ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1634 by gezelter, Fri Oct 22 21:21:02 2004 UTC vs.
Revision 2301 by gezelter, Thu Sep 15 22:05:21 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.3 2004-10-22 21:20:53 gezelter Exp $, $Date: 2004-10-22 21:20:53 $, $Name: not supported by cvs2svn $, $Revision: 1.3 $
48 > !! @version $Id: doForces.F90,v 1.44 2005-09-15 22:05:17 gezelter Exp $, $Date: 2005-09-15 22:05:17 $, $Name: not supported by cvs2svn $, $Revision: 1.44 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
59 >  use sticky
60 >  use electrostatic_module
61 >  use reaction_field_module
62    use gb_pair
63 +  use shapes
64    use vector_class
65    use eam
66    use status
# Line 31 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78  
79 +
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82  
38  logical, save :: haveRlist = .false.
83    logical, save :: haveNeighborList = .false.
84    logical, save :: haveSIMvariables = .false.
41  logical, save :: havePropertyMap = .false.
85    logical, save :: haveSaneForceField = .false.
86 <  
86 >  logical, save :: haveInteractionHash = .false.
87 >  logical, save :: haveGtypeCutoffMap = .false.
88 >  logical, save :: haveRlist = .false.
89 >
90    logical, save :: FF_uses_DirectionalAtoms
91 <  logical, save :: FF_uses_LennardJones
46 <  logical, save :: FF_uses_Electrostatic
47 <  logical, save :: FF_uses_charges
48 <  logical, save :: FF_uses_dipoles
49 <  logical, save :: FF_uses_sticky
91 >  logical, save :: FF_uses_Dipoles
92    logical, save :: FF_uses_GayBerne
93    logical, save :: FF_uses_EAM
52  logical, save :: FF_uses_Shapes
53  logical, save :: FF_uses_FLARB
94    logical, save :: FF_uses_RF
95  
96    logical, save :: SIM_uses_DirectionalAtoms
57  logical, save :: SIM_uses_LennardJones
58  logical, save :: SIM_uses_Electrostatics
59  logical, save :: SIM_uses_Charges
60  logical, save :: SIM_uses_Dipoles
61  logical, save :: SIM_uses_Sticky
62  logical, save :: SIM_uses_GayBerne
97    logical, save :: SIM_uses_EAM
64  logical, save :: SIM_uses_Shapes
65  logical, save :: SIM_uses_FLARB
98    logical, save :: SIM_uses_RF
99    logical, save :: SIM_requires_postpair_calc
100    logical, save :: SIM_requires_prepair_calc
101    logical, save :: SIM_uses_PBC
70  logical, save :: SIM_uses_molecular_cutoffs
102  
103 <  real(kind=dp), save :: rlist, rlistsq
103 >  integer, save :: corrMethod
104  
105    public :: init_FF
106 +  public :: setDefaultCutoffs
107    public :: do_force_loop
108 <  public :: setRlistDF
108 >  public :: createInteractionHash
109 >  public :: createGtypeCutoffMap
110 >  public :: getStickyCut
111 >  public :: getStickyPowerCut
112 >  public :: getGayBerneCut
113 >  public :: getEAMCut
114 >  public :: getShapeCut
115  
116   #ifdef PROFILE
117    public :: getforcetime
# Line 81 | Line 119 | module doForces
119    real :: forceTimeInitial, forceTimeFinal
120    integer :: nLoops
121   #endif
122 +  
123 +  !! Variables for cutoff mapping and interaction mapping
124 +  ! Bit hash to determine pair-pair interactions.
125 +  integer, dimension(:,:), allocatable :: InteractionHash
126 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
127 +  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
128 +  integer, dimension(:), allocatable :: groupToGtype
129 +  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
130 +  type ::gtypeCutoffs
131 +     real(kind=dp) :: rcut
132 +     real(kind=dp) :: rcutsq
133 +     real(kind=dp) :: rlistsq
134 +  end type gtypeCutoffs
135 +  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
136  
137 <  type :: Properties
138 <     logical :: is_Directional   = .false.
139 <     logical :: is_LennardJones  = .false.
140 <     logical :: is_Electrostatic = .false.
89 <     logical :: is_Charge        = .false.
90 <     logical :: is_Dipole        = .false.
91 <     logical :: is_Sticky        = .false.
92 <     logical :: is_GayBerne      = .false.
93 <     logical :: is_EAM           = .false.
94 <     logical :: is_Shape         = .false.
95 <     logical :: is_FLARB         = .false.
96 <  end type Properties
97 <
98 <  type(Properties), dimension(:),allocatable :: PropertyMap
99 <
137 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
138 >  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
139 >  real(kind=dp),save :: rcuti
140 >  
141   contains
142  
143 <  subroutine setRlistDF( this_rlist )
103 <    
104 <    real(kind=dp) :: this_rlist
105 <
106 <    rlist = this_rlist
107 <    rlistsq = rlist * rlist
108 <    
109 <    haveRlist = .true.
110 <
111 <  end subroutine setRlistDF    
112 <
113 <  subroutine createPropertyMap(status)
143 >  subroutine createInteractionHash(status)
144      integer :: nAtypes
145 <    integer :: status
145 >    integer, intent(out) :: status
146      integer :: i
147 <    logical :: thisProperty
148 <    real (kind=DP) :: thisDPproperty
147 >    integer :: j
148 >    integer :: iHash
149 >    !! Test Types
150 >    logical :: i_is_LJ
151 >    logical :: i_is_Elect
152 >    logical :: i_is_Sticky
153 >    logical :: i_is_StickyP
154 >    logical :: i_is_GB
155 >    logical :: i_is_EAM
156 >    logical :: i_is_Shape
157 >    logical :: j_is_LJ
158 >    logical :: j_is_Elect
159 >    logical :: j_is_Sticky
160 >    logical :: j_is_StickyP
161 >    logical :: j_is_GB
162 >    logical :: j_is_EAM
163 >    logical :: j_is_Shape
164 >    real(kind=dp) :: myRcut
165  
166 <    status = 0
166 >    status = 0  
167  
168 +    if (.not. associated(atypes)) then
169 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
170 +       status = -1
171 +       return
172 +    endif
173 +    
174      nAtypes = getSize(atypes)
175 <
175 >    
176      if (nAtypes == 0) then
177         status = -1
178         return
179      end if
180 <        
181 <    if (.not. allocated(PropertyMap)) then
182 <       allocate(PropertyMap(nAtypes))
180 >
181 >    if (.not. allocated(InteractionHash)) then
182 >       allocate(InteractionHash(nAtypes,nAtypes))
183      endif
184  
185 +    if (.not. allocated(atypeMaxCutoff)) then
186 +       allocate(atypeMaxCutoff(nAtypes))
187 +    endif
188 +        
189      do i = 1, nAtypes
190 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
191 <       PropertyMap(i)%is_Directional = thisProperty
190 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
191 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
192 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
193 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
194 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
195 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
196 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
197  
198 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
138 <       PropertyMap(i)%is_LennardJones = thisProperty
139 <      
140 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
141 <       PropertyMap(i)%is_Electrostatic = thisProperty
198 >       do j = i, nAtypes
199  
200 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
201 <       PropertyMap(i)%is_Charge = thisProperty
145 <      
146 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
147 <       PropertyMap(i)%is_Dipole = thisProperty
200 >          iHash = 0
201 >          myRcut = 0.0_dp
202  
203 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
204 <       PropertyMap(i)%is_Sticky = thisProperty
203 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
204 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
205 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
206 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
207 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
208 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
209 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
210  
211 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
212 <       PropertyMap(i)%is_GayBerne = thisProperty
211 >          if (i_is_LJ .and. j_is_LJ) then
212 >             iHash = ior(iHash, LJ_PAIR)            
213 >          endif
214 >          
215 >          if (i_is_Elect .and. j_is_Elect) then
216 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
217 >          endif
218 >          
219 >          if (i_is_Sticky .and. j_is_Sticky) then
220 >             iHash = ior(iHash, STICKY_PAIR)
221 >          endif
222  
223 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
224 <       PropertyMap(i)%is_EAM = thisProperty
223 >          if (i_is_StickyP .and. j_is_StickyP) then
224 >             iHash = ior(iHash, STICKYPOWER_PAIR)
225 >          endif
226  
227 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
228 <       PropertyMap(i)%is_Shape = thisProperty
227 >          if (i_is_EAM .and. j_is_EAM) then
228 >             iHash = ior(iHash, EAM_PAIR)
229 >          endif
230  
231 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
232 <       PropertyMap(i)%is_FLARB = thisProperty
231 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
232 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
233 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
234 >
235 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
236 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
237 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
238 >
239 >
240 >          InteractionHash(i,j) = iHash
241 >          InteractionHash(j,i) = iHash
242 >
243 >       end do
244 >
245      end do
246  
247 <    havePropertyMap = .true.
247 >    haveInteractionHash = .true.
248 >  end subroutine createInteractionHash
249  
250 <  end subroutine createPropertyMap
250 >  subroutine createGtypeCutoffMap(stat)
251 >
252 >    integer, intent(out), optional :: stat
253 >    logical :: i_is_LJ
254 >    logical :: i_is_Elect
255 >    logical :: i_is_Sticky
256 >    logical :: i_is_StickyP
257 >    logical :: i_is_GB
258 >    logical :: i_is_EAM
259 >    logical :: i_is_Shape
260 >    logical :: GtypeFound
261 >
262 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
263 >    integer :: n_in_i, me_i, ia, g, atom1, nGroupTypes
264 >    integer :: nGroupsInRow
265 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tol, skin
266 >    real(kind=dp) :: biggestAtypeCutoff
267 >
268 >    stat = 0
269 >    if (.not. haveInteractionHash) then
270 >       call createInteractionHash(myStatus)      
271 >       if (myStatus .ne. 0) then
272 >          write(default_error, *) 'createInteractionHash failed in doForces!'
273 >          stat = -1
274 >          return
275 >       endif
276 >    endif
277 > #ifdef IS_MPI
278 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
279 > #endif
280 >    nAtypes = getSize(atypes)
281 > ! Set all of the initial cutoffs to zero.
282 >    atypeMaxCutoff = 0.0_dp
283 >    do i = 1, nAtypes
284 >       if (SimHasAtype(i)) then    
285 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
286 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
287 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
288 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
289 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
290 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
291 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
292 >          
293 >
294 >          if (i_is_LJ) then
295 >             thisRcut = getSigma(i) * 2.5_dp
296 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
297 >          endif
298 >          if (i_is_Elect) then
299 >             thisRcut = defaultRcut
300 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
301 >          endif
302 >          if (i_is_Sticky) then
303 >             thisRcut = getStickyCut(i)
304 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
305 >          endif
306 >          if (i_is_StickyP) then
307 >             thisRcut = getStickyPowerCut(i)
308 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
309 >          endif
310 >          if (i_is_GB) then
311 >             thisRcut = getGayBerneCut(i)
312 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
313 >          endif
314 >          if (i_is_EAM) then
315 >             thisRcut = getEAMCut(i)
316 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
317 >          endif
318 >          if (i_is_Shape) then
319 >             thisRcut = getShapeCut(i)
320 >             if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
321 >          endif
322 >          
323 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
324 >             biggestAtypeCutoff = atypeMaxCutoff(i)
325 >          endif
326 >       endif
327 >    enddo
328 >  
329 >    nGroupTypes = 0
330 >    
331 >    istart = 1
332 > #ifdef IS_MPI
333 >    iend = nGroupsInRow
334 > #else
335 >    iend = nGroups
336 > #endif
337 >    
338 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
339 >    if(.not.allocated(groupToGtype)) then
340 >       allocate(groupToGtype(iend))
341 >       allocate(groupMaxCutoff(iend))
342 >       allocate(gtypeMaxCutoff(iend))
343 >       groupMaxCutoff = 0.0_dp
344 >       gtypeMaxCutoff = 0.0_dp
345 >    endif
346 >    !! first we do a single loop over the cutoff groups to find the
347 >    !! largest cutoff for any atypes present in this group.  We also
348 >    !! create gtypes at this point.
349 >    
350 >    tol = 1.0d-6
351 >    
352 >    do i = istart, iend      
353 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
354 >       groupMaxCutoff(i) = 0.0_dp
355 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
356 >          atom1 = groupListRow(ia)
357 > #ifdef IS_MPI
358 >          me_i = atid_row(atom1)
359 > #else
360 >          me_i = atid(atom1)
361 > #endif          
362 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoff(i)) then
363 >             groupMaxCutoff(i)=atypeMaxCutoff(me_i)
364 >          endif          
365 >       enddo
366 >
367 >       if (nGroupTypes.eq.0) then
368 >          nGroupTypes = nGroupTypes + 1
369 >          gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
370 >          groupToGtype(i) = nGroupTypes
371 >       else
372 >          GtypeFound = .false.
373 >          do g = 1, nGroupTypes
374 >             if ( abs(groupMaxCutoff(i) - gtypeMaxCutoff(g)).lt.tol) then
375 >                groupToGtype(i) = g
376 >                GtypeFound = .true.
377 >             endif
378 >          enddo
379 >          if (.not.GtypeFound) then            
380 >             nGroupTypes = nGroupTypes + 1
381 >             gtypeMaxCutoff(nGroupTypes) = groupMaxCutoff(i)
382 >             groupToGtype(i) = nGroupTypes
383 >          endif
384 >       endif
385 >    enddo    
386 >
387 >    !! allocate the gtypeCutoffMap here.
388 >    allocate(gtypeCutoffMap(nGroupTypes,nGroupTypes))
389 >    !! then we do a double loop over all the group TYPES to find the cutoff
390 >    !! map between groups of two types
391 >    
392 >    do i = 1, nGroupTypes
393 >       do j = 1, nGroupTypes
394 >      
395 >          select case(cutoffPolicy)
396 >          case(TRADITIONAL_CUTOFF_POLICY)
397 >             thisRcut = maxval(gtypeMaxCutoff)
398 >          case(MIX_CUTOFF_POLICY)
399 >             thisRcut = 0.5_dp * (gtypeMaxCutoff(i) + gtypeMaxCutoff(j))
400 >          case(MAX_CUTOFF_POLICY)
401 >             thisRcut = max(gtypeMaxCutoff(i), gtypeMaxCutoff(j))
402 >          case default
403 >             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
404 >             return
405 >          end select
406 >          gtypeCutoffMap(i,j)%rcut = thisRcut
407 >          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
408 >          skin = defaultRlist - defaultRcut
409 >          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
410  
411 +       enddo
412 +    enddo
413 +    
414 +    haveGtypeCutoffMap = .true.
415 +   end subroutine createGtypeCutoffMap
416 +
417 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
418 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
419 +     integer, intent(in) :: cutPolicy
420 +
421 +     defaultRcut = defRcut
422 +     defaultRsw = defRsw
423 +     defaultRlist = defRlist
424 +     cutoffPolicy = cutPolicy
425 +     rcuti = 1.0_dp / defaultRcut
426 +   end subroutine setDefaultCutoffs
427 +
428 +   subroutine setCutoffPolicy(cutPolicy)
429 +
430 +     integer, intent(in) :: cutPolicy
431 +     cutoffPolicy = cutPolicy
432 +     call createGtypeCutoffMap()
433 +   end subroutine setCutoffPolicy
434 +    
435 +    
436    subroutine setSimVariables()
437      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
171    SIM_uses_LennardJones = SimUsesLennardJones()
172    SIM_uses_Electrostatics = SimUsesElectrostatics()
173    SIM_uses_Charges = SimUsesCharges()
174    SIM_uses_Dipoles = SimUsesDipoles()
175    SIM_uses_Sticky = SimUsesSticky()
176    SIM_uses_GayBerne = SimUsesGayBerne()
438      SIM_uses_EAM = SimUsesEAM()
178    SIM_uses_Shapes = SimUsesShapes()
179    SIM_uses_FLARB = SimUsesFLARB()
180    SIM_uses_RF = SimUsesRF()
439      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
440      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
441      SIM_uses_PBC = SimUsesPBC()
442 +    SIM_uses_RF = SimUsesRF()
443  
444      haveSIMvariables = .true.
445  
# Line 193 | Line 452 | contains
452      integer :: myStatus
453  
454      error = 0
196    
197    if (.not. havePropertyMap) then
455  
456 <       myStatus = 0
456 >    if (.not. haveInteractionHash) then      
457 >       myStatus = 0      
458 >       call createInteractionHash(myStatus)      
459 >       if (myStatus .ne. 0) then
460 >          write(default_error, *) 'createInteractionHash failed in doForces!'
461 >          error = -1
462 >          return
463 >       endif
464 >    endif
465  
466 <       call createPropertyMap(myStatus)
467 <
466 >    if (.not. haveGtypeCutoffMap) then        
467 >       myStatus = 0      
468 >       call createGtypeCutoffMap(myStatus)      
469         if (myStatus .ne. 0) then
470 <          write(default_error, *) 'createPropertyMap failed in doForces!'
470 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
471            error = -1
472            return
473         endif
# Line 211 | Line 477 | contains
477         call setSimVariables()
478      endif
479  
480 <    if (.not. haveRlist) then
481 <       write(default_error, *) 'rList has not been set in doForces!'
482 <       error = -1
483 <       return
484 <    endif
480 >  !  if (.not. haveRlist) then
481 >  !     write(default_error, *) 'rList has not been set in doForces!'
482 >  !     error = -1
483 >  !     return
484 >  !  endif
485  
486      if (.not. haveNeighborList) then
487         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 238 | Line 504 | contains
504   #endif
505      return
506    end subroutine doReadyCheck
241    
507  
243  subroutine init_FF(use_RF_c, thisStat)
508  
509 <    logical, intent(in) :: use_RF_c
509 >  subroutine init_FF(use_RF, correctionMethod, dampingAlpha, thisStat)
510  
511 +    logical, intent(in) :: use_RF
512 +    integer, intent(in) :: correctionMethod
513 +    real(kind=dp), intent(in) :: dampingAlpha
514      integer, intent(out) :: thisStat  
515      integer :: my_status, nMatches
516      integer, pointer :: MatchList(:) => null()
# Line 253 | Line 520 | contains
520      thisStat = 0
521  
522      !! Fortran's version of a cast:
523 <    FF_uses_RF = use_RF_c
524 <    
523 >    FF_uses_RF = use_RF
524 >
525 >        
526      !! init_FF is called *after* all of the atom types have been
527      !! defined in atype_module using the new_atype subroutine.
528      !!
529      !! this will scan through the known atypes and figure out what
530      !! interactions are used by the force field.    
531 <  
531 >
532      FF_uses_DirectionalAtoms = .false.
265    FF_uses_LennardJones = .false.
266    FF_uses_Electrostatic = .false.
267    FF_uses_Charges = .false.    
533      FF_uses_Dipoles = .false.
269    FF_uses_Sticky = .false.
534      FF_uses_GayBerne = .false.
535      FF_uses_EAM = .false.
536 <    FF_uses_Shapes = .false.
273 <    FF_uses_FLARB = .false.
274 <    
536 >
537      call getMatchingElementList(atypes, "is_Directional", .true., &
538           nMatches, MatchList)
539      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
540  
279    call getMatchingElementList(atypes, "is_LennardJones", .true., &
280         nMatches, MatchList)
281    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
282    
283    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
284         nMatches, MatchList)
285    if (nMatches .gt. 0) then
286       FF_uses_Electrostatic = .true.
287    endif
288
289    call getMatchingElementList(atypes, "is_Charge", .true., &
290         nMatches, MatchList)
291    if (nMatches .gt. 0) then
292       FF_uses_charges = .true.  
293       FF_uses_electrostatic = .true.
294    endif
295    
541      call getMatchingElementList(atypes, "is_Dipole", .true., &
542           nMatches, MatchList)
543 <    if (nMatches .gt. 0) then
299 <       FF_uses_dipoles = .true.
300 <       FF_uses_electrostatic = .true.
301 <       FF_uses_DirectionalAtoms = .true.
302 <    endif
543 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
544      
304    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
305         MatchList)
306    if (nMatches .gt. 0) then
307       FF_uses_Sticky = .true.
308       FF_uses_DirectionalAtoms = .true.
309    endif
310    
545      call getMatchingElementList(atypes, "is_GayBerne", .true., &
546           nMatches, MatchList)
547 <    if (nMatches .gt. 0) then
548 <       FF_uses_GayBerne = .true.
315 <       FF_uses_DirectionalAtoms = .true.
316 <    endif
317 <    
547 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
548 >
549      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
550      if (nMatches .gt. 0) FF_uses_EAM = .true.
320    
321    call getMatchingElementList(atypes, "is_Shape", .true., &
322         nMatches, MatchList)
323    if (nMatches .gt. 0) then
324       FF_uses_Shapes = .true.
325       FF_uses_DirectionalAtoms = .true.
326    endif
551  
328    call getMatchingElementList(atypes, "is_FLARB", .true., &
329         nMatches, MatchList)
330    if (nMatches .gt. 0) FF_uses_FLARB = .true.
552  
332    !! Assume sanity (for the sake of argument)
553      haveSaneForceField = .true.
554 <    
554 >
555      !! check to make sure the FF_uses_RF setting makes sense
556 <    
557 <    if (FF_uses_dipoles) then
556 >
557 >    if (FF_uses_Dipoles) then
558         if (FF_uses_RF) then
559            dielect = getDielect()
560            call initialize_rf(dielect)
561         endif
562      else
563 <       if (FF_uses_RF) then          
563 >       if ((corrMethod == 3) .or. FF_uses_RF) then
564            write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
565            thisStat = -1
566            haveSaneForceField = .false.
567            return
568         endif
349    endif
350
351    if (FF_uses_sticky) then
352       call check_sticky_FF(my_status)
353       if (my_status /= 0) then
354          thisStat = -1
355          haveSaneForceField = .false.
356          return
357       end if
569      endif
570  
571      if (FF_uses_EAM) then
572 <         call init_EAM_FF(my_status)
572 >       call init_EAM_FF(my_status)
573         if (my_status /= 0) then
574            write(default_error, *) "init_EAM_FF returned a bad status"
575            thisStat = -1
# Line 376 | Line 587 | contains
587         endif
588      endif
589  
379    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
380    endif
381    
590      if (.not. haveNeighborList) then
591         !! Create neighbor lists
592         call expandNeighborList(nLocal, my_status)
# Line 388 | Line 596 | contains
596            return
597         endif
598         haveNeighborList = .true.
599 <    endif    
600 <    
599 >    endif
600 >
601    end subroutine init_FF
394  
602  
603 +
604    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
605    !------------------------------------------------------------->
606 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
606 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
607         do_pot_c, do_stress_c, error)
608      !! Position array provided by C, dimensioned by getNlocal
609      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 404 | Line 612 | contains
612      !! Rotation Matrix for each long range particle in simulation.
613      real( kind = dp), dimension(9, nLocal) :: A    
614      !! Unit vectors for dipoles (lab frame)
615 <    real( kind = dp ), dimension(3,nLocal) :: u_l
615 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
616      !! Force array provided by C, dimensioned by getNlocal
617      real ( kind = dp ), dimension(3,nLocal) :: f
618      !! Torsion array provided by C, dimensioned by getNlocal
# Line 442 | Line 650 | contains
650      integer :: localError
651      integer :: propPack_i, propPack_j
652      integer :: loopStart, loopEnd, loop
653 <
653 >    integer :: iHash
654      real(kind=dp) :: listSkin = 1.0  
655 <    
655 >
656      !! initialize local variables  
657 <    
657 >
658   #ifdef IS_MPI
659      pot_local = 0.0_dp
660      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 456 | Line 664 | contains
664   #else
665      natoms = nlocal
666   #endif
667 <    
667 >
668      call doReadyCheck(localError)
669      if ( localError .ne. 0 ) then
670         call handleError("do_force_loop", "Not Initialized")
# Line 464 | Line 672 | contains
672         return
673      end if
674      call zero_work_arrays()
675 <        
675 >
676      do_pot = do_pot_c
677      do_stress = do_stress_c
678 <    
678 >
679      ! Gather all information needed by all force loops:
680 <    
680 >
681   #ifdef IS_MPI    
682 <    
682 >
683      call gather(q, q_Row, plan_atom_row_3d)
684      call gather(q, q_Col, plan_atom_col_3d)
685  
686      call gather(q_group, q_group_Row, plan_group_row_3d)
687      call gather(q_group, q_group_Col, plan_group_col_3d)
688 <        
688 >
689      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
690 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
691 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
692 <      
690 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
691 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
692 >
693         call gather(A, A_Row, plan_atom_row_rotation)
694         call gather(A, A_Col, plan_atom_col_rotation)
695      endif
696 <    
696 >
697   #endif
698 <    
698 >
699      !! Begin force loop timing:
700   #ifdef PROFILE
701      call cpu_time(forceTimeInitial)
702      nloops = nloops + 1
703   #endif
704 <    
704 >
705      loopEnd = PAIR_LOOP
706      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
707         loopStart = PREPAIR_LOOP
# Line 508 | Line 716 | contains
716         if (loop .eq. loopStart) then
717   #ifdef IS_MPI
718            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
719 <             update_nlist)
719 >               update_nlist)
720   #else
721            call checkNeighborList(nGroups, q_group, listSkin, &
722 <             update_nlist)
722 >               update_nlist)
723   #endif
724         endif
725 <      
725 >
726         if (update_nlist) then
727            !! save current configuration and construct neighbor list
728   #ifdef IS_MPI
# Line 525 | Line 733 | contains
733            neighborListSize = size(list)
734            nlist = 0
735         endif
736 <      
736 >
737         istart = 1
738   #ifdef IS_MPI
739         iend = nGroupsInRow
# Line 535 | Line 743 | contains
743         outer: do i = istart, iend
744  
745            if (update_nlist) point(i) = nlist + 1
746 <          
746 >
747            n_in_i = groupStartRow(i+1) - groupStartRow(i)
748 <          
748 >
749            if (update_nlist) then
750   #ifdef IS_MPI
751               jstart = 1
# Line 552 | Line 760 | contains
760               ! make sure group i has neighbors
761               if (jstart .gt. jend) cycle outer
762            endif
763 <          
763 >
764            do jnab = jstart, jend
765               if (update_nlist) then
766                  j = jnab
# Line 561 | Line 769 | contains
769               endif
770  
771   #ifdef IS_MPI
772 +             me_j = atid_col(j)
773               call get_interatomic_vector(q_group_Row(:,i), &
774                    q_group_Col(:,j), d_grp, rgrpsq)
775   #else
776 +             me_j = atid(j)
777               call get_interatomic_vector(q_group(:,i), &
778                    q_group(:,j), d_grp, rgrpsq)
779   #endif
780  
781 <             if (rgrpsq < rlistsq) then
781 >             if (rgrpsq < gtypeCutoffMap(groupToGtype(i),groupToGtype(j))%rListsq) then
782                  if (update_nlist) then
783                     nlist = nlist + 1
784 <                  
784 >
785                     if (nlist > neighborListSize) then
786   #ifdef IS_MPI                
787                        call expandNeighborList(nGroupsInRow, listerror)
# Line 585 | Line 795 | contains
795                        end if
796                        neighborListSize = size(list)
797                     endif
798 <                  
798 >
799                     list(nlist) = j
800                  endif
801 <                
801 >
802                  if (loop .eq. PAIR_LOOP) then
803                     vij = 0.0d0
804                     fij(1:3) = 0.0d0
805                  endif
806 <                
806 >
807                  call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
808                       in_switching_region)
809 <                
809 >
810                  n_in_j = groupStartCol(j+1) - groupStartCol(j)
811 <                
811 >
812                  do ia = groupStartRow(i), groupStartRow(i+1)-1
813 <                  
813 >
814                     atom1 = groupListRow(ia)
815 <                  
815 >
816                     inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
817 <                      
817 >
818                        atom2 = groupListCol(jb)
819 <                      
819 >
820                        if (skipThisPair(atom1, atom2)) cycle inner
821  
822                        if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
# Line 626 | Line 836 | contains
836   #ifdef IS_MPI                      
837                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
838                                rgrpsq, d_grp, do_pot, do_stress, &
839 <                              u_l, A, f, t, pot_local)
839 >                              eFrame, A, f, t, pot_local)
840   #else
841                           call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
842                                rgrpsq, d_grp, do_pot, do_stress, &
843 <                              u_l, A, f, t, pot)
843 >                              eFrame, A, f, t, pot)
844   #endif                                              
845                        else
846   #ifdef IS_MPI                      
847                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
848                                do_pot, &
849 <                              u_l, A, f, t, pot_local, vpair, fpair)
849 >                              eFrame, A, f, t, pot_local, vpair, fpair)
850   #else
851                           call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
852                                do_pot,  &
853 <                              u_l, A, f, t, pot, vpair, fpair)
853 >                              eFrame, A, f, t, pot, vpair, fpair)
854   #endif
855  
856                           vij = vij + vpair
# Line 648 | Line 858 | contains
858                        endif
859                     enddo inner
860                  enddo
861 <                
861 >
862                  if (loop .eq. PAIR_LOOP) then
863                     if (in_switching_region) then
864                        swderiv = vij*dswdr/rgrp
865                        fij(1) = fij(1) + swderiv*d_grp(1)
866                        fij(2) = fij(2) + swderiv*d_grp(2)
867                        fij(3) = fij(3) + swderiv*d_grp(3)
868 <                      
868 >
869                        do ia=groupStartRow(i), groupStartRow(i+1)-1
870                           atom1=groupListRow(ia)
871                           mf = mfactRow(atom1)
# Line 669 | Line 879 | contains
879                           f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
880   #endif
881                        enddo
882 <                      
882 >
883                        do jb=groupStartCol(j), groupStartCol(j+1)-1
884                           atom2=groupListCol(jb)
885                           mf = mfactCol(atom2)
# Line 684 | Line 894 | contains
894   #endif
895                        enddo
896                     endif
897 <                  
897 >
898                     if (do_stress) call add_stress_tensor(d_grp, fij)
899                  endif
900               end if
901            enddo
902         enddo outer
903 <      
903 >
904         if (update_nlist) then
905   #ifdef IS_MPI
906            point(nGroupsInRow + 1) = nlist + 1
# Line 704 | Line 914 | contains
914               update_nlist = .false.                              
915            endif
916         endif
917 <            
917 >
918         if (loop .eq. PREPAIR_LOOP) then
919            call do_preforce(nlocal, pot)
920         endif
921 <      
921 >
922      enddo
923 <    
923 >
924      !! Do timing
925   #ifdef PROFILE
926      call cpu_time(forceTimeFinal)
927      forceTime = forceTime + forceTimeFinal - forceTimeInitial
928   #endif    
929 <    
929 >
930   #ifdef IS_MPI
931      !!distribute forces
932 <    
932 >
933      f_temp = 0.0_dp
934      call scatter(f_Row,f_temp,plan_atom_row_3d)
935      do i = 1,nlocal
936         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
937      end do
938 <    
938 >
939      f_temp = 0.0_dp
940      call scatter(f_Col,f_temp,plan_atom_col_3d)
941      do i = 1,nlocal
942         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
943      end do
944 <    
944 >
945      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
946         t_temp = 0.0_dp
947         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 740 | Line 950 | contains
950         end do
951         t_temp = 0.0_dp
952         call scatter(t_Col,t_temp,plan_atom_col_3d)
953 <      
953 >
954         do i = 1,nlocal
955            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
956         end do
957      endif
958 <    
958 >
959      if (do_pot) then
960         ! scatter/gather pot_row into the members of my column
961         call scatter(pot_Row, pot_Temp, plan_atom_row)
962 <      
962 >
963         ! scatter/gather pot_local into all other procs
964         ! add resultant to get total pot
965         do i = 1, nlocal
966            pot_local = pot_local + pot_Temp(i)
967         enddo
968 <      
968 >
969         pot_Temp = 0.0_DP
970 <      
970 >
971         call scatter(pot_Col, pot_Temp, plan_atom_col)
972         do i = 1, nlocal
973            pot_local = pot_local + pot_Temp(i)
974         enddo
975 <      
975 >
976      endif
977   #endif
978 <    
978 >
979      if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
980 <      
981 <       if (FF_uses_RF .and. SIM_uses_RF) then
982 <          
980 >
981 >       if ((FF_uses_RF .and. SIM_uses_RF) .or. (corrMethod == 3)) then
982 >
983   #ifdef IS_MPI
984            call scatter(rf_Row,rf,plan_atom_row_3d)
985            call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
# Line 777 | Line 987 | contains
987               rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
988            end do
989   #endif
990 <          
990 >
991            do i = 1, nLocal
992 <            
992 >
993               rfpot = 0.0_DP
994   #ifdef IS_MPI
995               me_i = atid_row(i)
996   #else
997               me_i = atid(i)
998   #endif
999 +             iHash = InteractionHash(me_i,me_j)
1000              
1001 <             if (PropertyMap(me_i)%is_Dipole) then
1002 <                
1001 >             if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1002 >
1003                  mu_i = getDipoleMoment(me_i)
1004 <                
1004 >
1005                  !! The reaction field needs to include a self contribution
1006                  !! to the field:
1007 <                call accumulate_self_rf(i, mu_i, u_l)
1007 >                call accumulate_self_rf(i, mu_i, eFrame)
1008                  !! Get the reaction field contribution to the
1009                  !! potential and torques:
1010 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1010 >                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1011   #ifdef IS_MPI
1012                  pot_local = pot_local + rfpot
1013   #else
1014                  pot = pot + rfpot
1015 <      
1015 >
1016   #endif
1017 <             endif            
1017 >             endif
1018            enddo
1019         endif
1020      endif
1021 <    
1022 <    
1021 >
1022 >
1023   #ifdef IS_MPI
1024 <    
1024 >
1025      if (do_pot) then
1026         pot = pot + pot_local
1027         !! we assume the c code will do the allreduce to get the total potential
1028         !! we could do it right here if we needed to...
1029      endif
1030 <    
1030 >
1031      if (do_stress) then
1032         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1033              mpi_comm_world,mpi_err)
1034         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1035              mpi_comm_world,mpi_err)
1036      endif
1037 <    
1037 >
1038   #else
1039 <    
1039 >
1040      if (do_stress) then
1041         tau = tau_Temp
1042         virial = virial_Temp
1043      endif
1044 <    
1044 >
1045   #endif
1046 <      
1046 >
1047    end subroutine do_force_loop
1048 <  
1048 >
1049    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1050 <       u_l, A, f, t, pot, vpair, fpair)
1050 >       eFrame, A, f, t, pot, vpair, fpair)
1051  
1052      real( kind = dp ) :: pot, vpair, sw
1053      real( kind = dp ), dimension(3) :: fpair
1054      real( kind = dp ), dimension(nLocal)   :: mfact
1055 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1055 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1056      real( kind = dp ), dimension(9,nLocal) :: A
1057      real( kind = dp ), dimension(3,nLocal) :: f
1058      real( kind = dp ), dimension(3,nLocal) :: t
# Line 853 | Line 1064 | contains
1064      real ( kind = dp ), intent(inout) :: d(3)
1065      integer :: me_i, me_j
1066  
1067 +    integer :: iHash
1068 +
1069      r = sqrt(rijsq)
1070      vpair = 0.0d0
1071      fpair(1:3) = 0.0d0
# Line 864 | Line 1077 | contains
1077      me_i = atid(i)
1078      me_j = atid(j)
1079   #endif
867    
868    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
869      
870       if ( PropertyMap(me_i)%is_LennardJones .and. &
871            PropertyMap(me_j)%is_LennardJones ) then
872          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
873       endif
874      
875    endif
876    
877    if (FF_uses_charges .and. SIM_uses_charges) then
878      
879       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
880          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
881               pot, f, do_pot)
882       endif
883      
884    endif
885    
886    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
887      
888       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
889          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
890               pot, u_l, f, t, do_pot)
891          if (FF_uses_RF .and. SIM_uses_RF) then
892             call accumulate_rf(i, j, r, u_l, sw)
893             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
894          endif
895       endif
1080  
1081 +    iHash = InteractionHash(me_i, me_j)
1082 +
1083 +    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1084 +       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1085      endif
1086  
1087 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1087 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1088 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1089 >            pot, eFrame, f, t, do_pot, corrMethod, rcuti)
1090  
1091 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1092 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1093 <               pot, A, f, t, do_pot)
1091 >       if ((FF_uses_RF .and. SIM_uses_RF) .or. (corrMethod == 3)) then
1092 >
1093 >          ! CHECK ME (RF needs to know about all electrostatic types)
1094 >          call accumulate_rf(i, j, r, eFrame, sw)
1095 >          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1096         endif
1097 <      
1097 >
1098      endif
1099  
1100 +    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1101 +       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1102 +            pot, A, f, t, do_pot)
1103 +    endif
1104  
1105 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1106 <      
1107 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
912 <            PropertyMap(me_j)%is_GayBerne) then
913 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
914 <               pot, u_l, f, t, do_pot)
915 <       endif
916 <      
1105 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1106 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1107 >            pot, A, f, t, do_pot)
1108      endif
1109 +
1110 +    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1111 +       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1112 +            pot, A, f, t, do_pot)
1113 +    endif
1114      
1115 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1116 <      
1117 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
922 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
923 <               do_pot)
924 <       endif
925 <      
1115 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1116 > !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1117 > !           pot, A, f, t, do_pot)
1118      endif
1119  
1120 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1121 <      
1122 <       if ( PropertyMap(me_i)%is_Shape .and. &
931 <            PropertyMap(me_j)%is_Shape ) then
932 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
933 <               pot, u_l, f, t, do_pot)
934 <       endif
935 <      
1120 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1121 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1122 >            do_pot)
1123      endif
1124 +
1125 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1126 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1127 +            pot, A, f, t, do_pot)
1128 +    endif
1129 +
1130 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1131 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1132 +            pot, A, f, t, do_pot)
1133 +    endif
1134      
1135    end subroutine do_pair
1136  
1137    subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1138 <       do_pot, do_stress, u_l, A, f, t, pot)
1138 >       do_pot, do_stress, eFrame, A, f, t, pot)
1139  
1140 <   real( kind = dp ) :: pot, sw
1141 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1142 <   real (kind=dp), dimension(9,nLocal) :: A
1143 <   real (kind=dp), dimension(3,nLocal) :: f
1144 <   real (kind=dp), dimension(3,nLocal) :: t
948 <  
949 <   logical, intent(inout) :: do_pot, do_stress
950 <   integer, intent(in) :: i, j
951 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
952 <   real ( kind = dp )                :: r, rc
953 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
954 <  
955 <   logical :: is_EAM_i, is_EAM_j
956 <  
957 <   integer :: me_i, me_j
958 <  
1140 >    real( kind = dp ) :: pot, sw
1141 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1142 >    real (kind=dp), dimension(9,nLocal) :: A
1143 >    real (kind=dp), dimension(3,nLocal) :: f
1144 >    real (kind=dp), dimension(3,nLocal) :: t
1145  
1146 +    logical, intent(inout) :: do_pot, do_stress
1147 +    integer, intent(in) :: i, j
1148 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1149 +    real ( kind = dp )                :: r, rc
1150 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1151 +
1152 +    integer :: me_i, me_j, iHash
1153 +
1154      r = sqrt(rijsq)
961    if (SIM_uses_molecular_cutoffs) then
962       rc = sqrt(rcijsq)
963    else
964       rc = r
965    endif
966  
1155  
1156   #ifdef IS_MPI  
1157 <   me_i = atid_row(i)
1158 <   me_j = atid_col(j)  
1157 >    me_i = atid_row(i)
1158 >    me_j = atid_col(j)  
1159   #else  
1160 <   me_i = atid(i)
1161 <   me_j = atid(j)  
1160 >    me_i = atid(i)
1161 >    me_j = atid(j)  
1162   #endif
1163 <  
1164 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1165 <      
1166 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1167 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1168 <      
1169 <   endif
1170 <  
1171 < end subroutine do_prepair
1172 <
1173 <
1174 < subroutine do_preforce(nlocal,pot)
1175 <   integer :: nlocal
1176 <   real( kind = dp ) :: pot
1177 <  
1178 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1179 <      call calc_EAM_preforce_Frho(nlocal,pot)
1180 <   endif
1181 <  
1182 <  
1183 < end subroutine do_preforce
1184 <
1185 <
1186 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1187 <  
1188 <   real (kind = dp), dimension(3) :: q_i
1189 <   real (kind = dp), dimension(3) :: q_j
1190 <   real ( kind = dp ), intent(out) :: r_sq
1191 <   real( kind = dp ) :: d(3), scaled(3)
1192 <   integer i
1193 <  
1194 <   d(1:3) = q_j(1:3) - q_i(1:3)
1195 <  
1196 <   ! Wrap back into periodic box if necessary
1197 <   if ( SIM_uses_PBC ) then
1198 <      
1199 <      if( .not.boxIsOrthorhombic ) then
1200 <         ! calc the scaled coordinates.
1201 <        
1202 <         scaled = matmul(HmatInv, d)
1203 <        
1204 <         ! wrap the scaled coordinates
1205 <        
1206 <         scaled = scaled  - anint(scaled)
1207 <        
1208 <        
1209 <         ! calc the wrapped real coordinates from the wrapped scaled
1210 <         ! coordinates
1211 <        
1212 <         d = matmul(Hmat,scaled)
1213 <        
1214 <      else
1215 <         ! calc the scaled coordinates.
1216 <        
1217 <         do i = 1, 3
1218 <            scaled(i) = d(i) * HmatInv(i,i)
1219 <            
1220 <            ! wrap the scaled coordinates
1221 <            
1222 <            scaled(i) = scaled(i) - anint(scaled(i))
1223 <            
1224 <            ! calc the wrapped real coordinates from the wrapped scaled
1225 <            ! coordinates
1226 <            
1227 <            d(i) = scaled(i)*Hmat(i,i)
1228 <         enddo
1229 <      endif
1230 <      
1231 <   endif
1232 <  
1233 <   r_sq = dot_product(d,d)
1234 <  
1235 < end subroutine get_interatomic_vector
1236 <
1237 < subroutine zero_work_arrays()
1050 <  
1163 >
1164 >    iHash = InteractionHash(me_i, me_j)
1165 >
1166 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1167 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1168 >    endif
1169 >    
1170 >  end subroutine do_prepair
1171 >
1172 >
1173 >  subroutine do_preforce(nlocal,pot)
1174 >    integer :: nlocal
1175 >    real( kind = dp ) :: pot
1176 >
1177 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1178 >       call calc_EAM_preforce_Frho(nlocal,pot)
1179 >    endif
1180 >
1181 >
1182 >  end subroutine do_preforce
1183 >
1184 >
1185 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1186 >
1187 >    real (kind = dp), dimension(3) :: q_i
1188 >    real (kind = dp), dimension(3) :: q_j
1189 >    real ( kind = dp ), intent(out) :: r_sq
1190 >    real( kind = dp ) :: d(3), scaled(3)
1191 >    integer i
1192 >
1193 >    d(1:3) = q_j(1:3) - q_i(1:3)
1194 >
1195 >    ! Wrap back into periodic box if necessary
1196 >    if ( SIM_uses_PBC ) then
1197 >
1198 >       if( .not.boxIsOrthorhombic ) then
1199 >          ! calc the scaled coordinates.
1200 >
1201 >          scaled = matmul(HmatInv, d)
1202 >
1203 >          ! wrap the scaled coordinates
1204 >
1205 >          scaled = scaled  - anint(scaled)
1206 >
1207 >
1208 >          ! calc the wrapped real coordinates from the wrapped scaled
1209 >          ! coordinates
1210 >
1211 >          d = matmul(Hmat,scaled)
1212 >
1213 >       else
1214 >          ! calc the scaled coordinates.
1215 >
1216 >          do i = 1, 3
1217 >             scaled(i) = d(i) * HmatInv(i,i)
1218 >
1219 >             ! wrap the scaled coordinates
1220 >
1221 >             scaled(i) = scaled(i) - anint(scaled(i))
1222 >
1223 >             ! calc the wrapped real coordinates from the wrapped scaled
1224 >             ! coordinates
1225 >
1226 >             d(i) = scaled(i)*Hmat(i,i)
1227 >          enddo
1228 >       endif
1229 >
1230 >    endif
1231 >
1232 >    r_sq = dot_product(d,d)
1233 >
1234 >  end subroutine get_interatomic_vector
1235 >
1236 >  subroutine zero_work_arrays()
1237 >
1238   #ifdef IS_MPI
1052  
1053   q_Row = 0.0_dp
1054   q_Col = 0.0_dp
1239  
1240 <   q_group_Row = 0.0_dp
1241 <   q_group_Col = 0.0_dp  
1242 <  
1243 <   u_l_Row = 0.0_dp
1244 <   u_l_Col = 0.0_dp
1245 <  
1246 <   A_Row = 0.0_dp
1247 <   A_Col = 0.0_dp
1248 <  
1249 <   f_Row = 0.0_dp
1250 <   f_Col = 0.0_dp
1251 <   f_Temp = 0.0_dp
1252 <  
1253 <   t_Row = 0.0_dp
1254 <   t_Col = 0.0_dp
1255 <   t_Temp = 0.0_dp
1256 <  
1257 <   pot_Row = 0.0_dp
1258 <   pot_Col = 0.0_dp
1259 <   pot_Temp = 0.0_dp
1260 <  
1261 <   rf_Row = 0.0_dp
1262 <   rf_Col = 0.0_dp
1263 <   rf_Temp = 0.0_dp
1264 <  
1240 >    q_Row = 0.0_dp
1241 >    q_Col = 0.0_dp
1242 >
1243 >    q_group_Row = 0.0_dp
1244 >    q_group_Col = 0.0_dp  
1245 >
1246 >    eFrame_Row = 0.0_dp
1247 >    eFrame_Col = 0.0_dp
1248 >
1249 >    A_Row = 0.0_dp
1250 >    A_Col = 0.0_dp
1251 >
1252 >    f_Row = 0.0_dp
1253 >    f_Col = 0.0_dp
1254 >    f_Temp = 0.0_dp
1255 >
1256 >    t_Row = 0.0_dp
1257 >    t_Col = 0.0_dp
1258 >    t_Temp = 0.0_dp
1259 >
1260 >    pot_Row = 0.0_dp
1261 >    pot_Col = 0.0_dp
1262 >    pot_Temp = 0.0_dp
1263 >
1264 >    rf_Row = 0.0_dp
1265 >    rf_Col = 0.0_dp
1266 >    rf_Temp = 0.0_dp
1267 >
1268   #endif
1269 <
1270 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1271 <      call clean_EAM()
1272 <   endif
1273 <  
1274 <   rf = 0.0_dp
1275 <   tau_Temp = 0.0_dp
1276 <   virial_Temp = 0.0_dp
1277 < end subroutine zero_work_arrays
1278 <
1279 < function skipThisPair(atom1, atom2) result(skip_it)
1280 <   integer, intent(in) :: atom1
1281 <   integer, intent(in), optional :: atom2
1282 <   logical :: skip_it
1283 <   integer :: unique_id_1, unique_id_2
1284 <   integer :: me_i,me_j
1285 <   integer :: i
1286 <  
1287 <   skip_it = .false.
1288 <  
1289 <   !! there are a number of reasons to skip a pair or a particle
1290 <   !! mostly we do this to exclude atoms who are involved in short
1291 <   !! range interactions (bonds, bends, torsions), but we also need
1292 <   !! to exclude some overcounted interactions that result from
1293 <   !! the parallel decomposition
1294 <  
1269 >
1270 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1271 >       call clean_EAM()
1272 >    endif
1273 >
1274 >    rf = 0.0_dp
1275 >    tau_Temp = 0.0_dp
1276 >    virial_Temp = 0.0_dp
1277 >  end subroutine zero_work_arrays
1278 >
1279 >  function skipThisPair(atom1, atom2) result(skip_it)
1280 >    integer, intent(in) :: atom1
1281 >    integer, intent(in), optional :: atom2
1282 >    logical :: skip_it
1283 >    integer :: unique_id_1, unique_id_2
1284 >    integer :: me_i,me_j
1285 >    integer :: i
1286 >
1287 >    skip_it = .false.
1288 >
1289 >    !! there are a number of reasons to skip a pair or a particle
1290 >    !! mostly we do this to exclude atoms who are involved in short
1291 >    !! range interactions (bonds, bends, torsions), but we also need
1292 >    !! to exclude some overcounted interactions that result from
1293 >    !! the parallel decomposition
1294 >
1295   #ifdef IS_MPI
1296 <   !! in MPI, we have to look up the unique IDs for each atom
1297 <   unique_id_1 = AtomRowToGlobal(atom1)
1296 >    !! in MPI, we have to look up the unique IDs for each atom
1297 >    unique_id_1 = AtomRowToGlobal(atom1)
1298   #else
1299 <   !! in the normal loop, the atom numbers are unique
1300 <   unique_id_1 = atom1
1299 >    !! in the normal loop, the atom numbers are unique
1300 >    unique_id_1 = atom1
1301   #endif
1302 <  
1303 <   !! We were called with only one atom, so just check the global exclude
1304 <   !! list for this atom
1305 <   if (.not. present(atom2)) then
1306 <      do i = 1, nExcludes_global
1307 <         if (excludesGlobal(i) == unique_id_1) then
1308 <            skip_it = .true.
1309 <            return
1310 <         end if
1311 <      end do
1312 <      return
1313 <   end if
1314 <  
1302 >
1303 >    !! We were called with only one atom, so just check the global exclude
1304 >    !! list for this atom
1305 >    if (.not. present(atom2)) then
1306 >       do i = 1, nExcludes_global
1307 >          if (excludesGlobal(i) == unique_id_1) then
1308 >             skip_it = .true.
1309 >             return
1310 >          end if
1311 >       end do
1312 >       return
1313 >    end if
1314 >
1315   #ifdef IS_MPI
1316 <   unique_id_2 = AtomColToGlobal(atom2)
1316 >    unique_id_2 = AtomColToGlobal(atom2)
1317   #else
1318 <   unique_id_2 = atom2
1318 >    unique_id_2 = atom2
1319   #endif
1320 <  
1320 >
1321   #ifdef IS_MPI
1322 <   !! this situation should only arise in MPI simulations
1323 <   if (unique_id_1 == unique_id_2) then
1324 <      skip_it = .true.
1325 <      return
1326 <   end if
1327 <  
1328 <   !! this prevents us from doing the pair on multiple processors
1329 <   if (unique_id_1 < unique_id_2) then
1330 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1331 <         skip_it = .true.
1332 <         return
1333 <      endif
1334 <   else                
1335 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1336 <         skip_it = .true.
1337 <         return
1338 <      endif
1339 <   endif
1322 >    !! this situation should only arise in MPI simulations
1323 >    if (unique_id_1 == unique_id_2) then
1324 >       skip_it = .true.
1325 >       return
1326 >    end if
1327 >
1328 >    !! this prevents us from doing the pair on multiple processors
1329 >    if (unique_id_1 < unique_id_2) then
1330 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1331 >          skip_it = .true.
1332 >          return
1333 >       endif
1334 >    else                
1335 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1336 >          skip_it = .true.
1337 >          return
1338 >       endif
1339 >    endif
1340   #endif
1341 <  
1342 <   !! the rest of these situations can happen in all simulations:
1343 <   do i = 1, nExcludes_global      
1344 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1345 <           (excludesGlobal(i) == unique_id_2)) then
1346 <         skip_it = .true.
1347 <         return
1348 <      endif
1349 <   enddo
1350 <  
1351 <   do i = 1, nSkipsForAtom(atom1)
1352 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1353 <         skip_it = .true.
1354 <         return
1355 <      endif
1356 <   end do
1357 <  
1358 <   return
1359 < end function skipThisPair
1360 <
1361 < function FF_UsesDirectionalAtoms() result(doesit)
1362 <   logical :: doesit
1363 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1364 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1365 < end function FF_UsesDirectionalAtoms
1366 <
1367 < function FF_RequiresPrepairCalc() result(doesit)
1368 <   logical :: doesit
1369 <   doesit = FF_uses_EAM
1370 < end function FF_RequiresPrepairCalc
1371 <
1372 < function FF_RequiresPostpairCalc() result(doesit)
1373 <   logical :: doesit
1374 <   doesit = FF_uses_RF
1375 < end function FF_RequiresPostpairCalc
1376 <
1341 >
1342 >    !! the rest of these situations can happen in all simulations:
1343 >    do i = 1, nExcludes_global      
1344 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1345 >            (excludesGlobal(i) == unique_id_2)) then
1346 >          skip_it = .true.
1347 >          return
1348 >       endif
1349 >    enddo
1350 >
1351 >    do i = 1, nSkipsForAtom(atom1)
1352 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1353 >          skip_it = .true.
1354 >          return
1355 >       endif
1356 >    end do
1357 >
1358 >    return
1359 >  end function skipThisPair
1360 >
1361 >  function FF_UsesDirectionalAtoms() result(doesit)
1362 >    logical :: doesit
1363 >    doesit = FF_uses_DirectionalAtoms
1364 >  end function FF_UsesDirectionalAtoms
1365 >
1366 >  function FF_RequiresPrepairCalc() result(doesit)
1367 >    logical :: doesit
1368 >    doesit = FF_uses_EAM
1369 >  end function FF_RequiresPrepairCalc
1370 >
1371 >  function FF_RequiresPostpairCalc() result(doesit)
1372 >    logical :: doesit
1373 >    doesit = FF_uses_RF
1374 >    if (corrMethod == 3) doesit = .true.
1375 >  end function FF_RequiresPostpairCalc
1376 >
1377   #ifdef PROFILE
1378 < function getforcetime() result(totalforcetime)
1379 <   real(kind=dp) :: totalforcetime
1380 <   totalforcetime = forcetime
1381 < end function getforcetime
1378 >  function getforcetime() result(totalforcetime)
1379 >    real(kind=dp) :: totalforcetime
1380 >    totalforcetime = forcetime
1381 >  end function getforcetime
1382   #endif
1196
1197 !! This cleans componets of force arrays belonging only to fortran
1383  
1384 < subroutine add_stress_tensor(dpair, fpair)
1200 <  
1201 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1202 <  
1203 <   ! because the d vector is the rj - ri vector, and
1204 <   ! because fx, fy, fz are the force on atom i, we need a
1205 <   ! negative sign here:  
1206 <  
1207 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1208 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1209 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1210 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1211 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1212 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1213 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1214 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1215 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1216 <  
1217 <   virial_Temp = virial_Temp + &
1218 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1219 <  
1220 < end subroutine add_stress_tensor
1221 <
1222 < end module doForces
1384 >  !! This cleans componets of force arrays belonging only to fortran
1385  
1386 < !! Interfaces for C programs to module....
1386 >  subroutine add_stress_tensor(dpair, fpair)
1387  
1388 < subroutine initFortranFF(use_RF_c, thisStat)
1227 <    use doForces, ONLY: init_FF
1228 <    logical, intent(in) :: use_RF_c
1388 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1389  
1390 <    integer, intent(out) :: thisStat  
1391 <    call init_FF(use_RF_c, thisStat)
1390 >    ! because the d vector is the rj - ri vector, and
1391 >    ! because fx, fy, fz are the force on atom i, we need a
1392 >    ! negative sign here:  
1393  
1394 < end subroutine initFortranFF
1394 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1395 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1396 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1397 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1398 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1399 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1400 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1401 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1402 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1403  
1404 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1405 <       do_pot_c, do_stress_c, error)
1237 <      
1238 <       use definitions, ONLY: dp
1239 <       use simulation
1240 <       use doForces, ONLY: do_force_loop
1241 <    !! Position array provided by C, dimensioned by getNlocal
1242 <    real ( kind = dp ), dimension(3, nLocal) :: q
1243 <    !! molecular center-of-mass position array
1244 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1245 <    !! Rotation Matrix for each long range particle in simulation.
1246 <    real( kind = dp), dimension(9, nLocal) :: A    
1247 <    !! Unit vectors for dipoles (lab frame)
1248 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1249 <    !! Force array provided by C, dimensioned by getNlocal
1250 <    real ( kind = dp ), dimension(3,nLocal) :: f
1251 <    !! Torsion array provided by C, dimensioned by getNlocal
1252 <    real( kind = dp ), dimension(3,nLocal) :: t    
1404 >    virial_Temp = virial_Temp + &
1405 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1406  
1407 <    !! Stress Tensor
1408 <    real( kind = dp), dimension(9) :: tau  
1409 <    real ( kind = dp ) :: pot
1257 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1258 <    integer :: error
1259 <    
1260 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1261 <       do_pot_c, do_stress_c, error)
1262 <      
1263 < end subroutine doForceloop
1407 >  end subroutine add_stress_tensor
1408 >
1409 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines