ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 2259 by gezelter, Mon Jun 27 21:01:36 2005 UTC vs.
Revision 2592 by gezelter, Thu Feb 16 21:40:20 2006 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.20 2005-06-27 21:01:30 gezelter Exp $, $Date: 2005-06-27 21:01:30 $, $Name: not supported by cvs2svn $, $Revision: 1.20 $
48 > !! @version $Id: doForces.F90,v 1.76 2006-02-16 21:40:20 gezelter Exp $, $Date: 2006-02-16 21:40:20 $, $Name: not supported by cvs2svn $, $Revision: 1.76 $
49  
50  
51   module doForces
# Line 58 | Line 58 | module doForces
58    use lj
59    use sticky
60    use electrostatic_module
61 <  use reaction_field
62 <  use gb_pair
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 73 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77   #include "UseTheForce/DarkSide/fInteractionMap.h"
78 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80 +
81    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82    INTEGER, PARAMETER:: PAIR_LOOP    = 2
83  
81  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
84  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 +  logical, save :: haveInteractionHash = .false.
88 +  logical, save :: haveGtypeCutoffMap = .false.
89 +  logical, save :: haveDefaultCutoffs = .false.
90 +  logical, save :: haveSkinThickness = .false.
91 +  logical, save :: haveElectrostaticSummationMethod = .false.
92 +  logical, save :: haveCutoffPolicy = .false.
93 +  logical, save :: VisitCutoffsAfterComputing = .false.
94  
95    logical, save :: FF_uses_DirectionalAtoms
88  logical, save :: FF_uses_LennardJones
89  logical, save :: FF_uses_Electrostatics
90  logical, save :: FF_uses_Charges
96    logical, save :: FF_uses_Dipoles
92  logical, save :: FF_uses_Quadrupoles
93  logical, save :: FF_uses_Sticky
94  logical, save :: FF_uses_StickyPower
97    logical, save :: FF_uses_GayBerne
98    logical, save :: FF_uses_EAM
99 <  logical, save :: FF_uses_Shapes
100 <  logical, save :: FF_uses_FLARB
101 <  logical, save :: FF_uses_RF
99 >  logical, save :: FF_uses_SC
100 >  logical, save :: FF_uses_MEAM
101 >
102  
103    logical, save :: SIM_uses_DirectionalAtoms
102  logical, save :: SIM_uses_LennardJones
103  logical, save :: SIM_uses_Electrostatics
104  logical, save :: SIM_uses_Charges
105  logical, save :: SIM_uses_Dipoles
106  logical, save :: SIM_uses_Quadrupoles
107  logical, save :: SIM_uses_Sticky
108  logical, save :: SIM_uses_StickyPower
109  logical, save :: SIM_uses_GayBerne
104    logical, save :: SIM_uses_EAM
105 <  logical, save :: SIM_uses_Shapes
106 <  logical, save :: SIM_uses_FLARB
113 <  logical, save :: SIM_uses_RF
105 >  logical, save :: SIM_uses_SC
106 >  logical, save :: SIM_uses_MEAM
107    logical, save :: SIM_requires_postpair_calc
108    logical, save :: SIM_requires_prepair_calc
109    logical, save :: SIM_uses_PBC
117  logical, save :: SIM_uses_molecular_cutoffs
110  
111 <  real(kind=dp), save :: rlist, rlistsq
111 >  integer, save :: electrostaticSummationMethod
112 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
113  
114 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
115 +  real(kind=dp), save :: skinThickness
116 +  logical, save :: defaultDoShift
117 +
118    public :: init_FF
119 +  public :: setCutoffs
120 +  public :: cWasLame
121 +  public :: setElectrostaticMethod
122 +  public :: setCutoffPolicy
123 +  public :: setSkinThickness
124    public :: do_force_loop
123  public :: setRlistDF
125  
126   #ifdef PROFILE
127    public :: getforcetime
# Line 128 | Line 129 | module doForces
129    real :: forceTimeInitial, forceTimeFinal
130    integer :: nLoops
131   #endif
132 +  
133 +  !! Variables for cutoff mapping and interaction mapping
134 +  ! Bit hash to determine pair-pair interactions.
135 +  integer, dimension(:,:), allocatable :: InteractionHash
136 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
137 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
138 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
139  
140 <  type :: Properties
141 <     logical :: is_Directional   = .false.
134 <     logical :: is_LennardJones  = .false.
135 <     logical :: is_Electrostatic = .false.
136 <     logical :: is_Charge        = .false.
137 <     logical :: is_Dipole        = .false.
138 <     logical :: is_Quadrupole    = .false.
139 <     logical :: is_Sticky        = .false.
140 <     logical :: is_StickyPower   = .false.
141 <     logical :: is_GayBerne      = .false.
142 <     logical :: is_EAM           = .false.
143 <     logical :: is_Shape         = .false.
144 <     logical :: is_FLARB         = .false.
145 <  end type Properties
140 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
141 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
142  
143 <  type(Properties), dimension(:),allocatable :: PropertyMap
143 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
144 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
145 >  type ::gtypeCutoffs
146 >     real(kind=dp) :: rcut
147 >     real(kind=dp) :: rcutsq
148 >     real(kind=dp) :: rlistsq
149 >  end type gtypeCutoffs
150 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
151  
152   contains
153  
154 <  subroutine setRlistDF( this_rlist )
152 <
153 <    real(kind=dp) :: this_rlist
154 <
155 <    rlist = this_rlist
156 <    rlistsq = rlist * rlist
157 <
158 <    haveRlist = .true.
159 <
160 <  end subroutine setRlistDF
161 <
162 <  subroutine createPropertyMap(status)
154 >  subroutine createInteractionHash()
155      integer :: nAtypes
164    integer :: status
156      integer :: i
157 <    logical :: thisProperty
158 <    real (kind=DP) :: thisDPproperty
157 >    integer :: j
158 >    integer :: iHash
159 >    !! Test Types
160 >    logical :: i_is_LJ
161 >    logical :: i_is_Elect
162 >    logical :: i_is_Sticky
163 >    logical :: i_is_StickyP
164 >    logical :: i_is_GB
165 >    logical :: i_is_EAM
166 >    logical :: i_is_Shape
167 >    logical :: i_is_SC
168 >    logical :: i_is_MEAM
169 >    logical :: j_is_LJ
170 >    logical :: j_is_Elect
171 >    logical :: j_is_Sticky
172 >    logical :: j_is_StickyP
173 >    logical :: j_is_GB
174 >    logical :: j_is_EAM
175 >    logical :: j_is_Shape
176 >    logical :: j_is_SC
177 >    logical :: j_is_MEAM
178 >    real(kind=dp) :: myRcut
179  
180 <    status = 0
181 <
180 >    if (.not. associated(atypes)) then
181 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
182 >       return
183 >    endif
184 >    
185      nAtypes = getSize(atypes)
186 <
186 >    
187      if (nAtypes == 0) then
188 <       status = -1
188 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
189         return
190      end if
191  
192 <    if (.not. allocated(PropertyMap)) then
193 <       allocate(PropertyMap(nAtypes))
192 >    if (.not. allocated(InteractionHash)) then
193 >       allocate(InteractionHash(nAtypes,nAtypes))
194 >    else
195 >       deallocate(InteractionHash)
196 >       allocate(InteractionHash(nAtypes,nAtypes))
197      endif
198  
199 +    if (.not. allocated(atypeMaxCutoff)) then
200 +       allocate(atypeMaxCutoff(nAtypes))
201 +    else
202 +       deallocate(atypeMaxCutoff)
203 +       allocate(atypeMaxCutoff(nAtypes))
204 +    endif
205 +        
206      do i = 1, nAtypes
207 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
208 <       PropertyMap(i)%is_Directional = thisProperty
207 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
208 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
209 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
210 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
211 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
212 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
213 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
214 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
215 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
216  
217 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
187 <       PropertyMap(i)%is_LennardJones = thisProperty
217 >       do j = i, nAtypes
218  
219 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
220 <       PropertyMap(i)%is_Electrostatic = thisProperty
219 >          iHash = 0
220 >          myRcut = 0.0_dp
221  
222 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
223 <       PropertyMap(i)%is_Charge = thisProperty
222 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
223 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
224 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
225 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
226 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
227 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
228 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
229 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
230 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
231  
232 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
233 <       PropertyMap(i)%is_Dipole = thisProperty
232 >          if (i_is_LJ .and. j_is_LJ) then
233 >             iHash = ior(iHash, LJ_PAIR)            
234 >          endif
235 >          
236 >          if (i_is_Elect .and. j_is_Elect) then
237 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
238 >          endif
239 >          
240 >          if (i_is_Sticky .and. j_is_Sticky) then
241 >             iHash = ior(iHash, STICKY_PAIR)
242 >          endif
243  
244 <       call getElementProperty(atypes, i, "is_Quadrupole", thisProperty)
245 <       PropertyMap(i)%is_Quadrupole = thisProperty
244 >          if (i_is_StickyP .and. j_is_StickyP) then
245 >             iHash = ior(iHash, STICKYPOWER_PAIR)
246 >          endif
247  
248 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
249 <       PropertyMap(i)%is_Sticky = thisProperty
250 <      
204 <       call getElementProperty(atypes, i, "is_StickyPower", thisProperty)
205 <       PropertyMap(i)%is_StickyPower = thisProperty
248 >          if (i_is_EAM .and. j_is_EAM) then
249 >             iHash = ior(iHash, EAM_PAIR)
250 >          endif
251  
252 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
253 <       PropertyMap(i)%is_GayBerne = thisProperty
252 >          if (i_is_SC .and. j_is_SC) then
253 >             iHash = ior(iHash, SC_PAIR)
254 >          endif
255  
256 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
257 <       PropertyMap(i)%is_EAM = thisProperty
256 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
257 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
258 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
259  
260 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
261 <       PropertyMap(i)%is_Shape = thisProperty
260 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
261 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
262 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
263  
264 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
265 <       PropertyMap(i)%is_FLARB = thisProperty
264 >
265 >          InteractionHash(i,j) = iHash
266 >          InteractionHash(j,i) = iHash
267 >
268 >       end do
269 >
270      end do
271  
272 <    havePropertyMap = .true.
272 >    haveInteractionHash = .true.
273 >  end subroutine createInteractionHash
274  
275 <  end subroutine createPropertyMap
275 >  subroutine createGtypeCutoffMap()
276  
277 <  subroutine setSimVariables()
278 <    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
279 <    SIM_uses_LennardJones = SimUsesLennardJones()
280 <    SIM_uses_Electrostatics = SimUsesElectrostatics()
281 <    SIM_uses_Charges = SimUsesCharges()
282 <    SIM_uses_Dipoles = SimUsesDipoles()
283 <    SIM_uses_Sticky = SimUsesSticky()
284 <    SIM_uses_StickyPower = SimUsesStickyPower()
285 <    SIM_uses_GayBerne = SimUsesGayBerne()
233 <    SIM_uses_EAM = SimUsesEAM()
234 <    SIM_uses_Shapes = SimUsesShapes()
235 <    SIM_uses_FLARB = SimUsesFLARB()
236 <    SIM_uses_RF = SimUsesRF()
237 <    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
238 <    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
239 <    SIM_uses_PBC = SimUsesPBC()
277 >    logical :: i_is_LJ
278 >    logical :: i_is_Elect
279 >    logical :: i_is_Sticky
280 >    logical :: i_is_StickyP
281 >    logical :: i_is_GB
282 >    logical :: i_is_EAM
283 >    logical :: i_is_Shape
284 >    logical :: i_is_SC
285 >    logical :: GtypeFound
286  
287 <    haveSIMvariables = .true.
287 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
288 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
289 >    integer :: nGroupsInRow
290 >    integer :: nGroupsInCol
291 >    integer :: nGroupTypesRow,nGroupTypesCol
292 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
293 >    real(kind=dp) :: biggestAtypeCutoff
294  
295 <    return
296 <  end subroutine setSimVariables
295 >    if (.not. haveInteractionHash) then
296 >       call createInteractionHash()      
297 >    endif
298 > #ifdef IS_MPI
299 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
300 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
301 > #endif
302 >    nAtypes = getSize(atypes)
303 > ! Set all of the initial cutoffs to zero.
304 >    atypeMaxCutoff = 0.0_dp
305 >    do i = 1, nAtypes
306 >       if (SimHasAtype(i)) then    
307 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
308 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
309 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
310 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
311 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
312 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
313 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
314 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
315 >
316 >          if (haveDefaultCutoffs) then
317 >             atypeMaxCutoff(i) = defaultRcut
318 >          else
319 >             if (i_is_LJ) then          
320 >                thisRcut = getSigma(i) * 2.5_dp
321 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
322 >             endif
323 >             if (i_is_Elect) then
324 >                thisRcut = defaultRcut
325 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
326 >             endif
327 >             if (i_is_Sticky) then
328 >                thisRcut = getStickyCut(i)
329 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
330 >             endif
331 >             if (i_is_StickyP) then
332 >                thisRcut = getStickyPowerCut(i)
333 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
334 >             endif
335 >             if (i_is_GB) then
336 >                thisRcut = getGayBerneCut(i)
337 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
338 >             endif
339 >             if (i_is_EAM) then
340 >                thisRcut = getEAMCut(i)
341 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
342 >             endif
343 >             if (i_is_Shape) then
344 >                thisRcut = getShapeCut(i)
345 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
346 >             endif
347 >             if (i_is_SC) then
348 >                thisRcut = getSCCut(i)
349 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
350 >             endif
351 >          endif
352 >                    
353 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
354 >             biggestAtypeCutoff = atypeMaxCutoff(i)
355 >          endif
356  
357 +       endif
358 +    enddo
359 +    
360 +    istart = 1
361 +    jstart = 1
362 + #ifdef IS_MPI
363 +    iend = nGroupsInRow
364 +    jend = nGroupsInCol
365 + #else
366 +    iend = nGroups
367 +    jend = nGroups
368 + #endif
369 +    
370 +    !! allocate the groupToGtype and gtypeMaxCutoff here.
371 +    if(.not.allocated(groupToGtypeRow)) then
372 +     !  allocate(groupToGtype(iend))
373 +       allocate(groupToGtypeRow(iend))
374 +    else
375 +       deallocate(groupToGtypeRow)
376 +       allocate(groupToGtypeRow(iend))
377 +    endif
378 +    if(.not.allocated(groupMaxCutoffRow)) then
379 +       allocate(groupMaxCutoffRow(iend))
380 +    else
381 +       deallocate(groupMaxCutoffRow)
382 +       allocate(groupMaxCutoffRow(iend))
383 +    end if
384 +
385 +    if(.not.allocated(gtypeMaxCutoffRow)) then
386 +       allocate(gtypeMaxCutoffRow(iend))
387 +    else
388 +       deallocate(gtypeMaxCutoffRow)
389 +       allocate(gtypeMaxCutoffRow(iend))
390 +    endif
391 +
392 +
393 + #ifdef IS_MPI
394 +       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
395 +    if(.not.associated(groupToGtypeCol)) then
396 +       allocate(groupToGtypeCol(jend))
397 +    else
398 +       deallocate(groupToGtypeCol)
399 +       allocate(groupToGtypeCol(jend))
400 +    end if
401 +
402 +    if(.not.associated(groupMaxCutoffCol)) then
403 +       allocate(groupMaxCutoffCol(jend))
404 +    else
405 +       deallocate(groupMaxCutoffCol)
406 +       allocate(groupMaxCutoffCol(jend))
407 +    end if
408 +    if(.not.associated(gtypeMaxCutoffCol)) then
409 +       allocate(gtypeMaxCutoffCol(jend))
410 +    else
411 +       deallocate(gtypeMaxCutoffCol)      
412 +       allocate(gtypeMaxCutoffCol(jend))
413 +    end if
414 +
415 +       groupMaxCutoffCol = 0.0_dp
416 +       gtypeMaxCutoffCol = 0.0_dp
417 +
418 + #endif
419 +       groupMaxCutoffRow = 0.0_dp
420 +       gtypeMaxCutoffRow = 0.0_dp
421 +
422 +
423 +    !! first we do a single loop over the cutoff groups to find the
424 +    !! largest cutoff for any atypes present in this group.  We also
425 +    !! create gtypes at this point.
426 +    
427 +    tol = 1.0d-6
428 +    nGroupTypesRow = 0
429 +    nGroupTypesCol = 0
430 +    do i = istart, iend      
431 +       n_in_i = groupStartRow(i+1) - groupStartRow(i)
432 +       groupMaxCutoffRow(i) = 0.0_dp
433 +       do ia = groupStartRow(i), groupStartRow(i+1)-1
434 +          atom1 = groupListRow(ia)
435 + #ifdef IS_MPI
436 +          me_i = atid_row(atom1)
437 + #else
438 +          me_i = atid(atom1)
439 + #endif          
440 +          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
441 +             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
442 +          endif          
443 +       enddo
444 +       if (nGroupTypesRow.eq.0) then
445 +          nGroupTypesRow = nGroupTypesRow + 1
446 +          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
447 +          groupToGtypeRow(i) = nGroupTypesRow
448 +       else
449 +          GtypeFound = .false.
450 +          do g = 1, nGroupTypesRow
451 +             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
452 +                groupToGtypeRow(i) = g
453 +                GtypeFound = .true.
454 +             endif
455 +          enddo
456 +          if (.not.GtypeFound) then            
457 +             nGroupTypesRow = nGroupTypesRow + 1
458 +             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
459 +             groupToGtypeRow(i) = nGroupTypesRow
460 +          endif
461 +       endif
462 +    enddo    
463 +
464 + #ifdef IS_MPI
465 +    do j = jstart, jend      
466 +       n_in_j = groupStartCol(j+1) - groupStartCol(j)
467 +       groupMaxCutoffCol(j) = 0.0_dp
468 +       do ja = groupStartCol(j), groupStartCol(j+1)-1
469 +          atom1 = groupListCol(ja)
470 +
471 +          me_j = atid_col(atom1)
472 +
473 +          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
474 +             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
475 +          endif          
476 +       enddo
477 +
478 +       if (nGroupTypesCol.eq.0) then
479 +          nGroupTypesCol = nGroupTypesCol + 1
480 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
481 +          groupToGtypeCol(j) = nGroupTypesCol
482 +       else
483 +          GtypeFound = .false.
484 +          do g = 1, nGroupTypesCol
485 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
486 +                groupToGtypeCol(j) = g
487 +                GtypeFound = .true.
488 +             endif
489 +          enddo
490 +          if (.not.GtypeFound) then            
491 +             nGroupTypesCol = nGroupTypesCol + 1
492 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
493 +             groupToGtypeCol(j) = nGroupTypesCol
494 +          endif
495 +       endif
496 +    enddo    
497 +
498 + #else
499 + ! Set pointers to information we just found
500 +    nGroupTypesCol = nGroupTypesRow
501 +    groupToGtypeCol => groupToGtypeRow
502 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
503 +    groupMaxCutoffCol => groupMaxCutoffRow
504 + #endif
505 +
506 +    !! allocate the gtypeCutoffMap here.
507 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
508 +    !! then we do a double loop over all the group TYPES to find the cutoff
509 +    !! map between groups of two types
510 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
511 +
512 +    do i = 1, nGroupTypesRow      
513 +       do j = 1, nGroupTypesCol
514 +      
515 +          select case(cutoffPolicy)
516 +          case(TRADITIONAL_CUTOFF_POLICY)
517 +             thisRcut = tradRcut
518 +          case(MIX_CUTOFF_POLICY)
519 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
520 +          case(MAX_CUTOFF_POLICY)
521 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
522 +          case default
523 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
524 +             return
525 +          end select
526 +          gtypeCutoffMap(i,j)%rcut = thisRcut
527 +          
528 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
529 +
530 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
531 +
532 +          if (.not.haveSkinThickness) then
533 +             skinThickness = 1.0_dp
534 +          endif
535 +
536 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
537 +
538 +          ! sanity check
539 +
540 +          if (haveDefaultCutoffs) then
541 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
542 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
543 +             endif
544 +          endif
545 +       enddo
546 +    enddo
547 +
548 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
549 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
550 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
551 + #ifdef IS_MPI
552 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
553 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
554 + #endif
555 +    groupMaxCutoffCol => null()
556 +    gtypeMaxCutoffCol => null()
557 +    
558 +    haveGtypeCutoffMap = .true.
559 +   end subroutine createGtypeCutoffMap
560 +
561 +   subroutine setCutoffs(defRcut, defRsw)
562 +
563 +     real(kind=dp),intent(in) :: defRcut, defRsw
564 +     character(len = statusMsgSize) :: errMsg
565 +     integer :: localError
566 +
567 +     defaultRcut = defRcut
568 +     defaultRsw = defRsw
569 +    
570 +     defaultDoShift = .false.
571 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
572 +        
573 +        write(errMsg, *) &
574 +             'cutoffRadius and switchingRadius are set to the same', newline &
575 +             // tab, 'value.  OOPSE will use shifted ', newline &
576 +             // tab, 'potentials instead of switching functions.'
577 +        
578 +        call handleInfo("setCutoffs", errMsg)
579 +        
580 +        defaultDoShift = .true.
581 +        
582 +     endif
583 +
584 +     localError = 0
585 +     call setLJDefaultCutoff( defaultRcut, defaultDoShift )
586 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
587 +     call setCutoffEAM( defaultRcut, localError)
588 +     if (localError /= 0) then
589 +       write(errMsg, *) 'An error has occured in setting the EAM cutoff'
590 +       call handleError("setCutoffs", errMsg)
591 +     end if
592 +     call set_switch(GROUP_SWITCH, defaultRsw, defaultRcut)
593 +     call setHmatDangerousRcutValue(defaultRcut)
594 +
595 +     haveDefaultCutoffs = .true.
596 +     haveGtypeCutoffMap = .false.
597 +   end subroutine setCutoffs
598 +
599 +   subroutine cWasLame()
600 +    
601 +     VisitCutoffsAfterComputing = .true.
602 +     return
603 +    
604 +   end subroutine cWasLame
605 +  
606 +   subroutine setCutoffPolicy(cutPolicy)
607 +    
608 +     integer, intent(in) :: cutPolicy
609 +    
610 +     cutoffPolicy = cutPolicy
611 +     haveCutoffPolicy = .true.
612 +     haveGtypeCutoffMap = .false.
613 +    
614 +   end subroutine setCutoffPolicy
615 +  
616 +   subroutine setElectrostaticMethod( thisESM )
617 +
618 +     integer, intent(in) :: thisESM
619 +
620 +     electrostaticSummationMethod = thisESM
621 +     haveElectrostaticSummationMethod = .true.
622 +    
623 +   end subroutine setElectrostaticMethod
624 +
625 +   subroutine setSkinThickness( thisSkin )
626 +    
627 +     real(kind=dp), intent(in) :: thisSkin
628 +    
629 +     skinThickness = thisSkin
630 +     haveSkinThickness = .true.    
631 +     haveGtypeCutoffMap = .false.
632 +    
633 +   end subroutine setSkinThickness
634 +      
635 +   subroutine setSimVariables()
636 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
637 +     SIM_uses_EAM = SimUsesEAM()
638 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
639 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
640 +     SIM_uses_PBC = SimUsesPBC()
641 +     SIM_uses_SC = SimUsesSC()
642 +    
643 +     haveSIMvariables = .true.
644 +    
645 +     return
646 +   end subroutine setSimVariables
647 +
648    subroutine doReadyCheck(error)
649      integer, intent(out) :: error
650  
# Line 250 | Line 652 | contains
652  
653      error = 0
654  
655 <    if (.not. havePropertyMap) then
655 >    if (.not. haveInteractionHash) then      
656 >       call createInteractionHash()      
657 >    endif
658  
659 <       myStatus = 0
659 >    if (.not. haveGtypeCutoffMap) then        
660 >       call createGtypeCutoffMap()      
661 >    endif
662  
257       call createPropertyMap(myStatus)
663  
664 <       if (myStatus .ne. 0) then
665 <          write(default_error, *) 'createPropertyMap failed in doForces!'
666 <          error = -1
262 <          return
263 <       endif
664 >    if (VisitCutoffsAfterComputing) then
665 >       call set_switch(GROUP_SWITCH, largestRcut, largestRcut)      
666 >       call setHmatDangerousRcutValue(largestRcut)
667      endif
668  
669 +
670      if (.not. haveSIMvariables) then
671         call setSimVariables()
672      endif
673  
674 <    if (.not. haveRlist) then
675 <       write(default_error, *) 'rList has not been set in doForces!'
676 <       error = -1
677 <       return
678 <    endif
674 >  !  if (.not. haveRlist) then
675 >  !     write(default_error, *) 'rList has not been set in doForces!'
676 >  !     error = -1
677 >  !     return
678 >  !  endif
679  
680      if (.not. haveNeighborList) then
681         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 296 | Line 700 | contains
700    end subroutine doReadyCheck
701  
702  
703 <  subroutine init_FF(use_RF_c, thisStat)
703 >  subroutine init_FF(thisStat)
704  
301    logical, intent(in) :: use_RF_c
302
705      integer, intent(out) :: thisStat  
706      integer :: my_status, nMatches
707      integer, pointer :: MatchList(:) => null()
306    real(kind=dp) :: rcut, rrf, rt, dielect
708  
709      !! assume things are copacetic, unless they aren't
710      thisStat = 0
711  
311    !! Fortran's version of a cast:
312    FF_uses_RF = use_RF_c
313
712      !! init_FF is called *after* all of the atom types have been
713      !! defined in atype_module using the new_atype subroutine.
714      !!
# Line 318 | Line 716 | contains
716      !! interactions are used by the force field.    
717  
718      FF_uses_DirectionalAtoms = .false.
321    FF_uses_LennardJones = .false.
322    FF_uses_Electrostatics = .false.
323    FF_uses_Charges = .false.    
719      FF_uses_Dipoles = .false.
325    FF_uses_Sticky = .false.
326    FF_uses_StickyPower = .false.
720      FF_uses_GayBerne = .false.
721      FF_uses_EAM = .false.
722 <    FF_uses_Shapes = .false.
330 <    FF_uses_FLARB = .false.
722 >    FF_uses_SC = .false.
723  
724      call getMatchingElementList(atypes, "is_Directional", .true., &
725           nMatches, MatchList)
726      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
727  
336    call getMatchingElementList(atypes, "is_LennardJones", .true., &
337         nMatches, MatchList)
338    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
339
340    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
341         nMatches, MatchList)
342    if (nMatches .gt. 0) then
343       FF_uses_Electrostatics = .true.
344    endif
345
346    call getMatchingElementList(atypes, "is_Charge", .true., &
347         nMatches, MatchList)
348    if (nMatches .gt. 0) then
349       FF_uses_Charges = .true.  
350       FF_uses_Electrostatics = .true.
351    endif
352
728      call getMatchingElementList(atypes, "is_Dipole", .true., &
729           nMatches, MatchList)
730 <    if (nMatches .gt. 0) then
356 <       FF_uses_Dipoles = .true.
357 <       FF_uses_Electrostatics = .true.
358 <       FF_uses_DirectionalAtoms = .true.
359 <    endif
360 <
361 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
362 <         nMatches, MatchList)
363 <    if (nMatches .gt. 0) then
364 <       FF_uses_Quadrupoles = .true.
365 <       FF_uses_Electrostatics = .true.
366 <       FF_uses_DirectionalAtoms = .true.
367 <    endif
368 <
369 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
370 <         MatchList)
371 <    if (nMatches .gt. 0) then
372 <       FF_uses_Sticky = .true.
373 <       FF_uses_DirectionalAtoms = .true.
374 <    endif
375 <
376 <    call getMatchingElementList(atypes, "is_StickyPower", .true., nMatches, &
377 <         MatchList)
378 <    if (nMatches .gt. 0) then
379 <       FF_uses_StickyPower = .true.
380 <       FF_uses_DirectionalAtoms = .true.
381 <    endif
730 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
731      
732      call getMatchingElementList(atypes, "is_GayBerne", .true., &
733           nMatches, MatchList)
734 <    if (nMatches .gt. 0) then
386 <       FF_uses_GayBerne = .true.
387 <       FF_uses_DirectionalAtoms = .true.
388 <    endif
734 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
735  
736      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
737      if (nMatches .gt. 0) FF_uses_EAM = .true.
738  
739 <    call getMatchingElementList(atypes, "is_Shape", .true., &
740 <         nMatches, MatchList)
395 <    if (nMatches .gt. 0) then
396 <       FF_uses_Shapes = .true.
397 <       FF_uses_DirectionalAtoms = .true.
398 <    endif
739 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
740 >    if (nMatches .gt. 0) FF_uses_SC = .true.
741  
400    call getMatchingElementList(atypes, "is_FLARB", .true., &
401         nMatches, MatchList)
402    if (nMatches .gt. 0) FF_uses_FLARB = .true.
742  
404    !! Assume sanity (for the sake of argument)
743      haveSaneForceField = .true.
744  
407    !! check to make sure the FF_uses_RF setting makes sense
408
409    if (FF_uses_dipoles) then
410       if (FF_uses_RF) then
411          dielect = getDielect()
412          call initialize_rf(dielect)
413       endif
414    else
415       if (FF_uses_RF) then          
416          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
417          thisStat = -1
418          haveSaneForceField = .false.
419          return
420       endif
421    endif
422
423    !sticky module does not contain check_sticky_FF anymore
424    !if (FF_uses_sticky) then
425    !   call check_sticky_FF(my_status)
426    !   if (my_status /= 0) then
427    !      thisStat = -1
428    !      haveSaneForceField = .false.
429    !      return
430    !   end if
431    !endif
432
745      if (FF_uses_EAM) then
746         call init_EAM_FF(my_status)
747         if (my_status /= 0) then
# Line 440 | Line 752 | contains
752         end if
753      endif
754  
443    if (FF_uses_GayBerne) then
444       call check_gb_pair_FF(my_status)
445       if (my_status .ne. 0) then
446          thisStat = -1
447          haveSaneForceField = .false.
448          return
449       endif
450    endif
451
452    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
453    endif
454
755      if (.not. haveNeighborList) then
756         !! Create neighbor lists
757         call expandNeighborList(nLocal, my_status)
# Line 485 | Line 785 | contains
785  
786      !! Stress Tensor
787      real( kind = dp), dimension(9) :: tau  
788 <    real ( kind = dp ) :: pot
788 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
789      logical ( kind = 2) :: do_pot_c, do_stress_c
790      logical :: do_pot
791      logical :: do_stress
792      logical :: in_switching_region
793   #ifdef IS_MPI
794 <    real( kind = DP ) :: pot_local
794 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
795      integer :: nAtomsInRow
796      integer :: nAtomsInCol
797      integer :: nprocs
# Line 506 | Line 806 | contains
806      integer :: nlist
807      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
808      real( kind = DP ) :: sw, dswdr, swderiv, mf
809 +    real( kind = DP ) :: rVal
810      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
811      real(kind=dp) :: rfpot, mu_i, virial
812 +    real(kind=dp):: rCut
813      integer :: me_i, me_j, n_in_i, n_in_j
814      logical :: is_dp_i
815      integer :: neighborListSize
# Line 515 | Line 817 | contains
817      integer :: localError
818      integer :: propPack_i, propPack_j
819      integer :: loopStart, loopEnd, loop
820 +    integer :: iHash
821 +    integer :: i1
822 +  
823  
519    real(kind=dp) :: listSkin = 1.0  
520
824      !! initialize local variables  
825  
826   #ifdef IS_MPI
# Line 580 | Line 883 | contains
883         ! (but only on the first time through):
884         if (loop .eq. loopStart) then
885   #ifdef IS_MPI
886 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
886 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
887                 update_nlist)
888   #else
889 <          call checkNeighborList(nGroups, q_group, listSkin, &
889 >          call checkNeighborList(nGroups, q_group, skinThickness, &
890                 update_nlist)
891   #endif
892         endif
# Line 634 | Line 937 | contains
937               endif
938  
939   #ifdef IS_MPI
940 +             me_j = atid_col(j)
941               call get_interatomic_vector(q_group_Row(:,i), &
942                    q_group_Col(:,j), d_grp, rgrpsq)
943   #else
944 +             me_j = atid(j)
945               call get_interatomic_vector(q_group(:,i), &
946                    q_group(:,j), d_grp, rgrpsq)
947 < #endif
947 > #endif      
948  
949 <             if (rgrpsq < rlistsq) then
949 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
950                  if (update_nlist) then
951                     nlist = nlist + 1
952  
# Line 661 | Line 966 | contains
966  
967                     list(nlist) = j
968                  endif
969 +
970  
971 <                if (loop .eq. PAIR_LOOP) then
972 <                   vij = 0.0d0
667 <                   fij(1:3) = 0.0d0
668 <                endif
971 >                
972 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
973  
974 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
975 <                     in_switching_region)
976 <
977 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
978 <
979 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
980 <
981 <                   atom1 = groupListRow(ia)
982 <
983 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
984 <
985 <                      atom2 = groupListCol(jb)
986 <
987 <                      if (skipThisPair(atom1, atom2)) cycle inner
988 <
989 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
990 <                         d_atm(1:3) = d_grp(1:3)
991 <                         ratmsq = rgrpsq
992 <                      else
974 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
975 >                   if (loop .eq. PAIR_LOOP) then
976 >                      vij = 0.0d0
977 >                      fij(1:3) = 0.0d0
978 >                   endif
979 >                  
980 >                   call get_switch(rgrpsq, sw, dswdr, rgrp, &
981 >                        group_switch, in_switching_region)
982 >                  
983 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
984 >                  
985 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
986 >                      
987 >                      atom1 = groupListRow(ia)
988 >                      
989 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
990 >                        
991 >                         atom2 = groupListCol(jb)
992 >                        
993 >                         if (skipThisPair(atom1, atom2))  cycle inner
994 >                        
995 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
996 >                            d_atm(1:3) = d_grp(1:3)
997 >                            ratmsq = rgrpsq
998 >                         else
999   #ifdef IS_MPI
1000 <                         call get_interatomic_vector(q_Row(:,atom1), &
1001 <                              q_Col(:,atom2), d_atm, ratmsq)
1000 >                            call get_interatomic_vector(q_Row(:,atom1), &
1001 >                                 q_Col(:,atom2), d_atm, ratmsq)
1002   #else
1003 <                         call get_interatomic_vector(q(:,atom1), &
1004 <                              q(:,atom2), d_atm, ratmsq)
1003 >                            call get_interatomic_vector(q(:,atom1), &
1004 >                                 q(:,atom2), d_atm, ratmsq)
1005   #endif
1006 <                      endif
1007 <
1008 <                      if (loop .eq. PREPAIR_LOOP) then
1006 >                         endif
1007 >                        
1008 >                         if (loop .eq. PREPAIR_LOOP) then
1009   #ifdef IS_MPI                      
1010 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1011 <                              rgrpsq, d_grp, do_pot, do_stress, &
1012 <                              eFrame, A, f, t, pot_local)
1010 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1011 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1012 >                                 eFrame, A, f, t, pot_local)
1013   #else
1014 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1015 <                              rgrpsq, d_grp, do_pot, do_stress, &
1016 <                              eFrame, A, f, t, pot)
1014 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1015 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1016 >                                 eFrame, A, f, t, pot)
1017   #endif                                              
1018 <                      else
1018 >                         else
1019   #ifdef IS_MPI                      
1020 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1021 <                              do_pot, &
1022 <                              eFrame, A, f, t, pot_local, vpair, fpair)
1020 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1021 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1022 >                                 fpair, d_grp, rgrp, rCut)
1023   #else
1024 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1025 <                              do_pot,  &
1026 <                              eFrame, A, f, t, pot, vpair, fpair)
1024 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1025 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1026 >                                 d_grp, rgrp, rCut)
1027   #endif
1028 +                            vij = vij + vpair
1029 +                            fij(1:3) = fij(1:3) + fpair(1:3)
1030 +                         endif
1031 +                      enddo inner
1032 +                   enddo
1033  
1034 <                         vij = vij + vpair
1035 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1036 <                      endif
1037 <                   enddo inner
1038 <                enddo
1039 <
1040 <                if (loop .eq. PAIR_LOOP) then
1041 <                   if (in_switching_region) then
1042 <                      swderiv = vij*dswdr/rgrp
1043 <                      fij(1) = fij(1) + swderiv*d_grp(1)
729 <                      fij(2) = fij(2) + swderiv*d_grp(2)
730 <                      fij(3) = fij(3) + swderiv*d_grp(3)
731 <
732 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
733 <                         atom1=groupListRow(ia)
734 <                         mf = mfactRow(atom1)
1034 >                   if (loop .eq. PAIR_LOOP) then
1035 >                      if (in_switching_region) then
1036 >                         swderiv = vij*dswdr/rgrp
1037 >                         fij(1) = fij(1) + swderiv*d_grp(1)
1038 >                         fij(2) = fij(2) + swderiv*d_grp(2)
1039 >                         fij(3) = fij(3) + swderiv*d_grp(3)
1040 >                        
1041 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1042 >                            atom1=groupListRow(ia)
1043 >                            mf = mfactRow(atom1)
1044   #ifdef IS_MPI
1045 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1046 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1047 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1045 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1046 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1047 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1048   #else
1049 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1050 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1051 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1049 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1050 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1051 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1052   #endif
1053 <                      enddo
1054 <
1055 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1056 <                         atom2=groupListCol(jb)
1057 <                         mf = mfactCol(atom2)
1053 >                         enddo
1054 >                        
1055 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1056 >                            atom2=groupListCol(jb)
1057 >                            mf = mfactCol(atom2)
1058   #ifdef IS_MPI
1059 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1060 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1061 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1059 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1060 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1061 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1062   #else
1063 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1064 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1065 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1063 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1064 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1065 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1066   #endif
1067 <                      enddo
1068 <                   endif
1067 >                         enddo
1068 >                      endif
1069  
1070 <                   if (do_stress) call add_stress_tensor(d_grp, fij)
1071 <                endif
1072 <             end if
1070 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1071 >                   endif
1072 >                endif
1073 >             endif
1074            enddo
1075 +          
1076         enddo outer
1077  
1078         if (update_nlist) then
# Line 821 | Line 1132 | contains
1132  
1133      if (do_pot) then
1134         ! scatter/gather pot_row into the members of my column
1135 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1136 <
1135 >       do i = 1,LR_POT_TYPES
1136 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1137 >       end do
1138         ! scatter/gather pot_local into all other procs
1139         ! add resultant to get total pot
1140         do i = 1, nlocal
1141 <          pot_local = pot_local + pot_Temp(i)
1141 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1142 >               + pot_Temp(1:LR_POT_TYPES,i)
1143         enddo
1144  
1145         pot_Temp = 0.0_DP
1146 <
1147 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1146 >       do i = 1,LR_POT_TYPES
1147 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1148 >       end do
1149         do i = 1, nlocal
1150 <          pot_local = pot_local + pot_Temp(i)
1150 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1151 >               + pot_Temp(1:LR_POT_TYPES,i)
1152         enddo
1153  
1154      endif
1155   #endif
1156  
1157 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1157 >    if (SIM_requires_postpair_calc) then
1158 >       do i = 1, nlocal            
1159 >          
1160 >          ! we loop only over the local atoms, so we don't need row and column
1161 >          ! lookups for the types
1162 >          
1163 >          me_i = atid(i)
1164 >          
1165 >          ! is the atom electrostatic?  See if it would have an
1166 >          ! electrostatic interaction with itself
1167 >          iHash = InteractionHash(me_i,me_i)
1168  
1169 <       if (FF_uses_RF .and. SIM_uses_RF) then
845 <
1169 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1170   #ifdef IS_MPI
1171 <          call scatter(rf_Row,rf,plan_atom_row_3d)
1172 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
849 <          do i = 1,nlocal
850 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
851 <          end do
852 < #endif
853 <
854 <          do i = 1, nLocal
855 <
856 <             rfpot = 0.0_DP
857 < #ifdef IS_MPI
858 <             me_i = atid_row(i)
1171 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1172 >                  t, do_pot)
1173   #else
1174 <             me_i = atid(i)
1174 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1175 >                  t, do_pot)
1176   #endif
1177 <
1178 <             if (PropertyMap(me_i)%is_Dipole) then
1179 <
1180 <                mu_i = getDipoleMoment(me_i)
1181 <
1182 <                !! The reaction field needs to include a self contribution
1183 <                !! to the field:
1184 <                call accumulate_self_rf(i, mu_i, eFrame)
1185 <                !! Get the reaction field contribution to the
1186 <                !! potential and torques:
1187 <                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1177 >          endif
1178 >  
1179 >          
1180 >          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1181 >            
1182 >             ! loop over the excludes to accumulate RF stuff we've
1183 >             ! left out of the normal pair loop
1184 >            
1185 >             do i1 = 1, nSkipsForAtom(i)
1186 >                j = skipsForAtom(i, i1)
1187 >                
1188 >                ! prevent overcounting of the skips
1189 >                if (i.lt.j) then
1190 >                   call get_interatomic_vector(q(:,i), &
1191 >                        q(:,j), d_atm, ratmsq)
1192 >                   rVal = dsqrt(ratmsq)
1193 >                   call get_switch(ratmsq, sw, dswdr, rVal, group_switch, &
1194 >                        in_switching_region)
1195   #ifdef IS_MPI
1196 <                pot_local = pot_local + rfpot
1196 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1197 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1198   #else
1199 <                pot = pot + rfpot
1200 <
1199 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1200 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1201   #endif
1202 <             endif
1203 <          enddo
1204 <       endif
1202 >                endif
1203 >             enddo
1204 >          endif
1205 >       enddo
1206      endif
1207 <
884 <
1207 >    
1208   #ifdef IS_MPI
1209 <
1209 >    
1210      if (do_pot) then
1211 <       pot = pot + pot_local
1212 <       !! we assume the c code will do the allreduce to get the total potential
890 <       !! we could do it right here if we needed to...
1211 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1212 >            mpi_comm_world,mpi_err)            
1213      endif
1214 <
1214 >    
1215      if (do_stress) then
1216         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1217              mpi_comm_world,mpi_err)
1218         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1219              mpi_comm_world,mpi_err)
1220      endif
1221 <
1221 >    
1222   #else
1223 <
1223 >    
1224      if (do_stress) then
1225         tau = tau_Temp
1226         virial = virial_Temp
1227      endif
1228 <
1228 >    
1229   #endif
1230 <
1230 >    
1231    end subroutine do_force_loop
1232  
1233    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1234 <       eFrame, A, f, t, pot, vpair, fpair)
1234 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1235  
1236 <    real( kind = dp ) :: pot, vpair, sw
1236 >    real( kind = dp ) :: vpair, sw
1237 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1238      real( kind = dp ), dimension(3) :: fpair
1239      real( kind = dp ), dimension(nLocal)   :: mfact
1240      real( kind = dp ), dimension(9,nLocal) :: eFrame
# Line 922 | Line 1245 | contains
1245      logical, intent(inout) :: do_pot
1246      integer, intent(in) :: i, j
1247      real ( kind = dp ), intent(inout) :: rijsq
1248 <    real ( kind = dp )                :: r
1248 >    real ( kind = dp ), intent(inout) :: r_grp
1249      real ( kind = dp ), intent(inout) :: d(3)
1250 <    real ( kind = dp ) :: ebalance
1250 >    real ( kind = dp ), intent(inout) :: d_grp(3)
1251 >    real ( kind = dp ), intent(inout) :: rCut
1252 >    real ( kind = dp ) :: r
1253      integer :: me_i, me_j
1254  
1255 <    integer :: iMap
1255 >    integer :: iHash
1256  
1257      r = sqrt(rijsq)
1258      vpair = 0.0d0
# Line 941 | Line 1266 | contains
1266      me_j = atid(j)
1267   #endif
1268  
1269 <    iMap = InteractionMap(me_i, me_j)%InteractionHash
1270 <
1271 <    if ( iand(iMap, LJ_PAIR).ne.0 ) then
1272 <       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1269 >    iHash = InteractionHash(me_i, me_j)
1270 >    
1271 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1272 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1273 >            pot(VDW_POT), f, do_pot)
1274      endif
1275 <
1276 <    if ( iand(iMap, ELECTROSTATIC_PAIR).ne.0 ) then
1277 <       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1278 <            pot, eFrame, f, t, do_pot)
953 <
954 <       if (FF_uses_dipoles .and. SIM_uses_dipoles) then                
955 <          if ( PropertyMap(me_i)%is_Dipole .and. &
956 <               PropertyMap(me_j)%is_Dipole) then
957 <             if (FF_uses_RF .and. SIM_uses_RF) then
958 <                call accumulate_rf(i, j, r, eFrame, sw)
959 <                call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
960 <             endif
961 <          endif
962 <       endif
1275 >    
1276 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1277 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1278 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1279      endif
1280 <
1281 <    if ( iand(iMap, STICKY_PAIR).ne.0 ) then
1280 >    
1281 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1282         call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1283 <            pot, A, f, t, do_pot)
1283 >            pot(HB_POT), A, f, t, do_pot)
1284      endif
1285 <
1286 <    if ( iand(iMap, STICKYPOWER_PAIR).ne.0 ) then
1285 >    
1286 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1287         call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1288 <            pot, A, f, t, do_pot)
1288 >            pot(HB_POT), A, f, t, do_pot)
1289      endif
1290 <
1291 <    if ( iand(iMap, GAYBERNE_PAIR).ne.0 ) then
1290 >    
1291 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1292         call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1293 <            pot, A, f, t, do_pot)
1293 >            pot(VDW_POT), A, f, t, do_pot)
1294      endif
1295      
1296 <    if ( iand(iMap, GAYBERNE_LJ).ne.0 ) then
1297 <       call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1298 <            pot, A, f, t, do_pot)
1296 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1297 >       call do_gb_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1298 >            pot(VDW_POT), A, f, t, do_pot)
1299      endif
1300 <
1301 <    if ( iand(iMap, EAM_PAIR).ne.0 ) then      
1302 <       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1303 <            do_pot)
1300 >    
1301 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1302 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1303 >            pot(METALLIC_POT), f, do_pot)
1304      endif
1305 <
1306 <    if ( iand(iMap, SHAPE_PAIR).ne.0 ) then      
1305 >    
1306 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1307         call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1308 <            pot, A, f, t, do_pot)
1308 >            pot(VDW_POT), A, f, t, do_pot)
1309      endif
1310 <
1311 <    if ( iand(iMap, SHAPE_LJ).ne.0 ) then      
1310 >    
1311 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1312         call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1313 <            pot, A, f, t, do_pot)
1313 >            pot(VDW_POT), A, f, t, do_pot)
1314      endif
1315 +
1316 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1317 +       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1318 +            pot(METALLIC_POT), f, do_pot)
1319 +    endif
1320 +
1321      
1322 +    
1323    end subroutine do_pair
1324  
1325 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1325 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1326         do_pot, do_stress, eFrame, A, f, t, pot)
1327  
1328 <    real( kind = dp ) :: pot, sw
1328 >    real( kind = dp ) :: sw
1329 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1330      real( kind = dp ), dimension(9,nLocal) :: eFrame
1331      real (kind=dp), dimension(9,nLocal) :: A
1332      real (kind=dp), dimension(3,nLocal) :: f
# Line 1010 | Line 1334 | contains
1334  
1335      logical, intent(inout) :: do_pot, do_stress
1336      integer, intent(in) :: i, j
1337 <    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1337 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1338      real ( kind = dp )                :: r, rc
1339      real ( kind = dp ), intent(inout) :: d(3), dc(3)
1340  
1341 <    integer :: me_i, me_j, iMap
1341 >    integer :: me_i, me_j, iHash
1342  
1343 +    r = sqrt(rijsq)
1344 +
1345   #ifdef IS_MPI  
1346      me_i = atid_row(i)
1347      me_j = atid_col(j)  
# Line 1024 | Line 1350 | contains
1350      me_j = atid(j)  
1351   #endif
1352  
1353 <    iMap = InteractionMap(me_i, me_j)%InteractionHash
1353 >    iHash = InteractionHash(me_i, me_j)
1354  
1355 <    if ( iand(iMap, EAM_PAIR).ne.0 ) then      
1356 <            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1355 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1356 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1357 >    endif
1358 >
1359 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1360 >            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1361      endif
1362      
1363    end subroutine do_prepair
# Line 1035 | Line 1365 | contains
1365  
1366    subroutine do_preforce(nlocal,pot)
1367      integer :: nlocal
1368 <    real( kind = dp ) :: pot
1368 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1369  
1370      if (FF_uses_EAM .and. SIM_uses_EAM) then
1371 <       call calc_EAM_preforce_Frho(nlocal,pot)
1371 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1372      endif
1373 +    if (FF_uses_SC .and. SIM_uses_SC) then
1374 +       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1375 +    endif
1376  
1377  
1378    end subroutine do_preforce
# Line 1124 | Line 1457 | contains
1457      pot_Col = 0.0_dp
1458      pot_Temp = 0.0_dp
1459  
1127    rf_Row = 0.0_dp
1128    rf_Col = 0.0_dp
1129    rf_Temp = 0.0_dp
1130
1460   #endif
1461  
1462      if (FF_uses_EAM .and. SIM_uses_EAM) then
1463         call clean_EAM()
1464      endif
1465  
1137    rf = 0.0_dp
1466      tau_Temp = 0.0_dp
1467      virial_Temp = 0.0_dp
1468    end subroutine zero_work_arrays
# Line 1223 | Line 1551 | contains
1551  
1552    function FF_UsesDirectionalAtoms() result(doesit)
1553      logical :: doesit
1554 <    doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1227 <         FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1228 <         FF_uses_StickyPower .or. FF_uses_GayBerne .or. FF_uses_Shapes
1554 >    doesit = FF_uses_DirectionalAtoms
1555    end function FF_UsesDirectionalAtoms
1556  
1557    function FF_RequiresPrepairCalc() result(doesit)
1558      logical :: doesit
1559 <    doesit = FF_uses_EAM
1559 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1560 >         .or. FF_uses_MEAM
1561    end function FF_RequiresPrepairCalc
1562  
1236  function FF_RequiresPostpairCalc() result(doesit)
1237    logical :: doesit
1238    doesit = FF_uses_RF
1239  end function FF_RequiresPostpairCalc
1240
1563   #ifdef PROFILE
1564    function getforcetime() result(totalforcetime)
1565      real(kind=dp) :: totalforcetime

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines