ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 2220 by chrisfen, Thu May 5 14:47:35 2005 UTC vs.
Revision 2722 by gezelter, Thu Apr 20 18:24:24 2006 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.15 2005-05-05 14:47:35 chrisfen Exp $, $Date: 2005-05-05 14:47:35 $, $Name: not supported by cvs2svn $, $Revision: 1.15 $
48 > !! @version $Id: doForces.F90,v 1.79 2006-04-20 18:24:24 gezelter Exp $, $Date: 2006-04-20 18:24:24 $, $Name: not supported by cvs2svn $, $Revision: 1.79 $
49  
50  
51   module doForces
# Line 58 | Line 58 | module doForces
58    use lj
59    use sticky
60    use electrostatic_module
61 <  use reaction_field
62 <  use gb_pair
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67 +  use interpolation
68   #ifdef IS_MPI
69    use mpiSimulation
70   #endif
# Line 72 | Line 73 | module doForces
73    PRIVATE
74  
75   #define __FORTRAN90
76 < #include "UseTheForce/fSwitchingFunction.h"
76 > #include "UseTheForce/fCutoffPolicy.h"
77 > #include "UseTheForce/DarkSide/fInteractionMap.h"
78 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82 +  INTEGER, PARAMETER:: np = 500
83  
80  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
83  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 +  logical, save :: haveInteractionHash = .false.
88 +  logical, save :: haveGtypeCutoffMap = .false.
89 +  logical, save :: haveDefaultCutoffs = .false.
90 +  logical, save :: haveSkinThickness = .false.
91 +  logical, save :: haveElectrostaticSummationMethod = .false.
92 +  logical, save :: haveCutoffPolicy = .false.
93 +  logical, save :: VisitCutoffsAfterComputing = .false.
94 +  logical, save :: haveSplineSqrt = .false.
95  
96    logical, save :: FF_uses_DirectionalAtoms
87  logical, save :: FF_uses_LennardJones
88  logical, save :: FF_uses_Electrostatics
89  logical, save :: FF_uses_Charges
97    logical, save :: FF_uses_Dipoles
91  logical, save :: FF_uses_Quadrupoles
92  logical, save :: FF_uses_Sticky
93  logical, save :: FF_uses_StickyPower
98    logical, save :: FF_uses_GayBerne
99    logical, save :: FF_uses_EAM
100 <  logical, save :: FF_uses_Shapes
101 <  logical, save :: FF_uses_FLARB
102 <  logical, save :: FF_uses_RF
100 >  logical, save :: FF_uses_SC
101 >  logical, save :: FF_uses_MEAM
102 >
103  
104    logical, save :: SIM_uses_DirectionalAtoms
101  logical, save :: SIM_uses_LennardJones
102  logical, save :: SIM_uses_Electrostatics
103  logical, save :: SIM_uses_Charges
104  logical, save :: SIM_uses_Dipoles
105  logical, save :: SIM_uses_Quadrupoles
106  logical, save :: SIM_uses_Sticky
107  logical, save :: SIM_uses_StickyPower
108  logical, save :: SIM_uses_GayBerne
105    logical, save :: SIM_uses_EAM
106 <  logical, save :: SIM_uses_Shapes
107 <  logical, save :: SIM_uses_FLARB
112 <  logical, save :: SIM_uses_RF
106 >  logical, save :: SIM_uses_SC
107 >  logical, save :: SIM_uses_MEAM
108    logical, save :: SIM_requires_postpair_calc
109    logical, save :: SIM_requires_prepair_calc
110    logical, save :: SIM_uses_PBC
116  logical, save :: SIM_uses_molecular_cutoffs
111  
112 <  real(kind=dp), save :: rlist, rlistsq
112 >  integer, save :: electrostaticSummationMethod
113 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
114  
115 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
116 +  real(kind=dp), save :: skinThickness
117 +  logical, save :: defaultDoShift
118 +
119    public :: init_FF
120 +  public :: setCutoffs
121 +  public :: cWasLame
122 +  public :: setElectrostaticMethod
123 +  public :: setCutoffPolicy
124 +  public :: setSkinThickness
125    public :: do_force_loop
122  public :: setRlistDF
126  
127   #ifdef PROFILE
128    public :: getforcetime
# Line 127 | Line 130 | module doForces
130    real :: forceTimeInitial, forceTimeFinal
131    integer :: nLoops
132   #endif
133 +  
134 +  !! Variables for cutoff mapping and interaction mapping
135 +  ! Bit hash to determine pair-pair interactions.
136 +  integer, dimension(:,:), allocatable :: InteractionHash
137 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
138 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
139 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
140  
141 <  type :: Properties
142 <     logical :: is_Directional   = .false.
133 <     logical :: is_LennardJones  = .false.
134 <     logical :: is_Electrostatic = .false.
135 <     logical :: is_Charge        = .false.
136 <     logical :: is_Dipole        = .false.
137 <     logical :: is_Quadrupole    = .false.
138 <     logical :: is_Sticky        = .false.
139 <     logical :: is_StickyPower   = .false.
140 <     logical :: is_GayBerne      = .false.
141 <     logical :: is_EAM           = .false.
142 <     logical :: is_Shape         = .false.
143 <     logical :: is_FLARB         = .false.
144 <  end type Properties
141 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
142 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
143  
144 <  type(Properties), dimension(:),allocatable :: PropertyMap
144 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
145 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
146 >  type ::gtypeCutoffs
147 >     real(kind=dp) :: rcut
148 >     real(kind=dp) :: rcutsq
149 >     real(kind=dp) :: rlistsq
150 >  end type gtypeCutoffs
151 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
152  
153 +  ! variables for the spline of the sqrt
154 +  type(cubicSpline), save :: splineSqrt
155 +  logical, save :: useSpline = .true.
156 +  
157 +
158   contains
159  
160 <  subroutine setRlistDF( this_rlist )
151 <
152 <    real(kind=dp) :: this_rlist
153 <
154 <    rlist = this_rlist
155 <    rlistsq = rlist * rlist
156 <
157 <    haveRlist = .true.
158 <
159 <  end subroutine setRlistDF
160 <
161 <  subroutine createPropertyMap(status)
160 >  subroutine createInteractionHash()
161      integer :: nAtypes
163    integer :: status
162      integer :: i
163 <    logical :: thisProperty
164 <    real (kind=DP) :: thisDPproperty
163 >    integer :: j
164 >    integer :: iHash
165 >    !! Test Types
166 >    logical :: i_is_LJ
167 >    logical :: i_is_Elect
168 >    logical :: i_is_Sticky
169 >    logical :: i_is_StickyP
170 >    logical :: i_is_GB
171 >    logical :: i_is_EAM
172 >    logical :: i_is_Shape
173 >    logical :: i_is_SC
174 >    logical :: i_is_MEAM
175 >    logical :: j_is_LJ
176 >    logical :: j_is_Elect
177 >    logical :: j_is_Sticky
178 >    logical :: j_is_StickyP
179 >    logical :: j_is_GB
180 >    logical :: j_is_EAM
181 >    logical :: j_is_Shape
182 >    logical :: j_is_SC
183 >    logical :: j_is_MEAM
184 >    real(kind=dp) :: myRcut
185  
186 <    status = 0
187 <
186 >    if (.not. associated(atypes)) then
187 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
188 >       return
189 >    endif
190 >    
191      nAtypes = getSize(atypes)
192 <
192 >    
193      if (nAtypes == 0) then
194 <       status = -1
194 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
195         return
196      end if
197  
198 <    if (.not. allocated(PropertyMap)) then
199 <       allocate(PropertyMap(nAtypes))
198 >    if (.not. allocated(InteractionHash)) then
199 >       allocate(InteractionHash(nAtypes,nAtypes))
200 >    else
201 >       deallocate(InteractionHash)
202 >       allocate(InteractionHash(nAtypes,nAtypes))
203      endif
204  
205 +    if (.not. allocated(atypeMaxCutoff)) then
206 +       allocate(atypeMaxCutoff(nAtypes))
207 +    else
208 +       deallocate(atypeMaxCutoff)
209 +       allocate(atypeMaxCutoff(nAtypes))
210 +    endif
211 +        
212      do i = 1, nAtypes
213 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
214 <       PropertyMap(i)%is_Directional = thisProperty
213 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
214 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
215 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
216 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
217 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
218 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
219 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
220 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
221 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
222  
223 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
186 <       PropertyMap(i)%is_LennardJones = thisProperty
223 >       do j = i, nAtypes
224  
225 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
226 <       PropertyMap(i)%is_Electrostatic = thisProperty
225 >          iHash = 0
226 >          myRcut = 0.0_dp
227  
228 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
229 <       PropertyMap(i)%is_Charge = thisProperty
230 <
231 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
232 <       PropertyMap(i)%is_Dipole = thisProperty
233 <
234 <       call getElementProperty(atypes, i, "is_Quadrupole", thisProperty)
235 <       PropertyMap(i)%is_Quadrupole = thisProperty
228 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
229 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
230 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
231 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
232 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
233 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
234 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
235 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
236 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
237  
238 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
239 <       PropertyMap(i)%is_Sticky = thisProperty
240 <      
241 <       call getElementProperty(atypes, i, "is_StickyPower", thisProperty)
242 <       PropertyMap(i)%is_StickyPower = thisProperty
238 >          if (i_is_LJ .and. j_is_LJ) then
239 >             iHash = ior(iHash, LJ_PAIR)            
240 >          endif
241 >          
242 >          if (i_is_Elect .and. j_is_Elect) then
243 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
244 >          endif
245 >          
246 >          if (i_is_Sticky .and. j_is_Sticky) then
247 >             iHash = ior(iHash, STICKY_PAIR)
248 >          endif
249  
250 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
251 <       PropertyMap(i)%is_GayBerne = thisProperty
250 >          if (i_is_StickyP .and. j_is_StickyP) then
251 >             iHash = ior(iHash, STICKYPOWER_PAIR)
252 >          endif
253  
254 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
255 <       PropertyMap(i)%is_EAM = thisProperty
254 >          if (i_is_EAM .and. j_is_EAM) then
255 >             iHash = ior(iHash, EAM_PAIR)
256 >          endif
257  
258 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
259 <       PropertyMap(i)%is_Shape = thisProperty
258 >          if (i_is_SC .and. j_is_SC) then
259 >             iHash = ior(iHash, SC_PAIR)
260 >          endif
261  
262 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
263 <       PropertyMap(i)%is_FLARB = thisProperty
262 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
263 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
264 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
265 >
266 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
267 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
268 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
269 >
270 >
271 >          InteractionHash(i,j) = iHash
272 >          InteractionHash(j,i) = iHash
273 >
274 >       end do
275 >
276      end do
277  
278 <    havePropertyMap = .true.
278 >    haveInteractionHash = .true.
279 >  end subroutine createInteractionHash
280  
281 <  end subroutine createPropertyMap
281 >  subroutine createGtypeCutoffMap()
282  
283 <  subroutine setSimVariables()
284 <    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
285 <    SIM_uses_LennardJones = SimUsesLennardJones()
286 <    SIM_uses_Electrostatics = SimUsesElectrostatics()
287 <    SIM_uses_Charges = SimUsesCharges()
288 <    SIM_uses_Dipoles = SimUsesDipoles()
289 <    SIM_uses_Sticky = SimUsesSticky()
290 <    SIM_uses_StickyPower = SimUsesStickyPower()
291 <    SIM_uses_GayBerne = SimUsesGayBerne()
232 <    SIM_uses_EAM = SimUsesEAM()
233 <    SIM_uses_Shapes = SimUsesShapes()
234 <    SIM_uses_FLARB = SimUsesFLARB()
235 <    SIM_uses_RF = SimUsesRF()
236 <    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
237 <    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
238 <    SIM_uses_PBC = SimUsesPBC()
283 >    logical :: i_is_LJ
284 >    logical :: i_is_Elect
285 >    logical :: i_is_Sticky
286 >    logical :: i_is_StickyP
287 >    logical :: i_is_GB
288 >    logical :: i_is_EAM
289 >    logical :: i_is_Shape
290 >    logical :: i_is_SC
291 >    logical :: GtypeFound
292  
293 <    haveSIMvariables = .true.
293 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
294 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
295 >    integer :: nGroupsInRow
296 >    integer :: nGroupsInCol
297 >    integer :: nGroupTypesRow,nGroupTypesCol
298 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
299 >    real(kind=dp) :: biggestAtypeCutoff
300  
301 <    return
302 <  end subroutine setSimVariables
301 >    if (.not. haveInteractionHash) then
302 >       call createInteractionHash()      
303 >    endif
304 > #ifdef IS_MPI
305 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
306 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
307 > #endif
308 >    nAtypes = getSize(atypes)
309 > ! Set all of the initial cutoffs to zero.
310 >    atypeMaxCutoff = 0.0_dp
311 >    do i = 1, nAtypes
312 >       if (SimHasAtype(i)) then    
313 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
314 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
315 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
316 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
317 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
318 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
319 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
320 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
321 >
322 >          if (haveDefaultCutoffs) then
323 >             atypeMaxCutoff(i) = defaultRcut
324 >          else
325 >             if (i_is_LJ) then          
326 >                thisRcut = getSigma(i) * 2.5_dp
327 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
328 >             endif
329 >             if (i_is_Elect) then
330 >                thisRcut = defaultRcut
331 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
332 >             endif
333 >             if (i_is_Sticky) then
334 >                thisRcut = getStickyCut(i)
335 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
336 >             endif
337 >             if (i_is_StickyP) then
338 >                thisRcut = getStickyPowerCut(i)
339 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
340 >             endif
341 >             if (i_is_GB) then
342 >                thisRcut = getGayBerneCut(i)
343 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
344 >             endif
345 >             if (i_is_EAM) then
346 >                thisRcut = getEAMCut(i)
347 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
348 >             endif
349 >             if (i_is_Shape) then
350 >                thisRcut = getShapeCut(i)
351 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
352 >             endif
353 >             if (i_is_SC) then
354 >                thisRcut = getSCCut(i)
355 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
356 >             endif
357 >          endif
358 >                    
359 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
360 >             biggestAtypeCutoff = atypeMaxCutoff(i)
361 >          endif
362 >
363 >       endif
364 >    enddo
365 >    
366 >    istart = 1
367 >    jstart = 1
368 > #ifdef IS_MPI
369 >    iend = nGroupsInRow
370 >    jend = nGroupsInCol
371 > #else
372 >    iend = nGroups
373 >    jend = nGroups
374 > #endif
375 >    
376 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
377 >    if(.not.allocated(groupToGtypeRow)) then
378 >     !  allocate(groupToGtype(iend))
379 >       allocate(groupToGtypeRow(iend))
380 >    else
381 >       deallocate(groupToGtypeRow)
382 >       allocate(groupToGtypeRow(iend))
383 >    endif
384 >    if(.not.allocated(groupMaxCutoffRow)) then
385 >       allocate(groupMaxCutoffRow(iend))
386 >    else
387 >       deallocate(groupMaxCutoffRow)
388 >       allocate(groupMaxCutoffRow(iend))
389 >    end if
390  
391 +    if(.not.allocated(gtypeMaxCutoffRow)) then
392 +       allocate(gtypeMaxCutoffRow(iend))
393 +    else
394 +       deallocate(gtypeMaxCutoffRow)
395 +       allocate(gtypeMaxCutoffRow(iend))
396 +    endif
397 +
398 +
399 + #ifdef IS_MPI
400 +       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
401 +    if(.not.associated(groupToGtypeCol)) then
402 +       allocate(groupToGtypeCol(jend))
403 +    else
404 +       deallocate(groupToGtypeCol)
405 +       allocate(groupToGtypeCol(jend))
406 +    end if
407 +
408 +    if(.not.associated(groupMaxCutoffCol)) then
409 +       allocate(groupMaxCutoffCol(jend))
410 +    else
411 +       deallocate(groupMaxCutoffCol)
412 +       allocate(groupMaxCutoffCol(jend))
413 +    end if
414 +    if(.not.associated(gtypeMaxCutoffCol)) then
415 +       allocate(gtypeMaxCutoffCol(jend))
416 +    else
417 +       deallocate(gtypeMaxCutoffCol)      
418 +       allocate(gtypeMaxCutoffCol(jend))
419 +    end if
420 +
421 +       groupMaxCutoffCol = 0.0_dp
422 +       gtypeMaxCutoffCol = 0.0_dp
423 +
424 + #endif
425 +       groupMaxCutoffRow = 0.0_dp
426 +       gtypeMaxCutoffRow = 0.0_dp
427 +
428 +
429 +    !! first we do a single loop over the cutoff groups to find the
430 +    !! largest cutoff for any atypes present in this group.  We also
431 +    !! create gtypes at this point.
432 +    
433 +    tol = 1.0d-6
434 +    nGroupTypesRow = 0
435 +    nGroupTypesCol = 0
436 +    do i = istart, iend      
437 +       n_in_i = groupStartRow(i+1) - groupStartRow(i)
438 +       groupMaxCutoffRow(i) = 0.0_dp
439 +       do ia = groupStartRow(i), groupStartRow(i+1)-1
440 +          atom1 = groupListRow(ia)
441 + #ifdef IS_MPI
442 +          me_i = atid_row(atom1)
443 + #else
444 +          me_i = atid(atom1)
445 + #endif          
446 +          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
447 +             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
448 +          endif          
449 +       enddo
450 +       if (nGroupTypesRow.eq.0) then
451 +          nGroupTypesRow = nGroupTypesRow + 1
452 +          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
453 +          groupToGtypeRow(i) = nGroupTypesRow
454 +       else
455 +          GtypeFound = .false.
456 +          do g = 1, nGroupTypesRow
457 +             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
458 +                groupToGtypeRow(i) = g
459 +                GtypeFound = .true.
460 +             endif
461 +          enddo
462 +          if (.not.GtypeFound) then            
463 +             nGroupTypesRow = nGroupTypesRow + 1
464 +             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
465 +             groupToGtypeRow(i) = nGroupTypesRow
466 +          endif
467 +       endif
468 +    enddo    
469 +
470 + #ifdef IS_MPI
471 +    do j = jstart, jend      
472 +       n_in_j = groupStartCol(j+1) - groupStartCol(j)
473 +       groupMaxCutoffCol(j) = 0.0_dp
474 +       do ja = groupStartCol(j), groupStartCol(j+1)-1
475 +          atom1 = groupListCol(ja)
476 +
477 +          me_j = atid_col(atom1)
478 +
479 +          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
480 +             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
481 +          endif          
482 +       enddo
483 +
484 +       if (nGroupTypesCol.eq.0) then
485 +          nGroupTypesCol = nGroupTypesCol + 1
486 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
487 +          groupToGtypeCol(j) = nGroupTypesCol
488 +       else
489 +          GtypeFound = .false.
490 +          do g = 1, nGroupTypesCol
491 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
492 +                groupToGtypeCol(j) = g
493 +                GtypeFound = .true.
494 +             endif
495 +          enddo
496 +          if (.not.GtypeFound) then            
497 +             nGroupTypesCol = nGroupTypesCol + 1
498 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
499 +             groupToGtypeCol(j) = nGroupTypesCol
500 +          endif
501 +       endif
502 +    enddo    
503 +
504 + #else
505 + ! Set pointers to information we just found
506 +    nGroupTypesCol = nGroupTypesRow
507 +    groupToGtypeCol => groupToGtypeRow
508 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
509 +    groupMaxCutoffCol => groupMaxCutoffRow
510 + #endif
511 +
512 +    !! allocate the gtypeCutoffMap here.
513 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
514 +    !! then we do a double loop over all the group TYPES to find the cutoff
515 +    !! map between groups of two types
516 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
517 +
518 +    do i = 1, nGroupTypesRow      
519 +       do j = 1, nGroupTypesCol
520 +      
521 +          select case(cutoffPolicy)
522 +          case(TRADITIONAL_CUTOFF_POLICY)
523 +             thisRcut = tradRcut
524 +          case(MIX_CUTOFF_POLICY)
525 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
526 +          case(MAX_CUTOFF_POLICY)
527 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
528 +          case default
529 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
530 +             return
531 +          end select
532 +          gtypeCutoffMap(i,j)%rcut = thisRcut
533 +          
534 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
535 +
536 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
537 +
538 +          if (.not.haveSkinThickness) then
539 +             skinThickness = 1.0_dp
540 +          endif
541 +
542 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
543 +
544 +          ! sanity check
545 +
546 +          if (haveDefaultCutoffs) then
547 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
548 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
549 +             endif
550 +          endif
551 +       enddo
552 +    enddo
553 +
554 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
555 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
556 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
557 + #ifdef IS_MPI
558 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
559 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
560 + #endif
561 +    groupMaxCutoffCol => null()
562 +    gtypeMaxCutoffCol => null()
563 +    
564 +    haveGtypeCutoffMap = .true.
565 +   end subroutine createGtypeCutoffMap
566 +
567 +   subroutine setCutoffs(defRcut, defRsw)
568 +
569 +     real(kind=dp),intent(in) :: defRcut, defRsw
570 +     character(len = statusMsgSize) :: errMsg
571 +     integer :: localError
572 +
573 +     defaultRcut = defRcut
574 +     defaultRsw = defRsw
575 +    
576 +     defaultDoShift = .false.
577 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
578 +        
579 +        write(errMsg, *) &
580 +             'cutoffRadius and switchingRadius are set to the same', newline &
581 +             // tab, 'value.  OOPSE will use shifted ', newline &
582 +             // tab, 'potentials instead of switching functions.'
583 +        
584 +        call handleInfo("setCutoffs", errMsg)
585 +        
586 +        defaultDoShift = .true.
587 +        
588 +     endif
589 +    
590 +     localError = 0
591 +     call setLJDefaultCutoff( defaultRcut, defaultDoShift )
592 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
593 +     call setCutoffEAM( defaultRcut )
594 +     call setCutoffSC( defaultRcut )
595 +     call set_switch(defaultRsw, defaultRcut)
596 +     call setHmatDangerousRcutValue(defaultRcut)
597 +     call setupSplineSqrt(defaultRcut)
598 +        
599 +     haveDefaultCutoffs = .true.
600 +     haveGtypeCutoffMap = .false.
601 +
602 +   end subroutine setCutoffs
603 +
604 +   subroutine cWasLame()
605 +    
606 +     VisitCutoffsAfterComputing = .true.
607 +     return
608 +    
609 +   end subroutine cWasLame
610 +  
611 +   subroutine setCutoffPolicy(cutPolicy)
612 +    
613 +     integer, intent(in) :: cutPolicy
614 +    
615 +     cutoffPolicy = cutPolicy
616 +     haveCutoffPolicy = .true.
617 +     haveGtypeCutoffMap = .false.
618 +    
619 +   end subroutine setCutoffPolicy
620 +  
621 +   subroutine setElectrostaticMethod( thisESM )
622 +
623 +     integer, intent(in) :: thisESM
624 +
625 +     electrostaticSummationMethod = thisESM
626 +     haveElectrostaticSummationMethod = .true.
627 +    
628 +   end subroutine setElectrostaticMethod
629 +
630 +   subroutine setSkinThickness( thisSkin )
631 +    
632 +     real(kind=dp), intent(in) :: thisSkin
633 +    
634 +     skinThickness = thisSkin
635 +     haveSkinThickness = .true.    
636 +     haveGtypeCutoffMap = .false.
637 +    
638 +   end subroutine setSkinThickness
639 +      
640 +   subroutine setSimVariables()
641 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
642 +     SIM_uses_EAM = SimUsesEAM()
643 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
644 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
645 +     SIM_uses_PBC = SimUsesPBC()
646 +     SIM_uses_SC = SimUsesSC()
647 +    
648 +     haveSIMvariables = .true.
649 +    
650 +     return
651 +   end subroutine setSimVariables
652 +
653    subroutine doReadyCheck(error)
654      integer, intent(out) :: error
247
655      integer :: myStatus
656  
657      error = 0
658  
659 <    if (.not. havePropertyMap) then
659 >    if (.not. haveInteractionHash) then      
660 >       call createInteractionHash()      
661 >    endif
662  
663 <       myStatus = 0
663 >    if (.not. haveGtypeCutoffMap) then        
664 >       call createGtypeCutoffMap()      
665 >    endif
666  
667 <       call createPropertyMap(myStatus)
667 >    if (VisitCutoffsAfterComputing) then
668 >       call set_switch(largestRcut, largestRcut)      
669 >       call setHmatDangerousRcutValue(largestRcut)
670 >       call setLJsplineRmax(largestRcut)
671 >       call setCutoffEAM(largestRcut)
672 >       call setCutoffSC(largestRcut)
673 >       VisitCutoffsAfterComputing = .false.
674 >    endif
675  
676 <       if (myStatus .ne. 0) then
677 <          write(default_error, *) 'createPropertyMap failed in doForces!'
260 <          error = -1
261 <          return
262 <       endif
676 >    if (.not. haveSplineSqrt) then
677 >       call setupSplineSqrt(largestRcut)
678      endif
679  
680      if (.not. haveSIMvariables) then
681         call setSimVariables()
682      endif
683  
269    if (.not. haveRlist) then
270       write(default_error, *) 'rList has not been set in doForces!'
271       error = -1
272       return
273    endif
274
684      if (.not. haveNeighborList) then
685         write(default_error, *) 'neighbor list has not been initialized in doForces!'
686         error = -1
687         return
688      end if
689 <
689 >    
690      if (.not. haveSaneForceField) then
691         write(default_error, *) 'Force Field is not sane in doForces!'
692         error = -1
693         return
694      end if
695 <
695 >    
696   #ifdef IS_MPI
697      if (.not. isMPISimSet()) then
698         write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
# Line 295 | Line 704 | contains
704    end subroutine doReadyCheck
705  
706  
707 <  subroutine init_FF(use_RF_c, thisStat)
707 >  subroutine init_FF(thisStat)
708  
300    logical, intent(in) :: use_RF_c
301
709      integer, intent(out) :: thisStat  
710      integer :: my_status, nMatches
711      integer, pointer :: MatchList(:) => null()
305    real(kind=dp) :: rcut, rrf, rt, dielect
712  
713      !! assume things are copacetic, unless they aren't
714      thisStat = 0
715  
310    !! Fortran's version of a cast:
311    FF_uses_RF = use_RF_c
312
716      !! init_FF is called *after* all of the atom types have been
717      !! defined in atype_module using the new_atype subroutine.
718      !!
# Line 317 | Line 720 | contains
720      !! interactions are used by the force field.    
721  
722      FF_uses_DirectionalAtoms = .false.
320    FF_uses_LennardJones = .false.
321    FF_uses_Electrostatics = .false.
322    FF_uses_Charges = .false.    
723      FF_uses_Dipoles = .false.
324    FF_uses_Sticky = .false.
325    FF_uses_StickyPower = .false.
724      FF_uses_GayBerne = .false.
725      FF_uses_EAM = .false.
726 <    FF_uses_Shapes = .false.
329 <    FF_uses_FLARB = .false.
726 >    FF_uses_SC = .false.
727  
728      call getMatchingElementList(atypes, "is_Directional", .true., &
729           nMatches, MatchList)
730      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
731  
335    call getMatchingElementList(atypes, "is_LennardJones", .true., &
336         nMatches, MatchList)
337    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
338
339    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
340         nMatches, MatchList)
341    if (nMatches .gt. 0) then
342       FF_uses_Electrostatics = .true.
343    endif
344
345    call getMatchingElementList(atypes, "is_Charge", .true., &
346         nMatches, MatchList)
347    if (nMatches .gt. 0) then
348       FF_uses_Charges = .true.  
349       FF_uses_Electrostatics = .true.
350    endif
351
732      call getMatchingElementList(atypes, "is_Dipole", .true., &
733           nMatches, MatchList)
734 <    if (nMatches .gt. 0) then
355 <       FF_uses_Dipoles = .true.
356 <       FF_uses_Electrostatics = .true.
357 <       FF_uses_DirectionalAtoms = .true.
358 <    endif
359 <
360 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
361 <         nMatches, MatchList)
362 <    if (nMatches .gt. 0) then
363 <       FF_uses_Quadrupoles = .true.
364 <       FF_uses_Electrostatics = .true.
365 <       FF_uses_DirectionalAtoms = .true.
366 <    endif
367 <
368 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
369 <         MatchList)
370 <    if (nMatches .gt. 0) then
371 <       FF_uses_Sticky = .true.
372 <       FF_uses_DirectionalAtoms = .true.
373 <    endif
374 <
375 <    call getMatchingElementList(atypes, "is_StickyPower", .true., nMatches, &
376 <         MatchList)
377 <    if (nMatches .gt. 0) then
378 <       FF_uses_StickyPower = .true.
379 <       FF_uses_DirectionalAtoms = .true.
380 <    endif
734 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
735      
736      call getMatchingElementList(atypes, "is_GayBerne", .true., &
737           nMatches, MatchList)
738 <    if (nMatches .gt. 0) then
385 <       FF_uses_GayBerne = .true.
386 <       FF_uses_DirectionalAtoms = .true.
387 <    endif
738 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
739  
740      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
741      if (nMatches .gt. 0) FF_uses_EAM = .true.
742  
743 <    call getMatchingElementList(atypes, "is_Shape", .true., &
744 <         nMatches, MatchList)
394 <    if (nMatches .gt. 0) then
395 <       FF_uses_Shapes = .true.
396 <       FF_uses_DirectionalAtoms = .true.
397 <    endif
743 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
744 >    if (nMatches .gt. 0) FF_uses_SC = .true.
745  
399    call getMatchingElementList(atypes, "is_FLARB", .true., &
400         nMatches, MatchList)
401    if (nMatches .gt. 0) FF_uses_FLARB = .true.
746  
403    !! Assume sanity (for the sake of argument)
747      haveSaneForceField = .true.
405
406    !! check to make sure the FF_uses_RF setting makes sense
407
408    if (FF_uses_dipoles) then
409       if (FF_uses_RF) then
410          dielect = getDielect()
411          call initialize_rf(dielect)
412       endif
413    else
414       if (FF_uses_RF) then          
415          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
416          thisStat = -1
417          haveSaneForceField = .false.
418          return
419       endif
420    endif
421
422    !sticky module does not contain check_sticky_FF anymore
423    !if (FF_uses_sticky) then
424    !   call check_sticky_FF(my_status)
425    !   if (my_status /= 0) then
426    !      thisStat = -1
427    !      haveSaneForceField = .false.
428    !      return
429    !   end if
430    !endif
748  
749      if (FF_uses_EAM) then
750         call init_EAM_FF(my_status)
# Line 439 | Line 756 | contains
756         end if
757      endif
758  
442    if (FF_uses_GayBerne) then
443       call check_gb_pair_FF(my_status)
444       if (my_status .ne. 0) then
445          thisStat = -1
446          haveSaneForceField = .false.
447          return
448       endif
449    endif
450
451    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
452    endif
453
759      if (.not. haveNeighborList) then
760         !! Create neighbor lists
761         call expandNeighborList(nLocal, my_status)
# Line 484 | Line 789 | contains
789  
790      !! Stress Tensor
791      real( kind = dp), dimension(9) :: tau  
792 <    real ( kind = dp ) :: pot
792 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
793      logical ( kind = 2) :: do_pot_c, do_stress_c
794      logical :: do_pot
795      logical :: do_stress
796      logical :: in_switching_region
797   #ifdef IS_MPI
798 <    real( kind = DP ) :: pot_local
798 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
799      integer :: nAtomsInRow
800      integer :: nAtomsInCol
801      integer :: nprocs
# Line 505 | Line 810 | contains
810      integer :: nlist
811      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
812      real( kind = DP ) :: sw, dswdr, swderiv, mf
813 +    real( kind = DP ) :: rVal
814      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
815      real(kind=dp) :: rfpot, mu_i, virial
816 +    real(kind=dp):: rCut
817      integer :: me_i, me_j, n_in_i, n_in_j
818      logical :: is_dp_i
819      integer :: neighborListSize
# Line 514 | Line 821 | contains
821      integer :: localError
822      integer :: propPack_i, propPack_j
823      integer :: loopStart, loopEnd, loop
824 +    integer :: iHash
825 +    integer :: i1
826 +  
827  
518    real(kind=dp) :: listSkin = 1.0  
519
828      !! initialize local variables  
829  
830   #ifdef IS_MPI
# Line 579 | Line 887 | contains
887         ! (but only on the first time through):
888         if (loop .eq. loopStart) then
889   #ifdef IS_MPI
890 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
890 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
891                 update_nlist)
892   #else
893 <          call checkNeighborList(nGroups, q_group, listSkin, &
893 >          call checkNeighborList(nGroups, q_group, skinThickness, &
894                 update_nlist)
895   #endif
896         endif
# Line 633 | Line 941 | contains
941               endif
942  
943   #ifdef IS_MPI
944 +             me_j = atid_col(j)
945               call get_interatomic_vector(q_group_Row(:,i), &
946                    q_group_Col(:,j), d_grp, rgrpsq)
947   #else
948 +             me_j = atid(j)
949               call get_interatomic_vector(q_group(:,i), &
950                    q_group(:,j), d_grp, rgrpsq)
951 < #endif
951 > #endif      
952  
953 <             if (rgrpsq < rlistsq) then
953 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
954                  if (update_nlist) then
955                     nlist = nlist + 1
956  
# Line 660 | Line 970 | contains
970  
971                     list(nlist) = j
972                  endif
973 <
974 <                if (loop .eq. PAIR_LOOP) then
665 <                   vij = 0.0d0
666 <                   fij(1:3) = 0.0d0
667 <                endif
668 <
669 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
670 <                     in_switching_region)
671 <
672 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
673 <
674 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
675 <
676 <                   atom1 = groupListRow(ia)
973 >                
974 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
975  
976 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
977 <
978 <                      atom2 = groupListCol(jb)
979 <
980 <                      if (skipThisPair(atom1, atom2)) cycle inner
981 <
982 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
983 <                         d_atm(1:3) = d_grp(1:3)
984 <                         ratmsq = rgrpsq
985 <                      else
976 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
977 >                   if (loop .eq. PAIR_LOOP) then
978 >                      vij = 0.0d0
979 >                      fij(1) = 0.0_dp
980 >                      fij(2) = 0.0_dp
981 >                      fij(3) = 0.0_dp
982 >                   endif
983 >                  
984 >                   call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
985 >                  
986 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
987 >                  
988 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
989 >                      
990 >                      atom1 = groupListRow(ia)
991 >                      
992 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
993 >                        
994 >                         atom2 = groupListCol(jb)
995 >                        
996 >                         if (skipThisPair(atom1, atom2))  cycle inner
997 >                        
998 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
999 >                            d_atm(1) = d_grp(1)
1000 >                            d_atm(2) = d_grp(2)
1001 >                            d_atm(3) = d_grp(3)
1002 >                            ratmsq = rgrpsq
1003 >                         else
1004   #ifdef IS_MPI
1005 <                         call get_interatomic_vector(q_Row(:,atom1), &
1006 <                              q_Col(:,atom2), d_atm, ratmsq)
1005 >                            call get_interatomic_vector(q_Row(:,atom1), &
1006 >                                 q_Col(:,atom2), d_atm, ratmsq)
1007   #else
1008 <                         call get_interatomic_vector(q(:,atom1), &
1009 <                              q(:,atom2), d_atm, ratmsq)
1008 >                            call get_interatomic_vector(q(:,atom1), &
1009 >                                 q(:,atom2), d_atm, ratmsq)
1010   #endif
1011 <                      endif
1012 <
1013 <                      if (loop .eq. PREPAIR_LOOP) then
1011 >                         endif
1012 >                        
1013 >                         if (loop .eq. PREPAIR_LOOP) then
1014   #ifdef IS_MPI                      
1015 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1016 <                              rgrpsq, d_grp, do_pot, do_stress, &
1017 <                              eFrame, A, f, t, pot_local)
1015 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1016 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1017 >                                 eFrame, A, f, t, pot_local)
1018   #else
1019 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1020 <                              rgrpsq, d_grp, do_pot, do_stress, &
1021 <                              eFrame, A, f, t, pot)
1019 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1020 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1021 >                                 eFrame, A, f, t, pot)
1022   #endif                                              
1023 <                      else
1023 >                         else
1024   #ifdef IS_MPI                      
1025 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1026 <                              do_pot, &
1027 <                              eFrame, A, f, t, pot_local, vpair, fpair)
1025 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1026 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1027 >                                 fpair, d_grp, rgrp, rCut)
1028   #else
1029 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1030 <                              do_pot,  &
1031 <                              eFrame, A, f, t, pot, vpair, fpair)
1029 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1030 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1031 >                                 d_grp, rgrp, rCut)
1032   #endif
1033 <
1034 <                         vij = vij + vpair
1035 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1036 <                      endif
1037 <                   enddo inner
1038 <                enddo
1033 >                            vij = vij + vpair
1034 >                            fij(1) = fij(1) + fpair(1)
1035 >                            fij(2) = fij(2) + fpair(2)
1036 >                            fij(3) = fij(3) + fpair(3)
1037 >                         endif
1038 >                      enddo inner
1039 >                   enddo
1040  
1041 <                if (loop .eq. PAIR_LOOP) then
1042 <                   if (in_switching_region) then
1043 <                      swderiv = vij*dswdr/rgrp
1044 <                      fij(1) = fij(1) + swderiv*d_grp(1)
1045 <                      fij(2) = fij(2) + swderiv*d_grp(2)
1046 <                      fij(3) = fij(3) + swderiv*d_grp(3)
1047 <
1048 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
1049 <                         atom1=groupListRow(ia)
1050 <                         mf = mfactRow(atom1)
1041 >                   if (loop .eq. PAIR_LOOP) then
1042 >                      if (in_switching_region) then
1043 >                         swderiv = vij*dswdr/rgrp
1044 >                         fij(1) = fij(1) + swderiv*d_grp(1)
1045 >                         fij(2) = fij(2) + swderiv*d_grp(2)
1046 >                         fij(3) = fij(3) + swderiv*d_grp(3)
1047 >                        
1048 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1049 >                            atom1=groupListRow(ia)
1050 >                            mf = mfactRow(atom1)
1051   #ifdef IS_MPI
1052 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1053 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1054 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1052 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1053 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1054 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1055   #else
1056 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1057 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1058 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1056 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1057 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1058 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1059   #endif
1060 <                      enddo
1061 <
1062 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1063 <                         atom2=groupListCol(jb)
1064 <                         mf = mfactCol(atom2)
1060 >                         enddo
1061 >                        
1062 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1063 >                            atom2=groupListCol(jb)
1064 >                            mf = mfactCol(atom2)
1065   #ifdef IS_MPI
1066 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1067 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1068 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1066 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1067 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1068 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1069   #else
1070 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1071 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1072 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1070 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1071 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1072 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1073   #endif
1074 <                      enddo
1075 <                   endif
1074 >                         enddo
1075 >                      endif
1076  
1077 <                   if (do_stress) call add_stress_tensor(d_grp, fij)
1077 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1078 >                   endif
1079                  endif
1080 <             end if
1080 >             endif
1081            enddo
1082 +          
1083         enddo outer
1084  
1085         if (update_nlist) then
# Line 820 | Line 1139 | contains
1139  
1140      if (do_pot) then
1141         ! scatter/gather pot_row into the members of my column
1142 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1143 <
1142 >       do i = 1,LR_POT_TYPES
1143 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1144 >       end do
1145         ! scatter/gather pot_local into all other procs
1146         ! add resultant to get total pot
1147         do i = 1, nlocal
1148 <          pot_local = pot_local + pot_Temp(i)
1148 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1149 >               + pot_Temp(1:LR_POT_TYPES,i)
1150         enddo
1151  
1152         pot_Temp = 0.0_DP
1153 <
1154 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1153 >       do i = 1,LR_POT_TYPES
1154 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1155 >       end do
1156         do i = 1, nlocal
1157 <          pot_local = pot_local + pot_Temp(i)
1157 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1158 >               + pot_Temp(1:LR_POT_TYPES,i)
1159         enddo
1160  
1161      endif
1162   #endif
1163  
1164 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1164 >    if (SIM_requires_postpair_calc) then
1165 >       do i = 1, nlocal            
1166 >          
1167 >          ! we loop only over the local atoms, so we don't need row and column
1168 >          ! lookups for the types
1169 >          
1170 >          me_i = atid(i)
1171 >          
1172 >          ! is the atom electrostatic?  See if it would have an
1173 >          ! electrostatic interaction with itself
1174 >          iHash = InteractionHash(me_i,me_i)
1175  
1176 <       if (FF_uses_RF .and. SIM_uses_RF) then
844 <
1176 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1177   #ifdef IS_MPI
1178 <          call scatter(rf_Row,rf,plan_atom_row_3d)
1179 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
1180 <          do i = 1,nlocal
1181 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1182 <          end do
1178 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1179 >                  t, do_pot)
1180 > #else
1181 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1182 >                  t, do_pot)
1183   #endif
1184 <
1185 <          do i = 1, nLocal
1186 <
1187 <             rfpot = 0.0_DP
1184 >          endif
1185 >  
1186 >          
1187 >          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1188 >            
1189 >             ! loop over the excludes to accumulate RF stuff we've
1190 >             ! left out of the normal pair loop
1191 >            
1192 >             do i1 = 1, nSkipsForAtom(i)
1193 >                j = skipsForAtom(i, i1)
1194 >                
1195 >                ! prevent overcounting of the skips
1196 >                if (i.lt.j) then
1197 >                   call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1198 >                   rVal = dsqrt(ratmsq)
1199 >                   call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1200   #ifdef IS_MPI
1201 <             me_i = atid_row(i)
1201 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1202 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1203   #else
1204 <             me_i = atid(i)
1204 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1205 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1206   #endif
1207 <
1208 <             if (PropertyMap(me_i)%is_Dipole) then
1209 <
1210 <                mu_i = getDipoleMoment(me_i)
865 <
866 <                !! The reaction field needs to include a self contribution
867 <                !! to the field:
868 <                call accumulate_self_rf(i, mu_i, eFrame)
869 <                !! Get the reaction field contribution to the
870 <                !! potential and torques:
871 <                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
872 < #ifdef IS_MPI
873 <                pot_local = pot_local + rfpot
874 < #else
875 <                pot = pot + rfpot
876 <
877 < #endif
878 <             endif
879 <          enddo
880 <       endif
1207 >                endif
1208 >             enddo
1209 >          endif
1210 >       enddo
1211      endif
1212 <
883 <
1212 >    
1213   #ifdef IS_MPI
1214 <
1214 >    
1215      if (do_pot) then
1216 <       pot = pot + pot_local
1217 <       !! we assume the c code will do the allreduce to get the total potential
889 <       !! we could do it right here if we needed to...
1216 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1217 >            mpi_comm_world,mpi_err)            
1218      endif
1219 <
1219 >    
1220      if (do_stress) then
1221         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1222              mpi_comm_world,mpi_err)
1223         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1224              mpi_comm_world,mpi_err)
1225      endif
1226 <
1226 >    
1227   #else
1228 <
1228 >    
1229      if (do_stress) then
1230         tau = tau_Temp
1231         virial = virial_Temp
1232      endif
1233 <
1233 >    
1234   #endif
1235 <
1235 >    
1236    end subroutine do_force_loop
1237  
1238    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1239 <       eFrame, A, f, t, pot, vpair, fpair)
1239 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1240  
1241 <    real( kind = dp ) :: pot, vpair, sw
1241 >    real( kind = dp ) :: vpair, sw
1242 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1243      real( kind = dp ), dimension(3) :: fpair
1244      real( kind = dp ), dimension(nLocal)   :: mfact
1245      real( kind = dp ), dimension(9,nLocal) :: eFrame
# Line 921 | Line 1250 | contains
1250      logical, intent(inout) :: do_pot
1251      integer, intent(in) :: i, j
1252      real ( kind = dp ), intent(inout) :: rijsq
1253 <    real ( kind = dp )                :: r
1253 >    real ( kind = dp ), intent(inout) :: r_grp
1254      real ( kind = dp ), intent(inout) :: d(3)
1255 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1256 +    real ( kind = dp ), intent(inout) :: rCut
1257 +    real ( kind = dp ) :: r
1258 +    real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1259      integer :: me_i, me_j
1260 +    integer :: k
1261  
1262 <    r = sqrt(rijsq)
1262 >    integer :: iHash
1263 >
1264 >    if (useSpline) then
1265 >       call lookupUniformSpline(splineSqrt, rijsq, r)
1266 >    else
1267 >       r = sqrt(rijsq)
1268 >    endif
1269 >
1270      vpair = 0.0d0
1271      fpair(1:3) = 0.0d0
1272  
# Line 937 | Line 1278 | contains
1278      me_j = atid(j)
1279   #endif
1280  
1281 <    !    write(*,*) i, j, me_i, me_j
1282 <
1283 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1284 <
1285 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
945 <            PropertyMap(me_j)%is_LennardJones ) then
946 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
947 <       endif
948 <
1281 >    iHash = InteractionHash(me_i, me_j)
1282 >    
1283 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1284 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1285 >            pot(VDW_POT), f, do_pot)
1286      endif
1287 <
1288 <    if (FF_uses_Electrostatics .and. SIM_uses_Electrostatics) then
1289 <
1290 <       if (PropertyMap(me_i)%is_Electrostatic .and. &
954 <            PropertyMap(me_j)%is_Electrostatic) then
955 <          call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
956 <               pot, eFrame, f, t, do_pot)
957 <       endif
958 <
959 <       if (FF_uses_dipoles .and. SIM_uses_dipoles) then      
960 <          if ( PropertyMap(me_i)%is_Dipole .and. &
961 <               PropertyMap(me_j)%is_Dipole) then
962 <             if (FF_uses_RF .and. SIM_uses_RF) then
963 <                call accumulate_rf(i, j, r, eFrame, sw)
964 <                call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
965 <             endif
966 <          endif
967 <       endif
1287 >    
1288 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1289 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1290 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1291      endif
1292 <
1293 <
1294 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1295 <
973 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
974 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
975 <               pot, A, f, t, do_pot)
976 <       endif
977 <
1292 >    
1293 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1294 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1295 >            pot(HB_POT), A, f, t, do_pot)
1296      endif
1297 <
1298 <    if (FF_uses_StickyPower .and. SIM_uses_stickypower) then
1299 <       if ( PropertyMap(me_i)%is_StickyPower .and. &
1300 <            PropertyMap(me_j)%is_StickyPower) then
983 <          call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
984 <               pot, A, f, t, do_pot)
985 <       endif
1297 >    
1298 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1299 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1300 >            pot(HB_POT), A, f, t, do_pot)
1301      endif
1302      
1303 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1304 <
1305 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
991 <            PropertyMap(me_j)%is_GayBerne) then
992 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
993 <               pot, A, f, t, do_pot)
994 <       endif
995 <
1303 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1304 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1305 >            pot(VDW_POT), A, f, t, do_pot)
1306      endif
1307 <
1308 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1309 <
1310 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
1001 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1002 <               do_pot)
1003 <       endif
1004 <
1307 >    
1308 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1309 >       call do_gb_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1310 >            pot(VDW_POT), A, f, t, do_pot)
1311      endif
1312 <
1313 <
1314 <    !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1315 <
1316 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1317 <       if ( PropertyMap(me_i)%is_Shape .and. &
1318 <            PropertyMap(me_j)%is_Shape ) then
1319 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1320 <               pot, A, f, t, do_pot)
1015 <       endif
1016 <       if ( (PropertyMap(me_i)%is_Shape .and. &
1017 <            PropertyMap(me_j)%is_LennardJones) .or. &
1018 <            (PropertyMap(me_i)%is_LennardJones .and. &
1019 <            PropertyMap(me_j)%is_Shape) ) then
1020 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1021 <               pot, A, f, t, do_pot)
1022 <       endif
1312 >    
1313 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1314 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1315 >            pot(METALLIC_POT), f, do_pot)
1316 >    endif
1317 >    
1318 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1319 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1320 >            pot(VDW_POT), A, f, t, do_pot)
1321      endif
1322 +    
1323 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1324 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1325 +            pot(VDW_POT), A, f, t, do_pot)
1326 +    endif
1327  
1328 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1329 +       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1330 +            pot(METALLIC_POT), f, do_pot)
1331 +    endif
1332 +    
1333    end subroutine do_pair
1334  
1335 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1335 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1336         do_pot, do_stress, eFrame, A, f, t, pot)
1337  
1338 <    real( kind = dp ) :: pot, sw
1338 >    real( kind = dp ) :: sw
1339 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1340      real( kind = dp ), dimension(9,nLocal) :: eFrame
1341      real (kind=dp), dimension(9,nLocal) :: A
1342      real (kind=dp), dimension(3,nLocal) :: f
# Line 1035 | Line 1344 | contains
1344  
1345      logical, intent(inout) :: do_pot, do_stress
1346      integer, intent(in) :: i, j
1347 <    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1347 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1348      real ( kind = dp )                :: r, rc
1349      real ( kind = dp ), intent(inout) :: d(3), dc(3)
1350  
1351 <    logical :: is_EAM_i, is_EAM_j
1351 >    integer :: me_i, me_j, iHash
1352  
1353 <    integer :: me_i, me_j
1354 <
1046 <
1047 <    r = sqrt(rijsq)
1048 <    if (SIM_uses_molecular_cutoffs) then
1049 <       rc = sqrt(rcijsq)
1353 >    if (useSpline) then
1354 >       call lookupUniformSpline(splineSqrt, rijsq, r)
1355      else
1356 <       rc = r
1356 >       r = sqrt(rijsq)
1357      endif
1358  
1054
1359   #ifdef IS_MPI  
1360      me_i = atid_row(i)
1361      me_j = atid_col(j)  
# Line 1060 | Line 1364 | contains
1364      me_j = atid(j)  
1365   #endif
1366  
1367 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1367 >    iHash = InteractionHash(me_i, me_j)
1368  
1369 <       if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1370 <            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1067 <
1369 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1370 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1371      endif
1372  
1373 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1374 +            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1375 +    endif
1376 +    
1377    end subroutine do_prepair
1378  
1379  
1380    subroutine do_preforce(nlocal,pot)
1381      integer :: nlocal
1382 <    real( kind = dp ) :: pot
1382 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1383  
1384      if (FF_uses_EAM .and. SIM_uses_EAM) then
1385 <       call calc_EAM_preforce_Frho(nlocal,pot)
1385 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1386      endif
1387 <
1388 <
1387 >    if (FF_uses_SC .and. SIM_uses_SC) then
1388 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1389 >    endif
1390    end subroutine do_preforce
1391  
1392  
# Line 1090 | Line 1398 | contains
1398      real( kind = dp ) :: d(3), scaled(3)
1399      integer i
1400  
1401 <    d(1:3) = q_j(1:3) - q_i(1:3)
1401 >    d(1) = q_j(1) - q_i(1)
1402 >    d(2) = q_j(2) - q_i(2)
1403 >    d(3) = q_j(3) - q_i(3)
1404  
1405      ! Wrap back into periodic box if necessary
1406      if ( SIM_uses_PBC ) then
1407  
1408         if( .not.boxIsOrthorhombic ) then
1409            ! calc the scaled coordinates.
1410 +          ! scaled = matmul(HmatInv, d)
1411  
1412 <          scaled = matmul(HmatInv, d)
1413 <
1412 >          scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1413 >          scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1414 >          scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1415 >          
1416            ! wrap the scaled coordinates
1417  
1418 <          scaled = scaled  - anint(scaled)
1418 >          scaled(1) = scaled(1) - dnint(scaled(1))
1419 >          scaled(2) = scaled(2) - dnint(scaled(2))
1420 >          scaled(3) = scaled(3) - dnint(scaled(3))
1421  
1107
1422            ! calc the wrapped real coordinates from the wrapped scaled
1423            ! coordinates
1424 <
1425 <          d = matmul(Hmat,scaled)
1424 >          ! d = matmul(Hmat,scaled)
1425 >          d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1426 >          d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1427 >          d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1428  
1429         else
1430            ! calc the scaled coordinates.
1431  
1432 <          do i = 1, 3
1433 <             scaled(i) = d(i) * HmatInv(i,i)
1432 >          scaled(1) = d(1) * HmatInv(1,1)
1433 >          scaled(2) = d(2) * HmatInv(2,2)
1434 >          scaled(3) = d(3) * HmatInv(3,3)
1435 >          
1436 >          ! wrap the scaled coordinates
1437 >          
1438 >          scaled(1) = scaled(1) - dnint(scaled(1))
1439 >          scaled(2) = scaled(2) - dnint(scaled(2))
1440 >          scaled(3) = scaled(3) - dnint(scaled(3))
1441  
1442 <             ! wrap the scaled coordinates
1442 >          ! calc the wrapped real coordinates from the wrapped scaled
1443 >          ! coordinates
1444  
1445 <             scaled(i) = scaled(i) - anint(scaled(i))
1445 >          d(1) = scaled(1)*Hmat(1,1)
1446 >          d(2) = scaled(2)*Hmat(2,2)
1447 >          d(3) = scaled(3)*Hmat(3,3)
1448  
1123             ! calc the wrapped real coordinates from the wrapped scaled
1124             ! coordinates
1125
1126             d(i) = scaled(i)*Hmat(i,i)
1127          enddo
1449         endif
1450  
1451      endif
1452  
1453 <    r_sq = dot_product(d,d)
1453 >    r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1454  
1455    end subroutine get_interatomic_vector
1456  
# Line 1161 | Line 1482 | contains
1482      pot_Col = 0.0_dp
1483      pot_Temp = 0.0_dp
1484  
1164    rf_Row = 0.0_dp
1165    rf_Col = 0.0_dp
1166    rf_Temp = 0.0_dp
1167
1485   #endif
1486  
1487      if (FF_uses_EAM .and. SIM_uses_EAM) then
1488         call clean_EAM()
1489      endif
1490  
1174    rf = 0.0_dp
1491      tau_Temp = 0.0_dp
1492      virial_Temp = 0.0_dp
1493    end subroutine zero_work_arrays
# Line 1260 | Line 1576 | contains
1576  
1577    function FF_UsesDirectionalAtoms() result(doesit)
1578      logical :: doesit
1579 <    doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1264 <         FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1265 <         FF_uses_StickyPower .or. FF_uses_GayBerne .or. FF_uses_Shapes
1579 >    doesit = FF_uses_DirectionalAtoms
1580    end function FF_UsesDirectionalAtoms
1581  
1582    function FF_RequiresPrepairCalc() result(doesit)
1583      logical :: doesit
1584 <    doesit = FF_uses_EAM
1584 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1585 >         .or. FF_uses_MEAM
1586    end function FF_RequiresPrepairCalc
1587  
1273  function FF_RequiresPostpairCalc() result(doesit)
1274    logical :: doesit
1275    doesit = FF_uses_RF
1276  end function FF_RequiresPostpairCalc
1277
1588   #ifdef PROFILE
1589    function getforcetime() result(totalforcetime)
1590      real(kind=dp) :: totalforcetime
# Line 1307 | Line 1617 | end module doForces
1617  
1618    end subroutine add_stress_tensor
1619  
1620 +  subroutine setupSplineSqrt(rmax)
1621 +    real(kind=dp), intent(in) :: rmax
1622 +    real(kind=dp), dimension(np) :: xvals, yvals
1623 +    real(kind=dp) :: r2_1, r2_n, dx, r2
1624 +    integer :: i
1625 +
1626 +    r2_1 = 0.5d0
1627 +    r2_n = rmax*rmax
1628 +
1629 +    dx = (r2_n-r2_1) / dble(np-1)
1630 +    
1631 +    do i = 1, np
1632 +       r2 = r2_1 + dble(i-1)*dx
1633 +       xvals(i) = r2
1634 +       yvals(i) = dsqrt(r2)
1635 +    enddo
1636 +
1637 +    call newSpline(splineSqrt, xvals, yvals, .true.)
1638 +    
1639 +    haveSplineSqrt = .true.
1640 +    return
1641 +  end subroutine setupSplineSqrt
1642 +
1643 +  subroutine deleteSplineSqrt()
1644 +    call deleteSpline(splineSqrt)
1645 +    haveSplineSqrt = .false.
1646 +    return
1647 +  end subroutine deleteSplineSqrt
1648 +
1649   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines