ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 2269 by chuckv, Tue Aug 9 19:40:56 2005 UTC vs.
Revision 2727 by chrisfen, Fri Apr 21 19:32:07 2006 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.27 2005-08-09 19:40:56 chuckv Exp $, $Date: 2005-08-09 19:40:56 $, $Name: not supported by cvs2svn $, $Revision: 1.27 $
48 > !! @version $Id: doForces.F90,v 1.80 2006-04-21 19:32:07 chrisfen Exp $, $Date: 2006-04-21 19:32:07 $, $Name: not supported by cvs2svn $, $Revision: 1.80 $
49  
50  
51   module doForces
# Line 58 | Line 58 | module doForces
58    use lj
59    use sticky
60    use electrostatic_module
61 <  use reaction_field
62 <  use gb_pair
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 72 | Line 72 | module doForces
72    PRIVATE
73  
74   #define __FORTRAN90
75 < #include "UseTheForce/fSwitchingFunction.h"
75 > #include "UseTheForce/fCutoffPolicy.h"
76   #include "UseTheForce/DarkSide/fInteractionMap.h"
77 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78  
79    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
80    INTEGER, PARAMETER:: PAIR_LOOP    = 2
81  
81  logical, save :: haveRlist = .false.
82    logical, save :: haveNeighborList = .false.
83    logical, save :: haveSIMvariables = .false.
84    logical, save :: haveSaneForceField = .false.
85 <  logical, save :: haveInteractionMap = .false.
85 >  logical, save :: haveInteractionHash = .false.
86 >  logical, save :: haveGtypeCutoffMap = .false.
87 >  logical, save :: haveDefaultCutoffs = .false.
88 >  logical, save :: haveSkinThickness = .false.
89 >  logical, save :: haveElectrostaticSummationMethod = .false.
90 >  logical, save :: haveCutoffPolicy = .false.
91 >  logical, save :: VisitCutoffsAfterComputing = .false.
92  
93    logical, save :: FF_uses_DirectionalAtoms
88  logical, save :: FF_uses_LennardJones
89  logical, save :: FF_uses_Electrostatics
90  logical, save :: FF_uses_Charges
94    logical, save :: FF_uses_Dipoles
92  logical, save :: FF_uses_Quadrupoles
93  logical, save :: FF_uses_Sticky
94  logical, save :: FF_uses_StickyPower
95    logical, save :: FF_uses_GayBerne
96    logical, save :: FF_uses_EAM
97 <  logical, save :: FF_uses_Shapes
98 <  logical, save :: FF_uses_FLARB
99 <  logical, save :: FF_uses_RF
97 >  logical, save :: FF_uses_SC
98 >  logical, save :: FF_uses_MEAM
99 >
100  
101    logical, save :: SIM_uses_DirectionalAtoms
102  logical, save :: SIM_uses_LennardJones
103  logical, save :: SIM_uses_Electrostatics
104  logical, save :: SIM_uses_Charges
105  logical, save :: SIM_uses_Dipoles
106  logical, save :: SIM_uses_Quadrupoles
107  logical, save :: SIM_uses_Sticky
108  logical, save :: SIM_uses_StickyPower
109  logical, save :: SIM_uses_GayBerne
102    logical, save :: SIM_uses_EAM
103 <  logical, save :: SIM_uses_Shapes
104 <  logical, save :: SIM_uses_FLARB
113 <  logical, save :: SIM_uses_RF
103 >  logical, save :: SIM_uses_SC
104 >  logical, save :: SIM_uses_MEAM
105    logical, save :: SIM_requires_postpair_calc
106    logical, save :: SIM_requires_prepair_calc
107    logical, save :: SIM_uses_PBC
117  logical, save :: SIM_uses_molecular_cutoffs
108  
109 +  integer, save :: electrostaticSummationMethod
110 +  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
111  
112 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
113 +  real(kind=dp), save :: skinThickness
114 +  logical, save :: defaultDoShift
115 +
116    public :: init_FF
117 +  public :: setCutoffs
118 +  public :: cWasLame
119 +  public :: setElectrostaticMethod
120 +  public :: setCutoffPolicy
121 +  public :: setSkinThickness
122    public :: do_force_loop
122 !  public :: setRlistDF
123  !public :: addInteraction
124  !public :: setInteractionHash
125  !public :: getInteractionHash
126  public :: createInteractionMap
127  public :: createGroupCutoffs
123  
124   #ifdef PROFILE
125    public :: getforcetime
# Line 133 | Line 128 | module doForces
128    integer :: nLoops
129   #endif
130    
131 < !! Variables for cutoff mapping and interaction mapping
132 < ! Bit hash to determine pair-pair interactions.
133 <  integer, dimension(:,:),allocatable :: InteractionHash
134 < !! Cuttoffs in OOPSE are handled on a Group-Group pair basis.
135 < ! Largest cutoff for atypes for all potentials
136 <  real(kind=dp), dimension(:), allocatable :: atypeMaxCuttoff
142 < ! Largest cutoff for groups
143 <  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
144 < ! Group to Gtype transformation Map
145 <  integer,dimension(:), allocatable :: groupToGtype
146 < ! Group Type Max Cutoff
147 <  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
148 < ! GroupType definition
149 <  type ::gtype
150 <     real(kind=dp) :: rcut ! Group Cutoff
151 <     real(kind=dp) :: rcutsq ! Group Cutoff Squared
152 <     real(kind=dp) :: rlistsq ! List cutoff Squared    
153 <  end type gtype
131 >  !! Variables for cutoff mapping and interaction mapping
132 >  ! Bit hash to determine pair-pair interactions.
133 >  integer, dimension(:,:), allocatable :: InteractionHash
134 >  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
135 >  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
136 >  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
137  
138 <  type(gtype), dimension(:,:), allocatable :: gtypeCutoffMap
139 <  
138 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
139 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
140 >
141 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
142 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
143 >  type ::gtypeCutoffs
144 >     real(kind=dp) :: rcut
145 >     real(kind=dp) :: rcutsq
146 >     real(kind=dp) :: rlistsq
147 >  end type gtypeCutoffs
148 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
149 >
150 >
151   contains
152  
153 <
160 <  subroutine createInteractionMap(status)
153 >  subroutine createInteractionHash()
154      integer :: nAtypes
162    integer, intent(out) :: status
155      integer :: i
156      integer :: j
157 <    integer :: ihash
166 <    real(kind=dp) :: myRcut
157 >    integer :: iHash
158      !! Test Types
159      logical :: i_is_LJ
160      logical :: i_is_Elect
# Line 172 | Line 163 | contains
163      logical :: i_is_GB
164      logical :: i_is_EAM
165      logical :: i_is_Shape
166 +    logical :: i_is_SC
167 +    logical :: i_is_MEAM
168      logical :: j_is_LJ
169      logical :: j_is_Elect
170      logical :: j_is_Sticky
# Line 179 | Line 172 | contains
172      logical :: j_is_GB
173      logical :: j_is_EAM
174      logical :: j_is_Shape
175 <    
176 <    status = 0  
175 >    logical :: j_is_SC
176 >    logical :: j_is_MEAM
177 >    real(kind=dp) :: myRcut
178  
179      if (.not. associated(atypes)) then
180 <       call handleError("atype", "atypes was not present before call of createDefaultInteractionHash!")
187 <       status = -1
180 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
181         return
182      endif
183      
184      nAtypes = getSize(atypes)
185      
186      if (nAtypes == 0) then
187 <       status = -1
187 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
188         return
189      end if
190  
191      if (.not. allocated(InteractionHash)) then
192         allocate(InteractionHash(nAtypes,nAtypes))
193 +    else
194 +       deallocate(InteractionHash)
195 +       allocate(InteractionHash(nAtypes,nAtypes))
196      endif
197 +
198 +    if (.not. allocated(atypeMaxCutoff)) then
199 +       allocate(atypeMaxCutoff(nAtypes))
200 +    else
201 +       deallocate(atypeMaxCutoff)
202 +       allocate(atypeMaxCutoff(nAtypes))
203 +    endif
204          
205      do i = 1, nAtypes
206         call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
# Line 207 | Line 210 | contains
210         call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
211         call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
212         call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
213 +       call getElementProperty(atypes, i, "is_SC", i_is_SC)
214 +       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
215  
216         do j = i, nAtypes
217  
# Line 220 | Line 225 | contains
225            call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
226            call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
227            call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
228 +          call getElementProperty(atypes, j, "is_SC", j_is_SC)
229 +          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
230  
231            if (i_is_LJ .and. j_is_LJ) then
232               iHash = ior(iHash, LJ_PAIR)            
# Line 241 | Line 248 | contains
248               iHash = ior(iHash, EAM_PAIR)
249            endif
250  
251 +          if (i_is_SC .and. j_is_SC) then
252 +             iHash = ior(iHash, SC_PAIR)
253 +          endif
254 +
255            if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
256            if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
257            if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
# Line 257 | Line 268 | contains
268  
269      end do
270  
271 <    haveInteractionMap = .true.
272 <  end subroutine createInteractionMap
271 >    haveInteractionHash = .true.
272 >  end subroutine createInteractionHash
273  
274 <  subroutine createGroupCutoffs(skinThickness,defaultrList,stat)
264 <    real(kind=dp), intent(in), optional :: defaultRList
265 <    real(kind-dp), intent(in), :: skinThickenss
266 <  ! Query each potential and return the cutoff for that potential. We
267 <  ! build the neighbor list based on the largest cutoff value for that
268 <  ! atype. Each potential can decide whether to calculate the force for
269 <  ! that atype based upon it's own cutoff.
270 <  
274 >  subroutine createGtypeCutoffMap()
275  
276 <    real(kind=dp), intent(in), optional :: defaultRCut, defaultSkinThickness
276 >    logical :: i_is_LJ
277 >    logical :: i_is_Elect
278 >    logical :: i_is_Sticky
279 >    logical :: i_is_StickyP
280 >    logical :: i_is_GB
281 >    logical :: i_is_EAM
282 >    logical :: i_is_Shape
283 >    logical :: i_is_SC
284 >    logical :: GtypeFound
285  
286 <    integer :: iMap
287 <    integer :: map_i,map_j
288 <    real(kind=dp) :: thisRCut = 0.0_dp
289 <    real(kind=dp) :: actualCutoff = 0.0_dp
290 <    integer, intent(out) :: stat
291 <    integer :: nAtypes
292 <    integer :: myStatus
281 <
282 <    stat = 0
283 <    if (.not. haveInteractionMap) then
286 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
287 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
288 >    integer :: nGroupsInRow
289 >    integer :: nGroupsInCol
290 >    integer :: nGroupTypesRow,nGroupTypesCol
291 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
292 >    real(kind=dp) :: biggestAtypeCutoff
293  
294 <       call createInteractionMap(myStatus)
295 <
287 <       if (myStatus .ne. 0) then
288 <          write(default_error, *) 'createInteractionMap failed in doForces!'
289 <          stat = -1
290 <          return
291 <       endif
294 >    if (.not. haveInteractionHash) then
295 >       call createInteractionHash()      
296      endif
297 <
297 > #ifdef IS_MPI
298 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
299 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
300 > #endif
301      nAtypes = getSize(atypes)
302 <    !! If we pass a default rcut, set all atypes to that cutoff distance
303 <    if(present(defaultRList)) then
304 <       InteractionMap(:,:)%rCut = defaultRCut
305 <       InteractionMap(:,:)%rCutSq = defaultRCut*defaultRCut
306 <       InteractionMap(:,:)%rListSq = (defaultRCut+defaultSkinThickness)**2
307 <       haveRlist = .true.
308 <       return
309 <    end if
310 <
311 <    do map_i = 1,nAtypes
312 <       do map_j = map_i,nAtypes
313 <          iMap = InteractionMap(map_i, map_j)%InteractionHash
314 <          
315 <          if ( iand(iMap, LJ_PAIR).ne.0 ) then
316 <             ! thisRCut = getLJCutOff(map_i,map_j)
317 <             if (thisRcut > actualCutoff) actualCutoff = thisRcut
302 > ! Set all of the initial cutoffs to zero.
303 >    atypeMaxCutoff = 0.0_dp
304 >    do i = 1, nAtypes
305 >       if (SimHasAtype(i)) then    
306 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
307 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
308 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
309 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
310 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
311 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
312 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
313 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
314 >
315 >          if (haveDefaultCutoffs) then
316 >             atypeMaxCutoff(i) = defaultRcut
317 >          else
318 >             if (i_is_LJ) then          
319 >                thisRcut = getSigma(i) * 2.5_dp
320 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
321 >             endif
322 >             if (i_is_Elect) then
323 >                thisRcut = defaultRcut
324 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
325 >             endif
326 >             if (i_is_Sticky) then
327 >                thisRcut = getStickyCut(i)
328 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 >             endif
330 >             if (i_is_StickyP) then
331 >                thisRcut = getStickyPowerCut(i)
332 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 >             endif
334 >             if (i_is_GB) then
335 >                thisRcut = getGayBerneCut(i)
336 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 >             endif
338 >             if (i_is_EAM) then
339 >                thisRcut = getEAMCut(i)
340 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
341 >             endif
342 >             if (i_is_Shape) then
343 >                thisRcut = getShapeCut(i)
344 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
345 >             endif
346 >             if (i_is_SC) then
347 >                thisRcut = getSCCut(i)
348 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
349 >             endif
350            endif
351 <          
352 <          if ( iand(iMap, ELECTROSTATIC_PAIR).ne.0 ) then
353 <             ! thisRCut = getElectrostaticCutOff(map_i,map_j)
315 <             if (thisRcut > actualCutoff) actualCutoff = thisRcut
351 >                    
352 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
353 >             biggestAtypeCutoff = atypeMaxCutoff(i)
354            endif
317          
318          if ( iand(iMap, STICKY_PAIR).ne.0 ) then
319             ! thisRCut = getStickyCutOff(map_i,map_j)
320              if (thisRcut > actualCutoff) actualCutoff = thisRcut
321           endif
322          
323           if ( iand(iMap, STICKYPOWER_PAIR).ne.0 ) then
324              ! thisRCut = getStickyPowerCutOff(map_i,map_j)
325              if (thisRcut > actualCutoff) actualCutoff = thisRcut
326           endif
327          
328           if ( iand(iMap, GAYBERNE_PAIR).ne.0 ) then
329              ! thisRCut = getGayberneCutOff(map_i,map_j)
330              if (thisRcut > actualCutoff) actualCutoff = thisRcut
331           endif
332          
333           if ( iand(iMap, GAYBERNE_LJ).ne.0 ) then
334 !              thisRCut = getGaybrneLJCutOff(map_i,map_j)
335              if (thisRcut > actualCutoff) actualCutoff = thisRcut
336           endif
337          
338           if ( iand(iMap, EAM_PAIR).ne.0 ) then      
339 !              thisRCut = getEAMCutOff(map_i,map_j)
340              if (thisRcut > actualCutoff) actualCutoff = thisRcut
341           endif
342          
343           if ( iand(iMap, SHAPE_PAIR).ne.0 ) then      
344 !              thisRCut = getShapeCutOff(map_i,map_j)
345              if (thisRcut > actualCutoff) actualCutoff = thisRcut
346           endif
347          
348           if ( iand(iMap, SHAPE_LJ).ne.0 ) then      
349 !              thisRCut = getShapeLJCutOff(map_i,map_j)
350              if (thisRcut > actualCutoff) actualCutoff = thisRcut
351           endif
352           InteractionMap(map_i, map_j)%rCut = actualCutoff
353           InteractionMap(map_i, map_j)%rCutSq = actualCutoff * actualCutoff
354           InteractionMap(map_i, map_j)%rListSq = (actualCutoff + skinThickness)**2
355  
356 <           InteractionMap(map_j, map_i)%rCut = InteractionMap(map_i, map_j)%rCut
357 <           InteractionMap(map_j, map_i)%rCutSq = InteractionMap(map_i, map_j)%rCutSq
358 <           InteractionMap(map_j, map_i)%rListSq = InteractionMap(map_i, map_j)%rListSq
359 <        end do
360 <     end do
361 <     ! now the groups
356 >       endif
357 >    enddo
358 >    
359 >    istart = 1
360 >    jstart = 1
361 > #ifdef IS_MPI
362 >    iend = nGroupsInRow
363 >    jend = nGroupsInCol
364 > #else
365 >    iend = nGroups
366 >    jend = nGroups
367 > #endif
368 >    
369 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
370 >    if(.not.allocated(groupToGtypeRow)) then
371 >     !  allocate(groupToGtype(iend))
372 >       allocate(groupToGtypeRow(iend))
373 >    else
374 >       deallocate(groupToGtypeRow)
375 >       allocate(groupToGtypeRow(iend))
376 >    endif
377 >    if(.not.allocated(groupMaxCutoffRow)) then
378 >       allocate(groupMaxCutoffRow(iend))
379 >    else
380 >       deallocate(groupMaxCutoffRow)
381 >       allocate(groupMaxCutoffRow(iend))
382 >    end if
383  
384 +    if(.not.allocated(gtypeMaxCutoffRow)) then
385 +       allocate(gtypeMaxCutoffRow(iend))
386 +    else
387 +       deallocate(gtypeMaxCutoffRow)
388 +       allocate(gtypeMaxCutoffRow(iend))
389 +    endif
390  
391  
392 <     haveRlist = .true.
393 <   end subroutine createGroupCutoffs
392 > #ifdef IS_MPI
393 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
394 >    if(.not.associated(groupToGtypeCol)) then
395 >       allocate(groupToGtypeCol(jend))
396 >    else
397 >       deallocate(groupToGtypeCol)
398 >       allocate(groupToGtypeCol(jend))
399 >    end if
400  
401 <  subroutine setSimVariables()
402 <    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
403 <    SIM_uses_LennardJones = SimUsesLennardJones()
404 <    SIM_uses_Electrostatics = SimUsesElectrostatics()
405 <    SIM_uses_Charges = SimUsesCharges()
406 <    SIM_uses_Dipoles = SimUsesDipoles()
407 <    SIM_uses_Sticky = SimUsesSticky()
408 <    SIM_uses_StickyPower = SimUsesStickyPower()
409 <    SIM_uses_GayBerne = SimUsesGayBerne()
410 <    SIM_uses_EAM = SimUsesEAM()
411 <    SIM_uses_Shapes = SimUsesShapes()
412 <    SIM_uses_FLARB = SimUsesFLARB()
380 <    SIM_uses_RF = SimUsesRF()
381 <    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
382 <    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
383 <    SIM_uses_PBC = SimUsesPBC()
401 >    if(.not.associated(groupMaxCutoffCol)) then
402 >       allocate(groupMaxCutoffCol(jend))
403 >    else
404 >       deallocate(groupMaxCutoffCol)
405 >       allocate(groupMaxCutoffCol(jend))
406 >    end if
407 >    if(.not.associated(gtypeMaxCutoffCol)) then
408 >       allocate(gtypeMaxCutoffCol(jend))
409 >    else
410 >       deallocate(gtypeMaxCutoffCol)      
411 >       allocate(gtypeMaxCutoffCol(jend))
412 >    end if
413  
414 <    haveSIMvariables = .true.
414 >       groupMaxCutoffCol = 0.0_dp
415 >       gtypeMaxCutoffCol = 0.0_dp
416  
417 <    return
418 <  end subroutine setSimVariables
417 > #endif
418 >       groupMaxCutoffRow = 0.0_dp
419 >       gtypeMaxCutoffRow = 0.0_dp
420  
421 +
422 +    !! first we do a single loop over the cutoff groups to find the
423 +    !! largest cutoff for any atypes present in this group.  We also
424 +    !! create gtypes at this point.
425 +    
426 +    tol = 1.0d-6
427 +    nGroupTypesRow = 0
428 +    nGroupTypesCol = 0
429 +    do i = istart, iend      
430 +       n_in_i = groupStartRow(i+1) - groupStartRow(i)
431 +       groupMaxCutoffRow(i) = 0.0_dp
432 +       do ia = groupStartRow(i), groupStartRow(i+1)-1
433 +          atom1 = groupListRow(ia)
434 + #ifdef IS_MPI
435 +          me_i = atid_row(atom1)
436 + #else
437 +          me_i = atid(atom1)
438 + #endif          
439 +          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
440 +             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
441 +          endif          
442 +       enddo
443 +       if (nGroupTypesRow.eq.0) then
444 +          nGroupTypesRow = nGroupTypesRow + 1
445 +          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
446 +          groupToGtypeRow(i) = nGroupTypesRow
447 +       else
448 +          GtypeFound = .false.
449 +          do g = 1, nGroupTypesRow
450 +             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
451 +                groupToGtypeRow(i) = g
452 +                GtypeFound = .true.
453 +             endif
454 +          enddo
455 +          if (.not.GtypeFound) then            
456 +             nGroupTypesRow = nGroupTypesRow + 1
457 +             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
458 +             groupToGtypeRow(i) = nGroupTypesRow
459 +          endif
460 +       endif
461 +    enddo    
462 +
463 + #ifdef IS_MPI
464 +    do j = jstart, jend      
465 +       n_in_j = groupStartCol(j+1) - groupStartCol(j)
466 +       groupMaxCutoffCol(j) = 0.0_dp
467 +       do ja = groupStartCol(j), groupStartCol(j+1)-1
468 +          atom1 = groupListCol(ja)
469 +
470 +          me_j = atid_col(atom1)
471 +
472 +          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
473 +             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
474 +          endif          
475 +       enddo
476 +
477 +       if (nGroupTypesCol.eq.0) then
478 +          nGroupTypesCol = nGroupTypesCol + 1
479 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
480 +          groupToGtypeCol(j) = nGroupTypesCol
481 +       else
482 +          GtypeFound = .false.
483 +          do g = 1, nGroupTypesCol
484 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
485 +                groupToGtypeCol(j) = g
486 +                GtypeFound = .true.
487 +             endif
488 +          enddo
489 +          if (.not.GtypeFound) then            
490 +             nGroupTypesCol = nGroupTypesCol + 1
491 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
492 +             groupToGtypeCol(j) = nGroupTypesCol
493 +          endif
494 +       endif
495 +    enddo    
496 +
497 + #else
498 + ! Set pointers to information we just found
499 +    nGroupTypesCol = nGroupTypesRow
500 +    groupToGtypeCol => groupToGtypeRow
501 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
502 +    groupMaxCutoffCol => groupMaxCutoffRow
503 + #endif
504 +
505 +    !! allocate the gtypeCutoffMap here.
506 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
507 +    !! then we do a double loop over all the group TYPES to find the cutoff
508 +    !! map between groups of two types
509 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
510 +
511 +    do i = 1, nGroupTypesRow      
512 +       do j = 1, nGroupTypesCol
513 +      
514 +          select case(cutoffPolicy)
515 +          case(TRADITIONAL_CUTOFF_POLICY)
516 +             thisRcut = tradRcut
517 +          case(MIX_CUTOFF_POLICY)
518 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
519 +          case(MAX_CUTOFF_POLICY)
520 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
521 +          case default
522 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
523 +             return
524 +          end select
525 +          gtypeCutoffMap(i,j)%rcut = thisRcut
526 +          
527 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
528 +
529 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
530 +
531 +          if (.not.haveSkinThickness) then
532 +             skinThickness = 1.0_dp
533 +          endif
534 +
535 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
536 +
537 +          ! sanity check
538 +
539 +          if (haveDefaultCutoffs) then
540 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
541 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
542 +             endif
543 +          endif
544 +       enddo
545 +    enddo
546 +
547 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
548 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
549 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
550 + #ifdef IS_MPI
551 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
552 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
553 + #endif
554 +    groupMaxCutoffCol => null()
555 +    gtypeMaxCutoffCol => null()
556 +    
557 +    haveGtypeCutoffMap = .true.
558 +   end subroutine createGtypeCutoffMap
559 +
560 +   subroutine setCutoffs(defRcut, defRsw)
561 +
562 +     real(kind=dp),intent(in) :: defRcut, defRsw
563 +     character(len = statusMsgSize) :: errMsg
564 +     integer :: localError
565 +
566 +     defaultRcut = defRcut
567 +     defaultRsw = defRsw
568 +    
569 +     defaultDoShift = .false.
570 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
571 +        
572 +        write(errMsg, *) &
573 +             'cutoffRadius and switchingRadius are set to the same', newline &
574 +             // tab, 'value.  OOPSE will use shifted ', newline &
575 +             // tab, 'potentials instead of switching functions.'
576 +        
577 +        call handleInfo("setCutoffs", errMsg)
578 +        
579 +        defaultDoShift = .true.
580 +        
581 +     endif
582 +    
583 +     localError = 0
584 +     call setLJDefaultCutoff( defaultRcut, defaultDoShift )
585 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
586 +     call setCutoffEAM( defaultRcut )
587 +     call setCutoffSC( defaultRcut )
588 +     call set_switch(defaultRsw, defaultRcut)
589 +     call setHmatDangerousRcutValue(defaultRcut)
590 +        
591 +     haveDefaultCutoffs = .true.
592 +     haveGtypeCutoffMap = .false.
593 +
594 +   end subroutine setCutoffs
595 +
596 +   subroutine cWasLame()
597 +    
598 +     VisitCutoffsAfterComputing = .true.
599 +     return
600 +    
601 +   end subroutine cWasLame
602 +  
603 +   subroutine setCutoffPolicy(cutPolicy)
604 +    
605 +     integer, intent(in) :: cutPolicy
606 +    
607 +     cutoffPolicy = cutPolicy
608 +     haveCutoffPolicy = .true.
609 +     haveGtypeCutoffMap = .false.
610 +    
611 +   end subroutine setCutoffPolicy
612 +  
613 +   subroutine setElectrostaticMethod( thisESM )
614 +
615 +     integer, intent(in) :: thisESM
616 +
617 +     electrostaticSummationMethod = thisESM
618 +     haveElectrostaticSummationMethod = .true.
619 +    
620 +   end subroutine setElectrostaticMethod
621 +
622 +   subroutine setSkinThickness( thisSkin )
623 +    
624 +     real(kind=dp), intent(in) :: thisSkin
625 +    
626 +     skinThickness = thisSkin
627 +     haveSkinThickness = .true.    
628 +     haveGtypeCutoffMap = .false.
629 +    
630 +   end subroutine setSkinThickness
631 +      
632 +   subroutine setSimVariables()
633 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
634 +     SIM_uses_EAM = SimUsesEAM()
635 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
636 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
637 +     SIM_uses_PBC = SimUsesPBC()
638 +     SIM_uses_SC = SimUsesSC()
639 +    
640 +     haveSIMvariables = .true.
641 +    
642 +     return
643 +   end subroutine setSimVariables
644 +
645    subroutine doReadyCheck(error)
646      integer, intent(out) :: error
392
647      integer :: myStatus
648  
649      error = 0
650  
651 <    if (.not. haveInteractionMap) then
652 <      
399 <       myStatus = 0      
400 <       call createInteractionMap(myStatus)
401 <      
402 <       if (myStatus .ne. 0) then
403 <          write(default_error, *) 'createInteractionMap failed in doForces!'
404 <          error = -1
405 <          return
406 <       endif
651 >    if (.not. haveInteractionHash) then      
652 >       call createInteractionHash()      
653      endif
654  
655 <    if (.not. haveSIMvariables) then
656 <       call setSimVariables()
655 >    if (.not. haveGtypeCutoffMap) then        
656 >       call createGtypeCutoffMap()      
657      endif
658  
659 <    if (.not. haveRlist) then
660 <       write(default_error, *) 'rList has not been set in doForces!'
661 <       error = -1
662 <       return
659 >    if (VisitCutoffsAfterComputing) then
660 >       call set_switch(largestRcut, largestRcut)      
661 >       call setHmatDangerousRcutValue(largestRcut)
662 >       call setCutoffEAM(largestRcut)
663 >       call setCutoffSC(largestRcut)
664 >       VisitCutoffsAfterComputing = .false.
665      endif
666  
667 +    if (.not. haveSIMvariables) then
668 +       call setSimVariables()
669 +    endif
670 +
671      if (.not. haveNeighborList) then
672         write(default_error, *) 'neighbor list has not been initialized in doForces!'
673         error = -1
674         return
675      end if
676 <
676 >    
677      if (.not. haveSaneForceField) then
678         write(default_error, *) 'Force Field is not sane in doForces!'
679         error = -1
680         return
681      end if
682 <
682 >    
683   #ifdef IS_MPI
684      if (.not. isMPISimSet()) then
685         write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
# Line 439 | Line 691 | contains
691    end subroutine doReadyCheck
692  
693  
694 <  subroutine init_FF(use_RF_c, thisStat)
694 >  subroutine init_FF(thisStat)
695  
444    logical, intent(in) :: use_RF_c
445
696      integer, intent(out) :: thisStat  
697      integer :: my_status, nMatches
698      integer, pointer :: MatchList(:) => null()
449    real(kind=dp) :: rcut, rrf, rt, dielect
699  
700      !! assume things are copacetic, unless they aren't
701      thisStat = 0
702  
454    !! Fortran's version of a cast:
455    FF_uses_RF = use_RF_c
456
703      !! init_FF is called *after* all of the atom types have been
704      !! defined in atype_module using the new_atype subroutine.
705      !!
# Line 461 | Line 707 | contains
707      !! interactions are used by the force field.    
708  
709      FF_uses_DirectionalAtoms = .false.
464    FF_uses_LennardJones = .false.
465    FF_uses_Electrostatics = .false.
466    FF_uses_Charges = .false.    
710      FF_uses_Dipoles = .false.
468    FF_uses_Sticky = .false.
469    FF_uses_StickyPower = .false.
711      FF_uses_GayBerne = .false.
712      FF_uses_EAM = .false.
713 <    FF_uses_Shapes = .false.
473 <    FF_uses_FLARB = .false.
713 >    FF_uses_SC = .false.
714  
715      call getMatchingElementList(atypes, "is_Directional", .true., &
716           nMatches, MatchList)
717      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
718  
479    call getMatchingElementList(atypes, "is_LennardJones", .true., &
480         nMatches, MatchList)
481    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
482
483    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
484         nMatches, MatchList)
485    if (nMatches .gt. 0) then
486       FF_uses_Electrostatics = .true.
487    endif
488
489    call getMatchingElementList(atypes, "is_Charge", .true., &
490         nMatches, MatchList)
491    if (nMatches .gt. 0) then
492       FF_uses_Charges = .true.  
493       FF_uses_Electrostatics = .true.
494    endif
495
719      call getMatchingElementList(atypes, "is_Dipole", .true., &
720           nMatches, MatchList)
721 <    if (nMatches .gt. 0) then
499 <       FF_uses_Dipoles = .true.
500 <       FF_uses_Electrostatics = .true.
501 <       FF_uses_DirectionalAtoms = .true.
502 <    endif
503 <
504 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
505 <         nMatches, MatchList)
506 <    if (nMatches .gt. 0) then
507 <       FF_uses_Quadrupoles = .true.
508 <       FF_uses_Electrostatics = .true.
509 <       FF_uses_DirectionalAtoms = .true.
510 <    endif
511 <
512 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
513 <         MatchList)
514 <    if (nMatches .gt. 0) then
515 <       FF_uses_Sticky = .true.
516 <       FF_uses_DirectionalAtoms = .true.
517 <    endif
518 <
519 <    call getMatchingElementList(atypes, "is_StickyPower", .true., nMatches, &
520 <         MatchList)
521 <    if (nMatches .gt. 0) then
522 <       FF_uses_StickyPower = .true.
523 <       FF_uses_DirectionalAtoms = .true.
524 <    endif
721 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
722      
723      call getMatchingElementList(atypes, "is_GayBerne", .true., &
724           nMatches, MatchList)
725 <    if (nMatches .gt. 0) then
529 <       FF_uses_GayBerne = .true.
530 <       FF_uses_DirectionalAtoms = .true.
531 <    endif
725 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
726  
727      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
728      if (nMatches .gt. 0) FF_uses_EAM = .true.
729  
730 <    call getMatchingElementList(atypes, "is_Shape", .true., &
731 <         nMatches, MatchList)
538 <    if (nMatches .gt. 0) then
539 <       FF_uses_Shapes = .true.
540 <       FF_uses_DirectionalAtoms = .true.
541 <    endif
730 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
731 >    if (nMatches .gt. 0) FF_uses_SC = .true.
732  
543    call getMatchingElementList(atypes, "is_FLARB", .true., &
544         nMatches, MatchList)
545    if (nMatches .gt. 0) FF_uses_FLARB = .true.
733  
547    !! Assume sanity (for the sake of argument)
734      haveSaneForceField = .true.
735  
550    !! check to make sure the FF_uses_RF setting makes sense
551
552    if (FF_uses_dipoles) then
553       if (FF_uses_RF) then
554          dielect = getDielect()
555          call initialize_rf(dielect)
556       endif
557    else
558       if (FF_uses_RF) then          
559          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
560          thisStat = -1
561          haveSaneForceField = .false.
562          return
563       endif
564    endif
565
566    !sticky module does not contain check_sticky_FF anymore
567    !if (FF_uses_sticky) then
568    !   call check_sticky_FF(my_status)
569    !   if (my_status /= 0) then
570    !      thisStat = -1
571    !      haveSaneForceField = .false.
572    !      return
573    !   end if
574    !endif
575
736      if (FF_uses_EAM) then
737         call init_EAM_FF(my_status)
738         if (my_status /= 0) then
# Line 583 | Line 743 | contains
743         end if
744      endif
745  
586    if (FF_uses_GayBerne) then
587       call check_gb_pair_FF(my_status)
588       if (my_status .ne. 0) then
589          thisStat = -1
590          haveSaneForceField = .false.
591          return
592       endif
593    endif
594
595    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
596    endif
597
746      if (.not. haveNeighborList) then
747         !! Create neighbor lists
748         call expandNeighborList(nLocal, my_status)
# Line 628 | Line 776 | contains
776  
777      !! Stress Tensor
778      real( kind = dp), dimension(9) :: tau  
779 <    real ( kind = dp ) :: pot
779 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
780      logical ( kind = 2) :: do_pot_c, do_stress_c
781      logical :: do_pot
782      logical :: do_stress
783      logical :: in_switching_region
784   #ifdef IS_MPI
785 <    real( kind = DP ) :: pot_local
785 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
786      integer :: nAtomsInRow
787      integer :: nAtomsInCol
788      integer :: nprocs
# Line 649 | Line 797 | contains
797      integer :: nlist
798      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
799      real( kind = DP ) :: sw, dswdr, swderiv, mf
800 +    real( kind = DP ) :: rVal
801      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
802      real(kind=dp) :: rfpot, mu_i, virial
803 +    real(kind=dp):: rCut
804      integer :: me_i, me_j, n_in_i, n_in_j
805      logical :: is_dp_i
806      integer :: neighborListSize
# Line 658 | Line 808 | contains
808      integer :: localError
809      integer :: propPack_i, propPack_j
810      integer :: loopStart, loopEnd, loop
811 <    integer :: iMap
812 <    real(kind=dp) :: listSkin = 1.0  
811 >    integer :: iHash
812 >    integer :: i1
813 >  
814  
815      !! initialize local variables  
816  
# Line 723 | Line 874 | contains
874         ! (but only on the first time through):
875         if (loop .eq. loopStart) then
876   #ifdef IS_MPI
877 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
877 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
878                 update_nlist)
879   #else
880 <          call checkNeighborList(nGroups, q_group, listSkin, &
880 >          call checkNeighborList(nGroups, q_group, skinThickness, &
881                 update_nlist)
882   #endif
883         endif
# Line 750 | Line 901 | contains
901   #endif
902         outer: do i = istart, iend
903  
753 #ifdef IS_MPI
754             me_i = atid_row(i)
755 #else
756             me_i = atid(i)
757 #endif
758
904            if (update_nlist) point(i) = nlist + 1
905  
906            n_in_i = groupStartRow(i+1) - groupStartRow(i)
# Line 790 | Line 935 | contains
935               me_j = atid(j)
936               call get_interatomic_vector(q_group(:,i), &
937                    q_group(:,j), d_grp, rgrpsq)
938 < #endif
938 > #endif      
939  
940 <             if (rgrpsq < InteractionMap(me_i,me_j)%rListsq) then
940 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
941                  if (update_nlist) then
942                     nlist = nlist + 1
943  
# Line 812 | Line 957 | contains
957  
958                     list(nlist) = j
959                  endif
960 +                
961 +                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
962  
963 <                if (loop .eq. PAIR_LOOP) then
964 <                   vij = 0.0d0
965 <                   fij(1:3) = 0.0d0
966 <                endif
967 <
968 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
969 <                     in_switching_region)
970 <
971 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
972 <
973 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
974 <
975 <                   atom1 = groupListRow(ia)
976 <
977 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
978 <
979 <                      atom2 = groupListCol(jb)
980 <
981 <                      if (skipThisPair(atom1, atom2)) cycle inner
982 <
983 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
984 <                         d_atm(1:3) = d_grp(1:3)
985 <                         ratmsq = rgrpsq
986 <                      else
963 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
964 >                   if (loop .eq. PAIR_LOOP) then
965 >                      vij = 0.0d0
966 >                      fij(1) = 0.0_dp
967 >                      fij(2) = 0.0_dp
968 >                      fij(3) = 0.0_dp
969 >                   endif
970 >                  
971 >                   call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
972 >                  
973 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
974 >                  
975 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
976 >                      
977 >                      atom1 = groupListRow(ia)
978 >                      
979 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
980 >                        
981 >                         atom2 = groupListCol(jb)
982 >                        
983 >                         if (skipThisPair(atom1, atom2))  cycle inner
984 >                        
985 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
986 >                            d_atm(1) = d_grp(1)
987 >                            d_atm(2) = d_grp(2)
988 >                            d_atm(3) = d_grp(3)
989 >                            ratmsq = rgrpsq
990 >                         else
991   #ifdef IS_MPI
992 <                         call get_interatomic_vector(q_Row(:,atom1), &
993 <                              q_Col(:,atom2), d_atm, ratmsq)
992 >                            call get_interatomic_vector(q_Row(:,atom1), &
993 >                                 q_Col(:,atom2), d_atm, ratmsq)
994   #else
995 <                         call get_interatomic_vector(q(:,atom1), &
996 <                              q(:,atom2), d_atm, ratmsq)
995 >                            call get_interatomic_vector(q(:,atom1), &
996 >                                 q(:,atom2), d_atm, ratmsq)
997   #endif
998 <                      endif
999 <
1000 <                      if (loop .eq. PREPAIR_LOOP) then
998 >                         endif
999 >                        
1000 >                         if (loop .eq. PREPAIR_LOOP) then
1001   #ifdef IS_MPI                      
1002 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1003 <                              rgrpsq, d_grp, do_pot, do_stress, &
1004 <                              eFrame, A, f, t, pot_local)
1002 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1003 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1004 >                                 eFrame, A, f, t, pot_local)
1005   #else
1006 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1007 <                              rgrpsq, d_grp, do_pot, do_stress, &
1008 <                              eFrame, A, f, t, pot)
1006 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1007 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1008 >                                 eFrame, A, f, t, pot)
1009   #endif                                              
1010 <                      else
1010 >                         else
1011   #ifdef IS_MPI                      
1012 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1013 <                              do_pot, &
1014 <                              eFrame, A, f, t, pot_local, vpair, fpair)
1012 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1013 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1014 >                                 fpair, d_grp, rgrp, rCut)
1015   #else
1016 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1017 <                              do_pot,  &
1018 <                              eFrame, A, f, t, pot, vpair, fpair)
1016 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1017 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1018 >                                 d_grp, rgrp, rCut)
1019   #endif
1020 +                            vij = vij + vpair
1021 +                            fij(1) = fij(1) + fpair(1)
1022 +                            fij(2) = fij(2) + fpair(2)
1023 +                            fij(3) = fij(3) + fpair(3)
1024 +                         endif
1025 +                      enddo inner
1026 +                   enddo
1027  
1028 <                         vij = vij + vpair
1029 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1030 <                      endif
1031 <                   enddo inner
1032 <                enddo
1033 <
1034 <                if (loop .eq. PAIR_LOOP) then
1035 <                   if (in_switching_region) then
1036 <                      swderiv = vij*dswdr/rgrp
1037 <                      fij(1) = fij(1) + swderiv*d_grp(1)
880 <                      fij(2) = fij(2) + swderiv*d_grp(2)
881 <                      fij(3) = fij(3) + swderiv*d_grp(3)
882 <
883 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
884 <                         atom1=groupListRow(ia)
885 <                         mf = mfactRow(atom1)
1028 >                   if (loop .eq. PAIR_LOOP) then
1029 >                      if (in_switching_region) then
1030 >                         swderiv = vij*dswdr/rgrp
1031 >                         fij(1) = fij(1) + swderiv*d_grp(1)
1032 >                         fij(2) = fij(2) + swderiv*d_grp(2)
1033 >                         fij(3) = fij(3) + swderiv*d_grp(3)
1034 >                        
1035 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1036 >                            atom1=groupListRow(ia)
1037 >                            mf = mfactRow(atom1)
1038   #ifdef IS_MPI
1039 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1040 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1041 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1039 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1040 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1041 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1042   #else
1043 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1044 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1045 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1043 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1044 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1045 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1046   #endif
1047 <                      enddo
1048 <
1049 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1050 <                         atom2=groupListCol(jb)
1051 <                         mf = mfactCol(atom2)
1047 >                         enddo
1048 >                        
1049 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1050 >                            atom2=groupListCol(jb)
1051 >                            mf = mfactCol(atom2)
1052   #ifdef IS_MPI
1053 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1054 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1055 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1053 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1054 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1055 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1056   #else
1057 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1058 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1059 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1057 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1058 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1059 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1060   #endif
1061 <                      enddo
1062 <                   endif
1061 >                         enddo
1062 >                      endif
1063  
1064 <                   if (do_stress) call add_stress_tensor(d_grp, fij)
1064 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1065 >                   endif
1066                  endif
1067 <             end if
1067 >             endif
1068            enddo
1069 +          
1070         enddo outer
1071  
1072         if (update_nlist) then
# Line 972 | Line 1126 | contains
1126  
1127      if (do_pot) then
1128         ! scatter/gather pot_row into the members of my column
1129 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1130 <
1129 >       do i = 1,LR_POT_TYPES
1130 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1131 >       end do
1132         ! scatter/gather pot_local into all other procs
1133         ! add resultant to get total pot
1134         do i = 1, nlocal
1135 <          pot_local = pot_local + pot_Temp(i)
1135 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1136 >               + pot_Temp(1:LR_POT_TYPES,i)
1137         enddo
1138  
1139         pot_Temp = 0.0_DP
1140 <
1141 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1140 >       do i = 1,LR_POT_TYPES
1141 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1142 >       end do
1143         do i = 1, nlocal
1144 <          pot_local = pot_local + pot_Temp(i)
1144 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1145 >               + pot_Temp(1:LR_POT_TYPES,i)
1146         enddo
1147  
1148      endif
1149   #endif
1150  
1151 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1151 >    if (SIM_requires_postpair_calc) then
1152 >       do i = 1, nlocal            
1153 >          
1154 >          ! we loop only over the local atoms, so we don't need row and column
1155 >          ! lookups for the types
1156 >          
1157 >          me_i = atid(i)
1158 >          
1159 >          ! is the atom electrostatic?  See if it would have an
1160 >          ! electrostatic interaction with itself
1161 >          iHash = InteractionHash(me_i,me_i)
1162  
1163 <       if (FF_uses_RF .and. SIM_uses_RF) then
996 <
1163 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1164   #ifdef IS_MPI
1165 <          call scatter(rf_Row,rf,plan_atom_row_3d)
1166 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
1167 <          do i = 1,nlocal
1168 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1169 <          end do
1165 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1166 >                  t, do_pot)
1167 > #else
1168 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1169 >                  t, do_pot)
1170   #endif
1171 <
1172 <          do i = 1, nLocal
1173 <
1174 <             rfpot = 0.0_DP
1008 < #ifdef IS_MPI
1009 <             me_i = atid_row(i)
1010 < #else
1011 <             me_i = atid(i)
1012 < #endif
1013 <             iMap = InteractionHash(me_i,me_j)
1171 >          endif
1172 >  
1173 >          
1174 >          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1175              
1176 <             if ( iand(iMap, ELECTROSTATIC_PAIR).ne.0 ) then
1177 <
1178 <                mu_i = getDipoleMoment(me_i)
1179 <
1180 <                !! The reaction field needs to include a self contribution
1181 <                !! to the field:
1182 <                call accumulate_self_rf(i, mu_i, eFrame)
1183 <                !! Get the reaction field contribution to the
1184 <                !! potential and torques:
1185 <                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1176 >             ! loop over the excludes to accumulate RF stuff we've
1177 >             ! left out of the normal pair loop
1178 >            
1179 >             do i1 = 1, nSkipsForAtom(i)
1180 >                j = skipsForAtom(i, i1)
1181 >                
1182 >                ! prevent overcounting of the skips
1183 >                if (i.lt.j) then
1184 >                   call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1185 >                   rVal = dsqrt(ratmsq)
1186 >                   call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1187   #ifdef IS_MPI
1188 <                pot_local = pot_local + rfpot
1188 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1189 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1190   #else
1191 <                pot = pot + rfpot
1192 <
1191 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1192 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1193   #endif
1194 <             endif
1195 <          enddo
1196 <       endif
1194 >                endif
1195 >             enddo
1196 >          endif
1197 >       enddo
1198      endif
1199 <
1036 <
1199 >    
1200   #ifdef IS_MPI
1201 <
1201 >    
1202      if (do_pot) then
1203 <       pot = pot + pot_local
1204 <       !! we assume the c code will do the allreduce to get the total potential
1042 <       !! we could do it right here if we needed to...
1203 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1204 >            mpi_comm_world,mpi_err)            
1205      endif
1206 <
1206 >    
1207      if (do_stress) then
1208         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1209              mpi_comm_world,mpi_err)
1210         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1211              mpi_comm_world,mpi_err)
1212      endif
1213 <
1213 >    
1214   #else
1215 <
1215 >    
1216      if (do_stress) then
1217         tau = tau_Temp
1218         virial = virial_Temp
1219      endif
1220 <
1220 >    
1221   #endif
1222 <
1222 >    
1223    end subroutine do_force_loop
1224  
1225    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1226 <       eFrame, A, f, t, pot, vpair, fpair)
1226 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1227  
1228 <    real( kind = dp ) :: pot, vpair, sw
1228 >    real( kind = dp ) :: vpair, sw
1229 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1230      real( kind = dp ), dimension(3) :: fpair
1231      real( kind = dp ), dimension(nLocal)   :: mfact
1232      real( kind = dp ), dimension(9,nLocal) :: eFrame
# Line 1074 | Line 1237 | contains
1237      logical, intent(inout) :: do_pot
1238      integer, intent(in) :: i, j
1239      real ( kind = dp ), intent(inout) :: rijsq
1240 <    real ( kind = dp )                :: r
1240 >    real ( kind = dp ), intent(inout) :: r_grp
1241      real ( kind = dp ), intent(inout) :: d(3)
1242 <    real ( kind = dp ) :: ebalance
1242 >    real ( kind = dp ), intent(inout) :: d_grp(3)
1243 >    real ( kind = dp ), intent(inout) :: rCut
1244 >    real ( kind = dp ) :: r
1245 >    real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1246      integer :: me_i, me_j
1247 +    integer :: k
1248  
1249 <    integer :: iMap
1249 >    integer :: iHash
1250  
1251      r = sqrt(rijsq)
1252 +    
1253      vpair = 0.0d0
1254      fpair(1:3) = 0.0d0
1255  
# Line 1093 | Line 1261 | contains
1261      me_j = atid(j)
1262   #endif
1263  
1264 <    iMap = InteractionMap(me_i, me_j)%InteractionHash
1265 <
1266 <    if ( iand(iMap, LJ_PAIR).ne.0 ) then
1267 <       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1264 >    iHash = InteractionHash(me_i, me_j)
1265 >    
1266 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1267 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1268 >            pot(VDW_POT), f, do_pot)
1269      endif
1270 <
1271 <    if ( iand(iMap, ELECTROSTATIC_PAIR).ne.0 ) then
1272 <       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1273 <            pot, eFrame, f, t, do_pot)
1105 <
1106 <       if (FF_uses_RF .and. SIM_uses_RF) then
1107 <
1108 <          ! CHECK ME (RF needs to know about all electrostatic types)
1109 <          call accumulate_rf(i, j, r, eFrame, sw)
1110 <          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1111 <       endif
1112 <
1270 >    
1271 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1272 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1273 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1274      endif
1275 <
1276 <    if ( iand(iMap, STICKY_PAIR).ne.0 ) then
1275 >    
1276 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1277         call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1278 <            pot, A, f, t, do_pot)
1278 >            pot(HB_POT), A, f, t, do_pot)
1279      endif
1280 <
1281 <    if ( iand(iMap, STICKYPOWER_PAIR).ne.0 ) then
1280 >    
1281 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1282         call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1283 <            pot, A, f, t, do_pot)
1283 >            pot(HB_POT), A, f, t, do_pot)
1284      endif
1285 <
1286 <    if ( iand(iMap, GAYBERNE_PAIR).ne.0 ) then
1285 >    
1286 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1287         call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1288 <            pot, A, f, t, do_pot)
1288 >            pot(VDW_POT), A, f, t, do_pot)
1289      endif
1290      
1291 <    if ( iand(iMap, GAYBERNE_LJ).ne.0 ) then
1292 < !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1293 < !           pot, A, f, t, do_pot)
1291 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1292 >       call do_gb_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1293 >            pot(VDW_POT), A, f, t, do_pot)
1294      endif
1295 <
1296 <    if ( iand(iMap, EAM_PAIR).ne.0 ) then      
1297 <       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1298 <            do_pot)
1295 >    
1296 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1297 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1298 >            pot(METALLIC_POT), f, do_pot)
1299      endif
1300 <
1301 <    if ( iand(iMap, SHAPE_PAIR).ne.0 ) then      
1300 >    
1301 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1302         call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1303 <            pot, A, f, t, do_pot)
1303 >            pot(VDW_POT), A, f, t, do_pot)
1304      endif
1305 <
1306 <    if ( iand(iMap, SHAPE_LJ).ne.0 ) then      
1305 >    
1306 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1307         call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1308 <            pot, A, f, t, do_pot)
1308 >            pot(VDW_POT), A, f, t, do_pot)
1309      endif
1310 <    
1310 >
1311 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1312 >       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1313 >            pot(METALLIC_POT), f, do_pot)
1314 >    endif
1315 >    
1316    end subroutine do_pair
1317  
1318 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1318 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1319         do_pot, do_stress, eFrame, A, f, t, pot)
1320  
1321 <    real( kind = dp ) :: pot, sw
1321 >    real( kind = dp ) :: sw
1322 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1323      real( kind = dp ), dimension(9,nLocal) :: eFrame
1324      real (kind=dp), dimension(9,nLocal) :: A
1325      real (kind=dp), dimension(3,nLocal) :: f
# Line 1160 | Line 1327 | contains
1327  
1328      logical, intent(inout) :: do_pot, do_stress
1329      integer, intent(in) :: i, j
1330 <    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1330 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1331      real ( kind = dp )                :: r, rc
1332      real ( kind = dp ), intent(inout) :: d(3), dc(3)
1333  
1334 <    integer :: me_i, me_j, iMap
1334 >    integer :: me_i, me_j, iHash
1335  
1336 +    r = sqrt(rijsq)
1337 +    
1338   #ifdef IS_MPI  
1339      me_i = atid_row(i)
1340      me_j = atid_col(j)  
# Line 1174 | Line 1343 | contains
1343      me_j = atid(j)  
1344   #endif
1345  
1346 <    iMap = InteractionMap(me_i, me_j)%InteractionHash
1346 >    iHash = InteractionHash(me_i, me_j)
1347  
1348 <    if ( iand(iMap, EAM_PAIR).ne.0 ) then      
1349 <            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1348 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1349 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1350      endif
1351 +
1352 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1353 +            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1354 +    endif
1355      
1356    end subroutine do_prepair
1357  
1358  
1359    subroutine do_preforce(nlocal,pot)
1360      integer :: nlocal
1361 <    real( kind = dp ) :: pot
1361 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1362  
1363      if (FF_uses_EAM .and. SIM_uses_EAM) then
1364 <       call calc_EAM_preforce_Frho(nlocal,pot)
1364 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1365      endif
1366 <
1367 <
1366 >    if (FF_uses_SC .and. SIM_uses_SC) then
1367 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1368 >    endif
1369    end subroutine do_preforce
1370  
1371  
# Line 1203 | Line 1377 | contains
1377      real( kind = dp ) :: d(3), scaled(3)
1378      integer i
1379  
1380 <    d(1:3) = q_j(1:3) - q_i(1:3)
1380 >    d(1) = q_j(1) - q_i(1)
1381 >    d(2) = q_j(2) - q_i(2)
1382 >    d(3) = q_j(3) - q_i(3)
1383  
1384      ! Wrap back into periodic box if necessary
1385      if ( SIM_uses_PBC ) then
1386  
1387         if( .not.boxIsOrthorhombic ) then
1388            ! calc the scaled coordinates.
1389 <
1214 <          scaled = matmul(HmatInv, d)
1389 >          ! scaled = matmul(HmatInv, d)
1390  
1391 +          scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1392 +          scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1393 +          scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1394 +          
1395            ! wrap the scaled coordinates
1396  
1397 <          scaled = scaled  - anint(scaled)
1397 >          scaled(1) = scaled(1) - dnint(scaled(1))
1398 >          scaled(2) = scaled(2) - dnint(scaled(2))
1399 >          scaled(3) = scaled(3) - dnint(scaled(3))
1400  
1220
1401            ! calc the wrapped real coordinates from the wrapped scaled
1402            ! coordinates
1403 +          ! d = matmul(Hmat,scaled)
1404 +          d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1405 +          d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1406 +          d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1407  
1224          d = matmul(Hmat,scaled)
1225
1408         else
1409            ! calc the scaled coordinates.
1410  
1411 <          do i = 1, 3
1412 <             scaled(i) = d(i) * HmatInv(i,i)
1411 >          scaled(1) = d(1) * HmatInv(1,1)
1412 >          scaled(2) = d(2) * HmatInv(2,2)
1413 >          scaled(3) = d(3) * HmatInv(3,3)
1414 >          
1415 >          ! wrap the scaled coordinates
1416 >          
1417 >          scaled(1) = scaled(1) - dnint(scaled(1))
1418 >          scaled(2) = scaled(2) - dnint(scaled(2))
1419 >          scaled(3) = scaled(3) - dnint(scaled(3))
1420  
1421 <             ! wrap the scaled coordinates
1421 >          ! calc the wrapped real coordinates from the wrapped scaled
1422 >          ! coordinates
1423  
1424 <             scaled(i) = scaled(i) - anint(scaled(i))
1424 >          d(1) = scaled(1)*Hmat(1,1)
1425 >          d(2) = scaled(2)*Hmat(2,2)
1426 >          d(3) = scaled(3)*Hmat(3,3)
1427  
1236             ! calc the wrapped real coordinates from the wrapped scaled
1237             ! coordinates
1238
1239             d(i) = scaled(i)*Hmat(i,i)
1240          enddo
1428         endif
1429  
1430      endif
1431  
1432 <    r_sq = dot_product(d,d)
1432 >    r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1433  
1434    end subroutine get_interatomic_vector
1435  
# Line 1274 | Line 1461 | contains
1461      pot_Col = 0.0_dp
1462      pot_Temp = 0.0_dp
1463  
1277    rf_Row = 0.0_dp
1278    rf_Col = 0.0_dp
1279    rf_Temp = 0.0_dp
1280
1464   #endif
1465  
1466      if (FF_uses_EAM .and. SIM_uses_EAM) then
1467         call clean_EAM()
1468      endif
1469  
1287    rf = 0.0_dp
1470      tau_Temp = 0.0_dp
1471      virial_Temp = 0.0_dp
1472    end subroutine zero_work_arrays
# Line 1373 | Line 1555 | contains
1555  
1556    function FF_UsesDirectionalAtoms() result(doesit)
1557      logical :: doesit
1558 <    doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1377 <         FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1378 <         FF_uses_StickyPower .or. FF_uses_GayBerne .or. FF_uses_Shapes
1558 >    doesit = FF_uses_DirectionalAtoms
1559    end function FF_UsesDirectionalAtoms
1560  
1561    function FF_RequiresPrepairCalc() result(doesit)
1562      logical :: doesit
1563 <    doesit = FF_uses_EAM
1563 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1564 >         .or. FF_uses_MEAM
1565    end function FF_RequiresPrepairCalc
1566  
1386  function FF_RequiresPostpairCalc() result(doesit)
1387    logical :: doesit
1388    doesit = FF_uses_RF
1389  end function FF_RequiresPostpairCalc
1390
1567   #ifdef PROFILE
1568    function getforcetime() result(totalforcetime)
1569      real(kind=dp) :: totalforcetime

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines