ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1706 by gezelter, Thu Nov 4 16:20:28 2004 UTC vs.
Revision 2411 by chrisfen, Wed Nov 2 21:01:21 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.7 2004-11-04 16:20:28 gezelter Exp $, $Date: 2004-11-04 16:20:28 $, $Name: not supported by cvs2svn $, $Revision: 1.7 $
48 > !! @version $Id: doForces.F90,v 1.67 2005-11-02 21:01:18 chrisfen Exp $, $Date: 2005-11-02 21:01:18 $, $Name: not supported by cvs2svn $, $Revision: 1.67 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
21 <  use gb_pair
59 >  use sticky
60 >  use electrostatic_module
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
# Line 32 | Line 72 | module doForces
72  
73   #define __FORTRAN90
74   #include "UseTheForce/fSwitchingFunction.h"
75 + #include "UseTheForce/fCutoffPolicy.h"
76 + #include "UseTheForce/DarkSide/fInteractionMap.h"
77 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
39  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveDefaultCutoffs = .false.
89 >  logical, save :: haveRlist = .false.
90 >
91    logical, save :: FF_uses_DirectionalAtoms
92 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
92 >  logical, save :: FF_uses_Dipoles
93    logical, save :: FF_uses_GayBerne
94    logical, save :: FF_uses_EAM
53  logical, save :: FF_uses_Shapes
54  logical, save :: FF_uses_FLARB
55  logical, save :: FF_uses_RF
95  
96    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
97    logical, save :: SIM_uses_EAM
65  logical, save :: SIM_uses_Shapes
66  logical, save :: SIM_uses_FLARB
67  logical, save :: SIM_uses_RF
98    logical, save :: SIM_requires_postpair_calc
99    logical, save :: SIM_requires_prepair_calc
100    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
101  
102 <  real(kind=dp), save :: rlist, rlistsq
102 >  integer, save :: electrostaticSummationMethod
103  
104    public :: init_FF
105 +  public :: setDefaultCutoffs
106    public :: do_force_loop
107 <  public :: setRlistDF
107 >  public :: createInteractionHash
108 >  public :: createGtypeCutoffMap
109 >  public :: getStickyCut
110 >  public :: getStickyPowerCut
111 >  public :: getGayBerneCut
112 >  public :: getEAMCut
113 >  public :: getShapeCut
114  
115   #ifdef PROFILE
116    public :: getforcetime
# Line 82 | Line 118 | module doForces
118    real :: forceTimeInitial, forceTimeFinal
119    integer :: nLoops
120   #endif
121 +  
122 +  !! Variables for cutoff mapping and interaction mapping
123 +  ! Bit hash to determine pair-pair interactions.
124 +  integer, dimension(:,:), allocatable :: InteractionHash
125 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
126 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
127 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
128  
129 <  type :: Properties
130 <     logical :: is_Directional   = .false.
88 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
129 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
130 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
131  
132 <  type(Properties), dimension(:),allocatable :: PropertyMap
132 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
133 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
134 >  type ::gtypeCutoffs
135 >     real(kind=dp) :: rcut
136 >     real(kind=dp) :: rcutsq
137 >     real(kind=dp) :: rlistsq
138 >  end type gtypeCutoffs
139 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
140  
141 +  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
142 +  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
143 +  real(kind=dp),save :: listSkin
144 +  
145   contains
146  
147 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
147 >  subroutine createInteractionHash(status)
148      integer :: nAtypes
149 <    integer :: status
149 >    integer, intent(out) :: status
150      integer :: i
151 <    logical :: thisProperty
152 <    real (kind=DP) :: thisDPproperty
151 >    integer :: j
152 >    integer :: iHash
153 >    !! Test Types
154 >    logical :: i_is_LJ
155 >    logical :: i_is_Elect
156 >    logical :: i_is_Sticky
157 >    logical :: i_is_StickyP
158 >    logical :: i_is_GB
159 >    logical :: i_is_EAM
160 >    logical :: i_is_Shape
161 >    logical :: j_is_LJ
162 >    logical :: j_is_Elect
163 >    logical :: j_is_Sticky
164 >    logical :: j_is_StickyP
165 >    logical :: j_is_GB
166 >    logical :: j_is_EAM
167 >    logical :: j_is_Shape
168 >    real(kind=dp) :: myRcut
169  
170 <    status = 0
170 >    status = 0  
171  
172 +    if (.not. associated(atypes)) then
173 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
174 +       status = -1
175 +       return
176 +    endif
177 +    
178      nAtypes = getSize(atypes)
179 <
179 >    
180      if (nAtypes == 0) then
181         status = -1
182         return
183      end if
184 <        
185 <    if (.not. allocated(PropertyMap)) then
186 <       allocate(PropertyMap(nAtypes))
184 >
185 >    if (.not. allocated(InteractionHash)) then
186 >       allocate(InteractionHash(nAtypes,nAtypes))
187 >    else
188 >       deallocate(InteractionHash)
189 >       allocate(InteractionHash(nAtypes,nAtypes))
190      endif
191  
192 +    if (.not. allocated(atypeMaxCutoff)) then
193 +       allocate(atypeMaxCutoff(nAtypes))
194 +    else
195 +       deallocate(atypeMaxCutoff)
196 +       allocate(atypeMaxCutoff(nAtypes))
197 +    endif
198 +        
199      do i = 1, nAtypes
200 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
201 <       PropertyMap(i)%is_Directional = thisProperty
200 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
201 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
202 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
203 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
204 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
205 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
206 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
207  
208 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
208 >       do j = i, nAtypes
209  
210 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
211 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
210 >          iHash = 0
211 >          myRcut = 0.0_dp
212  
213 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
214 <       PropertyMap(i)%is_Sticky = thisProperty
213 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
214 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
215 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
216 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
217 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
218 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
219 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
220  
221 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
222 <       PropertyMap(i)%is_GayBerne = thisProperty
221 >          if (i_is_LJ .and. j_is_LJ) then
222 >             iHash = ior(iHash, LJ_PAIR)            
223 >          endif
224 >          
225 >          if (i_is_Elect .and. j_is_Elect) then
226 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
227 >          endif
228 >          
229 >          if (i_is_Sticky .and. j_is_Sticky) then
230 >             iHash = ior(iHash, STICKY_PAIR)
231 >          endif
232  
233 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
234 <       PropertyMap(i)%is_EAM = thisProperty
233 >          if (i_is_StickyP .and. j_is_StickyP) then
234 >             iHash = ior(iHash, STICKYPOWER_PAIR)
235 >          endif
236  
237 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
238 <       PropertyMap(i)%is_Shape = thisProperty
237 >          if (i_is_EAM .and. j_is_EAM) then
238 >             iHash = ior(iHash, EAM_PAIR)
239 >          endif
240  
241 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
242 <       PropertyMap(i)%is_FLARB = thisProperty
241 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
242 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
243 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
244 >
245 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
246 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
247 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
248 >
249 >
250 >          InteractionHash(i,j) = iHash
251 >          InteractionHash(j,i) = iHash
252 >
253 >       end do
254 >
255      end do
256  
257 <    havePropertyMap = .true.
257 >    haveInteractionHash = .true.
258 >  end subroutine createInteractionHash
259  
260 <  end subroutine createPropertyMap
260 >  subroutine createGtypeCutoffMap(stat)
261 >
262 >    integer, intent(out), optional :: stat
263 >    logical :: i_is_LJ
264 >    logical :: i_is_Elect
265 >    logical :: i_is_Sticky
266 >    logical :: i_is_StickyP
267 >    logical :: i_is_GB
268 >    logical :: i_is_EAM
269 >    logical :: i_is_Shape
270 >    logical :: GtypeFound
271 >
272 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
273 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
274 >    integer :: nGroupsInRow
275 >    integer :: nGroupsInCol
276 >    integer :: nGroupTypesRow,nGroupTypesCol
277 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol, skin
278 >    real(kind=dp) :: biggestAtypeCutoff
279 >
280 >    stat = 0
281 >    if (.not. haveInteractionHash) then
282 >       call createInteractionHash(myStatus)      
283 >       if (myStatus .ne. 0) then
284 >          write(default_error, *) 'createInteractionHash failed in doForces!'
285 >          stat = -1
286 >          return
287 >       endif
288 >    endif
289 > #ifdef IS_MPI
290 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
291 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
292 > #endif
293 >    nAtypes = getSize(atypes)
294 > ! Set all of the initial cutoffs to zero.
295 >    atypeMaxCutoff = 0.0_dp
296 >    do i = 1, nAtypes
297 >       if (SimHasAtype(i)) then    
298 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
299 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
300 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
301 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
302 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
303 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
304 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
305 >          
306 >
307 >          if (haveDefaultCutoffs) then
308 >             atypeMaxCutoff(i) = defaultRcut
309 >          else
310 >             if (i_is_LJ) then          
311 >                thisRcut = getSigma(i) * 2.5_dp
312 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
313 >             endif
314 >             if (i_is_Elect) then
315 >                thisRcut = defaultRcut
316 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
317 >             endif
318 >             if (i_is_Sticky) then
319 >                thisRcut = getStickyCut(i)
320 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
321 >             endif
322 >             if (i_is_StickyP) then
323 >                thisRcut = getStickyPowerCut(i)
324 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
325 >             endif
326 >             if (i_is_GB) then
327 >                thisRcut = getGayBerneCut(i)
328 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 >             endif
330 >             if (i_is_EAM) then
331 >                thisRcut = getEAMCut(i)
332 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 >             endif
334 >             if (i_is_Shape) then
335 >                thisRcut = getShapeCut(i)
336 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 >             endif
338 >          endif
339 >          
340 >          
341 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
342 >             biggestAtypeCutoff = atypeMaxCutoff(i)
343 >          endif
344 >
345 >       endif
346 >    enddo
347 >  
348 >
349 >    
350 >    istart = 1
351 >    jstart = 1
352 > #ifdef IS_MPI
353 >    iend = nGroupsInRow
354 >    jend = nGroupsInCol
355 > #else
356 >    iend = nGroups
357 >    jend = nGroups
358 > #endif
359 >    
360 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
361 >    if(.not.allocated(groupToGtypeRow)) then
362 >     !  allocate(groupToGtype(iend))
363 >       allocate(groupToGtypeRow(iend))
364 >    else
365 >       deallocate(groupToGtypeRow)
366 >       allocate(groupToGtypeRow(iend))
367 >    endif
368 >    if(.not.allocated(groupMaxCutoffRow)) then
369 >       allocate(groupMaxCutoffRow(iend))
370 >    else
371 >       deallocate(groupMaxCutoffRow)
372 >       allocate(groupMaxCutoffRow(iend))
373 >    end if
374 >
375 >    if(.not.allocated(gtypeMaxCutoffRow)) then
376 >       allocate(gtypeMaxCutoffRow(iend))
377 >    else
378 >       deallocate(gtypeMaxCutoffRow)
379 >       allocate(gtypeMaxCutoffRow(iend))
380 >    endif
381 >
382 >
383 > #ifdef IS_MPI
384 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
385 >    if(.not.associated(groupToGtypeCol)) then
386 >       allocate(groupToGtypeCol(jend))
387 >    else
388 >       deallocate(groupToGtypeCol)
389 >       allocate(groupToGtypeCol(jend))
390 >    end if
391 >
392 >    if(.not.associated(groupToGtypeCol)) then
393 >       allocate(groupToGtypeCol(jend))
394 >    else
395 >       deallocate(groupToGtypeCol)
396 >       allocate(groupToGtypeCol(jend))
397 >    end if
398 >    if(.not.associated(gtypeMaxCutoffCol)) then
399 >       allocate(gtypeMaxCutoffCol(jend))
400 >    else
401 >       deallocate(gtypeMaxCutoffCol)      
402 >       allocate(gtypeMaxCutoffCol(jend))
403 >    end if
404 >
405 >       groupMaxCutoffCol = 0.0_dp
406 >       gtypeMaxCutoffCol = 0.0_dp
407 >
408 > #endif
409 >       groupMaxCutoffRow = 0.0_dp
410 >       gtypeMaxCutoffRow = 0.0_dp
411 >
412 >
413 >    !! first we do a single loop over the cutoff groups to find the
414 >    !! largest cutoff for any atypes present in this group.  We also
415 >    !! create gtypes at this point.
416 >    
417 >    tol = 1.0d-6
418 >    nGroupTypesRow = 0
419 >
420 >    do i = istart, iend      
421 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
422 >       groupMaxCutoffRow(i) = 0.0_dp
423 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
424 >          atom1 = groupListRow(ia)
425 > #ifdef IS_MPI
426 >          me_i = atid_row(atom1)
427 > #else
428 >          me_i = atid(atom1)
429 > #endif          
430 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
431 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
432 >          endif          
433 >       enddo
434 >
435 >       if (nGroupTypesRow.eq.0) then
436 >          nGroupTypesRow = nGroupTypesRow + 1
437 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
438 >          groupToGtypeRow(i) = nGroupTypesRow
439 >       else
440 >          GtypeFound = .false.
441 >          do g = 1, nGroupTypesRow
442 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
443 >                groupToGtypeRow(i) = g
444 >                GtypeFound = .true.
445 >             endif
446 >          enddo
447 >          if (.not.GtypeFound) then            
448 >             nGroupTypesRow = nGroupTypesRow + 1
449 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
450 >             groupToGtypeRow(i) = nGroupTypesRow
451 >          endif
452 >       endif
453 >    enddo    
454 >
455 > #ifdef IS_MPI
456 >    do j = jstart, jend      
457 >       n_in_j = groupStartCol(j+1) - groupStartCol(j)
458 >       groupMaxCutoffCol(j) = 0.0_dp
459 >       do ja = groupStartCol(j), groupStartCol(j+1)-1
460 >          atom1 = groupListCol(ja)
461 >
462 >          me_j = atid_col(atom1)
463 >
464 >          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
465 >             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
466 >          endif          
467 >       enddo
468 >
469 >       if (nGroupTypesCol.eq.0) then
470 >          nGroupTypesCol = nGroupTypesCol + 1
471 >          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
472 >          groupToGtypeCol(j) = nGroupTypesCol
473 >       else
474 >          GtypeFound = .false.
475 >          do g = 1, nGroupTypesCol
476 >             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
477 >                groupToGtypeCol(j) = g
478 >                GtypeFound = .true.
479 >             endif
480 >          enddo
481 >          if (.not.GtypeFound) then            
482 >             nGroupTypesCol = nGroupTypesCol + 1
483 >             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
484 >             groupToGtypeCol(j) = nGroupTypesCol
485 >          endif
486 >       endif
487 >    enddo    
488  
489 + #else
490 + ! Set pointers to information we just found
491 +    nGroupTypesCol = nGroupTypesRow
492 +    groupToGtypeCol => groupToGtypeRow
493 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
494 +    groupMaxCutoffCol => groupMaxCutoffRow
495 + #endif
496 +
497 +
498 +
499 +
500 +
501 +    !! allocate the gtypeCutoffMap here.
502 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
503 +    !! then we do a double loop over all the group TYPES to find the cutoff
504 +    !! map between groups of two types
505 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
506 +
507 +    do i = 1, nGroupTypesRow
508 +       do j = 1, nGroupTypesCol
509 +      
510 +          select case(cutoffPolicy)
511 +          case(TRADITIONAL_CUTOFF_POLICY)
512 +             thisRcut = tradRcut
513 +          case(MIX_CUTOFF_POLICY)
514 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
515 +          case(MAX_CUTOFF_POLICY)
516 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
517 +          case default
518 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
519 +             return
520 +          end select
521 +          gtypeCutoffMap(i,j)%rcut = thisRcut
522 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
523 +          skin = defaultRlist - defaultRcut
524 +          listSkin = skin ! set neighbor list skin thickness
525 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
526 +
527 +          ! sanity check
528 +
529 +          if (haveDefaultCutoffs) then
530 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
531 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
532 +             endif
533 +          endif
534 +       enddo
535 +    enddo
536 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
537 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
538 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
539 + #ifdef IS_MPI
540 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
541 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
542 + #endif
543 +    groupMaxCutoffCol => null()
544 +    gtypeMaxCutoffCol => null()
545 +    
546 +    haveGtypeCutoffMap = .true.
547 +   end subroutine createGtypeCutoffMap
548 +
549 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
550 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
551 +     integer, intent(in) :: cutPolicy
552 +
553 +     defaultRcut = defRcut
554 +     defaultRsw = defRsw
555 +     defaultRlist = defRlist
556 +     cutoffPolicy = cutPolicy
557 +
558 +     haveDefaultCutoffs = .true.
559 +   end subroutine setDefaultCutoffs
560 +
561 +   subroutine setCutoffPolicy(cutPolicy)
562 +
563 +     integer, intent(in) :: cutPolicy
564 +     cutoffPolicy = cutPolicy
565 +     call createGtypeCutoffMap()
566 +   end subroutine setCutoffPolicy
567 +    
568 +    
569    subroutine setSimVariables()
570      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
571      SIM_uses_EAM = SimUsesEAM()
179    SIM_uses_Shapes = SimUsesShapes()
180    SIM_uses_FLARB = SimUsesFLARB()
181    SIM_uses_RF = SimUsesRF()
572      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
573      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
574      SIM_uses_PBC = SimUsesPBC()
# Line 194 | Line 584 | contains
584      integer :: myStatus
585  
586      error = 0
197    
198    if (.not. havePropertyMap) then
587  
588 <       myStatus = 0
588 >    if (.not. haveInteractionHash) then      
589 >       myStatus = 0      
590 >       call createInteractionHash(myStatus)      
591 >       if (myStatus .ne. 0) then
592 >          write(default_error, *) 'createInteractionHash failed in doForces!'
593 >          error = -1
594 >          return
595 >       endif
596 >    endif
597  
598 <       call createPropertyMap(myStatus)
599 <
598 >    if (.not. haveGtypeCutoffMap) then        
599 >       myStatus = 0      
600 >       call createGtypeCutoffMap(myStatus)      
601         if (myStatus .ne. 0) then
602 <          write(default_error, *) 'createPropertyMap failed in doForces!'
602 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
603            error = -1
604            return
605         endif
# Line 212 | Line 609 | contains
609         call setSimVariables()
610      endif
611  
612 <    if (.not. haveRlist) then
613 <       write(default_error, *) 'rList has not been set in doForces!'
614 <       error = -1
615 <       return
616 <    endif
612 >  !  if (.not. haveRlist) then
613 >  !     write(default_error, *) 'rList has not been set in doForces!'
614 >  !     error = -1
615 >  !     return
616 >  !  endif
617  
618      if (.not. haveNeighborList) then
619         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 239 | Line 636 | contains
636   #endif
637      return
638    end subroutine doReadyCheck
242    
639  
244  subroutine init_FF(use_RF_c, thisStat)
640  
641 <    logical, intent(in) :: use_RF_c
641 >  subroutine init_FF(thisESM, thisStat)
642  
643 +    integer, intent(in) :: thisESM
644      integer, intent(out) :: thisStat  
645      integer :: my_status, nMatches
646      integer, pointer :: MatchList(:) => null()
251    real(kind=dp) :: rcut, rrf, rt, dielect
647  
648      !! assume things are copacetic, unless they aren't
649      thisStat = 0
650  
651 <    !! Fortran's version of a cast:
652 <    FF_uses_RF = use_RF_c
258 <    
651 >    electrostaticSummationMethod = thisESM
652 >
653      !! init_FF is called *after* all of the atom types have been
654      !! defined in atype_module using the new_atype subroutine.
655      !!
656      !! this will scan through the known atypes and figure out what
657      !! interactions are used by the force field.    
658 <  
658 >
659      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
660      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
661      FF_uses_GayBerne = .false.
662      FF_uses_EAM = .false.
663 <    FF_uses_Shapes = .false.
274 <    FF_uses_FLARB = .false.
275 <    
663 >
664      call getMatchingElementList(atypes, "is_Directional", .true., &
665           nMatches, MatchList)
666      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
667  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
668      call getMatchingElementList(atypes, "is_Dipole", .true., &
669           nMatches, MatchList)
670 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
670 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
671      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
672      call getMatchingElementList(atypes, "is_GayBerne", .true., &
673           nMatches, MatchList)
674 <    if (nMatches .gt. 0) then
675 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
674 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
675 >
676      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
677      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
678  
329    call getMatchingElementList(atypes, "is_FLARB", .true., &
330         nMatches, MatchList)
331    if (nMatches .gt. 0) FF_uses_FLARB = .true.
679  
333    !! Assume sanity (for the sake of argument)
680      haveSaneForceField = .true.
335    
336    !! check to make sure the FF_uses_RF setting makes sense
337    
338    if (FF_uses_dipoles) then
339       if (FF_uses_RF) then
340          dielect = getDielect()
341          call initialize_rf(dielect)
342       endif
343    else
344       if (FF_uses_RF) then          
345          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
346          thisStat = -1
347          haveSaneForceField = .false.
348          return
349       endif
350    endif
681  
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
359    endif
360
682      if (FF_uses_EAM) then
683 <         call init_EAM_FF(my_status)
683 >       call init_EAM_FF(my_status)
684         if (my_status /= 0) then
685            write(default_error, *) "init_EAM_FF returned a bad status"
686            thisStat = -1
# Line 368 | Line 689 | contains
689         end if
690      endif
691  
371    if (FF_uses_GayBerne) then
372       call check_gb_pair_FF(my_status)
373       if (my_status .ne. 0) then
374          thisStat = -1
375          haveSaneForceField = .false.
376          return
377       endif
378    endif
379
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
692      if (.not. haveNeighborList) then
693         !! Create neighbor lists
694         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 698 | contains
698            return
699         endif
700         haveNeighborList = .true.
701 <    endif    
702 <    
701 >    endif
702 >
703    end subroutine init_FF
395  
704  
705 +
706    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
707    !------------------------------------------------------------->
708 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
708 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
709         do_pot_c, do_stress_c, error)
710      !! Position array provided by C, dimensioned by getNlocal
711      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 714 | contains
714      !! Rotation Matrix for each long range particle in simulation.
715      real( kind = dp), dimension(9, nLocal) :: A    
716      !! Unit vectors for dipoles (lab frame)
717 <    real( kind = dp ), dimension(3,nLocal) :: u_l
717 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
718      !! Force array provided by C, dimensioned by getNlocal
719      real ( kind = dp ), dimension(3,nLocal) :: f
720      !! Torsion array provided by C, dimensioned by getNlocal
# Line 413 | Line 722 | contains
722  
723      !! Stress Tensor
724      real( kind = dp), dimension(9) :: tau  
725 <    real ( kind = dp ) :: pot
725 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
726      logical ( kind = 2) :: do_pot_c, do_stress_c
727      logical :: do_pot
728      logical :: do_stress
729      logical :: in_switching_region
730   #ifdef IS_MPI
731 <    real( kind = DP ) :: pot_local
731 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
732      integer :: nAtomsInRow
733      integer :: nAtomsInCol
734      integer :: nprocs
# Line 434 | Line 743 | contains
743      integer :: nlist
744      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
745      real( kind = DP ) :: sw, dswdr, swderiv, mf
746 +    real( kind = DP ) :: rVal
747      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
748      real(kind=dp) :: rfpot, mu_i, virial
749      integer :: me_i, me_j, n_in_i, n_in_j
# Line 443 | Line 753 | contains
753      integer :: localError
754      integer :: propPack_i, propPack_j
755      integer :: loopStart, loopEnd, loop
756 +    integer :: iHash
757 +    integer :: i1
758 +  
759  
447    real(kind=dp) :: listSkin = 1.0  
448    
760      !! initialize local variables  
761 <    
761 >
762   #ifdef IS_MPI
763      pot_local = 0.0_dp
764      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 768 | contains
768   #else
769      natoms = nlocal
770   #endif
771 <    
771 >
772      call doReadyCheck(localError)
773      if ( localError .ne. 0 ) then
774         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 776 | contains
776         return
777      end if
778      call zero_work_arrays()
779 <        
779 >
780      do_pot = do_pot_c
781      do_stress = do_stress_c
782 <    
782 >
783      ! Gather all information needed by all force loops:
784 <    
784 >
785   #ifdef IS_MPI    
786 <    
786 >
787      call gather(q, q_Row, plan_atom_row_3d)
788      call gather(q, q_Col, plan_atom_col_3d)
789  
790      call gather(q_group, q_group_Row, plan_group_row_3d)
791      call gather(q_group, q_group_Col, plan_group_col_3d)
792 <        
792 >
793      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
794 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
795 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
796 <      
794 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
795 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
796 >
797         call gather(A, A_Row, plan_atom_row_rotation)
798         call gather(A, A_Col, plan_atom_col_rotation)
799      endif
800 <    
800 >
801   #endif
802 <    
802 >
803      !! Begin force loop timing:
804   #ifdef PROFILE
805      call cpu_time(forceTimeInitial)
806      nloops = nloops + 1
807   #endif
808 <    
808 >
809      loopEnd = PAIR_LOOP
810      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
811         loopStart = PREPAIR_LOOP
# Line 509 | Line 820 | contains
820         if (loop .eq. loopStart) then
821   #ifdef IS_MPI
822            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
823 <             update_nlist)
823 >               update_nlist)
824   #else
825            call checkNeighborList(nGroups, q_group, listSkin, &
826 <             update_nlist)
826 >               update_nlist)
827   #endif
828         endif
829 <      
829 >
830         if (update_nlist) then
831            !! save current configuration and construct neighbor list
832   #ifdef IS_MPI
# Line 526 | Line 837 | contains
837            neighborListSize = size(list)
838            nlist = 0
839         endif
840 <      
840 >
841         istart = 1
842   #ifdef IS_MPI
843         iend = nGroupsInRow
# Line 536 | Line 847 | contains
847         outer: do i = istart, iend
848  
849            if (update_nlist) point(i) = nlist + 1
850 <          
850 >
851            n_in_i = groupStartRow(i+1) - groupStartRow(i)
852 <          
852 >
853            if (update_nlist) then
854   #ifdef IS_MPI
855               jstart = 1
# Line 553 | Line 864 | contains
864               ! make sure group i has neighbors
865               if (jstart .gt. jend) cycle outer
866            endif
867 <          
867 >
868            do jnab = jstart, jend
869               if (update_nlist) then
870                  j = jnab
# Line 562 | Line 873 | contains
873               endif
874  
875   #ifdef IS_MPI
876 +             me_j = atid_col(j)
877               call get_interatomic_vector(q_group_Row(:,i), &
878                    q_group_Col(:,j), d_grp, rgrpsq)
879   #else
880 +             me_j = atid(j)
881               call get_interatomic_vector(q_group(:,i), &
882                    q_group(:,j), d_grp, rgrpsq)
883 < #endif
883 > #endif      
884  
885 <             if (rgrpsq < rlistsq) then
885 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
886                  if (update_nlist) then
887                     nlist = nlist + 1
888 <                  
888 >
889                     if (nlist > neighborListSize) then
890   #ifdef IS_MPI                
891                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 899 | contains
899                        end if
900                        neighborListSize = size(list)
901                     endif
902 <                  
902 >
903                     list(nlist) = j
904                  endif
905                  
906 <                if (loop .eq. PAIR_LOOP) then
907 <                   vij = 0.0d0
908 <                   fij(1:3) = 0.0d0
909 <                endif
910 <                
911 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
599 <                     in_switching_region)
600 <                
601 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
602 <                
603 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
906 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
907 >
908 >                   if (loop .eq. PAIR_LOOP) then
909 >                      vij = 0.0d0
910 >                      fij(1:3) = 0.0d0
911 >                   endif
912                    
913 <                   atom1 = groupListRow(ia)
913 >                   call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
914 >                        in_switching_region)
915                    
916 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
916 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
917 >                  
918 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
919                        
920 <                      atom2 = groupListCol(jb)
920 >                      atom1 = groupListRow(ia)
921                        
922 <                      if (skipThisPair(atom1, atom2)) cycle inner
923 <
924 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
925 <                         d_atm(1:3) = d_grp(1:3)
926 <                         ratmsq = rgrpsq
927 <                      else
922 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
923 >                        
924 >                         atom2 = groupListCol(jb)
925 >                        
926 >                         if (skipThisPair(atom1, atom2))  cycle inner
927 >                        
928 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
929 >                            d_atm(1:3) = d_grp(1:3)
930 >                            ratmsq = rgrpsq
931 >                         else
932   #ifdef IS_MPI
933 <                         call get_interatomic_vector(q_Row(:,atom1), &
934 <                              q_Col(:,atom2), d_atm, ratmsq)
933 >                            call get_interatomic_vector(q_Row(:,atom1), &
934 >                                 q_Col(:,atom2), d_atm, ratmsq)
935   #else
936 <                         call get_interatomic_vector(q(:,atom1), &
937 <                              q(:,atom2), d_atm, ratmsq)
936 >                            call get_interatomic_vector(q(:,atom1), &
937 >                                 q(:,atom2), d_atm, ratmsq)
938   #endif
939 <                      endif
940 <
941 <                      if (loop .eq. PREPAIR_LOOP) then
939 >                         endif
940 >                        
941 >                         if (loop .eq. PREPAIR_LOOP) then
942   #ifdef IS_MPI                      
943 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
944 <                              rgrpsq, d_grp, do_pot, do_stress, &
945 <                              u_l, A, f, t, pot_local)
943 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
944 >                                 rgrpsq, d_grp, do_pot, do_stress, &
945 >                                 eFrame, A, f, t, pot_local)
946   #else
947 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
948 <                              rgrpsq, d_grp, do_pot, do_stress, &
949 <                              u_l, A, f, t, pot)
947 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
948 >                                 rgrpsq, d_grp, do_pot, do_stress, &
949 >                                 eFrame, A, f, t, pot)
950   #endif                                              
951 <                      else
951 >                         else
952   #ifdef IS_MPI                      
953 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
954 <                              do_pot, &
955 <                              u_l, A, f, t, pot_local, vpair, fpair)
953 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
954 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
955 >                                 fpair, d_grp, rgrp)
956   #else
957 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
958 <                              do_pot,  &
959 <                              u_l, A, f, t, pot, vpair, fpair)
957 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
958 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
959 >                                 d_grp, rgrp)
960   #endif
961 +                            vij = vij + vpair
962 +                            fij(1:3) = fij(1:3) + fpair(1:3)
963 +                         endif
964 +                      enddo inner
965 +                   enddo
966  
967 <                         vij = vij + vpair
968 <                         fij(1:3) = fij(1:3) + fpair(1:3)
969 <                      endif
970 <                   enddo inner
971 <                enddo
972 <                
973 <                if (loop .eq. PAIR_LOOP) then
974 <                   if (in_switching_region) then
975 <                      swderiv = vij*dswdr/rgrp
976 <                      fij(1) = fij(1) + swderiv*d_grp(1)
657 <                      fij(2) = fij(2) + swderiv*d_grp(2)
658 <                      fij(3) = fij(3) + swderiv*d_grp(3)
659 <                      
660 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
661 <                         atom1=groupListRow(ia)
662 <                         mf = mfactRow(atom1)
967 >                   if (loop .eq. PAIR_LOOP) then
968 >                      if (in_switching_region) then
969 >                         swderiv = vij*dswdr/rgrp
970 >                         fij(1) = fij(1) + swderiv*d_grp(1)
971 >                         fij(2) = fij(2) + swderiv*d_grp(2)
972 >                         fij(3) = fij(3) + swderiv*d_grp(3)
973 >                        
974 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
975 >                            atom1=groupListRow(ia)
976 >                            mf = mfactRow(atom1)
977   #ifdef IS_MPI
978 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
979 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
980 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
978 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
979 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
980 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
981   #else
982 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
983 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
984 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
982 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
983 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
984 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
985   #endif
986 <                      enddo
987 <                      
988 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
989 <                         atom2=groupListCol(jb)
990 <                         mf = mfactCol(atom2)
986 >                         enddo
987 >                        
988 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
989 >                            atom2=groupListCol(jb)
990 >                            mf = mfactCol(atom2)
991   #ifdef IS_MPI
992 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
993 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
994 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
992 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
993 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
994 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
995   #else
996 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
997 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
998 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
996 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
997 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
998 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
999   #endif
1000 <                      enddo
1000 >                         enddo
1001 >                      endif
1002 >
1003 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1004                     endif
688                  
689                   if (do_stress) call add_stress_tensor(d_grp, fij)
1005                  endif
1006 <             end if
1006 >             endif
1007            enddo
1008 +          
1009         enddo outer
1010 <      
1010 >
1011         if (update_nlist) then
1012   #ifdef IS_MPI
1013            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 1021 | contains
1021               update_nlist = .false.                              
1022            endif
1023         endif
1024 <            
1024 >
1025         if (loop .eq. PREPAIR_LOOP) then
1026            call do_preforce(nlocal, pot)
1027         endif
1028 <      
1028 >
1029      enddo
1030 <    
1030 >
1031      !! Do timing
1032   #ifdef PROFILE
1033      call cpu_time(forceTimeFinal)
1034      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1035   #endif    
1036 <    
1036 >
1037   #ifdef IS_MPI
1038      !!distribute forces
1039 <    
1039 >
1040      f_temp = 0.0_dp
1041      call scatter(f_Row,f_temp,plan_atom_row_3d)
1042      do i = 1,nlocal
1043         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1044      end do
1045 <    
1045 >
1046      f_temp = 0.0_dp
1047      call scatter(f_Col,f_temp,plan_atom_col_3d)
1048      do i = 1,nlocal
1049         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1050      end do
1051 <    
1051 >
1052      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1053         t_temp = 0.0_dp
1054         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 1057 | contains
1057         end do
1058         t_temp = 0.0_dp
1059         call scatter(t_Col,t_temp,plan_atom_col_3d)
1060 <      
1060 >
1061         do i = 1,nlocal
1062            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1063         end do
1064      endif
1065 <    
1065 >
1066      if (do_pot) then
1067         ! scatter/gather pot_row into the members of my column
1068 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1069 <      
1068 >       do i = 1,LR_POT_TYPES
1069 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1070 >       end do
1071         ! scatter/gather pot_local into all other procs
1072         ! add resultant to get total pot
1073         do i = 1, nlocal
1074 <          pot_local = pot_local + pot_Temp(i)
1074 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1075 >               + pot_Temp(1:LR_POT_TYPES,i)
1076         enddo
1077 <      
1077 >
1078         pot_Temp = 0.0_DP
1079 <      
1080 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1079 >       do i = 1,LR_POT_TYPES
1080 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1081 >       end do
1082         do i = 1, nlocal
1083 <          pot_local = pot_local + pot_Temp(i)
1083 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1084 >               + pot_Temp(1:LR_POT_TYPES,i)
1085         enddo
1086 <      
1086 >
1087      endif
1088   #endif
1089 <    
1090 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1091 <      
772 <       if (FF_uses_RF .and. SIM_uses_RF) then
1089 >
1090 >    if (SIM_requires_postpair_calc) then
1091 >       do i = 1, nlocal            
1092            
1093 < #ifdef IS_MPI
1094 <          call scatter(rf_Row,rf,plan_atom_row_3d)
776 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
777 <          do i = 1,nlocal
778 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
779 <          end do
780 < #endif
1093 >          ! we loop only over the local atoms, so we don't need row and column
1094 >          ! lookups for the types
1095            
1096 <          do i = 1, nLocal
1097 <            
1098 <             rfpot = 0.0_DP
1096 >          me_i = atid(i)
1097 >          
1098 >          ! is the atom electrostatic?  See if it would have an
1099 >          ! electrostatic interaction with itself
1100 >          iHash = InteractionHash(me_i,me_i)
1101 >
1102 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1103   #ifdef IS_MPI
1104 <             me_i = atid_row(i)
1104 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1105 >                  t, do_pot)
1106   #else
1107 <             me_i = atid(i)
1107 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1108 >                  t, do_pot)
1109   #endif
1110 +          endif
1111 +  
1112 +          
1113 +          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1114              
1115 <             if (PropertyMap(me_i)%is_Dipole) then
1115 >             ! loop over the excludes to accumulate RF stuff we've
1116 >             ! left out of the normal pair loop
1117 >            
1118 >             do i1 = 1, nSkipsForAtom(i)
1119 >                j = skipsForAtom(i, i1)
1120                  
1121 <                mu_i = getDipoleMoment(me_i)
1122 <                
1123 <                !! The reaction field needs to include a self contribution
1124 <                !! to the field:
1125 <                call accumulate_self_rf(i, mu_i, u_l)
1126 <                !! Get the reaction field contribution to the
1127 <                !! potential and torques:
800 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1121 >                ! prevent overcounting of the skips
1122 >                if (i.lt.j) then
1123 >                   call get_interatomic_vector(q(:,i), &
1124 >                        q(:,j), d_atm, ratmsq)
1125 >                   rVal = dsqrt(ratmsq)
1126 >                   call get_switch(ratmsq, sw, dswdr, rVal, group_switch, &
1127 >                        in_switching_region)
1128   #ifdef IS_MPI
1129 <                pot_local = pot_local + rfpot
1129 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1130 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1131   #else
1132 <                pot = pot + rfpot
1133 <      
1132 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1133 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1134   #endif
1135 <             endif            
1136 <          enddo
1137 <       endif
1135 >                endif
1136 >             enddo
1137 >          endif
1138 >       enddo
1139      endif
1140      
812    
1141   #ifdef IS_MPI
1142      
1143      if (do_pot) then
1144 <       pot = pot + pot_local
1145 <       !! we assume the c code will do the allreduce to get the total potential
818 <       !! we could do it right here if we needed to...
1144 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1145 >            mpi_comm_world,mpi_err)            
1146      endif
1147      
1148      if (do_stress) then
# Line 833 | Line 1160 | contains
1160      endif
1161      
1162   #endif
1163 <      
1163 >    
1164    end subroutine do_force_loop
1165 <  
1165 >
1166    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1167 <       u_l, A, f, t, pot, vpair, fpair)
1167 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp)
1168  
1169 <    real( kind = dp ) :: pot, vpair, sw
1169 >    real( kind = dp ) :: vpair, sw
1170 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1171      real( kind = dp ), dimension(3) :: fpair
1172      real( kind = dp ), dimension(nLocal)   :: mfact
1173 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1173 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1174      real( kind = dp ), dimension(9,nLocal) :: A
1175      real( kind = dp ), dimension(3,nLocal) :: f
1176      real( kind = dp ), dimension(3,nLocal) :: t
# Line 850 | Line 1178 | contains
1178      logical, intent(inout) :: do_pot
1179      integer, intent(in) :: i, j
1180      real ( kind = dp ), intent(inout) :: rijsq
1181 <    real ( kind = dp )                :: r
1181 >    real ( kind = dp ), intent(inout) :: r_grp
1182      real ( kind = dp ), intent(inout) :: d(3)
1183 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1184 +    real ( kind = dp ) :: r
1185      integer :: me_i, me_j
1186  
1187 +    integer :: iHash
1188 +
1189      r = sqrt(rijsq)
1190      vpair = 0.0d0
1191      fpair(1:3) = 0.0d0
# Line 866 | Line 1198 | contains
1198      me_j = atid(j)
1199   #endif
1200  
1201 <    write(*,*) i, j, me_i, me_j
1201 >    iHash = InteractionHash(me_i, me_j)
1202      
1203 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1204 <      
1205 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
874 <            PropertyMap(me_j)%is_LennardJones ) then
875 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
876 <       endif
877 <      
1203 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1204 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1205 >            pot(VDW_POT), f, do_pot)
1206      endif
1207      
1208 <    if (FF_uses_charges .and. SIM_uses_charges) then
1209 <      
1210 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
883 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
884 <               pot, f, do_pot)
885 <       endif
886 <      
1208 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1209 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1210 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1211      endif
1212      
1213 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
1214 <      
1215 <       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
892 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
893 <               pot, u_l, f, t, do_pot)
894 <          if (FF_uses_RF .and. SIM_uses_RF) then
895 <             call accumulate_rf(i, j, r, u_l, sw)
896 <             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
897 <          endif
898 <       endif
899 <
1213 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1214 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1215 >            pot(HB_POT), A, f, t, do_pot)
1216      endif
1217 <
1218 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1219 <
1220 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
905 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
906 <               pot, A, f, t, do_pot)
907 <       endif
908 <      
1217 >    
1218 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1219 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1220 >            pot(HB_POT), A, f, t, do_pot)
1221      endif
1222 +    
1223 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1224 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1225 +            pot(VDW_POT), A, f, t, do_pot)
1226 +    endif
1227 +    
1228 +    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1229 +       call do_gb_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1230 +            pot(VDW_POT), A, f, t, do_pot)
1231 +    endif
1232 +    
1233 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1234 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1235 +            pot(METALLIC_POT), f, do_pot)
1236 +    endif
1237 +    
1238 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1239 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1240 +            pot(VDW_POT), A, f, t, do_pot)
1241 +    endif
1242 +    
1243 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1244 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1245 +            pot(VDW_POT), A, f, t, do_pot)
1246 +    endif
1247 +    
1248 +  end subroutine do_pair
1249  
1250 +  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1251 +       do_pot, do_stress, eFrame, A, f, t, pot)
1252  
1253 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1254 <      
1255 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
1256 <            PropertyMap(me_j)%is_GayBerne) then
1257 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1258 <               pot, u_l, f, t, do_pot)
1259 <       endif
1260 <      
1253 >    real( kind = dp ) :: sw
1254 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1255 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1256 >    real (kind=dp), dimension(9,nLocal) :: A
1257 >    real (kind=dp), dimension(3,nLocal) :: f
1258 >    real (kind=dp), dimension(3,nLocal) :: t
1259 >
1260 >    logical, intent(inout) :: do_pot, do_stress
1261 >    integer, intent(in) :: i, j
1262 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1263 >    real ( kind = dp )                :: r, rc
1264 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1265 >
1266 >    integer :: me_i, me_j, iHash
1267 >
1268 >    r = sqrt(rijsq)
1269 >
1270 > #ifdef IS_MPI  
1271 >    me_i = atid_row(i)
1272 >    me_j = atid_col(j)  
1273 > #else  
1274 >    me_i = atid(i)
1275 >    me_j = atid(j)  
1276 > #endif
1277 >
1278 >    iHash = InteractionHash(me_i, me_j)
1279 >
1280 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1281 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1282      endif
1283      
1284 +  end subroutine do_prepair
1285 +
1286 +
1287 +  subroutine do_preforce(nlocal,pot)
1288 +    integer :: nlocal
1289 +    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1290 +
1291      if (FF_uses_EAM .and. SIM_uses_EAM) then
1292 <      
924 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
925 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
926 <               do_pot)
927 <       endif
928 <      
1292 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1293      endif
1294  
1295  
1296 <    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1296 >  end subroutine do_preforce
1297  
1298 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1299 <       if ( PropertyMap(me_i)%is_Shape .and. &
1300 <            PropertyMap(me_j)%is_Shape ) then
1301 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1302 <               pot, A, f, t, do_pot)
1298 >
1299 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1300 >
1301 >    real (kind = dp), dimension(3) :: q_i
1302 >    real (kind = dp), dimension(3) :: q_j
1303 >    real ( kind = dp ), intent(out) :: r_sq
1304 >    real( kind = dp ) :: d(3), scaled(3)
1305 >    integer i
1306 >
1307 >    d(1:3) = q_j(1:3) - q_i(1:3)
1308 >
1309 >    ! Wrap back into periodic box if necessary
1310 >    if ( SIM_uses_PBC ) then
1311 >
1312 >       if( .not.boxIsOrthorhombic ) then
1313 >          ! calc the scaled coordinates.
1314 >
1315 >          scaled = matmul(HmatInv, d)
1316 >
1317 >          ! wrap the scaled coordinates
1318 >
1319 >          scaled = scaled  - anint(scaled)
1320 >
1321 >
1322 >          ! calc the wrapped real coordinates from the wrapped scaled
1323 >          ! coordinates
1324 >
1325 >          d = matmul(Hmat,scaled)
1326 >
1327 >       else
1328 >          ! calc the scaled coordinates.
1329 >
1330 >          do i = 1, 3
1331 >             scaled(i) = d(i) * HmatInv(i,i)
1332 >
1333 >             ! wrap the scaled coordinates
1334 >
1335 >             scaled(i) = scaled(i) - anint(scaled(i))
1336 >
1337 >             ! calc the wrapped real coordinates from the wrapped scaled
1338 >             ! coordinates
1339 >
1340 >             d(i) = scaled(i)*Hmat(i,i)
1341 >          enddo
1342         endif
1343 <      
1343 >
1344      endif
942    
943  end subroutine do_pair
1345  
1346 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
946 <       do_pot, do_stress, u_l, A, f, t, pot)
1346 >    r_sq = dot_product(d,d)
1347  
1348 <   real( kind = dp ) :: pot, sw
949 <   real( kind = dp ), dimension(3,nLocal) :: u_l
950 <   real (kind=dp), dimension(9,nLocal) :: A
951 <   real (kind=dp), dimension(3,nLocal) :: f
952 <   real (kind=dp), dimension(3,nLocal) :: t
953 <  
954 <   logical, intent(inout) :: do_pot, do_stress
955 <   integer, intent(in) :: i, j
956 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
957 <   real ( kind = dp )                :: r, rc
958 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
959 <  
960 <   logical :: is_EAM_i, is_EAM_j
961 <  
962 <   integer :: me_i, me_j
963 <  
1348 >  end subroutine get_interatomic_vector
1349  
1350 <    r = sqrt(rijsq)
966 <    if (SIM_uses_molecular_cutoffs) then
967 <       rc = sqrt(rcijsq)
968 <    else
969 <       rc = r
970 <    endif
971 <  
1350 >  subroutine zero_work_arrays()
1351  
1352 < #ifdef IS_MPI  
1353 <   me_i = atid_row(i)
1354 <   me_j = atid_col(j)  
1355 < #else  
1356 <   me_i = atid(i)
1357 <   me_j = atid(j)  
1352 > #ifdef IS_MPI
1353 >
1354 >    q_Row = 0.0_dp
1355 >    q_Col = 0.0_dp
1356 >
1357 >    q_group_Row = 0.0_dp
1358 >    q_group_Col = 0.0_dp  
1359 >
1360 >    eFrame_Row = 0.0_dp
1361 >    eFrame_Col = 0.0_dp
1362 >
1363 >    A_Row = 0.0_dp
1364 >    A_Col = 0.0_dp
1365 >
1366 >    f_Row = 0.0_dp
1367 >    f_Col = 0.0_dp
1368 >    f_Temp = 0.0_dp
1369 >
1370 >    t_Row = 0.0_dp
1371 >    t_Col = 0.0_dp
1372 >    t_Temp = 0.0_dp
1373 >
1374 >    pot_Row = 0.0_dp
1375 >    pot_Col = 0.0_dp
1376 >    pot_Temp = 0.0_dp
1377 >
1378   #endif
980  
981   if (FF_uses_EAM .and. SIM_uses_EAM) then
982      
983      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
984           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
985      
986   endif
987  
988 end subroutine do_prepair
989
990
991 subroutine do_preforce(nlocal,pot)
992   integer :: nlocal
993   real( kind = dp ) :: pot
994  
995   if (FF_uses_EAM .and. SIM_uses_EAM) then
996      call calc_EAM_preforce_Frho(nlocal,pot)
997   endif
998  
999  
1000 end subroutine do_preforce
1001
1002
1003 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1004  
1005   real (kind = dp), dimension(3) :: q_i
1006   real (kind = dp), dimension(3) :: q_j
1007   real ( kind = dp ), intent(out) :: r_sq
1008   real( kind = dp ) :: d(3), scaled(3)
1009   integer i
1010  
1011   d(1:3) = q_j(1:3) - q_i(1:3)
1012  
1013   ! Wrap back into periodic box if necessary
1014   if ( SIM_uses_PBC ) then
1015      
1016      if( .not.boxIsOrthorhombic ) then
1017         ! calc the scaled coordinates.
1018        
1019         scaled = matmul(HmatInv, d)
1020        
1021         ! wrap the scaled coordinates
1022        
1023         scaled = scaled  - anint(scaled)
1024        
1025        
1026         ! calc the wrapped real coordinates from the wrapped scaled
1027         ! coordinates
1028        
1029         d = matmul(Hmat,scaled)
1030        
1031      else
1032         ! calc the scaled coordinates.
1033        
1034         do i = 1, 3
1035            scaled(i) = d(i) * HmatInv(i,i)
1036            
1037            ! wrap the scaled coordinates
1038            
1039            scaled(i) = scaled(i) - anint(scaled(i))
1040            
1041            ! calc the wrapped real coordinates from the wrapped scaled
1042            ! coordinates
1043            
1044            d(i) = scaled(i)*Hmat(i,i)
1045         enddo
1046      endif
1047      
1048   endif
1049  
1050   r_sq = dot_product(d,d)
1051  
1052 end subroutine get_interatomic_vector
1053
1054 subroutine zero_work_arrays()
1055  
1056 #ifdef IS_MPI
1057  
1058   q_Row = 0.0_dp
1059   q_Col = 0.0_dp
1379  
1380 <   q_group_Row = 0.0_dp
1381 <   q_group_Col = 0.0_dp  
1382 <  
1383 <   u_l_Row = 0.0_dp
1384 <   u_l_Col = 0.0_dp
1385 <  
1386 <   A_Row = 0.0_dp
1387 <   A_Col = 0.0_dp
1388 <  
1389 <   f_Row = 0.0_dp
1390 <   f_Col = 0.0_dp
1391 <   f_Temp = 0.0_dp
1392 <  
1393 <   t_Row = 0.0_dp
1394 <   t_Col = 0.0_dp
1395 <   t_Temp = 0.0_dp
1396 <  
1397 <   pot_Row = 0.0_dp
1398 <   pot_Col = 0.0_dp
1399 <   pot_Temp = 0.0_dp
1400 <  
1401 <   rf_Row = 0.0_dp
1402 <   rf_Col = 0.0_dp
1403 <   rf_Temp = 0.0_dp
1085 <  
1086 < #endif
1087 <
1088 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1089 <      call clean_EAM()
1090 <   endif
1091 <  
1092 <   rf = 0.0_dp
1093 <   tau_Temp = 0.0_dp
1094 <   virial_Temp = 0.0_dp
1095 < end subroutine zero_work_arrays
1096 <
1097 < function skipThisPair(atom1, atom2) result(skip_it)
1098 <   integer, intent(in) :: atom1
1099 <   integer, intent(in), optional :: atom2
1100 <   logical :: skip_it
1101 <   integer :: unique_id_1, unique_id_2
1102 <   integer :: me_i,me_j
1103 <   integer :: i
1104 <  
1105 <   skip_it = .false.
1106 <  
1107 <   !! there are a number of reasons to skip a pair or a particle
1108 <   !! mostly we do this to exclude atoms who are involved in short
1109 <   !! range interactions (bonds, bends, torsions), but we also need
1110 <   !! to exclude some overcounted interactions that result from
1111 <   !! the parallel decomposition
1112 <  
1380 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1381 >       call clean_EAM()
1382 >    endif
1383 >
1384 >    tau_Temp = 0.0_dp
1385 >    virial_Temp = 0.0_dp
1386 >  end subroutine zero_work_arrays
1387 >
1388 >  function skipThisPair(atom1, atom2) result(skip_it)
1389 >    integer, intent(in) :: atom1
1390 >    integer, intent(in), optional :: atom2
1391 >    logical :: skip_it
1392 >    integer :: unique_id_1, unique_id_2
1393 >    integer :: me_i,me_j
1394 >    integer :: i
1395 >
1396 >    skip_it = .false.
1397 >
1398 >    !! there are a number of reasons to skip a pair or a particle
1399 >    !! mostly we do this to exclude atoms who are involved in short
1400 >    !! range interactions (bonds, bends, torsions), but we also need
1401 >    !! to exclude some overcounted interactions that result from
1402 >    !! the parallel decomposition
1403 >
1404   #ifdef IS_MPI
1405 <   !! in MPI, we have to look up the unique IDs for each atom
1406 <   unique_id_1 = AtomRowToGlobal(atom1)
1405 >    !! in MPI, we have to look up the unique IDs for each atom
1406 >    unique_id_1 = AtomRowToGlobal(atom1)
1407   #else
1408 <   !! in the normal loop, the atom numbers are unique
1409 <   unique_id_1 = atom1
1408 >    !! in the normal loop, the atom numbers are unique
1409 >    unique_id_1 = atom1
1410   #endif
1411 <  
1412 <   !! We were called with only one atom, so just check the global exclude
1413 <   !! list for this atom
1414 <   if (.not. present(atom2)) then
1415 <      do i = 1, nExcludes_global
1416 <         if (excludesGlobal(i) == unique_id_1) then
1417 <            skip_it = .true.
1418 <            return
1419 <         end if
1420 <      end do
1421 <      return
1422 <   end if
1423 <  
1411 >
1412 >    !! We were called with only one atom, so just check the global exclude
1413 >    !! list for this atom
1414 >    if (.not. present(atom2)) then
1415 >       do i = 1, nExcludes_global
1416 >          if (excludesGlobal(i) == unique_id_1) then
1417 >             skip_it = .true.
1418 >             return
1419 >          end if
1420 >       end do
1421 >       return
1422 >    end if
1423 >
1424   #ifdef IS_MPI
1425 <   unique_id_2 = AtomColToGlobal(atom2)
1425 >    unique_id_2 = AtomColToGlobal(atom2)
1426   #else
1427 <   unique_id_2 = atom2
1427 >    unique_id_2 = atom2
1428   #endif
1429 <  
1429 >
1430   #ifdef IS_MPI
1431 <   !! this situation should only arise in MPI simulations
1432 <   if (unique_id_1 == unique_id_2) then
1433 <      skip_it = .true.
1434 <      return
1435 <   end if
1436 <  
1437 <   !! this prevents us from doing the pair on multiple processors
1438 <   if (unique_id_1 < unique_id_2) then
1439 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1440 <         skip_it = .true.
1441 <         return
1442 <      endif
1443 <   else                
1444 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1445 <         skip_it = .true.
1446 <         return
1447 <      endif
1448 <   endif
1431 >    !! this situation should only arise in MPI simulations
1432 >    if (unique_id_1 == unique_id_2) then
1433 >       skip_it = .true.
1434 >       return
1435 >    end if
1436 >
1437 >    !! this prevents us from doing the pair on multiple processors
1438 >    if (unique_id_1 < unique_id_2) then
1439 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1440 >          skip_it = .true.
1441 >          return
1442 >       endif
1443 >    else                
1444 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1445 >          skip_it = .true.
1446 >          return
1447 >       endif
1448 >    endif
1449   #endif
1450 <  
1451 <   !! the rest of these situations can happen in all simulations:
1452 <   do i = 1, nExcludes_global      
1453 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1454 <           (excludesGlobal(i) == unique_id_2)) then
1455 <         skip_it = .true.
1456 <         return
1457 <      endif
1458 <   enddo
1459 <  
1460 <   do i = 1, nSkipsForAtom(atom1)
1461 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1462 <         skip_it = .true.
1463 <         return
1464 <      endif
1465 <   end do
1466 <  
1467 <   return
1468 < end function skipThisPair
1469 <
1470 < function FF_UsesDirectionalAtoms() result(doesit)
1471 <   logical :: doesit
1472 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1473 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1474 < end function FF_UsesDirectionalAtoms
1475 <
1476 < function FF_RequiresPrepairCalc() result(doesit)
1477 <   logical :: doesit
1478 <   doesit = FF_uses_EAM
1479 < end function FF_RequiresPrepairCalc
1189 <
1190 < function FF_RequiresPostpairCalc() result(doesit)
1191 <   logical :: doesit
1192 <   doesit = FF_uses_RF
1193 < end function FF_RequiresPostpairCalc
1194 <
1450 >
1451 >    !! the rest of these situations can happen in all simulations:
1452 >    do i = 1, nExcludes_global      
1453 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1454 >            (excludesGlobal(i) == unique_id_2)) then
1455 >          skip_it = .true.
1456 >          return
1457 >       endif
1458 >    enddo
1459 >
1460 >    do i = 1, nSkipsForAtom(atom1)
1461 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1462 >          skip_it = .true.
1463 >          return
1464 >       endif
1465 >    end do
1466 >
1467 >    return
1468 >  end function skipThisPair
1469 >
1470 >  function FF_UsesDirectionalAtoms() result(doesit)
1471 >    logical :: doesit
1472 >    doesit = FF_uses_DirectionalAtoms
1473 >  end function FF_UsesDirectionalAtoms
1474 >
1475 >  function FF_RequiresPrepairCalc() result(doesit)
1476 >    logical :: doesit
1477 >    doesit = FF_uses_EAM
1478 >  end function FF_RequiresPrepairCalc
1479 >
1480   #ifdef PROFILE
1481 < function getforcetime() result(totalforcetime)
1482 <   real(kind=dp) :: totalforcetime
1483 <   totalforcetime = forcetime
1484 < end function getforcetime
1481 >  function getforcetime() result(totalforcetime)
1482 >    real(kind=dp) :: totalforcetime
1483 >    totalforcetime = forcetime
1484 >  end function getforcetime
1485   #endif
1201
1202 !! This cleans componets of force arrays belonging only to fortran
1486  
1487 < subroutine add_stress_tensor(dpair, fpair)
1205 <  
1206 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1207 <  
1208 <   ! because the d vector is the rj - ri vector, and
1209 <   ! because fx, fy, fz are the force on atom i, we need a
1210 <   ! negative sign here:  
1211 <  
1212 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1213 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1214 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1215 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1216 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1217 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1218 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1219 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1220 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1221 <  
1222 <   virial_Temp = virial_Temp + &
1223 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1224 <  
1225 < end subroutine add_stress_tensor
1226 <
1227 < end module doForces
1487 >  !! This cleans componets of force arrays belonging only to fortran
1488  
1489 < !! Interfaces for C programs to module....
1489 >  subroutine add_stress_tensor(dpair, fpair)
1490  
1491 < subroutine initFortranFF(use_RF_c, thisStat)
1232 <    use doForces, ONLY: init_FF
1233 <    logical, intent(in) :: use_RF_c
1491 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1492  
1493 <    integer, intent(out) :: thisStat  
1494 <    call init_FF(use_RF_c, thisStat)
1493 >    ! because the d vector is the rj - ri vector, and
1494 >    ! because fx, fy, fz are the force on atom i, we need a
1495 >    ! negative sign here:  
1496  
1497 < end subroutine initFortranFF
1497 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1498 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1499 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1500 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1501 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1502 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1503 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1504 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1505 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1506  
1507 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1508 <       do_pot_c, do_stress_c, error)
1242 <      
1243 <       use definitions, ONLY: dp
1244 <       use simulation
1245 <       use doForces, ONLY: do_force_loop
1246 <    !! Position array provided by C, dimensioned by getNlocal
1247 <    real ( kind = dp ), dimension(3, nLocal) :: q
1248 <    !! molecular center-of-mass position array
1249 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1250 <    !! Rotation Matrix for each long range particle in simulation.
1251 <    real( kind = dp), dimension(9, nLocal) :: A    
1252 <    !! Unit vectors for dipoles (lab frame)
1253 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1254 <    !! Force array provided by C, dimensioned by getNlocal
1255 <    real ( kind = dp ), dimension(3,nLocal) :: f
1256 <    !! Torsion array provided by C, dimensioned by getNlocal
1257 <    real( kind = dp ), dimension(3,nLocal) :: t    
1507 >    virial_Temp = virial_Temp + &
1508 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1509  
1510 <    !! Stress Tensor
1511 <    real( kind = dp), dimension(9) :: tau  
1512 <    real ( kind = dp ) :: pot
1262 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1263 <    integer :: error
1264 <    
1265 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1266 <       do_pot_c, do_stress_c, error)
1267 <      
1268 < end subroutine doForceloop
1510 >  end subroutine add_stress_tensor
1511 >
1512 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines