ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1688 by chrisfen, Fri Oct 29 22:28:12 2004 UTC vs.
Revision 2269 by chuckv, Tue Aug 9 19:40:56 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.6 2004-10-29 22:28:12 chrisfen Exp $, $Date: 2004-10-29 22:28:12 $, $Name: not supported by cvs2svn $, $Revision: 1.6 $
48 > !! @version $Id: doForces.F90,v 1.27 2005-08-09 19:40:56 chuckv Exp $, $Date: 2005-08-09 19:40:56 $, $Name: not supported by cvs2svn $, $Revision: 1.27 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
19 <  use charge_charge
59 >  use sticky
60 >  use electrostatic_module
61    use reaction_field
62    use gb_pair
63    use shapes
# Line 32 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/DarkSide/fInteractionMap.h"
77  
78    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
79    INTEGER, PARAMETER:: PAIR_LOOP    = 2
# Line 39 | Line 81 | module doForces
81    logical, save :: haveRlist = .false.
82    logical, save :: haveNeighborList = .false.
83    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
84    logical, save :: haveSaneForceField = .false.
85 <  
85 >  logical, save :: haveInteractionMap = .false.
86 >
87    logical, save :: FF_uses_DirectionalAtoms
88    logical, save :: FF_uses_LennardJones
89 <  logical, save :: FF_uses_Electrostatic
90 <  logical, save :: FF_uses_charges
91 <  logical, save :: FF_uses_dipoles
92 <  logical, save :: FF_uses_sticky
89 >  logical, save :: FF_uses_Electrostatics
90 >  logical, save :: FF_uses_Charges
91 >  logical, save :: FF_uses_Dipoles
92 >  logical, save :: FF_uses_Quadrupoles
93 >  logical, save :: FF_uses_Sticky
94 >  logical, save :: FF_uses_StickyPower
95    logical, save :: FF_uses_GayBerne
96    logical, save :: FF_uses_EAM
97    logical, save :: FF_uses_Shapes
# Line 59 | Line 103 | module doForces
103    logical, save :: SIM_uses_Electrostatics
104    logical, save :: SIM_uses_Charges
105    logical, save :: SIM_uses_Dipoles
106 +  logical, save :: SIM_uses_Quadrupoles
107    logical, save :: SIM_uses_Sticky
108 +  logical, save :: SIM_uses_StickyPower
109    logical, save :: SIM_uses_GayBerne
110    logical, save :: SIM_uses_EAM
111    logical, save :: SIM_uses_Shapes
# Line 70 | Line 116 | module doForces
116    logical, save :: SIM_uses_PBC
117    logical, save :: SIM_uses_molecular_cutoffs
118  
73  real(kind=dp), save :: rlist, rlistsq
119  
120    public :: init_FF
121    public :: do_force_loop
122 <  public :: setRlistDF
122 > !  public :: setRlistDF
123 >  !public :: addInteraction
124 >  !public :: setInteractionHash
125 >  !public :: getInteractionHash
126 >  public :: createInteractionMap
127 >  public :: createGroupCutoffs
128  
129   #ifdef PROFILE
130    public :: getforcetime
# Line 82 | Line 132 | module doForces
132    real :: forceTimeInitial, forceTimeFinal
133    integer :: nLoops
134   #endif
135 +  
136 + !! Variables for cutoff mapping and interaction mapping
137 + ! Bit hash to determine pair-pair interactions.
138 +  integer, dimension(:,:),allocatable :: InteractionHash
139 + !! Cuttoffs in OOPSE are handled on a Group-Group pair basis.
140 + ! Largest cutoff for atypes for all potentials
141 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCuttoff
142 + ! Largest cutoff for groups
143 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
144 + ! Group to Gtype transformation Map
145 +  integer,dimension(:), allocatable :: groupToGtype
146 + ! Group Type Max Cutoff
147 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
148 + ! GroupType definition
149 +  type ::gtype
150 +     real(kind=dp) :: rcut ! Group Cutoff
151 +     real(kind=dp) :: rcutsq ! Group Cutoff Squared
152 +     real(kind=dp) :: rlistsq ! List cutoff Squared    
153 +  end type gtype
154  
155 <  type :: Properties
156 <     logical :: is_Directional   = .false.
88 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
98 <
99 <  type(Properties), dimension(:),allocatable :: PropertyMap
100 <
155 >  type(gtype), dimension(:,:), allocatable :: gtypeCutoffMap
156 >  
157   contains
158  
159 <  subroutine setRlistDF( this_rlist )
160 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
159 >
160 >  subroutine createInteractionMap(status)
161      integer :: nAtypes
162 <    integer :: status
162 >    integer, intent(out) :: status
163      integer :: i
164 <    logical :: thisProperty
165 <    real (kind=DP) :: thisDPproperty
164 >    integer :: j
165 >    integer :: ihash
166 >    real(kind=dp) :: myRcut
167 >    !! Test Types
168 >    logical :: i_is_LJ
169 >    logical :: i_is_Elect
170 >    logical :: i_is_Sticky
171 >    logical :: i_is_StickyP
172 >    logical :: i_is_GB
173 >    logical :: i_is_EAM
174 >    logical :: i_is_Shape
175 >    logical :: j_is_LJ
176 >    logical :: j_is_Elect
177 >    logical :: j_is_Sticky
178 >    logical :: j_is_StickyP
179 >    logical :: j_is_GB
180 >    logical :: j_is_EAM
181 >    logical :: j_is_Shape
182 >    
183 >    status = 0  
184  
185 <    status = 0
186 <
185 >    if (.not. associated(atypes)) then
186 >       call handleError("atype", "atypes was not present before call of createDefaultInteractionHash!")
187 >       status = -1
188 >       return
189 >    endif
190 >    
191      nAtypes = getSize(atypes)
192 <
192 >    
193      if (nAtypes == 0) then
194         status = -1
195         return
196      end if
129        
130    if (.not. allocated(PropertyMap)) then
131       allocate(PropertyMap(nAtypes))
132    endif
197  
198 +    if (.not. allocated(InteractionHash)) then
199 +       allocate(InteractionHash(nAtypes,nAtypes))
200 +    endif
201 +        
202      do i = 1, nAtypes
203 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
204 <       PropertyMap(i)%is_Directional = thisProperty
203 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
204 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
205 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
206 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
207 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
208 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
209 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
210  
211 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
211 >       do j = i, nAtypes
212  
213 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
214 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
213 >          iHash = 0
214 >          myRcut = 0.0_dp
215  
216 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
217 <       PropertyMap(i)%is_Sticky = thisProperty
216 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
217 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
218 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
219 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
220 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
221 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
222 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
223  
224 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
225 <       PropertyMap(i)%is_GayBerne = thisProperty
224 >          if (i_is_LJ .and. j_is_LJ) then
225 >             iHash = ior(iHash, LJ_PAIR)            
226 >          endif
227 >          
228 >          if (i_is_Elect .and. j_is_Elect) then
229 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
230 >          endif
231 >          
232 >          if (i_is_Sticky .and. j_is_Sticky) then
233 >             iHash = ior(iHash, STICKY_PAIR)
234 >          endif
235  
236 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
237 <       PropertyMap(i)%is_EAM = thisProperty
236 >          if (i_is_StickyP .and. j_is_StickyP) then
237 >             iHash = ior(iHash, STICKYPOWER_PAIR)
238 >          endif
239  
240 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
241 <       PropertyMap(i)%is_Shape = thisProperty
240 >          if (i_is_EAM .and. j_is_EAM) then
241 >             iHash = ior(iHash, EAM_PAIR)
242 >          endif
243  
244 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
245 <       PropertyMap(i)%is_FLARB = thisProperty
244 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
245 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
246 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
247 >
248 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
249 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
250 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
251 >
252 >
253 >          InteractionHash(i,j) = iHash
254 >          InteractionHash(j,i) = iHash
255 >
256 >       end do
257 >
258      end do
259  
260 <    havePropertyMap = .true.
260 >    haveInteractionMap = .true.
261 >  end subroutine createInteractionMap
262  
263 <  end subroutine createPropertyMap
263 >  subroutine createGroupCutoffs(skinThickness,defaultrList,stat)
264 >    real(kind=dp), intent(in), optional :: defaultRList
265 >    real(kind-dp), intent(in), :: skinThickenss
266 >  ! Query each potential and return the cutoff for that potential. We
267 >  ! build the neighbor list based on the largest cutoff value for that
268 >  ! atype. Each potential can decide whether to calculate the force for
269 >  ! that atype based upon it's own cutoff.
270 >  
271  
272 +    real(kind=dp), intent(in), optional :: defaultRCut, defaultSkinThickness
273 +
274 +    integer :: iMap
275 +    integer :: map_i,map_j
276 +    real(kind=dp) :: thisRCut = 0.0_dp
277 +    real(kind=dp) :: actualCutoff = 0.0_dp
278 +    integer, intent(out) :: stat
279 +    integer :: nAtypes
280 +    integer :: myStatus
281 +
282 +    stat = 0
283 +    if (.not. haveInteractionMap) then
284 +
285 +       call createInteractionMap(myStatus)
286 +
287 +       if (myStatus .ne. 0) then
288 +          write(default_error, *) 'createInteractionMap failed in doForces!'
289 +          stat = -1
290 +          return
291 +       endif
292 +    endif
293 +
294 +    nAtypes = getSize(atypes)
295 +    !! If we pass a default rcut, set all atypes to that cutoff distance
296 +    if(present(defaultRList)) then
297 +       InteractionMap(:,:)%rCut = defaultRCut
298 +       InteractionMap(:,:)%rCutSq = defaultRCut*defaultRCut
299 +       InteractionMap(:,:)%rListSq = (defaultRCut+defaultSkinThickness)**2
300 +       haveRlist = .true.
301 +       return
302 +    end if
303 +
304 +    do map_i = 1,nAtypes
305 +       do map_j = map_i,nAtypes
306 +          iMap = InteractionMap(map_i, map_j)%InteractionHash
307 +          
308 +          if ( iand(iMap, LJ_PAIR).ne.0 ) then
309 +             ! thisRCut = getLJCutOff(map_i,map_j)
310 +             if (thisRcut > actualCutoff) actualCutoff = thisRcut
311 +          endif
312 +          
313 +          if ( iand(iMap, ELECTROSTATIC_PAIR).ne.0 ) then
314 +             ! thisRCut = getElectrostaticCutOff(map_i,map_j)
315 +             if (thisRcut > actualCutoff) actualCutoff = thisRcut
316 +          endif
317 +          
318 +          if ( iand(iMap, STICKY_PAIR).ne.0 ) then
319 +             ! thisRCut = getStickyCutOff(map_i,map_j)
320 +              if (thisRcut > actualCutoff) actualCutoff = thisRcut
321 +           endif
322 +          
323 +           if ( iand(iMap, STICKYPOWER_PAIR).ne.0 ) then
324 +              ! thisRCut = getStickyPowerCutOff(map_i,map_j)
325 +              if (thisRcut > actualCutoff) actualCutoff = thisRcut
326 +           endif
327 +          
328 +           if ( iand(iMap, GAYBERNE_PAIR).ne.0 ) then
329 +              ! thisRCut = getGayberneCutOff(map_i,map_j)
330 +              if (thisRcut > actualCutoff) actualCutoff = thisRcut
331 +           endif
332 +          
333 +           if ( iand(iMap, GAYBERNE_LJ).ne.0 ) then
334 + !              thisRCut = getGaybrneLJCutOff(map_i,map_j)
335 +              if (thisRcut > actualCutoff) actualCutoff = thisRcut
336 +           endif
337 +          
338 +           if ( iand(iMap, EAM_PAIR).ne.0 ) then      
339 + !              thisRCut = getEAMCutOff(map_i,map_j)
340 +              if (thisRcut > actualCutoff) actualCutoff = thisRcut
341 +           endif
342 +          
343 +           if ( iand(iMap, SHAPE_PAIR).ne.0 ) then      
344 + !              thisRCut = getShapeCutOff(map_i,map_j)
345 +              if (thisRcut > actualCutoff) actualCutoff = thisRcut
346 +           endif
347 +          
348 +           if ( iand(iMap, SHAPE_LJ).ne.0 ) then      
349 + !              thisRCut = getShapeLJCutOff(map_i,map_j)
350 +              if (thisRcut > actualCutoff) actualCutoff = thisRcut
351 +           endif
352 +           InteractionMap(map_i, map_j)%rCut = actualCutoff
353 +           InteractionMap(map_i, map_j)%rCutSq = actualCutoff * actualCutoff
354 +           InteractionMap(map_i, map_j)%rListSq = (actualCutoff + skinThickness)**2
355 +
356 +           InteractionMap(map_j, map_i)%rCut = InteractionMap(map_i, map_j)%rCut
357 +           InteractionMap(map_j, map_i)%rCutSq = InteractionMap(map_i, map_j)%rCutSq
358 +           InteractionMap(map_j, map_i)%rListSq = InteractionMap(map_i, map_j)%rListSq
359 +        end do
360 +     end do
361 +     ! now the groups
362 +
363 +
364 +
365 +     haveRlist = .true.
366 +   end subroutine createGroupCutoffs
367 +
368    subroutine setSimVariables()
369      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
370      SIM_uses_LennardJones = SimUsesLennardJones()
# Line 174 | Line 372 | contains
372      SIM_uses_Charges = SimUsesCharges()
373      SIM_uses_Dipoles = SimUsesDipoles()
374      SIM_uses_Sticky = SimUsesSticky()
375 +    SIM_uses_StickyPower = SimUsesStickyPower()
376      SIM_uses_GayBerne = SimUsesGayBerne()
377      SIM_uses_EAM = SimUsesEAM()
378      SIM_uses_Shapes = SimUsesShapes()
# Line 194 | Line 393 | contains
393      integer :: myStatus
394  
395      error = 0
197    
198    if (.not. havePropertyMap) then
396  
397 <       myStatus = 0
398 <
399 <       call createPropertyMap(myStatus)
400 <
397 >    if (.not. haveInteractionMap) then
398 >      
399 >       myStatus = 0      
400 >       call createInteractionMap(myStatus)
401 >      
402         if (myStatus .ne. 0) then
403 <          write(default_error, *) 'createPropertyMap failed in doForces!'
403 >          write(default_error, *) 'createInteractionMap failed in doForces!'
404            error = -1
405            return
406         endif
# Line 239 | Line 437 | contains
437   #endif
438      return
439    end subroutine doReadyCheck
242    
440  
441 +
442    subroutine init_FF(use_RF_c, thisStat)
443  
444      logical, intent(in) :: use_RF_c
# Line 255 | Line 453 | contains
453  
454      !! Fortran's version of a cast:
455      FF_uses_RF = use_RF_c
456 <    
456 >
457      !! init_FF is called *after* all of the atom types have been
458      !! defined in atype_module using the new_atype subroutine.
459      !!
460      !! this will scan through the known atypes and figure out what
461      !! interactions are used by the force field.    
462 <  
462 >
463      FF_uses_DirectionalAtoms = .false.
464      FF_uses_LennardJones = .false.
465 <    FF_uses_Electrostatic = .false.
465 >    FF_uses_Electrostatics = .false.
466      FF_uses_Charges = .false.    
467      FF_uses_Dipoles = .false.
468      FF_uses_Sticky = .false.
469 +    FF_uses_StickyPower = .false.
470      FF_uses_GayBerne = .false.
471      FF_uses_EAM = .false.
472      FF_uses_Shapes = .false.
473      FF_uses_FLARB = .false.
474 <    
474 >
475      call getMatchingElementList(atypes, "is_Directional", .true., &
476           nMatches, MatchList)
477      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
# Line 280 | Line 479 | contains
479      call getMatchingElementList(atypes, "is_LennardJones", .true., &
480           nMatches, MatchList)
481      if (nMatches .gt. 0) FF_uses_LennardJones = .true.
482 <    
482 >
483      call getMatchingElementList(atypes, "is_Electrostatic", .true., &
484           nMatches, MatchList)
485      if (nMatches .gt. 0) then
486 <       FF_uses_Electrostatic = .true.
486 >       FF_uses_Electrostatics = .true.
487      endif
488  
489      call getMatchingElementList(atypes, "is_Charge", .true., &
490           nMatches, MatchList)
491      if (nMatches .gt. 0) then
492 <       FF_uses_charges = .true.  
493 <       FF_uses_electrostatic = .true.
492 >       FF_uses_Charges = .true.  
493 >       FF_uses_Electrostatics = .true.
494      endif
495 <    
495 >
496      call getMatchingElementList(atypes, "is_Dipole", .true., &
497           nMatches, MatchList)
498      if (nMatches .gt. 0) then
499 <       FF_uses_dipoles = .true.
500 <       FF_uses_electrostatic = .true.
499 >       FF_uses_Dipoles = .true.
500 >       FF_uses_Electrostatics = .true.
501         FF_uses_DirectionalAtoms = .true.
502      endif
503 <    
503 >
504 >    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
505 >         nMatches, MatchList)
506 >    if (nMatches .gt. 0) then
507 >       FF_uses_Quadrupoles = .true.
508 >       FF_uses_Electrostatics = .true.
509 >       FF_uses_DirectionalAtoms = .true.
510 >    endif
511 >
512      call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
513           MatchList)
514      if (nMatches .gt. 0) then
515         FF_uses_Sticky = .true.
516         FF_uses_DirectionalAtoms = .true.
517      endif
518 +
519 +    call getMatchingElementList(atypes, "is_StickyPower", .true., nMatches, &
520 +         MatchList)
521 +    if (nMatches .gt. 0) then
522 +       FF_uses_StickyPower = .true.
523 +       FF_uses_DirectionalAtoms = .true.
524 +    endif
525      
526      call getMatchingElementList(atypes, "is_GayBerne", .true., &
527           nMatches, MatchList)
# Line 315 | Line 529 | contains
529         FF_uses_GayBerne = .true.
530         FF_uses_DirectionalAtoms = .true.
531      endif
532 <    
532 >
533      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
534      if (nMatches .gt. 0) FF_uses_EAM = .true.
535 <    
535 >
536      call getMatchingElementList(atypes, "is_Shape", .true., &
537           nMatches, MatchList)
538      if (nMatches .gt. 0) then
# Line 332 | Line 546 | contains
546  
547      !! Assume sanity (for the sake of argument)
548      haveSaneForceField = .true.
549 <    
549 >
550      !! check to make sure the FF_uses_RF setting makes sense
551 <    
551 >
552      if (FF_uses_dipoles) then
553         if (FF_uses_RF) then
554            dielect = getDielect()
# Line 347 | Line 561 | contains
561            haveSaneForceField = .false.
562            return
563         endif
350    endif
351
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
564      endif
565  
566 +    !sticky module does not contain check_sticky_FF anymore
567 +    !if (FF_uses_sticky) then
568 +    !   call check_sticky_FF(my_status)
569 +    !   if (my_status /= 0) then
570 +    !      thisStat = -1
571 +    !      haveSaneForceField = .false.
572 +    !      return
573 +    !   end if
574 +    !endif
575 +
576      if (FF_uses_EAM) then
577 <         call init_EAM_FF(my_status)
577 >       call init_EAM_FF(my_status)
578         if (my_status /= 0) then
579            write(default_error, *) "init_EAM_FF returned a bad status"
580            thisStat = -1
# Line 379 | Line 594 | contains
594  
595      if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
596      endif
597 <    
597 >
598      if (.not. haveNeighborList) then
599         !! Create neighbor lists
600         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 604 | contains
604            return
605         endif
606         haveNeighborList = .true.
607 <    endif    
608 <    
607 >    endif
608 >
609    end subroutine init_FF
395  
610  
611 +
612    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
613    !------------------------------------------------------------->
614 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
614 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
615         do_pot_c, do_stress_c, error)
616      !! Position array provided by C, dimensioned by getNlocal
617      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 620 | contains
620      !! Rotation Matrix for each long range particle in simulation.
621      real( kind = dp), dimension(9, nLocal) :: A    
622      !! Unit vectors for dipoles (lab frame)
623 <    real( kind = dp ), dimension(3,nLocal) :: u_l
623 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
624      !! Force array provided by C, dimensioned by getNlocal
625      real ( kind = dp ), dimension(3,nLocal) :: f
626      !! Torsion array provided by C, dimensioned by getNlocal
# Line 443 | Line 658 | contains
658      integer :: localError
659      integer :: propPack_i, propPack_j
660      integer :: loopStart, loopEnd, loop
661 <
661 >    integer :: iMap
662      real(kind=dp) :: listSkin = 1.0  
663 <    
663 >
664      !! initialize local variables  
665 <    
665 >
666   #ifdef IS_MPI
667      pot_local = 0.0_dp
668      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 672 | contains
672   #else
673      natoms = nlocal
674   #endif
675 <    
675 >
676      call doReadyCheck(localError)
677      if ( localError .ne. 0 ) then
678         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 680 | contains
680         return
681      end if
682      call zero_work_arrays()
683 <        
683 >
684      do_pot = do_pot_c
685      do_stress = do_stress_c
686 <    
686 >
687      ! Gather all information needed by all force loops:
688 <    
688 >
689   #ifdef IS_MPI    
690 <    
690 >
691      call gather(q, q_Row, plan_atom_row_3d)
692      call gather(q, q_Col, plan_atom_col_3d)
693  
694      call gather(q_group, q_group_Row, plan_group_row_3d)
695      call gather(q_group, q_group_Col, plan_group_col_3d)
696 <        
696 >
697      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
698 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
699 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
700 <      
698 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
699 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
700 >
701         call gather(A, A_Row, plan_atom_row_rotation)
702         call gather(A, A_Col, plan_atom_col_rotation)
703      endif
704 <    
704 >
705   #endif
706 <    
706 >
707      !! Begin force loop timing:
708   #ifdef PROFILE
709      call cpu_time(forceTimeInitial)
710      nloops = nloops + 1
711   #endif
712 <    
712 >
713      loopEnd = PAIR_LOOP
714      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
715         loopStart = PREPAIR_LOOP
# Line 509 | Line 724 | contains
724         if (loop .eq. loopStart) then
725   #ifdef IS_MPI
726            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
727 <             update_nlist)
727 >               update_nlist)
728   #else
729            call checkNeighborList(nGroups, q_group, listSkin, &
730 <             update_nlist)
730 >               update_nlist)
731   #endif
732         endif
733 <      
733 >
734         if (update_nlist) then
735            !! save current configuration and construct neighbor list
736   #ifdef IS_MPI
# Line 526 | Line 741 | contains
741            neighborListSize = size(list)
742            nlist = 0
743         endif
744 <      
744 >
745         istart = 1
746   #ifdef IS_MPI
747         iend = nGroupsInRow
# Line 535 | Line 750 | contains
750   #endif
751         outer: do i = istart, iend
752  
753 + #ifdef IS_MPI
754 +             me_i = atid_row(i)
755 + #else
756 +             me_i = atid(i)
757 + #endif
758 +
759            if (update_nlist) point(i) = nlist + 1
760 <          
760 >
761            n_in_i = groupStartRow(i+1) - groupStartRow(i)
762 <          
762 >
763            if (update_nlist) then
764   #ifdef IS_MPI
765               jstart = 1
# Line 553 | Line 774 | contains
774               ! make sure group i has neighbors
775               if (jstart .gt. jend) cycle outer
776            endif
777 <          
777 >
778            do jnab = jstart, jend
779               if (update_nlist) then
780                  j = jnab
# Line 562 | Line 783 | contains
783               endif
784  
785   #ifdef IS_MPI
786 +             me_j = atid_col(j)
787               call get_interatomic_vector(q_group_Row(:,i), &
788                    q_group_Col(:,j), d_grp, rgrpsq)
789   #else
790 +             me_j = atid(j)
791               call get_interatomic_vector(q_group(:,i), &
792                    q_group(:,j), d_grp, rgrpsq)
793   #endif
794  
795 <             if (rgrpsq < rlistsq) then
795 >             if (rgrpsq < InteractionMap(me_i,me_j)%rListsq) then
796                  if (update_nlist) then
797                     nlist = nlist + 1
798 <                  
798 >
799                     if (nlist > neighborListSize) then
800   #ifdef IS_MPI                
801                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 809 | contains
809                        end if
810                        neighborListSize = size(list)
811                     endif
812 <                  
812 >
813                     list(nlist) = j
814                  endif
815 <                
815 >
816                  if (loop .eq. PAIR_LOOP) then
817                     vij = 0.0d0
818                     fij(1:3) = 0.0d0
819                  endif
820 <                
820 >
821                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
822                       in_switching_region)
823 <                
823 >
824                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
825 <                
825 >
826                  do ia = groupStartRow(i), groupStartRow(i+1)-1
827 <                  
827 >
828                     atom1 = groupListRow(ia)
829 <                  
829 >
830                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
831 <                      
831 >
832                        atom2 = groupListCol(jb)
833 <                      
833 >
834                        if (skipThisPair(atom1, atom2)) cycle inner
835  
836                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 627 | Line 850 | contains
850   #ifdef IS_MPI                      
851                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
852                                rgrpsq, d_grp, do_pot, do_stress, &
853 <                              u_l, A, f, t, pot_local)
853 >                              eFrame, A, f, t, pot_local)
854   #else
855                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
856                                rgrpsq, d_grp, do_pot, do_stress, &
857 <                              u_l, A, f, t, pot)
857 >                              eFrame, A, f, t, pot)
858   #endif                                              
859                        else
860   #ifdef IS_MPI                      
861                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
862                                do_pot, &
863 <                              u_l, A, f, t, pot_local, vpair, fpair)
863 >                              eFrame, A, f, t, pot_local, vpair, fpair)
864   #else
865                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
866                                do_pot,  &
867 <                              u_l, A, f, t, pot, vpair, fpair)
867 >                              eFrame, A, f, t, pot, vpair, fpair)
868   #endif
869  
870                           vij = vij + vpair
# Line 649 | Line 872 | contains
872                        endif
873                     enddo inner
874                  enddo
875 <                
875 >
876                  if (loop .eq. PAIR_LOOP) then
877                     if (in_switching_region) then
878                        swderiv = vij*dswdr/rgrp
879                        fij(1) = fij(1) + swderiv*d_grp(1)
880                        fij(2) = fij(2) + swderiv*d_grp(2)
881                        fij(3) = fij(3) + swderiv*d_grp(3)
882 <                      
882 >
883                        do ia=groupStartRow(i), groupStartRow(i+1)-1
884                           atom1=groupListRow(ia)
885                           mf = mfactRow(atom1)
# Line 670 | Line 893 | contains
893                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
894   #endif
895                        enddo
896 <                      
896 >
897                        do jb=groupStartCol(j), groupStartCol(j+1)-1
898                           atom2=groupListCol(jb)
899                           mf = mfactCol(atom2)
# Line 685 | Line 908 | contains
908   #endif
909                        enddo
910                     endif
911 <                  
911 >
912                     if (do_stress) call add_stress_tensor(d_grp, fij)
913                  endif
914               end if
915            enddo
916         enddo outer
917 <      
917 >
918         if (update_nlist) then
919   #ifdef IS_MPI
920            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 928 | contains
928               update_nlist = .false.                              
929            endif
930         endif
931 <            
931 >
932         if (loop .eq. PREPAIR_LOOP) then
933            call do_preforce(nlocal, pot)
934         endif
935 <      
935 >
936      enddo
937 <    
937 >
938      !! Do timing
939   #ifdef PROFILE
940      call cpu_time(forceTimeFinal)
941      forceTime = forceTime + forceTimeFinal - forceTimeInitial
942   #endif    
943 <    
943 >
944   #ifdef IS_MPI
945      !!distribute forces
946 <    
946 >
947      f_temp = 0.0_dp
948      call scatter(f_Row,f_temp,plan_atom_row_3d)
949      do i = 1,nlocal
950         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
951      end do
952 <    
952 >
953      f_temp = 0.0_dp
954      call scatter(f_Col,f_temp,plan_atom_col_3d)
955      do i = 1,nlocal
956         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
957      end do
958 <    
958 >
959      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
960         t_temp = 0.0_dp
961         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 964 | contains
964         end do
965         t_temp = 0.0_dp
966         call scatter(t_Col,t_temp,plan_atom_col_3d)
967 <      
967 >
968         do i = 1,nlocal
969            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
970         end do
971      endif
972 <    
972 >
973      if (do_pot) then
974         ! scatter/gather pot_row into the members of my column
975         call scatter(pot_Row, pot_Temp, plan_atom_row)
976 <      
976 >
977         ! scatter/gather pot_local into all other procs
978         ! add resultant to get total pot
979         do i = 1, nlocal
980            pot_local = pot_local + pot_Temp(i)
981         enddo
982 <      
982 >
983         pot_Temp = 0.0_DP
984 <      
984 >
985         call scatter(pot_Col, pot_Temp, plan_atom_col)
986         do i = 1, nlocal
987            pot_local = pot_local + pot_Temp(i)
988         enddo
989 <      
989 >
990      endif
991   #endif
992 <    
992 >
993      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
994 <      
994 >
995         if (FF_uses_RF .and. SIM_uses_RF) then
996 <          
996 >
997   #ifdef IS_MPI
998            call scatter(rf_Row,rf,plan_atom_row_3d)
999            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 778 | Line 1001 | contains
1001               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1002            end do
1003   #endif
1004 <          
1004 >
1005            do i = 1, nLocal
1006 <            
1006 >
1007               rfpot = 0.0_DP
1008   #ifdef IS_MPI
1009               me_i = atid_row(i)
1010   #else
1011               me_i = atid(i)
1012   #endif
1013 +             iMap = InteractionHash(me_i,me_j)
1014              
1015 <             if (PropertyMap(me_i)%is_Dipole) then
1016 <                
1015 >             if ( iand(iMap, ELECTROSTATIC_PAIR).ne.0 ) then
1016 >
1017                  mu_i = getDipoleMoment(me_i)
1018 <                
1018 >
1019                  !! The reaction field needs to include a self contribution
1020                  !! to the field:
1021 <                call accumulate_self_rf(i, mu_i, u_l)
1021 >                call accumulate_self_rf(i, mu_i, eFrame)
1022                  !! Get the reaction field contribution to the
1023                  !! potential and torques:
1024 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1024 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1025   #ifdef IS_MPI
1026                  pot_local = pot_local + rfpot
1027   #else
1028                  pot = pot + rfpot
1029 <      
1029 >
1030   #endif
1031 <             endif            
1031 >             endif
1032            enddo
1033         endif
1034      endif
1035 <    
1036 <    
1035 >
1036 >
1037   #ifdef IS_MPI
1038 <    
1038 >
1039      if (do_pot) then
1040         pot = pot + pot_local
1041         !! we assume the c code will do the allreduce to get the total potential
1042         !! we could do it right here if we needed to...
1043      endif
1044 <    
1044 >
1045      if (do_stress) then
1046         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1047              mpi_comm_world,mpi_err)
1048         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1049              mpi_comm_world,mpi_err)
1050      endif
1051 <    
1051 >
1052   #else
1053 <    
1053 >
1054      if (do_stress) then
1055         tau = tau_Temp
1056         virial = virial_Temp
1057      endif
1058 <    
1058 >
1059   #endif
1060 <      
1060 >
1061    end subroutine do_force_loop
1062 <  
1062 >
1063    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1064 <       u_l, A, f, t, pot, vpair, fpair)
1064 >       eFrame, A, f, t, pot, vpair, fpair)
1065  
1066      real( kind = dp ) :: pot, vpair, sw
1067      real( kind = dp ), dimension(3) :: fpair
1068      real( kind = dp ), dimension(nLocal)   :: mfact
1069 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1069 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1070      real( kind = dp ), dimension(9,nLocal) :: A
1071      real( kind = dp ), dimension(3,nLocal) :: f
1072      real( kind = dp ), dimension(3,nLocal) :: t
# Line 852 | Line 1076 | contains
1076      real ( kind = dp ), intent(inout) :: rijsq
1077      real ( kind = dp )                :: r
1078      real ( kind = dp ), intent(inout) :: d(3)
1079 +    real ( kind = dp ) :: ebalance
1080      integer :: me_i, me_j
1081  
1082 +    integer :: iMap
1083 +
1084      r = sqrt(rijsq)
1085      vpair = 0.0d0
1086      fpair(1:3) = 0.0d0
# Line 865 | Line 1092 | contains
1092      me_i = atid(i)
1093      me_j = atid(j)
1094   #endif
1095 <    
1096 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1097 <      
1098 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
1099 <            PropertyMap(me_j)%is_LennardJones ) then
873 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
874 <       endif
875 <      
1095 >
1096 >    iMap = InteractionMap(me_i, me_j)%InteractionHash
1097 >
1098 >    if ( iand(iMap, LJ_PAIR).ne.0 ) then
1099 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1100      endif
1101 <    
1102 <    if (FF_uses_charges .and. SIM_uses_charges) then
1103 <      
1104 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
1105 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1106 <               pot, f, do_pot)
1101 >
1102 >    if ( iand(iMap, ELECTROSTATIC_PAIR).ne.0 ) then
1103 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1104 >            pot, eFrame, f, t, do_pot)
1105 >
1106 >       if (FF_uses_RF .and. SIM_uses_RF) then
1107 >
1108 >          ! CHECK ME (RF needs to know about all electrostatic types)
1109 >          call accumulate_rf(i, j, r, eFrame, sw)
1110 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1111         endif
1112 <      
1112 >
1113 >    endif
1114 >
1115 >    if ( iand(iMap, STICKY_PAIR).ne.0 ) then
1116 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1117 >            pot, A, f, t, do_pot)
1118 >    endif
1119 >
1120 >    if ( iand(iMap, STICKYPOWER_PAIR).ne.0 ) then
1121 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1122 >            pot, A, f, t, do_pot)
1123 >    endif
1124 >
1125 >    if ( iand(iMap, GAYBERNE_PAIR).ne.0 ) then
1126 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1127 >            pot, A, f, t, do_pot)
1128      endif
1129      
1130 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
1131 <      
1132 <       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
1133 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
891 <               pot, u_l, f, t, do_pot)
892 <          if (FF_uses_RF .and. SIM_uses_RF) then
893 <             call accumulate_rf(i, j, r, u_l, sw)
894 <             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
895 <          endif
896 <       endif
1130 >    if ( iand(iMap, GAYBERNE_LJ).ne.0 ) then
1131 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1132 > !           pot, A, f, t, do_pot)
1133 >    endif
1134  
1135 +    if ( iand(iMap, EAM_PAIR).ne.0 ) then      
1136 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1137 +            do_pot)
1138      endif
1139  
1140 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1140 >    if ( iand(iMap, SHAPE_PAIR).ne.0 ) then      
1141 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1142 >            pot, A, f, t, do_pot)
1143 >    endif
1144  
1145 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1146 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1147 <               pot, A, f, t, do_pot)
905 <       endif
906 <      
1145 >    if ( iand(iMap, SHAPE_LJ).ne.0 ) then      
1146 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1147 >            pot, A, f, t, do_pot)
1148      endif
1149 +    
1150 +  end subroutine do_pair
1151  
1152 +  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1153 +       do_pot, do_stress, eFrame, A, f, t, pot)
1154  
1155 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1156 <      
1157 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
1158 <            PropertyMap(me_j)%is_GayBerne) then
1159 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1160 <               pot, u_l, f, t, do_pot)
1161 <       endif
1162 <      
1155 >    real( kind = dp ) :: pot, sw
1156 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1157 >    real (kind=dp), dimension(9,nLocal) :: A
1158 >    real (kind=dp), dimension(3,nLocal) :: f
1159 >    real (kind=dp), dimension(3,nLocal) :: t
1160 >
1161 >    logical, intent(inout) :: do_pot, do_stress
1162 >    integer, intent(in) :: i, j
1163 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1164 >    real ( kind = dp )                :: r, rc
1165 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1166 >
1167 >    integer :: me_i, me_j, iMap
1168 >
1169 > #ifdef IS_MPI  
1170 >    me_i = atid_row(i)
1171 >    me_j = atid_col(j)  
1172 > #else  
1173 >    me_i = atid(i)
1174 >    me_j = atid(j)  
1175 > #endif
1176 >
1177 >    iMap = InteractionMap(me_i, me_j)%InteractionHash
1178 >
1179 >    if ( iand(iMap, EAM_PAIR).ne.0 ) then      
1180 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1181      endif
1182      
1183 +  end subroutine do_prepair
1184 +
1185 +
1186 +  subroutine do_preforce(nlocal,pot)
1187 +    integer :: nlocal
1188 +    real( kind = dp ) :: pot
1189 +
1190      if (FF_uses_EAM .and. SIM_uses_EAM) then
1191 <      
922 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
923 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
924 <               do_pot)
925 <       endif
926 <      
1191 >       call calc_EAM_preforce_Frho(nlocal,pot)
1192      endif
1193  
1194 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1195 <       if ( PropertyMap(me_i)%is_Shape .and. &
1196 <            PropertyMap(me_j)%is_Shape ) then
1197 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1198 <               pot, A, f, t, do_pot)
1194 >
1195 >  end subroutine do_preforce
1196 >
1197 >
1198 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1199 >
1200 >    real (kind = dp), dimension(3) :: q_i
1201 >    real (kind = dp), dimension(3) :: q_j
1202 >    real ( kind = dp ), intent(out) :: r_sq
1203 >    real( kind = dp ) :: d(3), scaled(3)
1204 >    integer i
1205 >
1206 >    d(1:3) = q_j(1:3) - q_i(1:3)
1207 >
1208 >    ! Wrap back into periodic box if necessary
1209 >    if ( SIM_uses_PBC ) then
1210 >
1211 >       if( .not.boxIsOrthorhombic ) then
1212 >          ! calc the scaled coordinates.
1213 >
1214 >          scaled = matmul(HmatInv, d)
1215 >
1216 >          ! wrap the scaled coordinates
1217 >
1218 >          scaled = scaled  - anint(scaled)
1219 >
1220 >
1221 >          ! calc the wrapped real coordinates from the wrapped scaled
1222 >          ! coordinates
1223 >
1224 >          d = matmul(Hmat,scaled)
1225 >
1226 >       else
1227 >          ! calc the scaled coordinates.
1228 >
1229 >          do i = 1, 3
1230 >             scaled(i) = d(i) * HmatInv(i,i)
1231 >
1232 >             ! wrap the scaled coordinates
1233 >
1234 >             scaled(i) = scaled(i) - anint(scaled(i))
1235 >
1236 >             ! calc the wrapped real coordinates from the wrapped scaled
1237 >             ! coordinates
1238 >
1239 >             d(i) = scaled(i)*Hmat(i,i)
1240 >          enddo
1241         endif
1242 <      
1242 >
1243      endif
937    
938  end subroutine do_pair
1244  
1245 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
941 <       do_pot, do_stress, u_l, A, f, t, pot)
1245 >    r_sq = dot_product(d,d)
1246  
1247 <   real( kind = dp ) :: pot, sw
944 <   real( kind = dp ), dimension(3,nLocal) :: u_l
945 <   real (kind=dp), dimension(9,nLocal) :: A
946 <   real (kind=dp), dimension(3,nLocal) :: f
947 <   real (kind=dp), dimension(3,nLocal) :: t
948 <  
949 <   logical, intent(inout) :: do_pot, do_stress
950 <   integer, intent(in) :: i, j
951 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
952 <   real ( kind = dp )                :: r, rc
953 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
954 <  
955 <   logical :: is_EAM_i, is_EAM_j
956 <  
957 <   integer :: me_i, me_j
958 <  
1247 >  end subroutine get_interatomic_vector
1248  
1249 <    r = sqrt(rijsq)
961 <    if (SIM_uses_molecular_cutoffs) then
962 <       rc = sqrt(rcijsq)
963 <    else
964 <       rc = r
965 <    endif
966 <  
1249 >  subroutine zero_work_arrays()
1250  
968 #ifdef IS_MPI  
969   me_i = atid_row(i)
970   me_j = atid_col(j)  
971 #else  
972   me_i = atid(i)
973   me_j = atid(j)  
974 #endif
975  
976   if (FF_uses_EAM .and. SIM_uses_EAM) then
977      
978      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
979           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
980      
981   endif
982  
983 end subroutine do_prepair
984
985
986 subroutine do_preforce(nlocal,pot)
987   integer :: nlocal
988   real( kind = dp ) :: pot
989  
990   if (FF_uses_EAM .and. SIM_uses_EAM) then
991      call calc_EAM_preforce_Frho(nlocal,pot)
992   endif
993  
994  
995 end subroutine do_preforce
996
997
998 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
999  
1000   real (kind = dp), dimension(3) :: q_i
1001   real (kind = dp), dimension(3) :: q_j
1002   real ( kind = dp ), intent(out) :: r_sq
1003   real( kind = dp ) :: d(3), scaled(3)
1004   integer i
1005  
1006   d(1:3) = q_j(1:3) - q_i(1:3)
1007  
1008   ! Wrap back into periodic box if necessary
1009   if ( SIM_uses_PBC ) then
1010      
1011      if( .not.boxIsOrthorhombic ) then
1012         ! calc the scaled coordinates.
1013        
1014         scaled = matmul(HmatInv, d)
1015        
1016         ! wrap the scaled coordinates
1017        
1018         scaled = scaled  - anint(scaled)
1019        
1020        
1021         ! calc the wrapped real coordinates from the wrapped scaled
1022         ! coordinates
1023        
1024         d = matmul(Hmat,scaled)
1025        
1026      else
1027         ! calc the scaled coordinates.
1028        
1029         do i = 1, 3
1030            scaled(i) = d(i) * HmatInv(i,i)
1031            
1032            ! wrap the scaled coordinates
1033            
1034            scaled(i) = scaled(i) - anint(scaled(i))
1035            
1036            ! calc the wrapped real coordinates from the wrapped scaled
1037            ! coordinates
1038            
1039            d(i) = scaled(i)*Hmat(i,i)
1040         enddo
1041      endif
1042      
1043   endif
1044  
1045   r_sq = dot_product(d,d)
1046  
1047 end subroutine get_interatomic_vector
1048
1049 subroutine zero_work_arrays()
1050  
1251   #ifdef IS_MPI
1052  
1053   q_Row = 0.0_dp
1054   q_Col = 0.0_dp
1252  
1253 <   q_group_Row = 0.0_dp
1254 <   q_group_Col = 0.0_dp  
1255 <  
1256 <   u_l_Row = 0.0_dp
1257 <   u_l_Col = 0.0_dp
1258 <  
1259 <   A_Row = 0.0_dp
1260 <   A_Col = 0.0_dp
1261 <  
1262 <   f_Row = 0.0_dp
1263 <   f_Col = 0.0_dp
1264 <   f_Temp = 0.0_dp
1265 <  
1266 <   t_Row = 0.0_dp
1267 <   t_Col = 0.0_dp
1268 <   t_Temp = 0.0_dp
1269 <  
1270 <   pot_Row = 0.0_dp
1271 <   pot_Col = 0.0_dp
1272 <   pot_Temp = 0.0_dp
1273 <  
1274 <   rf_Row = 0.0_dp
1275 <   rf_Col = 0.0_dp
1276 <   rf_Temp = 0.0_dp
1277 <  
1278 < #endif
1279 <
1280 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1084 <      call clean_EAM()
1085 <   endif
1086 <  
1087 <   rf = 0.0_dp
1088 <   tau_Temp = 0.0_dp
1089 <   virial_Temp = 0.0_dp
1090 < end subroutine zero_work_arrays
1091 <
1092 < function skipThisPair(atom1, atom2) result(skip_it)
1093 <   integer, intent(in) :: atom1
1094 <   integer, intent(in), optional :: atom2
1095 <   logical :: skip_it
1096 <   integer :: unique_id_1, unique_id_2
1097 <   integer :: me_i,me_j
1098 <   integer :: i
1099 <  
1100 <   skip_it = .false.
1101 <  
1102 <   !! there are a number of reasons to skip a pair or a particle
1103 <   !! mostly we do this to exclude atoms who are involved in short
1104 <   !! range interactions (bonds, bends, torsions), but we also need
1105 <   !! to exclude some overcounted interactions that result from
1106 <   !! the parallel decomposition
1107 <  
1108 < #ifdef IS_MPI
1109 <   !! in MPI, we have to look up the unique IDs for each atom
1110 <   unique_id_1 = AtomRowToGlobal(atom1)
1111 < #else
1112 <   !! in the normal loop, the atom numbers are unique
1113 <   unique_id_1 = atom1
1253 >    q_Row = 0.0_dp
1254 >    q_Col = 0.0_dp
1255 >
1256 >    q_group_Row = 0.0_dp
1257 >    q_group_Col = 0.0_dp  
1258 >
1259 >    eFrame_Row = 0.0_dp
1260 >    eFrame_Col = 0.0_dp
1261 >
1262 >    A_Row = 0.0_dp
1263 >    A_Col = 0.0_dp
1264 >
1265 >    f_Row = 0.0_dp
1266 >    f_Col = 0.0_dp
1267 >    f_Temp = 0.0_dp
1268 >
1269 >    t_Row = 0.0_dp
1270 >    t_Col = 0.0_dp
1271 >    t_Temp = 0.0_dp
1272 >
1273 >    pot_Row = 0.0_dp
1274 >    pot_Col = 0.0_dp
1275 >    pot_Temp = 0.0_dp
1276 >
1277 >    rf_Row = 0.0_dp
1278 >    rf_Col = 0.0_dp
1279 >    rf_Temp = 0.0_dp
1280 >
1281   #endif
1282 <  
1283 <   !! We were called with only one atom, so just check the global exclude
1284 <   !! list for this atom
1285 <   if (.not. present(atom2)) then
1286 <      do i = 1, nExcludes_global
1287 <         if (excludesGlobal(i) == unique_id_1) then
1288 <            skip_it = .true.
1289 <            return
1290 <         end if
1291 <      end do
1292 <      return
1293 <   end if
1294 <  
1282 >
1283 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1284 >       call clean_EAM()
1285 >    endif
1286 >
1287 >    rf = 0.0_dp
1288 >    tau_Temp = 0.0_dp
1289 >    virial_Temp = 0.0_dp
1290 >  end subroutine zero_work_arrays
1291 >
1292 >  function skipThisPair(atom1, atom2) result(skip_it)
1293 >    integer, intent(in) :: atom1
1294 >    integer, intent(in), optional :: atom2
1295 >    logical :: skip_it
1296 >    integer :: unique_id_1, unique_id_2
1297 >    integer :: me_i,me_j
1298 >    integer :: i
1299 >
1300 >    skip_it = .false.
1301 >
1302 >    !! there are a number of reasons to skip a pair or a particle
1303 >    !! mostly we do this to exclude atoms who are involved in short
1304 >    !! range interactions (bonds, bends, torsions), but we also need
1305 >    !! to exclude some overcounted interactions that result from
1306 >    !! the parallel decomposition
1307 >
1308   #ifdef IS_MPI
1309 <   unique_id_2 = AtomColToGlobal(atom2)
1309 >    !! in MPI, we have to look up the unique IDs for each atom
1310 >    unique_id_1 = AtomRowToGlobal(atom1)
1311   #else
1312 <   unique_id_2 = atom2
1312 >    !! in the normal loop, the atom numbers are unique
1313 >    unique_id_1 = atom1
1314   #endif
1315 <  
1315 >
1316 >    !! We were called with only one atom, so just check the global exclude
1317 >    !! list for this atom
1318 >    if (.not. present(atom2)) then
1319 >       do i = 1, nExcludes_global
1320 >          if (excludesGlobal(i) == unique_id_1) then
1321 >             skip_it = .true.
1322 >             return
1323 >          end if
1324 >       end do
1325 >       return
1326 >    end if
1327 >
1328   #ifdef IS_MPI
1329 <   !! this situation should only arise in MPI simulations
1330 <   if (unique_id_1 == unique_id_2) then
1331 <      skip_it = .true.
1138 <      return
1139 <   end if
1140 <  
1141 <   !! this prevents us from doing the pair on multiple processors
1142 <   if (unique_id_1 < unique_id_2) then
1143 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1144 <         skip_it = .true.
1145 <         return
1146 <      endif
1147 <   else                
1148 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1149 <         skip_it = .true.
1150 <         return
1151 <      endif
1152 <   endif
1329 >    unique_id_2 = AtomColToGlobal(atom2)
1330 > #else
1331 >    unique_id_2 = atom2
1332   #endif
1333 <  
1334 <   !! the rest of these situations can happen in all simulations:
1335 <   do i = 1, nExcludes_global      
1336 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1337 <           (excludesGlobal(i) == unique_id_2)) then
1338 <         skip_it = .true.
1339 <         return
1340 <      endif
1341 <   enddo
1342 <  
1343 <   do i = 1, nSkipsForAtom(atom1)
1344 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1345 <         skip_it = .true.
1346 <         return
1347 <      endif
1348 <   end do
1349 <  
1350 <   return
1351 < end function skipThisPair
1352 <
1353 < function FF_UsesDirectionalAtoms() result(doesit)
1354 <   logical :: doesit
1355 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1356 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1357 < end function FF_UsesDirectionalAtoms
1358 <
1359 < function FF_RequiresPrepairCalc() result(doesit)
1360 <   logical :: doesit
1361 <   doesit = FF_uses_EAM
1362 < end function FF_RequiresPrepairCalc
1363 <
1364 < function FF_RequiresPostpairCalc() result(doesit)
1365 <   logical :: doesit
1366 <   doesit = FF_uses_RF
1367 < end function FF_RequiresPostpairCalc
1368 <
1333 >
1334 > #ifdef IS_MPI
1335 >    !! this situation should only arise in MPI simulations
1336 >    if (unique_id_1 == unique_id_2) then
1337 >       skip_it = .true.
1338 >       return
1339 >    end if
1340 >
1341 >    !! this prevents us from doing the pair on multiple processors
1342 >    if (unique_id_1 < unique_id_2) then
1343 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1344 >          skip_it = .true.
1345 >          return
1346 >       endif
1347 >    else                
1348 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1349 >          skip_it = .true.
1350 >          return
1351 >       endif
1352 >    endif
1353 > #endif
1354 >
1355 >    !! the rest of these situations can happen in all simulations:
1356 >    do i = 1, nExcludes_global      
1357 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1358 >            (excludesGlobal(i) == unique_id_2)) then
1359 >          skip_it = .true.
1360 >          return
1361 >       endif
1362 >    enddo
1363 >
1364 >    do i = 1, nSkipsForAtom(atom1)
1365 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1366 >          skip_it = .true.
1367 >          return
1368 >       endif
1369 >    end do
1370 >
1371 >    return
1372 >  end function skipThisPair
1373 >
1374 >  function FF_UsesDirectionalAtoms() result(doesit)
1375 >    logical :: doesit
1376 >    doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1377 >         FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1378 >         FF_uses_StickyPower .or. FF_uses_GayBerne .or. FF_uses_Shapes
1379 >  end function FF_UsesDirectionalAtoms
1380 >
1381 >  function FF_RequiresPrepairCalc() result(doesit)
1382 >    logical :: doesit
1383 >    doesit = FF_uses_EAM
1384 >  end function FF_RequiresPrepairCalc
1385 >
1386 >  function FF_RequiresPostpairCalc() result(doesit)
1387 >    logical :: doesit
1388 >    doesit = FF_uses_RF
1389 >  end function FF_RequiresPostpairCalc
1390 >
1391   #ifdef PROFILE
1392 < function getforcetime() result(totalforcetime)
1393 <   real(kind=dp) :: totalforcetime
1394 <   totalforcetime = forcetime
1395 < end function getforcetime
1392 >  function getforcetime() result(totalforcetime)
1393 >    real(kind=dp) :: totalforcetime
1394 >    totalforcetime = forcetime
1395 >  end function getforcetime
1396   #endif
1196
1197 !! This cleans componets of force arrays belonging only to fortran
1397  
1398 < subroutine add_stress_tensor(dpair, fpair)
1200 <  
1201 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1202 <  
1203 <   ! because the d vector is the rj - ri vector, and
1204 <   ! because fx, fy, fz are the force on atom i, we need a
1205 <   ! negative sign here:  
1206 <  
1207 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1208 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1209 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1210 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1211 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1212 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1213 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1214 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1215 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1216 <  
1217 <   virial_Temp = virial_Temp + &
1218 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1219 <  
1220 < end subroutine add_stress_tensor
1221 <
1222 < end module doForces
1398 >  !! This cleans componets of force arrays belonging only to fortran
1399  
1400 < !! Interfaces for C programs to module....
1400 >  subroutine add_stress_tensor(dpair, fpair)
1401  
1402 < subroutine initFortranFF(use_RF_c, thisStat)
1227 <    use doForces, ONLY: init_FF
1228 <    logical, intent(in) :: use_RF_c
1402 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1403  
1404 <    integer, intent(out) :: thisStat  
1405 <    call init_FF(use_RF_c, thisStat)
1404 >    ! because the d vector is the rj - ri vector, and
1405 >    ! because fx, fy, fz are the force on atom i, we need a
1406 >    ! negative sign here:  
1407  
1408 < end subroutine initFortranFF
1408 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1409 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1410 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1411 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1412 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1413 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1414 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1415 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1416 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1417  
1418 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1419 <       do_pot_c, do_stress_c, error)
1237 <      
1238 <       use definitions, ONLY: dp
1239 <       use simulation
1240 <       use doForces, ONLY: do_force_loop
1241 <    !! Position array provided by C, dimensioned by getNlocal
1242 <    real ( kind = dp ), dimension(3, nLocal) :: q
1243 <    !! molecular center-of-mass position array
1244 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1245 <    !! Rotation Matrix for each long range particle in simulation.
1246 <    real( kind = dp), dimension(9, nLocal) :: A    
1247 <    !! Unit vectors for dipoles (lab frame)
1248 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1249 <    !! Force array provided by C, dimensioned by getNlocal
1250 <    real ( kind = dp ), dimension(3,nLocal) :: f
1251 <    !! Torsion array provided by C, dimensioned by getNlocal
1252 <    real( kind = dp ), dimension(3,nLocal) :: t    
1418 >    virial_Temp = virial_Temp + &
1419 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1420  
1421 <    !! Stress Tensor
1422 <    real( kind = dp), dimension(9) :: tau  
1423 <    real ( kind = dp ) :: pot
1257 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1258 <    integer :: error
1259 <    
1260 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1261 <       do_pot_c, do_stress_c, error)
1262 <      
1263 < end subroutine doForceloop
1421 >  end subroutine add_stress_tensor
1422 >
1423 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines