ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1650 by gezelter, Tue Oct 26 22:24:52 2004 UTC vs.
Revision 2533 by chuckv, Fri Dec 30 23:15:59 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.5 2004-10-26 22:24:44 gezelter Exp $, $Date: 2004-10-26 22:24:44 $, $Name: not supported by cvs2svn $, $Revision: 1.5 $
48 > !! @version $Id: doForces.F90,v 1.74 2005-12-30 23:15:59 chuckv Exp $, $Date: 2005-12-30 23:15:59 $, $Name: not supported by cvs2svn $, $Revision: 1.74 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
21 <  use gb_pair
59 >  use sticky
60 >  use electrostatic_module
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 32 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80 +
81    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82    INTEGER, PARAMETER:: PAIR_LOOP    = 2
83  
39  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 <  
87 >  logical, save :: haveInteractionHash = .false.
88 >  logical, save :: haveGtypeCutoffMap = .false.
89 >  logical, save :: haveDefaultCutoffs = .false.
90 >  logical, save :: haveSkinThickness = .false.
91 >  logical, save :: haveElectrostaticSummationMethod = .false.
92 >  logical, save :: haveCutoffPolicy = .false.
93 >  logical, save :: VisitCutoffsAfterComputing = .false.
94 >
95    logical, save :: FF_uses_DirectionalAtoms
96 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
96 >  logical, save :: FF_uses_Dipoles
97    logical, save :: FF_uses_GayBerne
98    logical, save :: FF_uses_EAM
99 <  logical, save :: FF_uses_Shapes
100 <  logical, save :: FF_uses_FLARB
101 <  logical, save :: FF_uses_RF
99 >  logical, save :: FF_uses_SC
100 >  logical, save :: FF_uses_MEAM
101 >
102  
103    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
104    logical, save :: SIM_uses_EAM
105 <  logical, save :: SIM_uses_Shapes
106 <  logical, save :: SIM_uses_FLARB
67 <  logical, save :: SIM_uses_RF
105 >  logical, save :: SIM_uses_SC
106 >  logical, save :: SIM_uses_MEAM
107    logical, save :: SIM_requires_postpair_calc
108    logical, save :: SIM_requires_prepair_calc
109    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
110  
111 <  real(kind=dp), save :: rlist, rlistsq
111 >  integer, save :: electrostaticSummationMethod
112 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
113  
114 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
115 +  real(kind=dp), save :: skinThickness
116 +  logical, save :: defaultDoShift
117 +
118    public :: init_FF
119 +  public :: setCutoffs
120 +  public :: cWasLame
121 +  public :: setElectrostaticMethod
122 +  public :: setCutoffPolicy
123 +  public :: setSkinThickness
124    public :: do_force_loop
77  public :: setRlistDF
125  
126   #ifdef PROFILE
127    public :: getforcetime
# Line 82 | Line 129 | module doForces
129    real :: forceTimeInitial, forceTimeFinal
130    integer :: nLoops
131   #endif
132 +  
133 +  !! Variables for cutoff mapping and interaction mapping
134 +  ! Bit hash to determine pair-pair interactions.
135 +  integer, dimension(:,:), allocatable :: InteractionHash
136 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
137 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
138 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
139  
140 <  type :: Properties
141 <     logical :: is_Directional   = .false.
88 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
140 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
141 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
142  
143 <  type(Properties), dimension(:),allocatable :: PropertyMap
143 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
144 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
145 >  type ::gtypeCutoffs
146 >     real(kind=dp) :: rcut
147 >     real(kind=dp) :: rcutsq
148 >     real(kind=dp) :: rlistsq
149 >  end type gtypeCutoffs
150 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
151  
152   contains
153  
154 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
154 >  subroutine createInteractionHash()
155      integer :: nAtypes
116    integer :: status
156      integer :: i
157 <    logical :: thisProperty
158 <    real (kind=DP) :: thisDPproperty
157 >    integer :: j
158 >    integer :: iHash
159 >    !! Test Types
160 >    logical :: i_is_LJ
161 >    logical :: i_is_Elect
162 >    logical :: i_is_Sticky
163 >    logical :: i_is_StickyP
164 >    logical :: i_is_GB
165 >    logical :: i_is_EAM
166 >    logical :: i_is_Shape
167 >    logical :: i_is_SC
168 >    logical :: i_is_MEAM
169 >    logical :: j_is_LJ
170 >    logical :: j_is_Elect
171 >    logical :: j_is_Sticky
172 >    logical :: j_is_StickyP
173 >    logical :: j_is_GB
174 >    logical :: j_is_EAM
175 >    logical :: j_is_Shape
176 >    logical :: j_is_SC
177 >    logical :: j_is_MEAM
178 >    real(kind=dp) :: myRcut
179  
180 <    status = 0
181 <
180 >    if (.not. associated(atypes)) then
181 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
182 >       return
183 >    endif
184 >    
185      nAtypes = getSize(atypes)
186 <
186 >    
187      if (nAtypes == 0) then
188 <       status = -1
188 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
189         return
190      end if
191 <        
192 <    if (.not. allocated(PropertyMap)) then
193 <       allocate(PropertyMap(nAtypes))
191 >
192 >    if (.not. allocated(InteractionHash)) then
193 >       allocate(InteractionHash(nAtypes,nAtypes))
194 >    else
195 >       deallocate(InteractionHash)
196 >       allocate(InteractionHash(nAtypes,nAtypes))
197      endif
198  
199 +    if (.not. allocated(atypeMaxCutoff)) then
200 +       allocate(atypeMaxCutoff(nAtypes))
201 +    else
202 +       deallocate(atypeMaxCutoff)
203 +       allocate(atypeMaxCutoff(nAtypes))
204 +    endif
205 +        
206      do i = 1, nAtypes
207 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
208 <       PropertyMap(i)%is_Directional = thisProperty
207 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
208 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
209 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
210 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
211 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
212 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
213 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
214 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
215 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
216  
217 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
217 >       do j = i, nAtypes
218  
219 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
220 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
219 >          iHash = 0
220 >          myRcut = 0.0_dp
221  
222 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
223 <       PropertyMap(i)%is_Sticky = thisProperty
222 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
223 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
224 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
225 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
226 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
227 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
228 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
229 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
230 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
231  
232 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
233 <       PropertyMap(i)%is_GayBerne = thisProperty
232 >          if (i_is_LJ .and. j_is_LJ) then
233 >             iHash = ior(iHash, LJ_PAIR)            
234 >          endif
235 >          
236 >          if (i_is_Elect .and. j_is_Elect) then
237 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
238 >          endif
239 >          
240 >          if (i_is_Sticky .and. j_is_Sticky) then
241 >             iHash = ior(iHash, STICKY_PAIR)
242 >          endif
243  
244 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
245 <       PropertyMap(i)%is_EAM = thisProperty
244 >          if (i_is_StickyP .and. j_is_StickyP) then
245 >             iHash = ior(iHash, STICKYPOWER_PAIR)
246 >          endif
247  
248 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
249 <       PropertyMap(i)%is_Shape = thisProperty
248 >          if (i_is_EAM .and. j_is_EAM) then
249 >             iHash = ior(iHash, EAM_PAIR)
250 >          endif
251  
252 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
253 <       PropertyMap(i)%is_FLARB = thisProperty
254 <    end do
252 >          if (i_is_SC .and. j_is_SC) then
253 >             iHash = ior(iHash, SC_PAIR)
254 >          endif
255  
256 <    havePropertyMap = .true.
256 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
257 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
258 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
259  
260 <  end subroutine createPropertyMap
260 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
261 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
262 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
263  
170  subroutine setSimVariables()
171    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
178    SIM_uses_EAM = SimUsesEAM()
179    SIM_uses_Shapes = SimUsesShapes()
180    SIM_uses_FLARB = SimUsesFLARB()
181    SIM_uses_RF = SimUsesRF()
182    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
183    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
184    SIM_uses_PBC = SimUsesPBC()
264  
265 <    haveSIMvariables = .true.
265 >          InteractionHash(i,j) = iHash
266 >          InteractionHash(j,i) = iHash
267  
268 <    return
189 <  end subroutine setSimVariables
268 >       end do
269  
270 <  subroutine doReadyCheck(error)
192 <    integer, intent(out) :: error
270 >    end do
271  
272 <    integer :: myStatus
272 >    haveInteractionHash = .true.
273 >  end subroutine createInteractionHash
274  
275 <    error = 0
275 >  subroutine createGtypeCutoffMap()
276 >
277 >    logical :: i_is_LJ
278 >    logical :: i_is_Elect
279 >    logical :: i_is_Sticky
280 >    logical :: i_is_StickyP
281 >    logical :: i_is_GB
282 >    logical :: i_is_EAM
283 >    logical :: i_is_Shape
284 >    logical :: i_is_SC
285 >    logical :: GtypeFound
286 >
287 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
288 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
289 >    integer :: nGroupsInRow
290 >    integer :: nGroupsInCol
291 >    integer :: nGroupTypesRow,nGroupTypesCol
292 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
293 >    real(kind=dp) :: biggestAtypeCutoff
294 >
295 >    if (.not. haveInteractionHash) then
296 >       call createInteractionHash()      
297 >    endif
298 > #ifdef IS_MPI
299 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
300 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
301 > #endif
302 >    nAtypes = getSize(atypes)
303 > ! Set all of the initial cutoffs to zero.
304 >    atypeMaxCutoff = 0.0_dp
305 >    do i = 1, nAtypes
306 >       if (SimHasAtype(i)) then    
307 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
308 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
309 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
310 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
311 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
312 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
313 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
314 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
315 >
316 >          if (haveDefaultCutoffs) then
317 >             atypeMaxCutoff(i) = defaultRcut
318 >          else
319 >             if (i_is_LJ) then          
320 >                thisRcut = getSigma(i) * 2.5_dp
321 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
322 >             endif
323 >             if (i_is_Elect) then
324 >                thisRcut = defaultRcut
325 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
326 >             endif
327 >             if (i_is_Sticky) then
328 >                thisRcut = getStickyCut(i)
329 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
330 >             endif
331 >             if (i_is_StickyP) then
332 >                thisRcut = getStickyPowerCut(i)
333 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
334 >             endif
335 >             if (i_is_GB) then
336 >                thisRcut = getGayBerneCut(i)
337 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
338 >             endif
339 >             if (i_is_EAM) then
340 >                thisRcut = getEAMCut(i)
341 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
342 >             endif
343 >             if (i_is_Shape) then
344 >                thisRcut = getShapeCut(i)
345 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
346 >             endif
347 >             if (i_is_SC) then
348 >                thisRcut = getSCCut(i)
349 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
350 >             endif
351 >          endif
352 >                    
353 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
354 >             biggestAtypeCutoff = atypeMaxCutoff(i)
355 >          endif
356 >
357 >       endif
358 >    enddo
359      
360 <    if (.not. havePropertyMap) then
360 >    istart = 1
361 >    jstart = 1
362 > #ifdef IS_MPI
363 >    iend = nGroupsInRow
364 >    jend = nGroupsInCol
365 > #else
366 >    iend = nGroups
367 >    jend = nGroups
368 > #endif
369 >    
370 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
371 >    if(.not.allocated(groupToGtypeRow)) then
372 >     !  allocate(groupToGtype(iend))
373 >       allocate(groupToGtypeRow(iend))
374 >    else
375 >       deallocate(groupToGtypeRow)
376 >       allocate(groupToGtypeRow(iend))
377 >    endif
378 >    if(.not.allocated(groupMaxCutoffRow)) then
379 >       allocate(groupMaxCutoffRow(iend))
380 >    else
381 >       deallocate(groupMaxCutoffRow)
382 >       allocate(groupMaxCutoffRow(iend))
383 >    end if
384  
385 <       myStatus = 0
385 >    if(.not.allocated(gtypeMaxCutoffRow)) then
386 >       allocate(gtypeMaxCutoffRow(iend))
387 >    else
388 >       deallocate(gtypeMaxCutoffRow)
389 >       allocate(gtypeMaxCutoffRow(iend))
390 >    endif
391  
202       call createPropertyMap(myStatus)
392  
393 <       if (myStatus .ne. 0) then
394 <          write(default_error, *) 'createPropertyMap failed in doForces!'
395 <          error = -1
396 <          return
393 > #ifdef IS_MPI
394 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
395 >    if(.not.associated(groupToGtypeCol)) then
396 >       allocate(groupToGtypeCol(jend))
397 >    else
398 >       deallocate(groupToGtypeCol)
399 >       allocate(groupToGtypeCol(jend))
400 >    end if
401 >
402 >    if(.not.associated(groupMaxCutoffCol)) then
403 >       allocate(groupMaxCutoffCol(jend))
404 >    else
405 >       deallocate(groupMaxCutoffCol)
406 >       allocate(groupMaxCutoffCol(jend))
407 >    end if
408 >    if(.not.associated(gtypeMaxCutoffCol)) then
409 >       allocate(gtypeMaxCutoffCol(jend))
410 >    else
411 >       deallocate(gtypeMaxCutoffCol)      
412 >       allocate(gtypeMaxCutoffCol(jend))
413 >    end if
414 >
415 >       groupMaxCutoffCol = 0.0_dp
416 >       gtypeMaxCutoffCol = 0.0_dp
417 >
418 > #endif
419 >       groupMaxCutoffRow = 0.0_dp
420 >       gtypeMaxCutoffRow = 0.0_dp
421 >
422 >
423 >    !! first we do a single loop over the cutoff groups to find the
424 >    !! largest cutoff for any atypes present in this group.  We also
425 >    !! create gtypes at this point.
426 >    
427 >    tol = 1.0d-6
428 >    nGroupTypesRow = 0
429 >    nGroupTypesCol = 0
430 >    do i = istart, iend      
431 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
432 >       groupMaxCutoffRow(i) = 0.0_dp
433 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
434 >          atom1 = groupListRow(ia)
435 > #ifdef IS_MPI
436 >          me_i = atid_row(atom1)
437 > #else
438 >          me_i = atid(atom1)
439 > #endif          
440 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
441 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
442 >          endif          
443 >       enddo
444 >       if (nGroupTypesRow.eq.0) then
445 >          nGroupTypesRow = nGroupTypesRow + 1
446 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
447 >          groupToGtypeRow(i) = nGroupTypesRow
448 >       else
449 >          GtypeFound = .false.
450 >          do g = 1, nGroupTypesRow
451 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
452 >                groupToGtypeRow(i) = g
453 >                GtypeFound = .true.
454 >             endif
455 >          enddo
456 >          if (.not.GtypeFound) then            
457 >             nGroupTypesRow = nGroupTypesRow + 1
458 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
459 >             groupToGtypeRow(i) = nGroupTypesRow
460 >          endif
461 >       endif
462 >    enddo    
463 >
464 > #ifdef IS_MPI
465 >    do j = jstart, jend      
466 >       n_in_j = groupStartCol(j+1) - groupStartCol(j)
467 >       groupMaxCutoffCol(j) = 0.0_dp
468 >       do ja = groupStartCol(j), groupStartCol(j+1)-1
469 >          atom1 = groupListCol(ja)
470 >
471 >          me_j = atid_col(atom1)
472 >
473 >          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
474 >             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
475 >          endif          
476 >       enddo
477 >
478 >       if (nGroupTypesCol.eq.0) then
479 >          nGroupTypesCol = nGroupTypesCol + 1
480 >          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
481 >          groupToGtypeCol(j) = nGroupTypesCol
482 >       else
483 >          GtypeFound = .false.
484 >          do g = 1, nGroupTypesCol
485 >             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
486 >                groupToGtypeCol(j) = g
487 >                GtypeFound = .true.
488 >             endif
489 >          enddo
490 >          if (.not.GtypeFound) then            
491 >             nGroupTypesCol = nGroupTypesCol + 1
492 >             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
493 >             groupToGtypeCol(j) = nGroupTypesCol
494 >          endif
495         endif
496 +    enddo    
497 +
498 + #else
499 + ! Set pointers to information we just found
500 +    nGroupTypesCol = nGroupTypesRow
501 +    groupToGtypeCol => groupToGtypeRow
502 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
503 +    groupMaxCutoffCol => groupMaxCutoffRow
504 + #endif
505 +
506 +    !! allocate the gtypeCutoffMap here.
507 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
508 +    !! then we do a double loop over all the group TYPES to find the cutoff
509 +    !! map between groups of two types
510 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
511 +
512 +    do i = 1, nGroupTypesRow      
513 +       do j = 1, nGroupTypesCol
514 +      
515 +          select case(cutoffPolicy)
516 +          case(TRADITIONAL_CUTOFF_POLICY)
517 +             thisRcut = tradRcut
518 +          case(MIX_CUTOFF_POLICY)
519 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
520 +          case(MAX_CUTOFF_POLICY)
521 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
522 +          case default
523 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
524 +             return
525 +          end select
526 +          gtypeCutoffMap(i,j)%rcut = thisRcut
527 +          
528 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
529 +
530 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
531 +
532 +          if (.not.haveSkinThickness) then
533 +             skinThickness = 1.0_dp
534 +          endif
535 +
536 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
537 +
538 +          ! sanity check
539 +
540 +          if (haveDefaultCutoffs) then
541 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
542 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
543 +             endif
544 +          endif
545 +       enddo
546 +    enddo
547 +
548 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
549 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
550 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
551 + #ifdef IS_MPI
552 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
553 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
554 + #endif
555 +    groupMaxCutoffCol => null()
556 +    gtypeMaxCutoffCol => null()
557 +    
558 +    haveGtypeCutoffMap = .true.
559 +   end subroutine createGtypeCutoffMap
560 +
561 +   subroutine setCutoffs(defRcut, defRsw)
562 +
563 +     real(kind=dp),intent(in) :: defRcut, defRsw
564 +     character(len = statusMsgSize) :: errMsg
565 +     integer :: localError
566 +
567 +     defaultRcut = defRcut
568 +     defaultRsw = defRsw
569 +    
570 +     defaultDoShift = .false.
571 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
572 +        
573 +        write(errMsg, *) &
574 +             'cutoffRadius and switchingRadius are set to the same', newline &
575 +             // tab, 'value.  OOPSE will use shifted ', newline &
576 +             // tab, 'potentials instead of switching functions.'
577 +        
578 +        call handleInfo("setCutoffs", errMsg)
579 +        
580 +        defaultDoShift = .true.
581 +        
582 +     endif
583 +
584 +     localError = 0
585 +     call setLJDefaultCutoff( defaultRcut, defaultDoShift )
586 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
587 +     call setCutoffEAM( defaultRcut, localError)
588 +     if (localError /= 0) then
589 +       write(errMsg, *) 'An error has occured in setting the EAM cutoff'
590 +       call handleError("setCutoffs", errMsg)
591 +     end if
592 +     call set_switch(GROUP_SWITCH, defaultRsw, defaultRcut)
593 +
594 +     haveDefaultCutoffs = .true.
595 +     haveGtypeCutoffMap = .false.
596 +   end subroutine setCutoffs
597 +
598 +   subroutine cWasLame()
599 +    
600 +     VisitCutoffsAfterComputing = .true.
601 +     return
602 +    
603 +   end subroutine cWasLame
604 +  
605 +   subroutine setCutoffPolicy(cutPolicy)
606 +    
607 +     integer, intent(in) :: cutPolicy
608 +    
609 +     cutoffPolicy = cutPolicy
610 +     haveCutoffPolicy = .true.
611 +     haveGtypeCutoffMap = .false.
612 +    
613 +   end subroutine setCutoffPolicy
614 +  
615 +   subroutine setElectrostaticMethod( thisESM )
616 +
617 +     integer, intent(in) :: thisESM
618 +
619 +     electrostaticSummationMethod = thisESM
620 +     haveElectrostaticSummationMethod = .true.
621 +    
622 +   end subroutine setElectrostaticMethod
623 +
624 +   subroutine setSkinThickness( thisSkin )
625 +    
626 +     real(kind=dp), intent(in) :: thisSkin
627 +    
628 +     skinThickness = thisSkin
629 +     haveSkinThickness = .true.    
630 +     haveGtypeCutoffMap = .false.
631 +    
632 +   end subroutine setSkinThickness
633 +      
634 +   subroutine setSimVariables()
635 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
636 +     SIM_uses_EAM = SimUsesEAM()
637 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
638 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
639 +     SIM_uses_PBC = SimUsesPBC()
640 +    
641 +     haveSIMvariables = .true.
642 +    
643 +     return
644 +   end subroutine setSimVariables
645 +
646 +  subroutine doReadyCheck(error)
647 +    integer, intent(out) :: error
648 +
649 +    integer :: myStatus
650 +
651 +    error = 0
652 +
653 +    if (.not. haveInteractionHash) then      
654 +       call createInteractionHash()      
655      endif
656  
657 +    if (.not. haveGtypeCutoffMap) then        
658 +       call createGtypeCutoffMap()      
659 +    endif
660 +
661 +
662 +    if (VisitCutoffsAfterComputing) then
663 +       call set_switch(GROUP_SWITCH, largestRcut, largestRcut)      
664 +    endif
665 +
666 +
667      if (.not. haveSIMvariables) then
668         call setSimVariables()
669      endif
670  
671 <    if (.not. haveRlist) then
672 <       write(default_error, *) 'rList has not been set in doForces!'
673 <       error = -1
674 <       return
675 <    endif
671 >  !  if (.not. haveRlist) then
672 >  !     write(default_error, *) 'rList has not been set in doForces!'
673 >  !     error = -1
674 >  !     return
675 >  !  endif
676  
677      if (.not. haveNeighborList) then
678         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 239 | Line 695 | contains
695   #endif
696      return
697    end subroutine doReadyCheck
242    
698  
244  subroutine init_FF(use_RF_c, thisStat)
699  
700 <    logical, intent(in) :: use_RF_c
700 >  subroutine init_FF(thisStat)
701  
702      integer, intent(out) :: thisStat  
703      integer :: my_status, nMatches
704      integer, pointer :: MatchList(:) => null()
251    real(kind=dp) :: rcut, rrf, rt, dielect
705  
706      !! assume things are copacetic, unless they aren't
707      thisStat = 0
708  
256    !! Fortran's version of a cast:
257    FF_uses_RF = use_RF_c
258    
709      !! init_FF is called *after* all of the atom types have been
710      !! defined in atype_module using the new_atype subroutine.
711      !!
712      !! this will scan through the known atypes and figure out what
713      !! interactions are used by the force field.    
714 <  
714 >
715      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
716      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
717      FF_uses_GayBerne = .false.
718      FF_uses_EAM = .false.
719 <    FF_uses_Shapes = .false.
720 <    FF_uses_FLARB = .false.
275 <    
719 >    FF_uses_SC = .false.
720 >
721      call getMatchingElementList(atypes, "is_Directional", .true., &
722           nMatches, MatchList)
723      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
724  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
725      call getMatchingElementList(atypes, "is_Dipole", .true., &
726           nMatches, MatchList)
727 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
727 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
728      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
729      call getMatchingElementList(atypes, "is_GayBerne", .true., &
730           nMatches, MatchList)
731 <    if (nMatches .gt. 0) then
732 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
731 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
732 >
733      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
734      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
735  
736 <    call getMatchingElementList(atypes, "is_FLARB", .true., &
737 <         nMatches, MatchList)
331 <    if (nMatches .gt. 0) FF_uses_FLARB = .true.
736 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
737 >    if (nMatches .gt. 0) FF_uses_SC = .true.
738  
739 <    !! Assume sanity (for the sake of argument)
739 >
740      haveSaneForceField = .true.
335    
336    !! check to make sure the FF_uses_RF setting makes sense
337    
338    if (FF_uses_dipoles) then
339       if (FF_uses_RF) then
340          dielect = getDielect()
341          call initialize_rf(dielect)
342       endif
343    else
344       if (FF_uses_RF) then          
345          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
346          thisStat = -1
347          haveSaneForceField = .false.
348          return
349       endif
350    endif
741  
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
359    endif
360
742      if (FF_uses_EAM) then
743 <         call init_EAM_FF(my_status)
743 >       call init_EAM_FF(my_status)
744         if (my_status /= 0) then
745            write(default_error, *) "init_EAM_FF returned a bad status"
746            thisStat = -1
# Line 368 | Line 749 | contains
749         end if
750      endif
751  
371    if (FF_uses_GayBerne) then
372       call check_gb_pair_FF(my_status)
373       if (my_status .ne. 0) then
374          thisStat = -1
375          haveSaneForceField = .false.
376          return
377       endif
378    endif
379
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
752      if (.not. haveNeighborList) then
753         !! Create neighbor lists
754         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 758 | contains
758            return
759         endif
760         haveNeighborList = .true.
761 <    endif    
762 <    
761 >    endif
762 >
763    end subroutine init_FF
395  
764  
765 +
766    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
767    !------------------------------------------------------------->
768 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
768 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
769         do_pot_c, do_stress_c, error)
770      !! Position array provided by C, dimensioned by getNlocal
771      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 774 | contains
774      !! Rotation Matrix for each long range particle in simulation.
775      real( kind = dp), dimension(9, nLocal) :: A    
776      !! Unit vectors for dipoles (lab frame)
777 <    real( kind = dp ), dimension(3,nLocal) :: u_l
777 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
778      !! Force array provided by C, dimensioned by getNlocal
779      real ( kind = dp ), dimension(3,nLocal) :: f
780      !! Torsion array provided by C, dimensioned by getNlocal
# Line 413 | Line 782 | contains
782  
783      !! Stress Tensor
784      real( kind = dp), dimension(9) :: tau  
785 <    real ( kind = dp ) :: pot
785 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
786      logical ( kind = 2) :: do_pot_c, do_stress_c
787      logical :: do_pot
788      logical :: do_stress
789      logical :: in_switching_region
790   #ifdef IS_MPI
791 <    real( kind = DP ) :: pot_local
791 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
792      integer :: nAtomsInRow
793      integer :: nAtomsInCol
794      integer :: nprocs
# Line 434 | Line 803 | contains
803      integer :: nlist
804      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
805      real( kind = DP ) :: sw, dswdr, swderiv, mf
806 +    real( kind = DP ) :: rVal
807      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
808      real(kind=dp) :: rfpot, mu_i, virial
809 +    real(kind=dp):: rCut
810      integer :: me_i, me_j, n_in_i, n_in_j
811      logical :: is_dp_i
812      integer :: neighborListSize
# Line 443 | Line 814 | contains
814      integer :: localError
815      integer :: propPack_i, propPack_j
816      integer :: loopStart, loopEnd, loop
817 +    integer :: iHash
818 +    integer :: i1
819 +  
820  
447    real(kind=dp) :: listSkin = 1.0  
448    
821      !! initialize local variables  
822 <    
822 >
823   #ifdef IS_MPI
824      pot_local = 0.0_dp
825      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 829 | contains
829   #else
830      natoms = nlocal
831   #endif
832 <    
832 >
833      call doReadyCheck(localError)
834      if ( localError .ne. 0 ) then
835         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 837 | contains
837         return
838      end if
839      call zero_work_arrays()
840 <        
840 >
841      do_pot = do_pot_c
842      do_stress = do_stress_c
843 <    
843 >
844      ! Gather all information needed by all force loops:
845 <    
845 >
846   #ifdef IS_MPI    
847 <    
847 >
848      call gather(q, q_Row, plan_atom_row_3d)
849      call gather(q, q_Col, plan_atom_col_3d)
850  
851      call gather(q_group, q_group_Row, plan_group_row_3d)
852      call gather(q_group, q_group_Col, plan_group_col_3d)
853 <        
853 >
854      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
855 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
856 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
857 <      
855 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
856 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
857 >
858         call gather(A, A_Row, plan_atom_row_rotation)
859         call gather(A, A_Col, plan_atom_col_rotation)
860      endif
861 <    
861 >
862   #endif
863 <    
863 >
864      !! Begin force loop timing:
865   #ifdef PROFILE
866      call cpu_time(forceTimeInitial)
867      nloops = nloops + 1
868   #endif
869 <    
869 >
870      loopEnd = PAIR_LOOP
871      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
872         loopStart = PREPAIR_LOOP
# Line 508 | Line 880 | contains
880         ! (but only on the first time through):
881         if (loop .eq. loopStart) then
882   #ifdef IS_MPI
883 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
884 <             update_nlist)
883 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
884 >               update_nlist)
885   #else
886 <          call checkNeighborList(nGroups, q_group, listSkin, &
887 <             update_nlist)
886 >          call checkNeighborList(nGroups, q_group, skinThickness, &
887 >               update_nlist)
888   #endif
889         endif
890 <      
890 >
891         if (update_nlist) then
892            !! save current configuration and construct neighbor list
893   #ifdef IS_MPI
# Line 526 | Line 898 | contains
898            neighborListSize = size(list)
899            nlist = 0
900         endif
901 <      
901 >
902         istart = 1
903   #ifdef IS_MPI
904         iend = nGroupsInRow
# Line 536 | Line 908 | contains
908         outer: do i = istart, iend
909  
910            if (update_nlist) point(i) = nlist + 1
911 <          
911 >
912            n_in_i = groupStartRow(i+1) - groupStartRow(i)
913 <          
913 >
914            if (update_nlist) then
915   #ifdef IS_MPI
916               jstart = 1
# Line 553 | Line 925 | contains
925               ! make sure group i has neighbors
926               if (jstart .gt. jend) cycle outer
927            endif
928 <          
928 >
929            do jnab = jstart, jend
930               if (update_nlist) then
931                  j = jnab
# Line 562 | Line 934 | contains
934               endif
935  
936   #ifdef IS_MPI
937 +             me_j = atid_col(j)
938               call get_interatomic_vector(q_group_Row(:,i), &
939                    q_group_Col(:,j), d_grp, rgrpsq)
940   #else
941 +             me_j = atid(j)
942               call get_interatomic_vector(q_group(:,i), &
943                    q_group(:,j), d_grp, rgrpsq)
944 < #endif
944 > #endif      
945  
946 <             if (rgrpsq < rlistsq) then
946 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
947                  if (update_nlist) then
948                     nlist = nlist + 1
949 <                  
949 >
950                     if (nlist > neighborListSize) then
951   #ifdef IS_MPI                
952                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 960 | contains
960                        end if
961                        neighborListSize = size(list)
962                     endif
963 <                  
963 >
964                     list(nlist) = j
965                  endif
966 +
967 +
968                  
969 <                if (loop .eq. PAIR_LOOP) then
970 <                   vij = 0.0d0
971 <                   fij(1:3) = 0.0d0
972 <                endif
973 <                
974 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
975 <                     in_switching_region)
600 <                
601 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
602 <                
603 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
969 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
970 >
971 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
972 >                   if (loop .eq. PAIR_LOOP) then
973 >                      vij = 0.0d0
974 >                      fij(1:3) = 0.0d0
975 >                   endif
976                    
977 <                   atom1 = groupListRow(ia)
977 >                   call get_switch(rgrpsq, sw, dswdr, rgrp, &
978 >                        group_switch, in_switching_region)
979                    
980 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
980 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
981 >                  
982 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
983                        
984 <                      atom2 = groupListCol(jb)
984 >                      atom1 = groupListRow(ia)
985                        
986 <                      if (skipThisPair(atom1, atom2)) cycle inner
987 <
988 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
989 <                         d_atm(1:3) = d_grp(1:3)
990 <                         ratmsq = rgrpsq
991 <                      else
986 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
987 >                        
988 >                         atom2 = groupListCol(jb)
989 >                        
990 >                         if (skipThisPair(atom1, atom2))  cycle inner
991 >                        
992 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
993 >                            d_atm(1:3) = d_grp(1:3)
994 >                            ratmsq = rgrpsq
995 >                         else
996   #ifdef IS_MPI
997 <                         call get_interatomic_vector(q_Row(:,atom1), &
998 <                              q_Col(:,atom2), d_atm, ratmsq)
997 >                            call get_interatomic_vector(q_Row(:,atom1), &
998 >                                 q_Col(:,atom2), d_atm, ratmsq)
999   #else
1000 <                         call get_interatomic_vector(q(:,atom1), &
1001 <                              q(:,atom2), d_atm, ratmsq)
1000 >                            call get_interatomic_vector(q(:,atom1), &
1001 >                                 q(:,atom2), d_atm, ratmsq)
1002   #endif
1003 <                      endif
1004 <
1005 <                      if (loop .eq. PREPAIR_LOOP) then
1003 >                         endif
1004 >                        
1005 >                         if (loop .eq. PREPAIR_LOOP) then
1006   #ifdef IS_MPI                      
1007 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1008 <                              rgrpsq, d_grp, do_pot, do_stress, &
1009 <                              u_l, A, f, t, pot_local)
1007 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1008 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1009 >                                 eFrame, A, f, t, pot_local)
1010   #else
1011 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1012 <                              rgrpsq, d_grp, do_pot, do_stress, &
1013 <                              u_l, A, f, t, pot)
1011 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1012 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1013 >                                 eFrame, A, f, t, pot)
1014   #endif                                              
1015 <                      else
1015 >                         else
1016   #ifdef IS_MPI                      
1017 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1018 <                              do_pot, &
1019 <                              u_l, A, f, t, pot_local, vpair, fpair)
1017 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1018 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1019 >                                 fpair, d_grp, rgrp, rCut)
1020   #else
1021 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1022 <                              do_pot,  &
1023 <                              u_l, A, f, t, pot, vpair, fpair)
1021 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1022 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1023 >                                 d_grp, rgrp, rCut)
1024   #endif
1025 +                            vij = vij + vpair
1026 +                            fij(1:3) = fij(1:3) + fpair(1:3)
1027 +                         endif
1028 +                      enddo inner
1029 +                   enddo
1030  
1031 <                         vij = vij + vpair
1032 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1033 <                      endif
1034 <                   enddo inner
1035 <                enddo
1036 <                
1037 <                if (loop .eq. PAIR_LOOP) then
1038 <                   if (in_switching_region) then
1039 <                      swderiv = vij*dswdr/rgrp
1040 <                      fij(1) = fij(1) + swderiv*d_grp(1)
657 <                      fij(2) = fij(2) + swderiv*d_grp(2)
658 <                      fij(3) = fij(3) + swderiv*d_grp(3)
659 <                      
660 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
661 <                         atom1=groupListRow(ia)
662 <                         mf = mfactRow(atom1)
1031 >                   if (loop .eq. PAIR_LOOP) then
1032 >                      if (in_switching_region) then
1033 >                         swderiv = vij*dswdr/rgrp
1034 >                         fij(1) = fij(1) + swderiv*d_grp(1)
1035 >                         fij(2) = fij(2) + swderiv*d_grp(2)
1036 >                         fij(3) = fij(3) + swderiv*d_grp(3)
1037 >                        
1038 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1039 >                            atom1=groupListRow(ia)
1040 >                            mf = mfactRow(atom1)
1041   #ifdef IS_MPI
1042 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1043 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1044 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1042 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1043 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1044 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1045   #else
1046 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1047 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1048 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1046 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1047 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1048 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1049   #endif
1050 <                      enddo
1051 <                      
1052 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1053 <                         atom2=groupListCol(jb)
1054 <                         mf = mfactCol(atom2)
1050 >                         enddo
1051 >                        
1052 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1053 >                            atom2=groupListCol(jb)
1054 >                            mf = mfactCol(atom2)
1055   #ifdef IS_MPI
1056 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1057 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1058 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1056 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1057 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1058 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1059   #else
1060 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1061 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1062 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1060 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1061 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1062 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1063   #endif
1064 <                      enddo
1064 >                         enddo
1065 >                      endif
1066 >
1067 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1068                     endif
688                  
689                   if (do_stress) call add_stress_tensor(d_grp, fij)
1069                  endif
1070 <             end if
1070 >             endif
1071            enddo
1072 +          
1073         enddo outer
1074 <      
1074 >
1075         if (update_nlist) then
1076   #ifdef IS_MPI
1077            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 1085 | contains
1085               update_nlist = .false.                              
1086            endif
1087         endif
1088 <            
1088 >
1089         if (loop .eq. PREPAIR_LOOP) then
1090            call do_preforce(nlocal, pot)
1091         endif
1092 <      
1092 >
1093      enddo
1094 <    
1094 >
1095      !! Do timing
1096   #ifdef PROFILE
1097      call cpu_time(forceTimeFinal)
1098      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1099   #endif    
1100 <    
1100 >
1101   #ifdef IS_MPI
1102      !!distribute forces
1103 <    
1103 >
1104      f_temp = 0.0_dp
1105      call scatter(f_Row,f_temp,plan_atom_row_3d)
1106      do i = 1,nlocal
1107         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1108      end do
1109 <    
1109 >
1110      f_temp = 0.0_dp
1111      call scatter(f_Col,f_temp,plan_atom_col_3d)
1112      do i = 1,nlocal
1113         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1114      end do
1115 <    
1115 >
1116      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1117         t_temp = 0.0_dp
1118         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 1121 | contains
1121         end do
1122         t_temp = 0.0_dp
1123         call scatter(t_Col,t_temp,plan_atom_col_3d)
1124 <      
1124 >
1125         do i = 1,nlocal
1126            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1127         end do
1128      endif
1129 <    
1129 >
1130      if (do_pot) then
1131         ! scatter/gather pot_row into the members of my column
1132 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1133 <      
1132 >       do i = 1,LR_POT_TYPES
1133 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1134 >       end do
1135         ! scatter/gather pot_local into all other procs
1136         ! add resultant to get total pot
1137         do i = 1, nlocal
1138 <          pot_local = pot_local + pot_Temp(i)
1138 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1139 >               + pot_Temp(1:LR_POT_TYPES,i)
1140         enddo
1141 <      
1141 >
1142         pot_Temp = 0.0_DP
1143 <      
1144 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1143 >       do i = 1,LR_POT_TYPES
1144 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1145 >       end do
1146         do i = 1, nlocal
1147 <          pot_local = pot_local + pot_Temp(i)
1147 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1148 >               + pot_Temp(1:LR_POT_TYPES,i)
1149         enddo
1150 <      
1150 >
1151      endif
1152   #endif
1153 <    
1154 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1155 <      
772 <       if (FF_uses_RF .and. SIM_uses_RF) then
1153 >
1154 >    if (SIM_requires_postpair_calc) then
1155 >       do i = 1, nlocal            
1156            
1157 < #ifdef IS_MPI
1158 <          call scatter(rf_Row,rf,plan_atom_row_3d)
776 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
777 <          do i = 1,nlocal
778 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
779 <          end do
780 < #endif
1157 >          ! we loop only over the local atoms, so we don't need row and column
1158 >          ! lookups for the types
1159            
1160 <          do i = 1, nLocal
1161 <            
1162 <             rfpot = 0.0_DP
1160 >          me_i = atid(i)
1161 >          
1162 >          ! is the atom electrostatic?  See if it would have an
1163 >          ! electrostatic interaction with itself
1164 >          iHash = InteractionHash(me_i,me_i)
1165 >
1166 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1167   #ifdef IS_MPI
1168 <             me_i = atid_row(i)
1168 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1169 >                  t, do_pot)
1170   #else
1171 <             me_i = atid(i)
1171 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1172 >                  t, do_pot)
1173   #endif
1174 +          endif
1175 +  
1176 +          
1177 +          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1178              
1179 <             if (PropertyMap(me_i)%is_Dipole) then
1179 >             ! loop over the excludes to accumulate RF stuff we've
1180 >             ! left out of the normal pair loop
1181 >            
1182 >             do i1 = 1, nSkipsForAtom(i)
1183 >                j = skipsForAtom(i, i1)
1184                  
1185 <                mu_i = getDipoleMoment(me_i)
1186 <                
1187 <                !! The reaction field needs to include a self contribution
1188 <                !! to the field:
1189 <                call accumulate_self_rf(i, mu_i, u_l)
1190 <                !! Get the reaction field contribution to the
1191 <                !! potential and torques:
800 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1185 >                ! prevent overcounting of the skips
1186 >                if (i.lt.j) then
1187 >                   call get_interatomic_vector(q(:,i), &
1188 >                        q(:,j), d_atm, ratmsq)
1189 >                   rVal = dsqrt(ratmsq)
1190 >                   call get_switch(ratmsq, sw, dswdr, rVal, group_switch, &
1191 >                        in_switching_region)
1192   #ifdef IS_MPI
1193 <                pot_local = pot_local + rfpot
1193 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1194 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1195   #else
1196 <                pot = pot + rfpot
1197 <      
1196 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1197 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1198   #endif
1199 <             endif            
1200 <          enddo
1201 <       endif
1199 >                endif
1200 >             enddo
1201 >          endif
1202 >       enddo
1203      endif
1204      
812    
1205   #ifdef IS_MPI
1206      
1207      if (do_pot) then
1208 <       pot = pot + pot_local
1209 <       !! we assume the c code will do the allreduce to get the total potential
818 <       !! we could do it right here if we needed to...
1208 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1209 >            mpi_comm_world,mpi_err)            
1210      endif
1211      
1212      if (do_stress) then
# Line 833 | Line 1224 | contains
1224      endif
1225      
1226   #endif
1227 <      
1227 >    
1228    end subroutine do_force_loop
1229 <  
1229 >
1230    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1231 <       u_l, A, f, t, pot, vpair, fpair)
1231 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1232  
1233 <    real( kind = dp ) :: pot, vpair, sw
1233 >    real( kind = dp ) :: vpair, sw
1234 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1235      real( kind = dp ), dimension(3) :: fpair
1236      real( kind = dp ), dimension(nLocal)   :: mfact
1237 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1237 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1238      real( kind = dp ), dimension(9,nLocal) :: A
1239      real( kind = dp ), dimension(3,nLocal) :: f
1240      real( kind = dp ), dimension(3,nLocal) :: t
# Line 850 | Line 1242 | contains
1242      logical, intent(inout) :: do_pot
1243      integer, intent(in) :: i, j
1244      real ( kind = dp ), intent(inout) :: rijsq
1245 <    real ( kind = dp )                :: r
1245 >    real ( kind = dp ), intent(inout) :: r_grp
1246      real ( kind = dp ), intent(inout) :: d(3)
1247 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1248 +    real ( kind = dp ), intent(inout) :: rCut
1249 +    real ( kind = dp ) :: r
1250      integer :: me_i, me_j
1251  
1252 +    integer :: iHash
1253 +
1254      r = sqrt(rijsq)
1255      vpair = 0.0d0
1256      fpair(1:3) = 0.0d0
# Line 865 | Line 1262 | contains
1262      me_i = atid(i)
1263      me_j = atid(j)
1264   #endif
1265 +
1266 +    iHash = InteractionHash(me_i, me_j)
1267      
1268 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1269 <      
1270 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
872 <            PropertyMap(me_j)%is_LennardJones ) then
873 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
874 <       endif
875 <      
1268 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1269 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1270 >            pot(VDW_POT), f, do_pot)
1271      endif
1272      
1273 <    if (FF_uses_charges .and. SIM_uses_charges) then
1274 <      
1275 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
881 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
882 <               pot, f, do_pot)
883 <       endif
884 <      
1273 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1274 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1275 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1276      endif
1277      
1278 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
1279 <      
1280 <       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
890 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
891 <               pot, u_l, f, t, do_pot)
892 <          if (FF_uses_RF .and. SIM_uses_RF) then
893 <             call accumulate_rf(i, j, r, u_l, sw)
894 <             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
895 <          endif
896 <       endif
897 <
1278 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1279 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1280 >            pot(HB_POT), A, f, t, do_pot)
1281      endif
1282 <
1283 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1284 <
1285 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
903 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
904 <               pot, A, f, t, do_pot)
905 <       endif
906 <      
1282 >    
1283 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1284 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1285 >            pot(HB_POT), A, f, t, do_pot)
1286      endif
1287 <
1288 <
1289 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1290 <      
912 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
913 <            PropertyMap(me_j)%is_GayBerne) then
914 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
915 <               pot, u_l, f, t, do_pot)
916 <       endif
917 <      
1287 >    
1288 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1289 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1290 >            pot(VDW_POT), A, f, t, do_pot)
1291      endif
1292      
1293 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1294 <      
1295 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
923 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
924 <               do_pot)
925 <       endif
926 <      
1293 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1294 >       call do_gb_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1295 >            pot(VDW_POT), A, f, t, do_pot)
1296      endif
1297 +    
1298 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1299 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1300 +            pot(METALLIC_POT), f, do_pot)
1301 +    endif
1302 +    
1303 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1304 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1305 +            pot(VDW_POT), A, f, t, do_pot)
1306 +    endif
1307 +    
1308 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1309 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1310 +            pot(VDW_POT), A, f, t, do_pot)
1311 +    endif
1312  
1313 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1314 <      
1315 <       if ( PropertyMap(me_i)%is_Shape .and. &
932 <            PropertyMap(me_j)%is_Shape ) then
933 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
934 <               pot, A, f, t, do_pot)
935 <       endif
936 <      
1313 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1314 >       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1315 >            pot(METALLIC_POT), f, do_pot)
1316      endif
1317 +
1318      
1319 +    
1320    end subroutine do_pair
1321  
1322 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1323 <       do_pot, do_stress, u_l, A, f, t, pot)
1322 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1323 >       do_pot, do_stress, eFrame, A, f, t, pot)
1324  
1325 <   real( kind = dp ) :: pot, sw
1326 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1327 <   real (kind=dp), dimension(9,nLocal) :: A
1328 <   real (kind=dp), dimension(3,nLocal) :: f
1329 <   real (kind=dp), dimension(3,nLocal) :: t
1330 <  
950 <   logical, intent(inout) :: do_pot, do_stress
951 <   integer, intent(in) :: i, j
952 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
953 <   real ( kind = dp )                :: r, rc
954 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
955 <  
956 <   logical :: is_EAM_i, is_EAM_j
957 <  
958 <   integer :: me_i, me_j
959 <  
1325 >    real( kind = dp ) :: sw
1326 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1327 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1328 >    real (kind=dp), dimension(9,nLocal) :: A
1329 >    real (kind=dp), dimension(3,nLocal) :: f
1330 >    real (kind=dp), dimension(3,nLocal) :: t
1331  
1332 +    logical, intent(inout) :: do_pot, do_stress
1333 +    integer, intent(in) :: i, j
1334 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1335 +    real ( kind = dp )                :: r, rc
1336 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1337 +
1338 +    integer :: me_i, me_j, iHash
1339 +
1340      r = sqrt(rijsq)
962    if (SIM_uses_molecular_cutoffs) then
963       rc = sqrt(rcijsq)
964    else
965       rc = r
966    endif
967  
1341  
1342   #ifdef IS_MPI  
1343 <   me_i = atid_row(i)
1344 <   me_j = atid_col(j)  
1343 >    me_i = atid_row(i)
1344 >    me_j = atid_col(j)  
1345   #else  
1346 <   me_i = atid(i)
1347 <   me_j = atid(j)  
1346 >    me_i = atid(i)
1347 >    me_j = atid(j)  
1348   #endif
976  
977   if (FF_uses_EAM .and. SIM_uses_EAM) then
978      
979      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
980           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
981      
982   endif
983  
984 end subroutine do_prepair
985
986
987 subroutine do_preforce(nlocal,pot)
988   integer :: nlocal
989   real( kind = dp ) :: pot
990  
991   if (FF_uses_EAM .and. SIM_uses_EAM) then
992      call calc_EAM_preforce_Frho(nlocal,pot)
993   endif
994  
995  
996 end subroutine do_preforce
997
998
999 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1000  
1001   real (kind = dp), dimension(3) :: q_i
1002   real (kind = dp), dimension(3) :: q_j
1003   real ( kind = dp ), intent(out) :: r_sq
1004   real( kind = dp ) :: d(3), scaled(3)
1005   integer i
1006  
1007   d(1:3) = q_j(1:3) - q_i(1:3)
1008  
1009   ! Wrap back into periodic box if necessary
1010   if ( SIM_uses_PBC ) then
1011      
1012      if( .not.boxIsOrthorhombic ) then
1013         ! calc the scaled coordinates.
1014        
1015         scaled = matmul(HmatInv, d)
1016        
1017         ! wrap the scaled coordinates
1018        
1019         scaled = scaled  - anint(scaled)
1020        
1021        
1022         ! calc the wrapped real coordinates from the wrapped scaled
1023         ! coordinates
1024        
1025         d = matmul(Hmat,scaled)
1026        
1027      else
1028         ! calc the scaled coordinates.
1029        
1030         do i = 1, 3
1031            scaled(i) = d(i) * HmatInv(i,i)
1032            
1033            ! wrap the scaled coordinates
1034            
1035            scaled(i) = scaled(i) - anint(scaled(i))
1036            
1037            ! calc the wrapped real coordinates from the wrapped scaled
1038            ! coordinates
1039            
1040            d(i) = scaled(i)*Hmat(i,i)
1041         enddo
1042      endif
1043      
1044   endif
1045  
1046   r_sq = dot_product(d,d)
1047  
1048 end subroutine get_interatomic_vector
1049
1050 subroutine zero_work_arrays()
1051  
1052 #ifdef IS_MPI
1053  
1054   q_Row = 0.0_dp
1055   q_Col = 0.0_dp
1349  
1350 <   q_group_Row = 0.0_dp
1351 <   q_group_Col = 0.0_dp  
1352 <  
1353 <   u_l_Row = 0.0_dp
1354 <   u_l_Col = 0.0_dp
1355 <  
1356 <   A_Row = 0.0_dp
1357 <   A_Col = 0.0_dp
1358 <  
1359 <   f_Row = 0.0_dp
1360 <   f_Col = 0.0_dp
1361 <   f_Temp = 0.0_dp
1362 <  
1363 <   t_Row = 0.0_dp
1364 <   t_Col = 0.0_dp
1365 <   t_Temp = 0.0_dp
1366 <  
1367 <   pot_Row = 0.0_dp
1368 <   pot_Col = 0.0_dp
1369 <   pot_Temp = 0.0_dp
1370 <  
1371 <   rf_Row = 0.0_dp
1372 <   rf_Col = 0.0_dp
1373 <   rf_Temp = 0.0_dp
1374 <  
1350 >    iHash = InteractionHash(me_i, me_j)
1351 >
1352 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1353 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1354 >    endif
1355 >
1356 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1357 >            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1358 >    endif
1359 >    
1360 >  end subroutine do_prepair
1361 >
1362 >
1363 >  subroutine do_preforce(nlocal,pot)
1364 >    integer :: nlocal
1365 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1366 >
1367 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1368 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1369 >    endif
1370 >    if (FF_uses_SC .and. SIM_uses_SC) then
1371 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1372 >    endif
1373 >
1374 >
1375 >  end subroutine do_preforce
1376 >
1377 >
1378 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1379 >
1380 >    real (kind = dp), dimension(3) :: q_i
1381 >    real (kind = dp), dimension(3) :: q_j
1382 >    real ( kind = dp ), intent(out) :: r_sq
1383 >    real( kind = dp ) :: d(3), scaled(3)
1384 >    integer i
1385 >
1386 >    d(1:3) = q_j(1:3) - q_i(1:3)
1387 >
1388 >    ! Wrap back into periodic box if necessary
1389 >    if ( SIM_uses_PBC ) then
1390 >
1391 >       if( .not.boxIsOrthorhombic ) then
1392 >          ! calc the scaled coordinates.
1393 >
1394 >          scaled = matmul(HmatInv, d)
1395 >
1396 >          ! wrap the scaled coordinates
1397 >
1398 >          scaled = scaled  - anint(scaled)
1399 >
1400 >
1401 >          ! calc the wrapped real coordinates from the wrapped scaled
1402 >          ! coordinates
1403 >
1404 >          d = matmul(Hmat,scaled)
1405 >
1406 >       else
1407 >          ! calc the scaled coordinates.
1408 >
1409 >          do i = 1, 3
1410 >             scaled(i) = d(i) * HmatInv(i,i)
1411 >
1412 >             ! wrap the scaled coordinates
1413 >
1414 >             scaled(i) = scaled(i) - anint(scaled(i))
1415 >
1416 >             ! calc the wrapped real coordinates from the wrapped scaled
1417 >             ! coordinates
1418 >
1419 >             d(i) = scaled(i)*Hmat(i,i)
1420 >          enddo
1421 >       endif
1422 >
1423 >    endif
1424 >
1425 >    r_sq = dot_product(d,d)
1426 >
1427 >  end subroutine get_interatomic_vector
1428 >
1429 >  subroutine zero_work_arrays()
1430 >
1431 > #ifdef IS_MPI
1432 >
1433 >    q_Row = 0.0_dp
1434 >    q_Col = 0.0_dp
1435 >
1436 >    q_group_Row = 0.0_dp
1437 >    q_group_Col = 0.0_dp  
1438 >
1439 >    eFrame_Row = 0.0_dp
1440 >    eFrame_Col = 0.0_dp
1441 >
1442 >    A_Row = 0.0_dp
1443 >    A_Col = 0.0_dp
1444 >
1445 >    f_Row = 0.0_dp
1446 >    f_Col = 0.0_dp
1447 >    f_Temp = 0.0_dp
1448 >
1449 >    t_Row = 0.0_dp
1450 >    t_Col = 0.0_dp
1451 >    t_Temp = 0.0_dp
1452 >
1453 >    pot_Row = 0.0_dp
1454 >    pot_Col = 0.0_dp
1455 >    pot_Temp = 0.0_dp
1456 >
1457   #endif
1458 <
1459 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1460 <      call clean_EAM()
1461 <   endif
1462 <  
1463 <   rf = 0.0_dp
1464 <   tau_Temp = 0.0_dp
1465 <   virial_Temp = 0.0_dp
1466 < end subroutine zero_work_arrays
1467 <
1468 < function skipThisPair(atom1, atom2) result(skip_it)
1469 <   integer, intent(in) :: atom1
1470 <   integer, intent(in), optional :: atom2
1471 <   logical :: skip_it
1472 <   integer :: unique_id_1, unique_id_2
1473 <   integer :: me_i,me_j
1474 <   integer :: i
1475 <  
1476 <   skip_it = .false.
1477 <  
1478 <   !! there are a number of reasons to skip a pair or a particle
1479 <   !! mostly we do this to exclude atoms who are involved in short
1480 <   !! range interactions (bonds, bends, torsions), but we also need
1481 <   !! to exclude some overcounted interactions that result from
1482 <   !! the parallel decomposition
1108 <  
1458 >
1459 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1460 >       call clean_EAM()
1461 >    endif
1462 >
1463 >    tau_Temp = 0.0_dp
1464 >    virial_Temp = 0.0_dp
1465 >  end subroutine zero_work_arrays
1466 >
1467 >  function skipThisPair(atom1, atom2) result(skip_it)
1468 >    integer, intent(in) :: atom1
1469 >    integer, intent(in), optional :: atom2
1470 >    logical :: skip_it
1471 >    integer :: unique_id_1, unique_id_2
1472 >    integer :: me_i,me_j
1473 >    integer :: i
1474 >
1475 >    skip_it = .false.
1476 >
1477 >    !! there are a number of reasons to skip a pair or a particle
1478 >    !! mostly we do this to exclude atoms who are involved in short
1479 >    !! range interactions (bonds, bends, torsions), but we also need
1480 >    !! to exclude some overcounted interactions that result from
1481 >    !! the parallel decomposition
1482 >
1483   #ifdef IS_MPI
1484 <   !! in MPI, we have to look up the unique IDs for each atom
1485 <   unique_id_1 = AtomRowToGlobal(atom1)
1484 >    !! in MPI, we have to look up the unique IDs for each atom
1485 >    unique_id_1 = AtomRowToGlobal(atom1)
1486   #else
1487 <   !! in the normal loop, the atom numbers are unique
1488 <   unique_id_1 = atom1
1487 >    !! in the normal loop, the atom numbers are unique
1488 >    unique_id_1 = atom1
1489   #endif
1490 <  
1491 <   !! We were called with only one atom, so just check the global exclude
1492 <   !! list for this atom
1493 <   if (.not. present(atom2)) then
1494 <      do i = 1, nExcludes_global
1495 <         if (excludesGlobal(i) == unique_id_1) then
1496 <            skip_it = .true.
1497 <            return
1498 <         end if
1499 <      end do
1500 <      return
1501 <   end if
1502 <  
1490 >
1491 >    !! We were called with only one atom, so just check the global exclude
1492 >    !! list for this atom
1493 >    if (.not. present(atom2)) then
1494 >       do i = 1, nExcludes_global
1495 >          if (excludesGlobal(i) == unique_id_1) then
1496 >             skip_it = .true.
1497 >             return
1498 >          end if
1499 >       end do
1500 >       return
1501 >    end if
1502 >
1503   #ifdef IS_MPI
1504 <   unique_id_2 = AtomColToGlobal(atom2)
1504 >    unique_id_2 = AtomColToGlobal(atom2)
1505   #else
1506 <   unique_id_2 = atom2
1506 >    unique_id_2 = atom2
1507   #endif
1508 <  
1508 >
1509   #ifdef IS_MPI
1510 <   !! this situation should only arise in MPI simulations
1511 <   if (unique_id_1 == unique_id_2) then
1512 <      skip_it = .true.
1513 <      return
1514 <   end if
1515 <  
1516 <   !! this prevents us from doing the pair on multiple processors
1517 <   if (unique_id_1 < unique_id_2) then
1518 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1519 <         skip_it = .true.
1520 <         return
1521 <      endif
1522 <   else                
1523 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1524 <         skip_it = .true.
1525 <         return
1526 <      endif
1527 <   endif
1510 >    !! this situation should only arise in MPI simulations
1511 >    if (unique_id_1 == unique_id_2) then
1512 >       skip_it = .true.
1513 >       return
1514 >    end if
1515 >
1516 >    !! this prevents us from doing the pair on multiple processors
1517 >    if (unique_id_1 < unique_id_2) then
1518 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1519 >          skip_it = .true.
1520 >          return
1521 >       endif
1522 >    else                
1523 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1524 >          skip_it = .true.
1525 >          return
1526 >       endif
1527 >    endif
1528   #endif
1529 <  
1530 <   !! the rest of these situations can happen in all simulations:
1531 <   do i = 1, nExcludes_global      
1532 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1533 <           (excludesGlobal(i) == unique_id_2)) then
1534 <         skip_it = .true.
1535 <         return
1536 <      endif
1537 <   enddo
1538 <  
1539 <   do i = 1, nSkipsForAtom(atom1)
1540 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1541 <         skip_it = .true.
1542 <         return
1543 <      endif
1544 <   end do
1545 <  
1546 <   return
1547 < end function skipThisPair
1548 <
1549 < function FF_UsesDirectionalAtoms() result(doesit)
1550 <   logical :: doesit
1551 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1552 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1553 < end function FF_UsesDirectionalAtoms
1554 <
1555 < function FF_RequiresPrepairCalc() result(doesit)
1556 <   logical :: doesit
1557 <   doesit = FF_uses_EAM
1558 < end function FF_RequiresPrepairCalc
1559 <
1186 < function FF_RequiresPostpairCalc() result(doesit)
1187 <   logical :: doesit
1188 <   doesit = FF_uses_RF
1189 < end function FF_RequiresPostpairCalc
1190 <
1529 >
1530 >    !! the rest of these situations can happen in all simulations:
1531 >    do i = 1, nExcludes_global      
1532 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1533 >            (excludesGlobal(i) == unique_id_2)) then
1534 >          skip_it = .true.
1535 >          return
1536 >       endif
1537 >    enddo
1538 >
1539 >    do i = 1, nSkipsForAtom(atom1)
1540 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1541 >          skip_it = .true.
1542 >          return
1543 >       endif
1544 >    end do
1545 >
1546 >    return
1547 >  end function skipThisPair
1548 >
1549 >  function FF_UsesDirectionalAtoms() result(doesit)
1550 >    logical :: doesit
1551 >    doesit = FF_uses_DirectionalAtoms
1552 >  end function FF_UsesDirectionalAtoms
1553 >
1554 >  function FF_RequiresPrepairCalc() result(doesit)
1555 >    logical :: doesit
1556 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1557 >         .or. FF_uses_MEAM
1558 >  end function FF_RequiresPrepairCalc
1559 >
1560   #ifdef PROFILE
1561 < function getforcetime() result(totalforcetime)
1562 <   real(kind=dp) :: totalforcetime
1563 <   totalforcetime = forcetime
1564 < end function getforcetime
1561 >  function getforcetime() result(totalforcetime)
1562 >    real(kind=dp) :: totalforcetime
1563 >    totalforcetime = forcetime
1564 >  end function getforcetime
1565   #endif
1197
1198 !! This cleans componets of force arrays belonging only to fortran
1566  
1567 < subroutine add_stress_tensor(dpair, fpair)
1201 <  
1202 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1203 <  
1204 <   ! because the d vector is the rj - ri vector, and
1205 <   ! because fx, fy, fz are the force on atom i, we need a
1206 <   ! negative sign here:  
1207 <  
1208 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1209 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1210 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1211 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1212 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1213 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1214 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1215 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1216 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1217 <  
1218 <   virial_Temp = virial_Temp + &
1219 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1220 <  
1221 < end subroutine add_stress_tensor
1222 <
1223 < end module doForces
1567 >  !! This cleans componets of force arrays belonging only to fortran
1568  
1569 < !! Interfaces for C programs to module....
1569 >  subroutine add_stress_tensor(dpair, fpair)
1570  
1571 < subroutine initFortranFF(use_RF_c, thisStat)
1228 <    use doForces, ONLY: init_FF
1229 <    logical, intent(in) :: use_RF_c
1571 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1572  
1573 <    integer, intent(out) :: thisStat  
1574 <    call init_FF(use_RF_c, thisStat)
1573 >    ! because the d vector is the rj - ri vector, and
1574 >    ! because fx, fy, fz are the force on atom i, we need a
1575 >    ! negative sign here:  
1576  
1577 < end subroutine initFortranFF
1577 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1578 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1579 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1580 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1581 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1582 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1583 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1584 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1585 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1586  
1587 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1588 <       do_pot_c, do_stress_c, error)
1238 <      
1239 <       use definitions, ONLY: dp
1240 <       use simulation
1241 <       use doForces, ONLY: do_force_loop
1242 <    !! Position array provided by C, dimensioned by getNlocal
1243 <    real ( kind = dp ), dimension(3, nLocal) :: q
1244 <    !! molecular center-of-mass position array
1245 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1246 <    !! Rotation Matrix for each long range particle in simulation.
1247 <    real( kind = dp), dimension(9, nLocal) :: A    
1248 <    !! Unit vectors for dipoles (lab frame)
1249 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1250 <    !! Force array provided by C, dimensioned by getNlocal
1251 <    real ( kind = dp ), dimension(3,nLocal) :: f
1252 <    !! Torsion array provided by C, dimensioned by getNlocal
1253 <    real( kind = dp ), dimension(3,nLocal) :: t    
1587 >    virial_Temp = virial_Temp + &
1588 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1589  
1590 <    !! Stress Tensor
1591 <    real( kind = dp), dimension(9) :: tau  
1592 <    real ( kind = dp ) :: pot
1258 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1259 <    integer :: error
1260 <    
1261 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1262 <       do_pot_c, do_stress_c, error)
1263 <      
1264 < end subroutine doForceloop
1590 >  end subroutine add_stress_tensor
1591 >
1592 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines