do_pot, &
1079 <                              eFrame, A, f, t, pot_local, vpair, fpair)
1077 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1078 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1079 >                                 fpair, d_grp, rgrp, rCut)
1080   #else
1081 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1082 <                              do_pot,  &
1083 <                              eFrame, A, f, t, pot, vpair, fpair)
1081 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1082 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1083 >                                 d_grp, rgrp, rCut)
1084   #endif
1085 +                            vij = vij + vpair
1086 +                            fij(1) = fij(1) + fpair(1)
1087 +                            fij(2) = fij(2) + fpair(2)
1088 +                            fij(3) = fij(3) + fpair(3)
1089 +                         endif
1090 +                      enddo inner
1091 +                   enddo
1092  
1093 <                         vij = vij + vpair
1094 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1095 <                      endif
1096 <                   enddo inner
1097 <                enddo
1098 <                
1099 <                if (loop .eq. PAIR_LOOP) then
1100 <                   if (in_switching_region) then
1101 <                      swderiv = vij*dswdr/rgrp
1102 <                      fij(1) = fij(1) + swderiv*d_grp(1)
700 <                      fij(2) = fij(2) + swderiv*d_grp(2)
701 <                      fij(3) = fij(3) + swderiv*d_grp(3)
702 <                      
703 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
704 <                         atom1=groupListRow(ia)
705 <                         mf = mfactRow(atom1)
1093 >                   if (loop .eq. PAIR_LOOP) then
1094 >                      if (in_switching_region) then
1095 >                         swderiv = vij*dswdr/rgrp
1096 >                         fij(1) = fij(1) + swderiv*d_grp(1)
1097 >                         fij(2) = fij(2) + swderiv*d_grp(2)
1098 >                         fij(3) = fij(3) + swderiv*d_grp(3)
1099 >                        
1100 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1101 >                            atom1=groupListRow(ia)
1102 >                            mf = mfactRow(atom1)
1103   #ifdef IS_MPI
1104 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1105 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1106 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1107 < #else
1108 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1109 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1110 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1104 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1105 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1106 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1107 > #else
1108 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1109 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1110 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1111   #endif
1112 <                      enddo
1113 <                      
1114 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1115 <                         atom2=groupListCol(jb)
1116 <                         mf = mfactCol(atom2)
1112 >                         enddo
1113 >                        
1114 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1115 >                            atom2=groupListCol(jb)
1116 >                            mf = mfactCol(atom2)
1117   #ifdef IS_MPI
1118 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1119 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1120 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1118 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1119 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1120 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1121   #else
1122 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1123 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1124 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1122 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1123 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1124 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1125   #endif
1126 <                      enddo
1126 >                         enddo
1127 >                      endif
1128 >
1129 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1130                     endif
731                  
732                   if (do_stress) call add_stress_tensor(d_grp, fij)
1131                  endif
1132 <             end if
1132 >             endif
1133            enddo
1134 +          
1135         enddo outer
1136 <      
1136 >
1137         if (update_nlist) then
1138   #ifdef IS_MPI
1139            point(nGroupsInRow + 1) = nlist + 1
# Line 748 | Line 1147 | contains
1147               update_nlist = .false.                              
1148            endif
1149         endif
1150 <            
1150 >
1151         if (loop .eq. PREPAIR_LOOP) then
1152            call do_preforce(nlocal, pot)
1153         endif
1154 <      
1154 >
1155      enddo
1156 <    
1156 >
1157      !! Do timing
1158   #ifdef PROFILE
1159      call cpu_time(forceTimeFinal)
1160      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1161   #endif    
1162 <    
1162 >
1163   #ifdef IS_MPI
1164      !!distribute forces
1165 <    
1165 >
1166      f_temp = 0.0_dp
1167      call scatter(f_Row,f_temp,plan_atom_row_3d)
1168      do i = 1,nlocal
1169         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1170      end do
1171 <    
1171 >
1172      f_temp = 0.0_dp
1173      call scatter(f_Col,f_temp,plan_atom_col_3d)
1174      do i = 1,nlocal
1175         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1176      end do
1177 <    
1177 >
1178      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1179         t_temp = 0.0_dp
1180         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 784 | Line 1183 | contains
1183         end do
1184         t_temp = 0.0_dp
1185         call scatter(t_Col,t_temp,plan_atom_col_3d)
1186 <      
1186 >
1187         do i = 1,nlocal
1188            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1189         end do
1190      endif
1191 <    
1191 >
1192      if (do_pot) then
1193         ! scatter/gather pot_row into the members of my column
1194 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1195 <      
1194 >       do i = 1,LR_POT_TYPES
1195 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1196 >       end do
1197         ! scatter/gather pot_local into all other procs
1198         ! add resultant to get total pot
1199         do i = 1, nlocal
1200 <          pot_local = pot_local + pot_Temp(i)
1200 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1201 >               + pot_Temp(1:LR_POT_TYPES,i)
1202         enddo
1203 <      
1203 >
1204         pot_Temp = 0.0_DP
1205 <      
1206 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1205 >       do i = 1,LR_POT_TYPES
1206 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1207 >       end do
1208         do i = 1, nlocal
1209 <          pot_local = pot_local + pot_Temp(i)
1209 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1210 >               + pot_Temp(1:LR_POT_TYPES,i)
1211         enddo
1212 <      
1212 >
1213      endif
1214   #endif
1215 <    
1216 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1217 <      
815 <       if (FF_uses_RF .and. SIM_uses_RF) then
1215 >
1216 >    if (SIM_requires_postpair_calc) then
1217 >       do i = 1, nlocal            
1218            
1219 +          ! we loop only over the local atoms, so we don't need row and column
1220 +          ! lookups for the types
1221 +          
1222 +          me_i = atid(i)
1223 +          
1224 +          ! is the atom electrostatic?  See if it would have an
1225 +          ! electrostatic interaction with itself
1226 +          iHash = InteractionHash(me_i,me_i)
1227 +
1228 +          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1229   #ifdef IS_MPI
1230 <          call scatter(rf_Row,rf,plan_atom_row_3d)
1231 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
1232 <          do i = 1,nlocal
1233 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1234 <          end do
1230 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1231 >                  t, do_pot)
1232 > #else
1233 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1234 >                  t, do_pot)
1235   #endif
1236 +          endif
1237 +  
1238            
1239 <          do i = 1, nLocal
1239 >          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1240              
1241 <             rfpot = 0.0_DP
1241 >             ! loop over the excludes to accumulate RF stuff we've
1242 >             ! left out of the normal pair loop
1243 >            
1244 >             do i1 = 1, nSkipsForAtom(i)
1245 >                j = skipsForAtom(i, i1)
1246 >                
1247 >                ! prevent overcounting of the skips
1248 >                if (i.lt.j) then
1249 >                   call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1250 >                   rVal = sqrt(ratmsq)
1251 >                   call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1252   #ifdef IS_MPI
1253 <             me_i = atid_row(i)
1253 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1254 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1255   #else
1256 <             me_i = atid(i)
1256 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1257 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1258   #endif
1259 <            
1260 <             if (PropertyMap(me_i)%is_Dipole) then
1261 <                
1262 <                mu_i = getDipoleMoment(me_i)
1263 <                
838 <                !! The reaction field needs to include a self contribution
839 <                !! to the field:
840 <                call accumulate_self_rf(i, mu_i, eFrame)
841 <                !! Get the reaction field contribution to the
842 <                !! potential and torques:
843 <                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1259 >                endif
1260 >             enddo
1261 >          endif
1262 >
1263 >          if (do_box_dipole) then
1264   #ifdef IS_MPI
1265 <                pot_local = pot_local + rfpot
1265 >             call accumulate_box_dipole(i, eFrame, q(:,i), pChg_local, &
1266 >                  nChg_local, pChgPos_local, nChgPos_local, dipVec_local, &
1267 >                  pChgCount_local, nChgCount_local)
1268   #else
1269 <                pot = pot + rfpot
1270 <      
1269 >             call accumulate_box_dipole(i, eFrame, q(:,i), pChg, nChg, &
1270 >                  pChgPos, nChgPos, dipVec, pChgCount, nChgCount)
1271   #endif
1272 <             endif            
1273 <          enddo
852 <       endif
1272 >          endif
1273 >       enddo
1274      endif
1275 <    
855 <    
1275 >
1276   #ifdef IS_MPI
857    
1277      if (do_pot) then
1278 <       pot = pot + pot_local
1279 <       !! we assume the c code will do the allreduce to get the total potential
1280 <       !! we could do it right here if we needed to...
1278 > #ifdef SINGLE_PRECISION
1279 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_real,mpi_sum, &
1280 >            mpi_comm_world,mpi_err)            
1281 > #else
1282 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision, &
1283 >            mpi_sum, mpi_comm_world,mpi_err)            
1284 > #endif
1285      endif
1286      
1287      if (do_stress) then
1288 + #ifdef SINGLE_PRECISION
1289 +       call mpi_allreduce(tau_Temp, tau, 9,mpi_real,mpi_sum, &
1290 +            mpi_comm_world,mpi_err)
1291 +       call mpi_allreduce(virial_Temp, virial,1,mpi_real,mpi_sum, &
1292 +            mpi_comm_world,mpi_err)
1293 + #else
1294         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1295              mpi_comm_world,mpi_err)
1296         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1297              mpi_comm_world,mpi_err)
1298 + #endif
1299      endif
1300      
1301 +    if (do_box_dipole) then
1302 +
1303 + #ifdef SINGLE_PRECISION
1304 +       call mpi_allreduce(pChg_local, pChg, 1, mpi_real, mpi_sum, &
1305 +            mpi_comm_world, mpi_err)
1306 +       call mpi_allreduce(nChg_local, nChg, 1, mpi_real, mpi_sum, &
1307 +            mpi_comm_world, mpi_err)
1308 +       call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer, mpi_sum,&
1309 +            mpi_comm_world, mpi_err)
1310 +       call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer, mpi_sum,&
1311 +            mpi_comm_world, mpi_err)
1312 +       call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_real, mpi_sum, &
1313 +            mpi_comm_world, mpi_err)
1314 +       call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_real, mpi_sum, &
1315 +            mpi_comm_world, mpi_err)
1316 +       call mpi_allreduce(dipVec_local, dipVec, 3, mpi_real, mpi_sum, &
1317 +            mpi_comm_world, mpi_err)
1318   #else
1319 +       call mpi_allreduce(pChg_local, pChg, 1, mpi_double_precision, mpi_sum, &
1320 +            mpi_comm_world, mpi_err)
1321 +       call mpi_allreduce(nChg_local, nChg, 1, mpi_double_precision, mpi_sum, &
1322 +            mpi_comm_world, mpi_err)
1323 +       call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer,&
1324 +            mpi_sum, mpi_comm_world, mpi_err)
1325 +       call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer,&
1326 +            mpi_sum, mpi_comm_world, mpi_err)
1327 +       call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_double_precision, &
1328 +            mpi_sum, mpi_comm_world, mpi_err)
1329 +       call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_double_precision, &
1330 +            mpi_sum, mpi_comm_world, mpi_err)
1331 +       call mpi_allreduce(dipVec_local, dipVec, 3, mpi_double_precision, &
1332 +            mpi_sum, mpi_comm_world, mpi_err)
1333 + #endif
1334 +
1335 +    endif
1336 +
1337 + #else
1338      
1339      if (do_stress) then
1340         tau = tau_Temp
# Line 876 | Line 1342 | contains
1342      endif
1343      
1344   #endif
1345 +
1346 +    if (do_box_dipole) then
1347 +       ! first load the accumulated dipole moment (if dipoles were present)
1348 +       boxDipole(1) = dipVec(1)
1349 +       boxDipole(2) = dipVec(2)
1350 +       boxDipole(3) = dipVec(3)
1351 +
1352 +       ! now include the dipole moment due to charges
1353 +       ! use the lesser of the positive and negative charge totals
1354 +       if (nChg .le. pChg) then
1355 +          chg_value = nChg
1356 +       else
1357 +          chg_value = pChg
1358 +       endif
1359        
1360 +       ! find the average positions
1361 +       if (pChgCount .gt. 0 .and. nChgCount .gt. 0) then
1362 +          pChgPos = pChgPos / pChgCount
1363 +          nChgPos = nChgPos / nChgCount
1364 +       endif
1365 +
1366 +       ! dipole is from the negative to the positive (physics notation)
1367 +       chgVec(1) = pChgPos(1) - nChgPos(1)
1368 +       chgVec(2) = pChgPos(2) - nChgPos(2)
1369 +       chgVec(3) = pChgPos(3) - nChgPos(3)
1370 +
1371 +       boxDipole(1) = boxDipole(1) + chgVec(1) * chg_value
1372 +       boxDipole(2) = boxDipole(2) + chgVec(2) * chg_value
1373 +       boxDipole(3) = boxDipole(3) + chgVec(3) * chg_value
1374 +
1375 +    endif
1376 +
1377    end subroutine do_force_loop
1378 <  
1378 >
1379    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1380 <       eFrame, A, f, t, pot, vpair, fpair)
1380 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1381  
1382 <    real( kind = dp ) :: pot, vpair, sw
1382 >    real( kind = dp ) :: vpair, sw
1383 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1384      real( kind = dp ), dimension(3) :: fpair
1385      real( kind = dp ), dimension(nLocal)   :: mfact
1386      real( kind = dp ), dimension(9,nLocal) :: eFrame
# Line 893 | Line 1391 | contains
1391      logical, intent(inout) :: do_pot
1392      integer, intent(in) :: i, j
1393      real ( kind = dp ), intent(inout) :: rijsq
1394 <    real ( kind = dp )                :: r
1394 >    real ( kind = dp ), intent(inout) :: r_grp
1395      real ( kind = dp ), intent(inout) :: d(3)
1396 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1397 +    real ( kind = dp ), intent(inout) :: rCut
1398 +    real ( kind = dp ) :: r
1399 +    real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1400      integer :: me_i, me_j
1401 +    integer :: k
1402  
1403 +    integer :: iHash
1404 +
1405      r = sqrt(rijsq)
1406 <    vpair = 0.0d0
1407 <    fpair(1:3) = 0.0d0
1406 >    
1407 >    vpair = 0.0_dp
1408 >    fpair(1:3) = 0.0_dp
1409  
1410   #ifdef IS_MPI
1411      me_i = atid_row(i)
# Line 909 | Line 1415 | contains
1415      me_j = atid(j)
1416   #endif
1417  
1418 < !    write(*,*) i, j, me_i, me_j
1418 >    iHash = InteractionHash(me_i, me_j)
1419      
1420 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1421 <      
1422 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
917 <            PropertyMap(me_j)%is_LennardJones ) then
918 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
919 <       endif
920 <      
1420 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1421 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1422 >            pot(VDW_POT), f, do_pot)
1423      endif
1424      
1425 <    if (FF_uses_charges .and. SIM_uses_charges) then
1426 <      
1427 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
926 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
927 <               pot, f, do_pot)
928 <       endif
929 <      
1425 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1426 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1427 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1428      endif
1429      
1430 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
1431 <      
1432 <       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
1433 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1434 <               pot, eFrame, f, t, do_pot)
1435 <          if (FF_uses_RF .and. SIM_uses_RF) then
1436 <             call accumulate_rf(i, j, r, eFrame, sw)
1437 <             call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1438 <          endif
1439 <       endif
1430 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1431 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1432 >            pot(HB_POT), A, f, t, do_pot)
1433 >    endif
1434 >    
1435 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1436 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1437 >            pot(HB_POT), A, f, t, do_pot)
1438 >    endif
1439 >    
1440 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1441 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1442 >            pot(VDW_POT), A, f, t, do_pot)
1443 >    endif
1444 >    
1445 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1446 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1447 >            pot(VDW_POT), A, f, t, do_pot)
1448 >    endif
1449 >    
1450 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1451 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1452 >            pot(METALLIC_POT), f, do_pot)
1453 >    endif
1454 >    
1455 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1456 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1457 >            pot(VDW_POT), A, f, t, do_pot)
1458 >    endif
1459 >    
1460 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1461 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1462 >            pot(VDW_POT), A, f, t, do_pot)
1463 >    endif
1464  
1465 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1466 +       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1467 +            pot(METALLIC_POT), f, do_pot)
1468      endif
1469 +    
1470 +  end subroutine do_pair
1471  
1472 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1472 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1473 >       do_pot, do_stress, eFrame, A, f, t, pot)
1474  
1475 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1476 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1477 <               pot, A, f, t, do_pot)
1478 <       endif
1479 <      
1480 <    endif
1475 >    real( kind = dp ) :: sw
1476 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1477 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1478 >    real (kind=dp), dimension(9,nLocal) :: A
1479 >    real (kind=dp), dimension(3,nLocal) :: f
1480 >    real (kind=dp), dimension(3,nLocal) :: t
1481  
1482 +    logical, intent(inout) :: do_pot, do_stress
1483 +    integer, intent(in) :: i, j
1484 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1485 +    real ( kind = dp )                :: r, rc
1486 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1487  
1488 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1489 <      
1490 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
958 <            PropertyMap(me_j)%is_GayBerne) then
959 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
960 <               pot, A, f, t, do_pot)
961 <       endif
962 <      
963 <    endif
1488 >    integer :: me_i, me_j, iHash
1489 >
1490 >    r = sqrt(rijsq)
1491      
1492 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1493 <      
1494 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
1495 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1496 <               do_pot)
1497 <       endif
1498 <      
972 <    endif
1492 > #ifdef IS_MPI  
1493 >    me_i = atid_row(i)
1494 >    me_j = atid_col(j)  
1495 > #else  
1496 >    me_i = atid(i)
1497 >    me_j = atid(j)  
1498 > #endif
1499  
1500 +    iHash = InteractionHash(me_i, me_j)
1501  
1502 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1502 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1503 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1504 >    endif
1505  
1506 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1507 <       if ( PropertyMap(me_i)%is_Shape .and. &
979 <            PropertyMap(me_j)%is_Shape ) then
980 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
981 <               pot, A, f, t, do_pot)
982 <       endif
983 <      
1506 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1507 >            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1508      endif
1509      
1510 <  end subroutine do_pair
1510 >  end subroutine do_prepair
1511  
988  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
989       do_pot, do_stress, eFrame, A, f, t, pot)
1512  
1513 <   real( kind = dp ) :: pot, sw
1514 <   real( kind = dp ), dimension(9,nLocal) :: eFrame
1515 <   real (kind=dp), dimension(9,nLocal) :: A
994 <   real (kind=dp), dimension(3,nLocal) :: f
995 <   real (kind=dp), dimension(3,nLocal) :: t
996 <  
997 <   logical, intent(inout) :: do_pot, do_stress
998 <   integer, intent(in) :: i, j
999 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1000 <   real ( kind = dp )                :: r, rc
1001 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
1002 <  
1003 <   logical :: is_EAM_i, is_EAM_j
1004 <  
1005 <   integer :: me_i, me_j
1006 <  
1513 >  subroutine do_preforce(nlocal,pot)
1514 >    integer :: nlocal
1515 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1516  
1517 <    r = sqrt(rijsq)
1518 <    if (SIM_uses_molecular_cutoffs) then
1010 <       rc = sqrt(rcijsq)
1011 <    else
1012 <       rc = r
1517 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1518 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1519      endif
1520 <  
1520 >    if (FF_uses_SC .and. SIM_uses_SC) then
1521 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1522 >    endif
1523 >  end subroutine do_preforce
1524  
1525 < #ifdef IS_MPI  
1526 <   me_i = atid_row(i)
1527 <   me_j = atid_col(j)  
1528 < #else  
1529 <   me_i = atid(i)
1530 <   me_j = atid(j)  
1531 < #endif
1532 <  
1533 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1534 <      
1535 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1536 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1537 <      
1538 <   endif
1539 <  
1540 < end subroutine do_prepair
1541 <
1542 <
1543 < subroutine do_preforce(nlocal,pot)
1544 <   integer :: nlocal
1545 <   real( kind = dp ) :: pot
1546 <  
1547 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1548 <      call calc_EAM_preforce_Frho(nlocal,pot)
1549 <   endif
1550 <  
1551 <  
1552 < end subroutine do_preforce
1553 <
1554 <
1555 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1556 <  
1557 <   real (kind = dp), dimension(3) :: q_i
1558 <   real (kind = dp), dimension(3) :: q_j
1559 <   real ( kind = dp ), intent(out) :: r_sq
1560 <   real( kind = dp ) :: d(3), scaled(3)
1561 <   integer i
1562 <  
1563 <   d(1:3) = q_j(1:3) - q_i(1:3)
1564 <  
1565 <   ! Wrap back into periodic box if necessary
1566 <   if ( SIM_uses_PBC ) then
1567 <      
1568 <      if( .not.boxIsOrthorhombic ) then
1569 <         ! calc the scaled coordinates.
1570 <        
1571 <         scaled = matmul(HmatInv, d)
1572 <        
1573 <         ! wrap the scaled coordinates
1574 <        
1575 <         scaled = scaled  - anint(scaled)
1576 <        
1577 <        
1578 <         ! calc the wrapped real coordinates from the wrapped scaled
1579 <         ! coordinates
1580 <        
1581 <         d = matmul(Hmat,scaled)
1582 <        
1583 <      else
1584 <         ! calc the scaled coordinates.
1585 <        
1586 <         do i = 1, 3
1587 <            scaled(i) = d(i) * HmatInv(i,i)
1588 <            
1589 <            ! wrap the scaled coordinates
1590 <            
1591 <            scaled(i) = scaled(i) - anint(scaled(i))
1083 <            
1084 <            ! calc the wrapped real coordinates from the wrapped scaled
1085 <            ! coordinates
1086 <            
1087 <            d(i) = scaled(i)*Hmat(i,i)
1088 <         enddo
1089 <      endif
1090 <      
1091 <   endif
1092 <  
1093 <   r_sq = dot_product(d,d)
1094 <  
1095 < end subroutine get_interatomic_vector
1096 <
1097 < subroutine zero_work_arrays()
1098 <  
1525 >
1526 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1527 >
1528 >    real (kind = dp), dimension(3) :: q_i
1529 >    real (kind = dp), dimension(3) :: q_j
1530 >    real ( kind = dp ), intent(out) :: r_sq
1531 >    real( kind = dp ) :: d(3), scaled(3)
1532 >    integer i
1533 >
1534 >    d(1) = q_j(1) - q_i(1)
1535 >    d(2) = q_j(2) - q_i(2)
1536 >    d(3) = q_j(3) - q_i(3)
1537 >
1538 >    ! Wrap back into periodic box if necessary
1539 >    if ( SIM_uses_PBC ) then
1540 >
1541 >       if( .not.boxIsOrthorhombic ) then
1542 >          ! calc the scaled coordinates.
1543 >          ! scaled = matmul(HmatInv, d)
1544 >
1545 >          scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1546 >          scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1547 >          scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1548 >          
1549 >          ! wrap the scaled coordinates
1550 >
1551 >          scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1552 >          scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1553 >          scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1554 >
1555 >          ! calc the wrapped real coordinates from the wrapped scaled
1556 >          ! coordinates
1557 >          ! d = matmul(Hmat,scaled)
1558 >          d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1559 >          d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1560 >          d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1561 >
1562 >       else
1563 >          ! calc the scaled coordinates.
1564 >
1565 >          scaled(1) = d(1) * HmatInv(1,1)
1566 >          scaled(2) = d(2) * HmatInv(2,2)
1567 >          scaled(3) = d(3) * HmatInv(3,3)
1568 >          
1569 >          ! wrap the scaled coordinates
1570 >          
1571 >          scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1572 >          scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1573 >          scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1574 >
1575 >          ! calc the wrapped real coordinates from the wrapped scaled
1576 >          ! coordinates
1577 >
1578 >          d(1) = scaled(1)*Hmat(1,1)
1579 >          d(2) = scaled(2)*Hmat(2,2)
1580 >          d(3) = scaled(3)*Hmat(3,3)
1581 >
1582 >       endif
1583 >
1584 >    endif
1585 >
1586 >    r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1587 >
1588 >  end subroutine get_interatomic_vector
1589 >
1590 >  subroutine zero_work_arrays()
1591 >
1592   #ifdef IS_MPI
1100  
1101   q_Row = 0.0_dp
1102   q_Col = 0.0_dp
1593  
1594 <   q_group_Row = 0.0_dp
1595 <   q_group_Col = 0.0_dp  
1596 <  
1597 <   eFrame_Row = 0.0_dp
1598 <   eFrame_Col = 0.0_dp
1599 <  
1600 <   A_Row = 0.0_dp
1601 <   A_Col = 0.0_dp
1602 <  
1603 <   f_Row = 0.0_dp
1604 <   f_Col = 0.0_dp
1605 <   f_Temp = 0.0_dp
1606 <  
1607 <   t_Row = 0.0_dp
1608 <   t_Col = 0.0_dp
1609 <   t_Temp = 0.0_dp
1610 <  
1611 <   pot_Row = 0.0_dp
1612 <   pot_Col = 0.0_dp
1613 <   pot_Temp = 0.0_dp
1614 <  
1615 <   rf_Row = 0.0_dp
1616 <   rf_Col = 0.0_dp
1617 <   rf_Temp = 0.0_dp
1128 <  
1594 >    q_Row = 0.0_dp
1595 >    q_Col = 0.0_dp
1596 >
1597 >    q_group_Row = 0.0_dp
1598 >    q_group_Col = 0.0_dp  
1599 >
1600 >    eFrame_Row = 0.0_dp
1601 >    eFrame_Col = 0.0_dp
1602 >
1603 >    A_Row = 0.0_dp
1604 >    A_Col = 0.0_dp
1605 >
1606 >    f_Row = 0.0_dp
1607 >    f_Col = 0.0_dp
1608 >    f_Temp = 0.0_dp
1609 >
1610 >    t_Row = 0.0_dp
1611 >    t_Col = 0.0_dp
1612 >    t_Temp = 0.0_dp
1613 >
1614 >    pot_Row = 0.0_dp
1615 >    pot_Col = 0.0_dp
1616 >    pot_Temp = 0.0_dp
1617 >
1618   #endif
1619 <
1620 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1621 <      call clean_EAM()
1622 <   endif
1623 <  
1624 <   rf = 0.0_dp
1625 <   tau_Temp = 0.0_dp
1626 <   virial_Temp = 0.0_dp
1627 < end subroutine zero_work_arrays
1628 <
1629 < function skipThisPair(atom1, atom2) result(skip_it)
1630 <   integer, intent(in) :: atom1
1631 <   integer, intent(in), optional :: atom2
1632 <   logical :: skip_it
1633 <   integer :: unique_id_1, unique_id_2
1634 <   integer :: me_i,me_j
1635 <   integer :: i
1636 <  
1637 <   skip_it = .false.
1638 <  
1639 <   !! there are a number of reasons to skip a pair or a particle
1640 <   !! mostly we do this to exclude atoms who are involved in short
1641 <   !! range interactions (bonds, bends, torsions), but we also need
1642 <   !! to exclude some overcounted interactions that result from
1643 <   !! the parallel decomposition
1155 <  
1619 >
1620 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1621 >       call clean_EAM()
1622 >    endif
1623 >
1624 >    tau_Temp = 0.0_dp
1625 >    virial_Temp = 0.0_dp
1626 >  end subroutine zero_work_arrays
1627 >
1628 >  function skipThisPair(atom1, atom2) result(skip_it)
1629 >    integer, intent(in) :: atom1
1630 >    integer, intent(in), optional :: atom2
1631 >    logical :: skip_it
1632 >    integer :: unique_id_1, unique_id_2
1633 >    integer :: me_i,me_j
1634 >    integer :: i
1635 >
1636 >    skip_it = .false.
1637 >
1638 >    !! there are a number of reasons to skip a pair or a particle
1639 >    !! mostly we do this to exclude atoms who are involved in short
1640 >    !! range interactions (bonds, bends, torsions), but we also need
1641 >    !! to exclude some overcounted interactions that result from
1642 >    !! the parallel decomposition
1643 >
1644   #ifdef IS_MPI
1645 <   !! in MPI, we have to look up the unique IDs for each atom
1646 <   unique_id_1 = AtomRowToGlobal(atom1)
1645 >    !! in MPI, we have to look up the unique IDs for each atom
1646 >    unique_id_1 = AtomRowToGlobal(atom1)
1647   #else
1648 <   !! in the normal loop, the atom numbers are unique
1649 <   unique_id_1 = atom1
1648 >    !! in the normal loop, the atom numbers are unique
1649 >    unique_id_1 = atom1
1650   #endif
1651 <  
1652 <   !! We were called with only one atom, so just check the global exclude
1653 <   !! list for this atom
1654 <   if (.not. present(atom2)) then
1655 <      do i = 1, nExcludes_global
1656 <         if (excludesGlobal(i) == unique_id_1) then
1657 <            skip_it = .true.
1658 <            return
1659 <         end if
1660 <      end do
1661 <      return
1662 <   end if
1663 <  
1651 >
1652 >    !! We were called with only one atom, so just check the global exclude
1653 >    !! list for this atom
1654 >    if (.not. present(atom2)) then
1655 >       do i = 1, nExcludes_global
1656 >          if (excludesGlobal(i) == unique_id_1) then
1657 >             skip_it = .true.
1658 >             return
1659 >          end if
1660 >       end do
1661 >       return
1662 >    end if
1663 >
1664   #ifdef IS_MPI
1665 <   unique_id_2 = AtomColToGlobal(atom2)
1665 >    unique_id_2 = AtomColToGlobal(atom2)
1666   #else
1667 <   unique_id_2 = atom2
1667 >    unique_id_2 = atom2
1668   #endif
1669 <  
1669 >
1670   #ifdef IS_MPI
1671 <   !! this situation should only arise in MPI simulations
1672 <   if (unique_id_1 == unique_id_2) then
1673 <      skip_it = .true.
1674 <      return
1675 <   end if
1676 <  
1677 <   !! this prevents us from doing the pair on multiple processors
1678 <   if (unique_id_1 < unique_id_2) then
1679 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1680 <         skip_it = .true.
1681 <         return
1682 <      endif
1683 <   else                
1684 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1685 <         skip_it = .true.
1686 <         return
1687 <      endif
1688 <   endif
1671 >    !! this situation should only arise in MPI simulations
1672 >    if (unique_id_1 == unique_id_2) then
1673 >       skip_it = .true.
1674 >       return
1675 >    end if
1676 >
1677 >    !! this prevents us from doing the pair on multiple processors
1678 >    if (unique_id_1 < unique_id_2) then
1679 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1680 >          skip_it = .true.
1681 >          return
1682 >       endif
1683 >    else                
1684 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1685 >          skip_it = .true.
1686 >          return
1687 >       endif
1688 >    endif
1689   #endif
1690 <  
1691 <   !! the rest of these situations can happen in all simulations:
1692 <   do i = 1, nExcludes_global      
1693 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1694 <           (excludesGlobal(i) == unique_id_2)) then
1695 <         skip_it = .true.
1696 <         return
1697 <      endif
1698 <   enddo
1699 <  
1700 <   do i = 1, nSkipsForAtom(atom1)
1701 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1702 <         skip_it = .true.
1703 <         return
1704 <      endif
1705 <   end do
1706 <  
1707 <   return
1708 < end function skipThisPair
1709 <
1710 < function FF_UsesDirectionalAtoms() result(doesit)
1711 <   logical :: doesit
1712 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1713 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1714 < end function FF_UsesDirectionalAtoms
1715 <
1716 < function FF_RequiresPrepairCalc() result(doesit)
1717 <   logical :: doesit
1718 <   doesit = FF_uses_EAM
1719 < end function FF_RequiresPrepairCalc
1720 <
1233 < function FF_RequiresPostpairCalc() result(doesit)
1234 <   logical :: doesit
1235 <   doesit = FF_uses_RF
1236 < end function FF_RequiresPostpairCalc
1237 <
1690 >
1691 >    !! the rest of these situations can happen in all simulations:
1692 >    do i = 1, nExcludes_global      
1693 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1694 >            (excludesGlobal(i) == unique_id_2)) then
1695 >          skip_it = .true.
1696 >          return
1697 >       endif
1698 >    enddo
1699 >
1700 >    do i = 1, nSkipsForAtom(atom1)
1701 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1702 >          skip_it = .true.
1703 >          return
1704 >       endif
1705 >    end do
1706 >
1707 >    return
1708 >  end function skipThisPair
1709 >
1710 >  function FF_UsesDirectionalAtoms() result(doesit)
1711 >    logical :: doesit
1712 >    doesit = FF_uses_DirectionalAtoms
1713 >  end function FF_UsesDirectionalAtoms
1714 >
1715 >  function FF_RequiresPrepairCalc() result(doesit)
1716 >    logical :: doesit
1717 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1718 >         .or. FF_uses_MEAM
1719 >  end function FF_RequiresPrepairCalc
1720 >
1721   #ifdef PROFILE
1722 < function getforcetime() result(totalforcetime)
1723 <   real(kind=dp) :: totalforcetime
1724 <   totalforcetime = forcetime
1725 < end function getforcetime
1722 >  function getforcetime() result(totalforcetime)
1723 >    real(kind=dp) :: totalforcetime
1724 >    totalforcetime = forcetime
1725 >  end function getforcetime
1726   #endif
1244
1245 !! This cleans componets of force arrays belonging only to fortran
1727  
1728 < subroutine add_stress_tensor(dpair, fpair)
1248 <  
1249 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1250 <  
1251 <   ! because the d vector is the rj - ri vector, and
1252 <   ! because fx, fy, fz are the force on atom i, we need a
1253 <   ! negative sign here:  
1254 <  
1255 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1256 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1257 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1258 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1259 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1260 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1261 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1262 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1263 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1264 <  
1265 <   virial_Temp = virial_Temp + &
1266 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1267 <  
1268 < end subroutine add_stress_tensor
1269 <
1270 < end module doForces
1728 >  !! This cleans componets of force arrays belonging only to fortran
1729  
1730 < !! Interfaces for C programs to module....
1730 >  subroutine add_stress_tensor(dpair, fpair)
1731  
1732 < subroutine initFortranFF(use_RF_c, thisStat)
1275 <    use doForces, ONLY: init_FF
1276 <    logical, intent(in) :: use_RF_c
1732 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1733  
1734 <    integer, intent(out) :: thisStat  
1735 <    call init_FF(use_RF_c, thisStat)
1734 >    ! because the d vector is the rj - ri vector, and
1735 >    ! because fx, fy, fz are the force on atom i, we need a
1736 >    ! negative sign here:  
1737  
1738 < end subroutine initFortranFF
1738 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1739 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1740 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1741 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1742 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1743 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1744 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1745 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1746 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1747  
1748 <  subroutine doForceloop(q, q_group, A, eFrame, f, t, tau, pot, &
1749 <       do_pot_c, do_stress_c, error)
1285 <      
1286 <       use definitions, ONLY: dp
1287 <       use simulation
1288 <       use doForces, ONLY: do_force_loop
1289 <    !! Position array provided by C, dimensioned by getNlocal
1290 <    real ( kind = dp ), dimension(3, nLocal) :: q
1291 <    !! molecular center-of-mass position array
1292 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1293 <    !! Rotation Matrix for each long range particle in simulation.
1294 <    real( kind = dp), dimension(9, nLocal) :: A    
1295 <    !! Unit vectors for dipoles (lab frame)
1296 <    real( kind = dp ), dimension(9,nLocal) :: eFrame
1297 <    !! Force array provided by C, dimensioned by getNlocal
1298 <    real ( kind = dp ), dimension(3,nLocal) :: f
1299 <    !! Torsion array provided by C, dimensioned by getNlocal
1300 <    real( kind = dp ), dimension(3,nLocal) :: t    
1748 >    virial_Temp = virial_Temp + &
1749 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1750  
1751 <    !! Stress Tensor
1752 <    real( kind = dp), dimension(9) :: tau  
1753 <    real ( kind = dp ) :: pot
1305 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1306 <    integer :: error
1307 <    
1308 <    call do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
1309 <       do_pot_c, do_stress_c, error)
1310 <      
1311 < end subroutine doForceloop
1751 >  end subroutine add_stress_tensor
1752 >
1753 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines