ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1628 by gezelter, Thu Oct 21 20:15:31 2004 UTC vs.
Revision 2787 by gezelter, Mon Jun 5 18:24:45 2006 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.2 2004-10-21 20:15:22 gezelter Exp $, $Date: 2004-10-21 20:15:22 $, $Name: not supported by cvs2svn $, $Revision: 1.2 $
48 > !! @version $Id: doForces.F90,v 1.83 2006-06-05 18:24:45 gezelter Exp $, $Date: 2006-06-05 18:24:45 $, $Name: not supported by cvs2svn $, $Revision: 1.83 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
62 <  use reaction_field
21 <  use gb_pair
59 >  use sticky
60 >  use electrostatic_module
61 >  use gayberne
62 >  use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 30 | Line 72 | module doForces
72    PRIVATE
73  
74   #define __FORTRAN90
75 < #include "UseTheForce/fSwitchingFunction.h"
75 > #include "UseTheForce/fCutoffPolicy.h"
76 > #include "UseTheForce/DarkSide/fInteractionMap.h"
77 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78  
79    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
80    INTEGER, PARAMETER:: PAIR_LOOP    = 2
81  
38  logical, save :: haveRlist = .false.
82    logical, save :: haveNeighborList = .false.
83    logical, save :: haveSIMvariables = .false.
41  logical, save :: havePropertyMap = .false.
84    logical, save :: haveSaneForceField = .false.
85 <  logical, save :: FF_uses_LJ
86 <  logical, save :: FF_uses_sticky
87 <  logical, save :: FF_uses_charges
88 <  logical, save :: FF_uses_dipoles
89 <  logical, save :: FF_uses_RF
90 <  logical, save :: FF_uses_GB
85 >  logical, save :: haveInteractionHash = .false.
86 >  logical, save :: haveGtypeCutoffMap = .false.
87 >  logical, save :: haveDefaultCutoffs = .false.
88 >  logical, save :: haveSkinThickness = .false.
89 >  logical, save :: haveElectrostaticSummationMethod = .false.
90 >  logical, save :: haveCutoffPolicy = .false.
91 >  logical, save :: VisitCutoffsAfterComputing = .false.
92 >
93 >  logical, save :: FF_uses_DirectionalAtoms
94 >  logical, save :: FF_uses_Dipoles
95 >  logical, save :: FF_uses_GayBerne
96    logical, save :: FF_uses_EAM
97 <  logical, save :: SIM_uses_LJ
98 <  logical, save :: SIM_uses_sticky
99 <  logical, save :: SIM_uses_charges
100 <  logical, save :: SIM_uses_dipoles
101 <  logical, save :: SIM_uses_RF
55 <  logical, save :: SIM_uses_GB
97 >  logical, save :: FF_uses_SC
98 >  logical, save :: FF_uses_MEAM
99 >
100 >
101 >  logical, save :: SIM_uses_DirectionalAtoms
102    logical, save :: SIM_uses_EAM
103 +  logical, save :: SIM_uses_SC
104 +  logical, save :: SIM_uses_MEAM
105    logical, save :: SIM_requires_postpair_calc
106    logical, save :: SIM_requires_prepair_calc
59  logical, save :: SIM_uses_directional_atoms
107    logical, save :: SIM_uses_PBC
61  logical, save :: SIM_uses_molecular_cutoffs
108  
109 <  real(kind=dp), save :: rlist, rlistsq
109 >  integer, save :: electrostaticSummationMethod
110 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
111  
112 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
113 +  real(kind=dp), save :: skinThickness
114 +  logical, save :: defaultDoShift
115 +
116    public :: init_FF
117 +  public :: setCutoffs
118 +  public :: cWasLame
119 +  public :: setElectrostaticMethod
120 +  public :: setCutoffPolicy
121 +  public :: setSkinThickness
122    public :: do_force_loop
67  public :: setRlistDF
123  
124   #ifdef PROFILE
125    public :: getforcetime
# Line 72 | Line 127 | module doForces
127    real :: forceTimeInitial, forceTimeFinal
128    integer :: nLoops
129   #endif
130 +  
131 +  !! Variables for cutoff mapping and interaction mapping
132 +  ! Bit hash to determine pair-pair interactions.
133 +  integer, dimension(:,:), allocatable :: InteractionHash
134 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
135 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
136 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
137  
138 <  type :: Properties
139 <     logical :: is_lj     = .false.
78 <     logical :: is_sticky = .false.
79 <     logical :: is_dp     = .false.
80 <     logical :: is_gb     = .false.
81 <     logical :: is_eam    = .false.
82 <     logical :: is_charge = .false.
83 <     real(kind=DP) :: charge = 0.0_DP
84 <     real(kind=DP) :: dipole_moment = 0.0_DP
85 <  end type Properties
138 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
139 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
140  
141 <  type(Properties), dimension(:),allocatable :: PropertyMap
141 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
142 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
143 >  type ::gtypeCutoffs
144 >     real(kind=dp) :: rcut
145 >     real(kind=dp) :: rcutsq
146 >     real(kind=dp) :: rlistsq
147 >  end type gtypeCutoffs
148 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
149  
150 +
151   contains
152  
153 <  subroutine setRlistDF( this_rlist )
92 <    
93 <    real(kind=dp) :: this_rlist
94 <
95 <    rlist = this_rlist
96 <    rlistsq = rlist * rlist
97 <    
98 <    haveRlist = .true.
99 <
100 <  end subroutine setRlistDF    
101 <
102 <  subroutine createPropertyMap(status)
153 >  subroutine createInteractionHash()
154      integer :: nAtypes
104    integer :: status
155      integer :: i
156 <    logical :: thisProperty
157 <    real (kind=DP) :: thisDPproperty
156 >    integer :: j
157 >    integer :: iHash
158 >    !! Test Types
159 >    logical :: i_is_LJ
160 >    logical :: i_is_Elect
161 >    logical :: i_is_Sticky
162 >    logical :: i_is_StickyP
163 >    logical :: i_is_GB
164 >    logical :: i_is_EAM
165 >    logical :: i_is_Shape
166 >    logical :: i_is_SC
167 >    logical :: i_is_MEAM
168 >    logical :: j_is_LJ
169 >    logical :: j_is_Elect
170 >    logical :: j_is_Sticky
171 >    logical :: j_is_StickyP
172 >    logical :: j_is_GB
173 >    logical :: j_is_EAM
174 >    logical :: j_is_Shape
175 >    logical :: j_is_SC
176 >    logical :: j_is_MEAM
177 >    real(kind=dp) :: myRcut
178  
179 <    status = 0
180 <
179 >    if (.not. associated(atypes)) then
180 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
181 >       return
182 >    endif
183 >    
184      nAtypes = getSize(atypes)
185 <
185 >    
186      if (nAtypes == 0) then
187 <       status = -1
187 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
188         return
189      end if
190 <        
191 <    if (.not. allocated(PropertyMap)) then
192 <       allocate(PropertyMap(nAtypes))
190 >
191 >    if (.not. allocated(InteractionHash)) then
192 >       allocate(InteractionHash(nAtypes,nAtypes))
193 >    else
194 >       deallocate(InteractionHash)
195 >       allocate(InteractionHash(nAtypes,nAtypes))
196      endif
197  
198 +    if (.not. allocated(atypeMaxCutoff)) then
199 +       allocate(atypeMaxCutoff(nAtypes))
200 +    else
201 +       deallocate(atypeMaxCutoff)
202 +       allocate(atypeMaxCutoff(nAtypes))
203 +    endif
204 +        
205      do i = 1, nAtypes
206 <       call getElementProperty(atypes, i, "is_LJ", thisProperty)
207 <       PropertyMap(i)%is_LJ = thisProperty
206 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
207 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
208 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
209 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
210 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
211 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
212 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
213 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
214 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
215  
216 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
127 <       PropertyMap(i)%is_Charge = thisProperty
128 <      
129 <       if (thisProperty) then
130 <          call getElementProperty(atypes, i, "charge", thisDPproperty)
131 <          PropertyMap(i)%charge = thisDPproperty
132 <       endif
216 >       do j = i, nAtypes
217  
218 <       call getElementProperty(atypes, i, "is_DP", thisProperty)
219 <       PropertyMap(i)%is_DP = thisProperty
218 >          iHash = 0
219 >          myRcut = 0.0_dp
220  
221 <       if (thisProperty) then
222 <          call getElementProperty(atypes, i, "dipole_moment", thisDPproperty)
223 <          PropertyMap(i)%dipole_moment = thisDPproperty
224 <       endif
221 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
222 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
223 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
224 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
225 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
226 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
227 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
228 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
229 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
230  
231 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
232 <       PropertyMap(i)%is_Sticky = thisProperty
233 <       call getElementProperty(atypes, i, "is_GB", thisProperty)
234 <       PropertyMap(i)%is_GB = thisProperty
235 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
236 <       PropertyMap(i)%is_EAM = thisProperty
237 <    end do
231 >          if (i_is_LJ .and. j_is_LJ) then
232 >             iHash = ior(iHash, LJ_PAIR)            
233 >          endif
234 >          
235 >          if (i_is_Elect .and. j_is_Elect) then
236 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
237 >          endif
238 >          
239 >          if (i_is_Sticky .and. j_is_Sticky) then
240 >             iHash = ior(iHash, STICKY_PAIR)
241 >          endif
242  
243 <    havePropertyMap = .true.
243 >          if (i_is_StickyP .and. j_is_StickyP) then
244 >             iHash = ior(iHash, STICKYPOWER_PAIR)
245 >          endif
246  
247 <  end subroutine createPropertyMap
247 >          if (i_is_EAM .and. j_is_EAM) then
248 >             iHash = ior(iHash, EAM_PAIR)
249 >          endif
250  
251 <  subroutine setSimVariables()
252 <    SIM_uses_LJ = SimUsesLJ()
253 <    SIM_uses_sticky = SimUsesSticky()
157 <    SIM_uses_charges = SimUsesCharges()
158 <    SIM_uses_dipoles = SimUsesDipoles()
159 <    SIM_uses_RF = SimUsesRF()
160 <    SIM_uses_GB = SimUsesGB()
161 <    SIM_uses_EAM = SimUsesEAM()
162 <    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
163 <    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
164 <    SIM_uses_directional_atoms = SimUsesDirectionalAtoms()
165 <    SIM_uses_PBC = SimUsesPBC()
166 <    !SIM_uses_molecular_cutoffs = SimUsesMolecularCutoffs()
251 >          if (i_is_SC .and. j_is_SC) then
252 >             iHash = ior(iHash, SC_PAIR)
253 >          endif
254  
255 <    haveSIMvariables = .true.
255 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
256 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
257 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
258  
259 <    return
260 <  end subroutine setSimVariables
259 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
260 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
261 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
262  
173  subroutine doReadyCheck(error)
174    integer, intent(out) :: error
263  
264 <    integer :: myStatus
264 >          InteractionHash(i,j) = iHash
265 >          InteractionHash(j,i) = iHash
266  
267 <    error = 0
267 >       end do
268 >
269 >    end do
270 >
271 >    haveInteractionHash = .true.
272 >  end subroutine createInteractionHash
273 >
274 >  subroutine createGtypeCutoffMap()
275 >
276 >    logical :: i_is_LJ
277 >    logical :: i_is_Elect
278 >    logical :: i_is_Sticky
279 >    logical :: i_is_StickyP
280 >    logical :: i_is_GB
281 >    logical :: i_is_EAM
282 >    logical :: i_is_Shape
283 >    logical :: i_is_SC
284 >    logical :: GtypeFound
285 >
286 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
287 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
288 >    integer :: nGroupsInRow
289 >    integer :: nGroupsInCol
290 >    integer :: nGroupTypesRow,nGroupTypesCol
291 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
292 >    real(kind=dp) :: biggestAtypeCutoff
293 >
294 >    if (.not. haveInteractionHash) then
295 >       call createInteractionHash()      
296 >    endif
297 > #ifdef IS_MPI
298 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
299 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
300 > #endif
301 >    nAtypes = getSize(atypes)
302 > ! Set all of the initial cutoffs to zero.
303 >    atypeMaxCutoff = 0.0_dp
304 >    do i = 1, nAtypes
305 >       if (SimHasAtype(i)) then    
306 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
307 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
308 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
309 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
310 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
311 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
312 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
313 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
314 >
315 >          if (haveDefaultCutoffs) then
316 >             atypeMaxCutoff(i) = defaultRcut
317 >          else
318 >             if (i_is_LJ) then          
319 >                thisRcut = getSigma(i) * 2.5_dp
320 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
321 >             endif
322 >             if (i_is_Elect) then
323 >                thisRcut = defaultRcut
324 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
325 >             endif
326 >             if (i_is_Sticky) then
327 >                thisRcut = getStickyCut(i)
328 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
329 >             endif
330 >             if (i_is_StickyP) then
331 >                thisRcut = getStickyPowerCut(i)
332 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
333 >             endif
334 >             if (i_is_GB) then
335 >                thisRcut = getGayBerneCut(i)
336 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
337 >             endif
338 >             if (i_is_EAM) then
339 >                thisRcut = getEAMCut(i)
340 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
341 >             endif
342 >             if (i_is_Shape) then
343 >                thisRcut = getShapeCut(i)
344 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
345 >             endif
346 >             if (i_is_SC) then
347 >                thisRcut = getSCCut(i)
348 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
349 >             endif
350 >          endif
351 >                    
352 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
353 >             biggestAtypeCutoff = atypeMaxCutoff(i)
354 >          endif
355 >
356 >       endif
357 >    enddo
358      
359 <    if (.not. havePropertyMap) then
359 >    istart = 1
360 >    jstart = 1
361 > #ifdef IS_MPI
362 >    iend = nGroupsInRow
363 >    jend = nGroupsInCol
364 > #else
365 >    iend = nGroups
366 >    jend = nGroups
367 > #endif
368 >    
369 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
370 >    if(.not.allocated(groupToGtypeRow)) then
371 >     !  allocate(groupToGtype(iend))
372 >       allocate(groupToGtypeRow(iend))
373 >    else
374 >       deallocate(groupToGtypeRow)
375 >       allocate(groupToGtypeRow(iend))
376 >    endif
377 >    if(.not.allocated(groupMaxCutoffRow)) then
378 >       allocate(groupMaxCutoffRow(iend))
379 >    else
380 >       deallocate(groupMaxCutoffRow)
381 >       allocate(groupMaxCutoffRow(iend))
382 >    end if
383  
384 <       myStatus = 0
384 >    if(.not.allocated(gtypeMaxCutoffRow)) then
385 >       allocate(gtypeMaxCutoffRow(iend))
386 >    else
387 >       deallocate(gtypeMaxCutoffRow)
388 >       allocate(gtypeMaxCutoffRow(iend))
389 >    endif
390  
184       call createPropertyMap(myStatus)
391  
392 <       if (myStatus .ne. 0) then
393 <          write(default_error, *) 'createPropertyMap failed in doForces!'
394 <          error = -1
395 <          return
392 > #ifdef IS_MPI
393 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
394 >    if(.not.associated(groupToGtypeCol)) then
395 >       allocate(groupToGtypeCol(jend))
396 >    else
397 >       deallocate(groupToGtypeCol)
398 >       allocate(groupToGtypeCol(jend))
399 >    end if
400 >
401 >    if(.not.associated(groupMaxCutoffCol)) then
402 >       allocate(groupMaxCutoffCol(jend))
403 >    else
404 >       deallocate(groupMaxCutoffCol)
405 >       allocate(groupMaxCutoffCol(jend))
406 >    end if
407 >    if(.not.associated(gtypeMaxCutoffCol)) then
408 >       allocate(gtypeMaxCutoffCol(jend))
409 >    else
410 >       deallocate(gtypeMaxCutoffCol)      
411 >       allocate(gtypeMaxCutoffCol(jend))
412 >    end if
413 >
414 >       groupMaxCutoffCol = 0.0_dp
415 >       gtypeMaxCutoffCol = 0.0_dp
416 >
417 > #endif
418 >       groupMaxCutoffRow = 0.0_dp
419 >       gtypeMaxCutoffRow = 0.0_dp
420 >
421 >
422 >    !! first we do a single loop over the cutoff groups to find the
423 >    !! largest cutoff for any atypes present in this group.  We also
424 >    !! create gtypes at this point.
425 >    
426 >    tol = 1.0e-6_dp
427 >    nGroupTypesRow = 0
428 >    nGroupTypesCol = 0
429 >    do i = istart, iend      
430 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
431 >       groupMaxCutoffRow(i) = 0.0_dp
432 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
433 >          atom1 = groupListRow(ia)
434 > #ifdef IS_MPI
435 >          me_i = atid_row(atom1)
436 > #else
437 >          me_i = atid(atom1)
438 > #endif          
439 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
440 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
441 >          endif          
442 >       enddo
443 >       if (nGroupTypesRow.eq.0) then
444 >          nGroupTypesRow = nGroupTypesRow + 1
445 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
446 >          groupToGtypeRow(i) = nGroupTypesRow
447 >       else
448 >          GtypeFound = .false.
449 >          do g = 1, nGroupTypesRow
450 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
451 >                groupToGtypeRow(i) = g
452 >                GtypeFound = .true.
453 >             endif
454 >          enddo
455 >          if (.not.GtypeFound) then            
456 >             nGroupTypesRow = nGroupTypesRow + 1
457 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
458 >             groupToGtypeRow(i) = nGroupTypesRow
459 >          endif
460 >       endif
461 >    enddo    
462 >
463 > #ifdef IS_MPI
464 >    do j = jstart, jend      
465 >       n_in_j = groupStartCol(j+1) - groupStartCol(j)
466 >       groupMaxCutoffCol(j) = 0.0_dp
467 >       do ja = groupStartCol(j), groupStartCol(j+1)-1
468 >          atom1 = groupListCol(ja)
469 >
470 >          me_j = atid_col(atom1)
471 >
472 >          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
473 >             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
474 >          endif          
475 >       enddo
476 >
477 >       if (nGroupTypesCol.eq.0) then
478 >          nGroupTypesCol = nGroupTypesCol + 1
479 >          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
480 >          groupToGtypeCol(j) = nGroupTypesCol
481 >       else
482 >          GtypeFound = .false.
483 >          do g = 1, nGroupTypesCol
484 >             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
485 >                groupToGtypeCol(j) = g
486 >                GtypeFound = .true.
487 >             endif
488 >          enddo
489 >          if (.not.GtypeFound) then            
490 >             nGroupTypesCol = nGroupTypesCol + 1
491 >             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
492 >             groupToGtypeCol(j) = nGroupTypesCol
493 >          endif
494         endif
495 +    enddo    
496 +
497 + #else
498 + ! Set pointers to information we just found
499 +    nGroupTypesCol = nGroupTypesRow
500 +    groupToGtypeCol => groupToGtypeRow
501 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
502 +    groupMaxCutoffCol => groupMaxCutoffRow
503 + #endif
504 +
505 +    !! allocate the gtypeCutoffMap here.
506 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
507 +    !! then we do a double loop over all the group TYPES to find the cutoff
508 +    !! map between groups of two types
509 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
510 +
511 +    do i = 1, nGroupTypesRow      
512 +       do j = 1, nGroupTypesCol
513 +      
514 +          select case(cutoffPolicy)
515 +          case(TRADITIONAL_CUTOFF_POLICY)
516 +             thisRcut = tradRcut
517 +          case(MIX_CUTOFF_POLICY)
518 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
519 +          case(MAX_CUTOFF_POLICY)
520 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
521 +          case default
522 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
523 +             return
524 +          end select
525 +          gtypeCutoffMap(i,j)%rcut = thisRcut
526 +          
527 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
528 +
529 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
530 +
531 +          if (.not.haveSkinThickness) then
532 +             skinThickness = 1.0_dp
533 +          endif
534 +
535 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
536 +
537 +          ! sanity check
538 +
539 +          if (haveDefaultCutoffs) then
540 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
541 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
542 +             endif
543 +          endif
544 +       enddo
545 +    enddo
546 +
547 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
548 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
549 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
550 + #ifdef IS_MPI
551 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
552 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
553 + #endif
554 +    groupMaxCutoffCol => null()
555 +    gtypeMaxCutoffCol => null()
556 +    
557 +    haveGtypeCutoffMap = .true.
558 +   end subroutine createGtypeCutoffMap
559 +
560 +   subroutine setCutoffs(defRcut, defRsw)
561 +
562 +     real(kind=dp),intent(in) :: defRcut, defRsw
563 +     character(len = statusMsgSize) :: errMsg
564 +     integer :: localError
565 +
566 +     defaultRcut = defRcut
567 +     defaultRsw = defRsw
568 +    
569 +     defaultDoShift = .false.
570 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
571 +        
572 +        write(errMsg, *) &
573 +             'cutoffRadius and switchingRadius are set to the same', newline &
574 +             // tab, 'value.  OOPSE will use shifted ', newline &
575 +             // tab, 'potentials instead of switching functions.'
576 +        
577 +        call handleInfo("setCutoffs", errMsg)
578 +        
579 +        defaultDoShift = .true.
580 +        
581 +     endif
582 +    
583 +     localError = 0
584 +     call setLJDefaultCutoff( defaultRcut, defaultDoShift )
585 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
586 +     call setCutoffEAM( defaultRcut )
587 +     call setCutoffSC( defaultRcut )
588 +     call set_switch(defaultRsw, defaultRcut)
589 +     call setHmatDangerousRcutValue(defaultRcut)
590 +        
591 +     haveDefaultCutoffs = .true.
592 +     haveGtypeCutoffMap = .false.
593 +
594 +   end subroutine setCutoffs
595 +
596 +   subroutine cWasLame()
597 +    
598 +     VisitCutoffsAfterComputing = .true.
599 +     return
600 +    
601 +   end subroutine cWasLame
602 +  
603 +   subroutine setCutoffPolicy(cutPolicy)
604 +    
605 +     integer, intent(in) :: cutPolicy
606 +    
607 +     cutoffPolicy = cutPolicy
608 +     haveCutoffPolicy = .true.
609 +     haveGtypeCutoffMap = .false.
610 +    
611 +   end subroutine setCutoffPolicy
612 +  
613 +   subroutine setElectrostaticMethod( thisESM )
614 +
615 +     integer, intent(in) :: thisESM
616 +
617 +     electrostaticSummationMethod = thisESM
618 +     haveElectrostaticSummationMethod = .true.
619 +    
620 +   end subroutine setElectrostaticMethod
621 +
622 +   subroutine setSkinThickness( thisSkin )
623 +    
624 +     real(kind=dp), intent(in) :: thisSkin
625 +    
626 +     skinThickness = thisSkin
627 +     haveSkinThickness = .true.    
628 +     haveGtypeCutoffMap = .false.
629 +    
630 +   end subroutine setSkinThickness
631 +      
632 +   subroutine setSimVariables()
633 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
634 +     SIM_uses_EAM = SimUsesEAM()
635 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
636 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
637 +     SIM_uses_PBC = SimUsesPBC()
638 +     SIM_uses_SC = SimUsesSC()
639 +    
640 +     haveSIMvariables = .true.
641 +    
642 +     return
643 +   end subroutine setSimVariables
644 +
645 +  subroutine doReadyCheck(error)
646 +    integer, intent(out) :: error
647 +    integer :: myStatus
648 +
649 +    error = 0
650 +
651 +    if (.not. haveInteractionHash) then      
652 +       call createInteractionHash()      
653      endif
654  
655 <    if (.not. haveSIMvariables) then
656 <       call setSimVariables()
655 >    if (.not. haveGtypeCutoffMap) then        
656 >       call createGtypeCutoffMap()      
657      endif
658  
659 <    if (.not. haveRlist) then
660 <       write(default_error, *) 'rList has not been set in doForces!'
661 <       error = -1
662 <       return
659 >    if (VisitCutoffsAfterComputing) then
660 >       call set_switch(largestRcut, largestRcut)      
661 >       call setHmatDangerousRcutValue(largestRcut)
662 >       call setCutoffEAM(largestRcut)
663 >       call setCutoffSC(largestRcut)
664 >       VisitCutoffsAfterComputing = .false.
665      endif
666  
667 +    if (.not. haveSIMvariables) then
668 +       call setSimVariables()
669 +    endif
670 +
671      if (.not. haveNeighborList) then
672         write(default_error, *) 'neighbor list has not been initialized in doForces!'
673         error = -1
674         return
675      end if
676 <
676 >    
677      if (.not. haveSaneForceField) then
678         write(default_error, *) 'Force Field is not sane in doForces!'
679         error = -1
680         return
681      end if
682 <
682 >    
683   #ifdef IS_MPI
684      if (.not. isMPISimSet()) then
685         write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
# Line 221 | Line 689 | contains
689   #endif
690      return
691    end subroutine doReadyCheck
224    
692  
226  subroutine init_FF(use_RF_c, thisStat)
693  
694 <    logical, intent(in) :: use_RF_c
694 >  subroutine init_FF(thisStat)
695  
696      integer, intent(out) :: thisStat  
697      integer :: my_status, nMatches
698      integer, pointer :: MatchList(:) => null()
233    real(kind=dp) :: rcut, rrf, rt, dielect
699  
700      !! assume things are copacetic, unless they aren't
701      thisStat = 0
702  
238    !! Fortran's version of a cast:
239    FF_uses_RF = use_RF_c
240    
703      !! init_FF is called *after* all of the atom types have been
704      !! defined in atype_module using the new_atype subroutine.
705      !!
706      !! this will scan through the known atypes and figure out what
707      !! interactions are used by the force field.    
708 <  
709 <    FF_uses_LJ = .false.
710 <    FF_uses_sticky = .false.
711 <    FF_uses_charges = .false.
250 <    FF_uses_dipoles = .false.
251 <    FF_uses_GB = .false.
708 >
709 >    FF_uses_DirectionalAtoms = .false.
710 >    FF_uses_Dipoles = .false.
711 >    FF_uses_GayBerne = .false.
712      FF_uses_EAM = .false.
713 +    FF_uses_SC = .false.
714 +
715 +    call getMatchingElementList(atypes, "is_Directional", .true., &
716 +         nMatches, MatchList)
717 +    if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
718 +
719 +    call getMatchingElementList(atypes, "is_Dipole", .true., &
720 +         nMatches, MatchList)
721 +    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
722      
723 <    call getMatchingElementList(atypes, "is_LJ", .true., nMatches, MatchList)
724 <    if (nMatches .gt. 0) FF_uses_LJ = .true.
725 <    
726 <    call getMatchingElementList(atypes, "is_Charge", .true., nMatches, MatchList)
258 <    if (nMatches .gt. 0) FF_uses_charges = .true.  
259 <    
260 <    call getMatchingElementList(atypes, "is_DP", .true., nMatches, MatchList)
261 <    if (nMatches .gt. 0) FF_uses_dipoles = .true.
262 <    
263 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
264 <         MatchList)
265 <    if (nMatches .gt. 0) FF_uses_Sticky = .true.
266 <    
267 <    call getMatchingElementList(atypes, "is_GB", .true., nMatches, MatchList)
268 <    if (nMatches .gt. 0) FF_uses_GB = .true.
269 <    
723 >    call getMatchingElementList(atypes, "is_GayBerne", .true., &
724 >         nMatches, MatchList)
725 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
726 >
727      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
728      if (nMatches .gt. 0) FF_uses_EAM = .true.
729 <    
730 <    !! Assume sanity (for the sake of argument)
729 >
730 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
731 >    if (nMatches .gt. 0) FF_uses_SC = .true.
732 >
733 >
734      haveSaneForceField = .true.
275    
276    !! check to make sure the FF_uses_RF setting makes sense
277    
278    if (FF_uses_dipoles) then
279       if (FF_uses_RF) then
280          dielect = getDielect()
281          call initialize_rf(dielect)
282       endif
283    else
284       if (FF_uses_RF) then          
285          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
286          thisStat = -1
287          haveSaneForceField = .false.
288          return
289       endif
290    endif
735  
292    if (FF_uses_sticky) then
293       call check_sticky_FF(my_status)
294       if (my_status /= 0) then
295          thisStat = -1
296          haveSaneForceField = .false.
297          return
298       end if
299    endif
300
736      if (FF_uses_EAM) then
737 <         call init_EAM_FF(my_status)
737 >       call init_EAM_FF(my_status)
738         if (my_status /= 0) then
739            write(default_error, *) "init_EAM_FF returned a bad status"
740            thisStat = -1
# Line 308 | Line 743 | contains
743         end if
744      endif
745  
311    if (FF_uses_GB) then
312       call check_gb_pair_FF(my_status)
313       if (my_status .ne. 0) then
314          thisStat = -1
315          haveSaneForceField = .false.
316          return
317       endif
318    endif
319
320    if (FF_uses_GB .and. FF_uses_LJ) then
321    endif
322
746      if (.not. haveNeighborList) then
747         !! Create neighbor lists
748         call expandNeighborList(nLocal, my_status)
# Line 329 | Line 752 | contains
752            return
753         endif
754         haveNeighborList = .true.
755 <    endif    
756 <    
755 >    endif
756 >
757    end subroutine init_FF
335  
758  
759 +
760    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
761    !------------------------------------------------------------->
762 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
762 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
763         do_pot_c, do_stress_c, error)
764      !! Position array provided by C, dimensioned by getNlocal
765      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 345 | Line 768 | contains
768      !! Rotation Matrix for each long range particle in simulation.
769      real( kind = dp), dimension(9, nLocal) :: A    
770      !! Unit vectors for dipoles (lab frame)
771 <    real( kind = dp ), dimension(3,nLocal) :: u_l
771 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
772      !! Force array provided by C, dimensioned by getNlocal
773      real ( kind = dp ), dimension(3,nLocal) :: f
774      !! Torsion array provided by C, dimensioned by getNlocal
# Line 353 | Line 776 | contains
776  
777      !! Stress Tensor
778      real( kind = dp), dimension(9) :: tau  
779 <    real ( kind = dp ) :: pot
779 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
780      logical ( kind = 2) :: do_pot_c, do_stress_c
781      logical :: do_pot
782      logical :: do_stress
783      logical :: in_switching_region
784   #ifdef IS_MPI
785 <    real( kind = DP ) :: pot_local
785 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
786      integer :: nAtomsInRow
787      integer :: nAtomsInCol
788      integer :: nprocs
# Line 374 | Line 797 | contains
797      integer :: nlist
798      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
799      real( kind = DP ) :: sw, dswdr, swderiv, mf
800 +    real( kind = DP ) :: rVal
801      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
802      real(kind=dp) :: rfpot, mu_i, virial
803 +    real(kind=dp):: rCut
804      integer :: me_i, me_j, n_in_i, n_in_j
805      logical :: is_dp_i
806      integer :: neighborListSize
# Line 383 | Line 808 | contains
808      integer :: localError
809      integer :: propPack_i, propPack_j
810      integer :: loopStart, loopEnd, loop
811 +    integer :: iHash
812 +    integer :: i1
813 +  
814  
387    real(kind=dp) :: listSkin = 1.0  
388    
815      !! initialize local variables  
816 <    
816 >
817   #ifdef IS_MPI
818      pot_local = 0.0_dp
819      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 397 | Line 823 | contains
823   #else
824      natoms = nlocal
825   #endif
826 <    
826 >
827      call doReadyCheck(localError)
828      if ( localError .ne. 0 ) then
829         call handleError("do_force_loop", "Not Initialized")
# Line 405 | Line 831 | contains
831         return
832      end if
833      call zero_work_arrays()
834 <        
834 >
835      do_pot = do_pot_c
836      do_stress = do_stress_c
837 <    
837 >
838      ! Gather all information needed by all force loops:
839 <    
839 >
840   #ifdef IS_MPI    
841 <    
841 >
842      call gather(q, q_Row, plan_atom_row_3d)
843      call gather(q, q_Col, plan_atom_col_3d)
844  
845      call gather(q_group, q_group_Row, plan_group_row_3d)
846      call gather(q_group, q_group_Col, plan_group_col_3d)
847 <        
848 <    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
849 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
850 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
851 <      
847 >
848 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
849 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
850 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
851 >
852         call gather(A, A_Row, plan_atom_row_rotation)
853         call gather(A, A_Col, plan_atom_col_rotation)
854      endif
855 <    
855 >
856   #endif
857 <    
857 >
858      !! Begin force loop timing:
859   #ifdef PROFILE
860      call cpu_time(forceTimeInitial)
861      nloops = nloops + 1
862   #endif
863 <    
863 >
864      loopEnd = PAIR_LOOP
865      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
866         loopStart = PREPAIR_LOOP
# Line 448 | Line 874 | contains
874         ! (but only on the first time through):
875         if (loop .eq. loopStart) then
876   #ifdef IS_MPI
877 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
878 <             update_nlist)
877 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
878 >               update_nlist)
879   #else
880 <          call checkNeighborList(nGroups, q_group, listSkin, &
881 <             update_nlist)
880 >          call checkNeighborList(nGroups, q_group, skinThickness, &
881 >               update_nlist)
882   #endif
883         endif
884 <      
884 >
885         if (update_nlist) then
886            !! save current configuration and construct neighbor list
887   #ifdef IS_MPI
# Line 466 | Line 892 | contains
892            neighborListSize = size(list)
893            nlist = 0
894         endif
895 <      
895 >
896         istart = 1
897   #ifdef IS_MPI
898         iend = nGroupsInRow
# Line 476 | Line 902 | contains
902         outer: do i = istart, iend
903  
904            if (update_nlist) point(i) = nlist + 1
905 <          
905 >
906            n_in_i = groupStartRow(i+1) - groupStartRow(i)
907 <          
907 >
908            if (update_nlist) then
909   #ifdef IS_MPI
910               jstart = 1
# Line 493 | Line 919 | contains
919               ! make sure group i has neighbors
920               if (jstart .gt. jend) cycle outer
921            endif
922 <          
922 >
923            do jnab = jstart, jend
924               if (update_nlist) then
925                  j = jnab
# Line 502 | Line 928 | contains
928               endif
929  
930   #ifdef IS_MPI
931 +             me_j = atid_col(j)
932               call get_interatomic_vector(q_group_Row(:,i), &
933                    q_group_Col(:,j), d_grp, rgrpsq)
934   #else
935 +             me_j = atid(j)
936               call get_interatomic_vector(q_group(:,i), &
937                    q_group(:,j), d_grp, rgrpsq)
938 < #endif
938 > #endif      
939  
940 <             if (rgrpsq < rlistsq) then
940 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
941                  if (update_nlist) then
942                     nlist = nlist + 1
943 <                  
943 >
944                     if (nlist > neighborListSize) then
945   #ifdef IS_MPI                
946                        call expandNeighborList(nGroupsInRow, listerror)
# Line 526 | Line 954 | contains
954                        end if
955                        neighborListSize = size(list)
956                     endif
957 <                  
957 >
958                     list(nlist) = j
959                  endif
960 <                
961 <                if (loop .eq. PAIR_LOOP) then
962 <                   vij = 0.0d0
963 <                   fij(1:3) = 0.0d0
964 <                endif
965 <                
966 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
967 <                     in_switching_region)
968 <                
969 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
542 <                
543 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
960 >                
961 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
962 >
963 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
964 >                   if (loop .eq. PAIR_LOOP) then
965 >                      vij = 0.0_dp
966 >                      fij(1) = 0.0_dp
967 >                      fij(2) = 0.0_dp
968 >                      fij(3) = 0.0_dp
969 >                   endif
970                    
971 <                   atom1 = groupListRow(ia)
971 >                   call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
972                    
973 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
973 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
974 >                  
975 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
976                        
977 <                      atom2 = groupListCol(jb)
977 >                      atom1 = groupListRow(ia)
978                        
979 <                      if (skipThisPair(atom1, atom2)) cycle inner
980 <
981 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
982 <                         d_atm(1:3) = d_grp(1:3)
983 <                         ratmsq = rgrpsq
984 <                      else
979 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
980 >                        
981 >                         atom2 = groupListCol(jb)
982 >                        
983 >                         if (skipThisPair(atom1, atom2))  cycle inner
984 >                        
985 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
986 >                            d_atm(1) = d_grp(1)
987 >                            d_atm(2) = d_grp(2)
988 >                            d_atm(3) = d_grp(3)
989 >                            ratmsq = rgrpsq
990 >                         else
991   #ifdef IS_MPI
992 <                         call get_interatomic_vector(q_Row(:,atom1), &
993 <                              q_Col(:,atom2), d_atm, ratmsq)
992 >                            call get_interatomic_vector(q_Row(:,atom1), &
993 >                                 q_Col(:,atom2), d_atm, ratmsq)
994   #else
995 <                         call get_interatomic_vector(q(:,atom1), &
996 <                              q(:,atom2), d_atm, ratmsq)
995 >                            call get_interatomic_vector(q(:,atom1), &
996 >                                 q(:,atom2), d_atm, ratmsq)
997   #endif
998 <                      endif
999 <
1000 <                      if (loop .eq. PREPAIR_LOOP) then
998 >                         endif
999 >                        
1000 >                         if (loop .eq. PREPAIR_LOOP) then
1001   #ifdef IS_MPI                      
1002 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1003 <                              rgrpsq, d_grp, do_pot, do_stress, &
1004 <                              u_l, A, f, t, pot_local)
1002 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1003 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1004 >                                 eFrame, A, f, t, pot_local)
1005   #else
1006 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1007 <                              rgrpsq, d_grp, do_pot, do_stress, &
1008 <                              u_l, A, f, t, pot)
1006 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1007 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1008 >                                 eFrame, A, f, t, pot)
1009   #endif                                              
1010 <                      else
1010 >                         else
1011   #ifdef IS_MPI                      
1012 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1013 <                              do_pot, &
1014 <                              u_l, A, f, t, pot_local, vpair, fpair)
1012 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1013 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1014 >                                 fpair, d_grp, rgrp, rCut)
1015   #else
1016 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1017 <                              do_pot,  &
1018 <                              u_l, A, f, t, pot, vpair, fpair)
1016 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1017 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1018 >                                 d_grp, rgrp, rCut)
1019   #endif
1020 +                            vij = vij + vpair
1021 +                            fij(1) = fij(1) + fpair(1)
1022 +                            fij(2) = fij(2) + fpair(2)
1023 +                            fij(3) = fij(3) + fpair(3)
1024 +                         endif
1025 +                      enddo inner
1026 +                   enddo
1027  
1028 <                         vij = vij + vpair
1029 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1030 <                      endif
1031 <                   enddo inner
1032 <                enddo
1033 <                
1034 <                if (loop .eq. PAIR_LOOP) then
1035 <                   if (in_switching_region) then
1036 <                      swderiv = vij*dswdr/rgrp
1037 <                      fij(1) = fij(1) + swderiv*d_grp(1)
597 <                      fij(2) = fij(2) + swderiv*d_grp(2)
598 <                      fij(3) = fij(3) + swderiv*d_grp(3)
599 <                      
600 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
601 <                         atom1=groupListRow(ia)
602 <                         mf = mfactRow(atom1)
1028 >                   if (loop .eq. PAIR_LOOP) then
1029 >                      if (in_switching_region) then
1030 >                         swderiv = vij*dswdr/rgrp
1031 >                         fij(1) = fij(1) + swderiv*d_grp(1)
1032 >                         fij(2) = fij(2) + swderiv*d_grp(2)
1033 >                         fij(3) = fij(3) + swderiv*d_grp(3)
1034 >                        
1035 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1036 >                            atom1=groupListRow(ia)
1037 >                            mf = mfactRow(atom1)
1038   #ifdef IS_MPI
1039 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1040 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1041 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1039 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1040 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1041 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1042   #else
1043 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1044 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1045 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1043 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1044 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1045 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1046   #endif
1047 <                      enddo
1048 <                      
1049 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1050 <                         atom2=groupListCol(jb)
1051 <                         mf = mfactCol(atom2)
1047 >                         enddo
1048 >                        
1049 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1050 >                            atom2=groupListCol(jb)
1051 >                            mf = mfactCol(atom2)
1052   #ifdef IS_MPI
1053 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1054 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1055 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1053 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1054 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1055 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1056   #else
1057 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1058 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1059 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1057 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1058 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1059 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1060   #endif
1061 <                      enddo
1061 >                         enddo
1062 >                      endif
1063 >
1064 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1065                     endif
628                  
629                   if (do_stress) call add_stress_tensor(d_grp, fij)
1066                  endif
1067 <             end if
1067 >             endif
1068            enddo
1069 +          
1070         enddo outer
1071 <      
1071 >
1072         if (update_nlist) then
1073   #ifdef IS_MPI
1074            point(nGroupsInRow + 1) = nlist + 1
# Line 645 | Line 1082 | contains
1082               update_nlist = .false.                              
1083            endif
1084         endif
1085 <            
1085 >
1086         if (loop .eq. PREPAIR_LOOP) then
1087            call do_preforce(nlocal, pot)
1088         endif
1089 <      
1089 >
1090      enddo
1091 <    
1091 >
1092      !! Do timing
1093   #ifdef PROFILE
1094      call cpu_time(forceTimeFinal)
1095      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1096   #endif    
1097 <    
1097 >
1098   #ifdef IS_MPI
1099      !!distribute forces
1100 <    
1100 >
1101      f_temp = 0.0_dp
1102      call scatter(f_Row,f_temp,plan_atom_row_3d)
1103      do i = 1,nlocal
1104         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1105      end do
1106 <    
1106 >
1107      f_temp = 0.0_dp
1108      call scatter(f_Col,f_temp,plan_atom_col_3d)
1109      do i = 1,nlocal
1110         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1111      end do
1112 <    
1113 <    if (FF_UsesDirectionalAtoms() .and. SIM_uses_directional_atoms) then
1112 >
1113 >    if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1114         t_temp = 0.0_dp
1115         call scatter(t_Row,t_temp,plan_atom_row_3d)
1116         do i = 1,nlocal
# Line 681 | Line 1118 | contains
1118         end do
1119         t_temp = 0.0_dp
1120         call scatter(t_Col,t_temp,plan_atom_col_3d)
1121 <      
1121 >
1122         do i = 1,nlocal
1123            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1124         end do
1125      endif
1126 <    
1126 >
1127      if (do_pot) then
1128         ! scatter/gather pot_row into the members of my column
1129 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1130 <      
1129 >       do i = 1,LR_POT_TYPES
1130 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1131 >       end do
1132         ! scatter/gather pot_local into all other procs
1133         ! add resultant to get total pot
1134         do i = 1, nlocal
1135 <          pot_local = pot_local + pot_Temp(i)
1135 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1136 >               + pot_Temp(1:LR_POT_TYPES,i)
1137         enddo
1138 <      
1138 >
1139         pot_Temp = 0.0_DP
1140 <      
1141 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1140 >       do i = 1,LR_POT_TYPES
1141 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1142 >       end do
1143         do i = 1, nlocal
1144 <          pot_local = pot_local + pot_Temp(i)
1144 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1145 >               + pot_Temp(1:LR_POT_TYPES,i)
1146         enddo
1147 <      
1147 >
1148      endif
1149   #endif
1150 <    
1151 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1152 <      
712 <       if (FF_uses_RF .and. SIM_uses_RF) then
1150 >
1151 >    if (SIM_requires_postpair_calc) then
1152 >       do i = 1, nlocal            
1153            
1154 < #ifdef IS_MPI
1155 <          call scatter(rf_Row,rf,plan_atom_row_3d)
716 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
717 <          do i = 1,nlocal
718 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
719 <          end do
720 < #endif
1154 >          ! we loop only over the local atoms, so we don't need row and column
1155 >          ! lookups for the types
1156            
1157 <          do i = 1, nLocal
1158 <            
1159 <             rfpot = 0.0_DP
1157 >          me_i = atid(i)
1158 >          
1159 >          ! is the atom electrostatic?  See if it would have an
1160 >          ! electrostatic interaction with itself
1161 >          iHash = InteractionHash(me_i,me_i)
1162 >
1163 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1164   #ifdef IS_MPI
1165 <             me_i = atid_row(i)
1165 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1166 >                  t, do_pot)
1167   #else
1168 <             me_i = atid(i)
1168 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1169 >                  t, do_pot)
1170   #endif
1171 +          endif
1172 +  
1173 +          
1174 +          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1175              
1176 <             if (PropertyMap(me_i)%is_DP) then
1176 >             ! loop over the excludes to accumulate RF stuff we've
1177 >             ! left out of the normal pair loop
1178 >            
1179 >             do i1 = 1, nSkipsForAtom(i)
1180 >                j = skipsForAtom(i, i1)
1181                  
1182 <                mu_i = PropertyMap(me_i)%dipole_moment
1183 <                
1184 <                !! The reaction field needs to include a self contribution
1185 <                !! to the field:
1186 <                call accumulate_self_rf(i, mu_i, u_l)
738 <                !! Get the reaction field contribution to the
739 <                !! potential and torques:
740 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1182 >                ! prevent overcounting of the skips
1183 >                if (i.lt.j) then
1184 >                   call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1185 >                   rVal = sqrt(ratmsq)
1186 >                   call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1187   #ifdef IS_MPI
1188 <                pot_local = pot_local + rfpot
1188 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1189 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1190   #else
1191 <                pot = pot + rfpot
1192 <      
1191 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1192 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1193   #endif
1194 <             endif            
1195 <          enddo
1196 <       endif
1194 >                endif
1195 >             enddo
1196 >          endif
1197 >       enddo
1198      endif
1199      
752    
1200   #ifdef IS_MPI
1201      
1202      if (do_pot) then
1203 <       pot = pot + pot_local
1204 <       !! we assume the c code will do the allreduce to get the total potential
1205 <       !! we could do it right here if we needed to...
1203 > #ifdef SINGLE_PRECISION
1204 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_real,mpi_sum, &
1205 >            mpi_comm_world,mpi_err)            
1206 > #else
1207 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1208 >            mpi_comm_world,mpi_err)            
1209 > #endif
1210      endif
1211      
1212      if (do_stress) then
1213 + #ifdef SINGLE_PRECISION
1214 +       call mpi_allreduce(tau_Temp, tau, 9,mpi_real,mpi_sum, &
1215 +            mpi_comm_world,mpi_err)
1216 +       call mpi_allreduce(virial_Temp, virial,1,mpi_real,mpi_sum, &
1217 +            mpi_comm_world,mpi_err)
1218 + #else
1219         call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1220              mpi_comm_world,mpi_err)
1221         call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1222              mpi_comm_world,mpi_err)
1223 + #endif
1224      endif
1225      
1226   #else
# Line 773 | Line 1231 | contains
1231      endif
1232      
1233   #endif
1234 <      
1234 >    
1235    end subroutine do_force_loop
1236 <  
1236 >
1237    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1238 <       u_l, A, f, t, pot, vpair, fpair)
1238 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1239  
1240 <    real( kind = dp ) :: pot, vpair, sw
1240 >    real( kind = dp ) :: vpair, sw
1241 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1242      real( kind = dp ), dimension(3) :: fpair
1243      real( kind = dp ), dimension(nLocal)   :: mfact
1244 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1244 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1245      real( kind = dp ), dimension(9,nLocal) :: A
1246      real( kind = dp ), dimension(3,nLocal) :: f
1247      real( kind = dp ), dimension(3,nLocal) :: t
# Line 790 | Line 1249 | contains
1249      logical, intent(inout) :: do_pot
1250      integer, intent(in) :: i, j
1251      real ( kind = dp ), intent(inout) :: rijsq
1252 <    real ( kind = dp )                :: r
1252 >    real ( kind = dp ), intent(inout) :: r_grp
1253      real ( kind = dp ), intent(inout) :: d(3)
1254 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1255 +    real ( kind = dp ), intent(inout) :: rCut
1256 +    real ( kind = dp ) :: r
1257 +    real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1258      integer :: me_i, me_j
1259 +    integer :: k
1260  
1261 +    integer :: iHash
1262 +
1263      r = sqrt(rijsq)
1264 <    vpair = 0.0d0
1265 <    fpair(1:3) = 0.0d0
1264 >    
1265 >    vpair = 0.0_dp
1266 >    fpair(1:3) = 0.0_dp
1267  
1268   #ifdef IS_MPI
1269      me_i = atid_row(i)
# Line 805 | Line 1272 | contains
1272      me_i = atid(i)
1273      me_j = atid(j)
1274   #endif
1275 +
1276 +    iHash = InteractionHash(me_i, me_j)
1277      
1278 <    if (FF_uses_LJ .and. SIM_uses_LJ) then
1279 <      
1280 <       if ( PropertyMap(me_i)%is_LJ .and. PropertyMap(me_j)%is_LJ ) then
812 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
813 <       endif
814 <      
1278 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1279 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1280 >            pot(VDW_POT), f, do_pot)
1281      endif
1282      
1283 <    if (FF_uses_charges .and. SIM_uses_charges) then
1284 <      
1285 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
820 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
821 <       endif
822 <      
1283 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1284 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1285 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1286      endif
1287      
1288 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
1289 <      
1290 <       if ( PropertyMap(me_i)%is_DP .and. PropertyMap(me_j)%is_DP) then
1291 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
1292 <               do_pot)
1293 <          if (FF_uses_RF .and. SIM_uses_RF) then
1294 <             call accumulate_rf(i, j, r, u_l, sw)
1295 <             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
1296 <          endif          
1297 <       endif
1288 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1289 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1290 >            pot(HB_POT), A, f, t, do_pot)
1291 >    endif
1292 >    
1293 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1294 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1295 >            pot(HB_POT), A, f, t, do_pot)
1296 >    endif
1297 >    
1298 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1299 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1300 >            pot(VDW_POT), A, f, t, do_pot)
1301 >    endif
1302 >    
1303 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1304 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1305 >            pot(VDW_POT), A, f, t, do_pot)
1306 >    endif
1307 >    
1308 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1309 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1310 >            pot(METALLIC_POT), f, do_pot)
1311 >    endif
1312 >    
1313 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1314 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1315 >            pot(VDW_POT), A, f, t, do_pot)
1316 >    endif
1317 >    
1318 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1319 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1320 >            pot(VDW_POT), A, f, t, do_pot)
1321 >    endif
1322  
1323 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1324 +       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1325 +            pot(METALLIC_POT), f, do_pot)
1326      endif
1327 +    
1328 +  end subroutine do_pair
1329  
1330 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1330 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1331 >       do_pot, do_stress, eFrame, A, f, t, pot)
1332  
1333 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1334 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, A, f, t, &
1335 <               do_pot)
1336 <       endif
1333 >    real( kind = dp ) :: sw
1334 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1335 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1336 >    real (kind=dp), dimension(9,nLocal) :: A
1337 >    real (kind=dp), dimension(3,nLocal) :: f
1338 >    real (kind=dp), dimension(3,nLocal) :: t
1339  
1340 <    endif
1340 >    logical, intent(inout) :: do_pot, do_stress
1341 >    integer, intent(in) :: i, j
1342 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1343 >    real ( kind = dp )                :: r, rc
1344 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1345  
1346 +    integer :: me_i, me_j, iHash
1347  
1348 <    if (FF_uses_GB .and. SIM_uses_GB) then
1349 <      
1350 <       if ( PropertyMap(me_i)%is_GB .and. PropertyMap(me_j)%is_GB) then
1351 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, u_l, f, t, &
1352 <               do_pot)
1353 <       endif
1348 >    r = sqrt(rijsq)
1349 >    
1350 > #ifdef IS_MPI  
1351 >    me_i = atid_row(i)
1352 >    me_j = atid_col(j)  
1353 > #else  
1354 >    me_i = atid(i)
1355 >    me_j = atid(j)  
1356 > #endif
1357  
1358 +    iHash = InteractionHash(me_i, me_j)
1359 +
1360 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1361 +            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1362      endif
1363 <      
1364 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1365 <      
859 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
860 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
861 <               do_pot)
862 <       endif
863 <      
1363 >
1364 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1365 >            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1366      endif
1367      
1368 <  end subroutine do_pair
1368 >  end subroutine do_prepair
1369  
868  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
869       do_pot, do_stress, u_l, A, f, t, pot)
1370  
1371 <   real( kind = dp ) :: pot, sw
1372 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1373 <   real (kind=dp), dimension(9,nLocal) :: A
874 <   real (kind=dp), dimension(3,nLocal) :: f
875 <   real (kind=dp), dimension(3,nLocal) :: t
876 <  
877 <   logical, intent(inout) :: do_pot, do_stress
878 <   integer, intent(in) :: i, j
879 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
880 <   real ( kind = dp )                :: r, rc
881 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
882 <  
883 <   logical :: is_EAM_i, is_EAM_j
884 <  
885 <   integer :: me_i, me_j
886 <  
1371 >  subroutine do_preforce(nlocal,pot)
1372 >    integer :: nlocal
1373 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1374  
1375 <    r = sqrt(rijsq)
1376 <    if (SIM_uses_molecular_cutoffs) then
890 <       rc = sqrt(rcijsq)
891 <    else
892 <       rc = r
1375 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1376 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1377      endif
1378 <  
1378 >    if (FF_uses_SC .and. SIM_uses_SC) then
1379 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1380 >    endif
1381 >  end subroutine do_preforce
1382  
1383 < #ifdef IS_MPI  
1384 <   me_i = atid_row(i)
1385 <   me_j = atid_col(j)  
1386 < #else  
1387 <   me_i = atid(i)
1388 <   me_j = atid(j)  
1389 < #endif
1390 <  
1391 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1392 <      
1393 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1394 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1395 <      
1396 <   endif
1397 <  
1398 < end subroutine do_prepair
1399 <
1400 <
1401 < subroutine do_preforce(nlocal,pot)
1402 <   integer :: nlocal
1403 <   real( kind = dp ) :: pot
1404 <  
1405 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1406 <      call calc_EAM_preforce_Frho(nlocal,pot)
1407 <   endif
1408 <  
1409 <  
1410 < end subroutine do_preforce
1411 <
1412 <
1413 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1414 <  
1415 <   real (kind = dp), dimension(3) :: q_i
1416 <   real (kind = dp), dimension(3) :: q_j
1417 <   real ( kind = dp ), intent(out) :: r_sq
1418 <   real( kind = dp ) :: d(3), scaled(3)
1419 <   integer i
1420 <  
1421 <   d(1:3) = q_j(1:3) - q_i(1:3)
1422 <  
1423 <   ! Wrap back into periodic box if necessary
1424 <   if ( SIM_uses_PBC ) then
1425 <      
1426 <      if( .not.boxIsOrthorhombic ) then
1427 <         ! calc the scaled coordinates.
1428 <        
1429 <         scaled = matmul(HmatInv, d)
1430 <        
1431 <         ! wrap the scaled coordinates
1432 <        
1433 <         scaled = scaled  - anint(scaled)
1434 <        
1435 <        
1436 <         ! calc the wrapped real coordinates from the wrapped scaled
1437 <         ! coordinates
1438 <        
1439 <         d = matmul(Hmat,scaled)
1440 <        
1441 <      else
1442 <         ! calc the scaled coordinates.
1443 <        
1444 <         do i = 1, 3
1445 <            scaled(i) = d(i) * HmatInv(i,i)
1446 <            
1447 <            ! wrap the scaled coordinates
1448 <            
1449 <            scaled(i) = scaled(i) - anint(scaled(i))
963 <            
964 <            ! calc the wrapped real coordinates from the wrapped scaled
965 <            ! coordinates
966 <            
967 <            d(i) = scaled(i)*Hmat(i,i)
968 <         enddo
969 <      endif
970 <      
971 <   endif
972 <  
973 <   r_sq = dot_product(d,d)
974 <  
975 < end subroutine get_interatomic_vector
976 <
977 < subroutine zero_work_arrays()
978 <  
1383 >
1384 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1385 >
1386 >    real (kind = dp), dimension(3) :: q_i
1387 >    real (kind = dp), dimension(3) :: q_j
1388 >    real ( kind = dp ), intent(out) :: r_sq
1389 >    real( kind = dp ) :: d(3), scaled(3)
1390 >    integer i
1391 >
1392 >    d(1) = q_j(1) - q_i(1)
1393 >    d(2) = q_j(2) - q_i(2)
1394 >    d(3) = q_j(3) - q_i(3)
1395 >
1396 >    ! Wrap back into periodic box if necessary
1397 >    if ( SIM_uses_PBC ) then
1398 >
1399 >       if( .not.boxIsOrthorhombic ) then
1400 >          ! calc the scaled coordinates.
1401 >          ! scaled = matmul(HmatInv, d)
1402 >
1403 >          scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1404 >          scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1405 >          scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1406 >          
1407 >          ! wrap the scaled coordinates
1408 >
1409 >          scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1410 >          scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1411 >          scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1412 >
1413 >          ! calc the wrapped real coordinates from the wrapped scaled
1414 >          ! coordinates
1415 >          ! d = matmul(Hmat,scaled)
1416 >          d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1417 >          d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1418 >          d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1419 >
1420 >       else
1421 >          ! calc the scaled coordinates.
1422 >
1423 >          scaled(1) = d(1) * HmatInv(1,1)
1424 >          scaled(2) = d(2) * HmatInv(2,2)
1425 >          scaled(3) = d(3) * HmatInv(3,3)
1426 >          
1427 >          ! wrap the scaled coordinates
1428 >          
1429 >          scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1430 >          scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1431 >          scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1432 >
1433 >          ! calc the wrapped real coordinates from the wrapped scaled
1434 >          ! coordinates
1435 >
1436 >          d(1) = scaled(1)*Hmat(1,1)
1437 >          d(2) = scaled(2)*Hmat(2,2)
1438 >          d(3) = scaled(3)*Hmat(3,3)
1439 >
1440 >       endif
1441 >
1442 >    endif
1443 >
1444 >    r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1445 >
1446 >  end subroutine get_interatomic_vector
1447 >
1448 >  subroutine zero_work_arrays()
1449 >
1450   #ifdef IS_MPI
980  
981   q_Row = 0.0_dp
982   q_Col = 0.0_dp
1451  
1452 <   q_group_Row = 0.0_dp
1453 <   q_group_Col = 0.0_dp  
1454 <  
1455 <   u_l_Row = 0.0_dp
1456 <   u_l_Col = 0.0_dp
1457 <  
1458 <   A_Row = 0.0_dp
1459 <   A_Col = 0.0_dp
1460 <  
1461 <   f_Row = 0.0_dp
1462 <   f_Col = 0.0_dp
1463 <   f_Temp = 0.0_dp
1464 <  
1465 <   t_Row = 0.0_dp
1466 <   t_Col = 0.0_dp
1467 <   t_Temp = 0.0_dp
1468 <  
1469 <   pot_Row = 0.0_dp
1470 <   pot_Col = 0.0_dp
1471 <   pot_Temp = 0.0_dp
1472 <  
1473 <   rf_Row = 0.0_dp
1474 <   rf_Col = 0.0_dp
1475 <   rf_Temp = 0.0_dp
1008 <  
1452 >    q_Row = 0.0_dp
1453 >    q_Col = 0.0_dp
1454 >
1455 >    q_group_Row = 0.0_dp
1456 >    q_group_Col = 0.0_dp  
1457 >
1458 >    eFrame_Row = 0.0_dp
1459 >    eFrame_Col = 0.0_dp
1460 >
1461 >    A_Row = 0.0_dp
1462 >    A_Col = 0.0_dp
1463 >
1464 >    f_Row = 0.0_dp
1465 >    f_Col = 0.0_dp
1466 >    f_Temp = 0.0_dp
1467 >
1468 >    t_Row = 0.0_dp
1469 >    t_Col = 0.0_dp
1470 >    t_Temp = 0.0_dp
1471 >
1472 >    pot_Row = 0.0_dp
1473 >    pot_Col = 0.0_dp
1474 >    pot_Temp = 0.0_dp
1475 >
1476   #endif
1477 <
1478 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1479 <      call clean_EAM()
1480 <   endif
1481 <  
1482 <   rf = 0.0_dp
1483 <   tau_Temp = 0.0_dp
1484 <   virial_Temp = 0.0_dp
1485 < end subroutine zero_work_arrays
1486 <
1487 < function skipThisPair(atom1, atom2) result(skip_it)
1488 <   integer, intent(in) :: atom1
1489 <   integer, intent(in), optional :: atom2
1490 <   logical :: skip_it
1491 <   integer :: unique_id_1, unique_id_2
1492 <   integer :: me_i,me_j
1493 <   integer :: i
1494 <  
1495 <   skip_it = .false.
1496 <  
1497 <   !! there are a number of reasons to skip a pair or a particle
1498 <   !! mostly we do this to exclude atoms who are involved in short
1499 <   !! range interactions (bonds, bends, torsions), but we also need
1500 <   !! to exclude some overcounted interactions that result from
1501 <   !! the parallel decomposition
1035 <  
1477 >
1478 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1479 >       call clean_EAM()
1480 >    endif
1481 >
1482 >    tau_Temp = 0.0_dp
1483 >    virial_Temp = 0.0_dp
1484 >  end subroutine zero_work_arrays
1485 >
1486 >  function skipThisPair(atom1, atom2) result(skip_it)
1487 >    integer, intent(in) :: atom1
1488 >    integer, intent(in), optional :: atom2
1489 >    logical :: skip_it
1490 >    integer :: unique_id_1, unique_id_2
1491 >    integer :: me_i,me_j
1492 >    integer :: i
1493 >
1494 >    skip_it = .false.
1495 >
1496 >    !! there are a number of reasons to skip a pair or a particle
1497 >    !! mostly we do this to exclude atoms who are involved in short
1498 >    !! range interactions (bonds, bends, torsions), but we also need
1499 >    !! to exclude some overcounted interactions that result from
1500 >    !! the parallel decomposition
1501 >
1502   #ifdef IS_MPI
1503 <   !! in MPI, we have to look up the unique IDs for each atom
1504 <   unique_id_1 = AtomRowToGlobal(atom1)
1503 >    !! in MPI, we have to look up the unique IDs for each atom
1504 >    unique_id_1 = AtomRowToGlobal(atom1)
1505   #else
1506 <   !! in the normal loop, the atom numbers are unique
1507 <   unique_id_1 = atom1
1506 >    !! in the normal loop, the atom numbers are unique
1507 >    unique_id_1 = atom1
1508   #endif
1509 <  
1510 <   !! We were called with only one atom, so just check the global exclude
1511 <   !! list for this atom
1512 <   if (.not. present(atom2)) then
1513 <      do i = 1, nExcludes_global
1514 <         if (excludesGlobal(i) == unique_id_1) then
1515 <            skip_it = .true.
1516 <            return
1517 <         end if
1518 <      end do
1519 <      return
1520 <   end if
1521 <  
1509 >
1510 >    !! We were called with only one atom, so just check the global exclude
1511 >    !! list for this atom
1512 >    if (.not. present(atom2)) then
1513 >       do i = 1, nExcludes_global
1514 >          if (excludesGlobal(i) == unique_id_1) then
1515 >             skip_it = .true.
1516 >             return
1517 >          end if
1518 >       end do
1519 >       return
1520 >    end if
1521 >
1522   #ifdef IS_MPI
1523 <   unique_id_2 = AtomColToGlobal(atom2)
1523 >    unique_id_2 = AtomColToGlobal(atom2)
1524   #else
1525 <   unique_id_2 = atom2
1525 >    unique_id_2 = atom2
1526   #endif
1527 <  
1527 >
1528   #ifdef IS_MPI
1529 <   !! this situation should only arise in MPI simulations
1530 <   if (unique_id_1 == unique_id_2) then
1531 <      skip_it = .true.
1532 <      return
1533 <   end if
1534 <  
1535 <   !! this prevents us from doing the pair on multiple processors
1536 <   if (unique_id_1 < unique_id_2) then
1537 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1538 <         skip_it = .true.
1539 <         return
1540 <      endif
1541 <   else                
1542 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1543 <         skip_it = .true.
1544 <         return
1545 <      endif
1546 <   endif
1529 >    !! this situation should only arise in MPI simulations
1530 >    if (unique_id_1 == unique_id_2) then
1531 >       skip_it = .true.
1532 >       return
1533 >    end if
1534 >
1535 >    !! this prevents us from doing the pair on multiple processors
1536 >    if (unique_id_1 < unique_id_2) then
1537 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1538 >          skip_it = .true.
1539 >          return
1540 >       endif
1541 >    else                
1542 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1543 >          skip_it = .true.
1544 >          return
1545 >       endif
1546 >    endif
1547   #endif
1548 <  
1549 <   !! the rest of these situations can happen in all simulations:
1550 <   do i = 1, nExcludes_global      
1551 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1552 <           (excludesGlobal(i) == unique_id_2)) then
1553 <         skip_it = .true.
1554 <         return
1555 <      endif
1556 <   enddo
1557 <  
1558 <   do i = 1, nSkipsForAtom(atom1)
1559 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1560 <         skip_it = .true.
1561 <         return
1562 <      endif
1563 <   end do
1564 <  
1565 <   return
1566 < end function skipThisPair
1567 <
1568 < function FF_UsesDirectionalAtoms() result(doesit)
1569 <   logical :: doesit
1570 <   doesit = FF_uses_dipoles .or. FF_uses_sticky .or. &
1571 <        FF_uses_GB .or. FF_uses_RF
1572 < end function FF_UsesDirectionalAtoms
1573 <
1574 < function FF_RequiresPrepairCalc() result(doesit)
1575 <   logical :: doesit
1576 <   doesit = FF_uses_EAM
1577 < end function FF_RequiresPrepairCalc
1578 <
1113 < function FF_RequiresPostpairCalc() result(doesit)
1114 <   logical :: doesit
1115 <   doesit = FF_uses_RF
1116 < end function FF_RequiresPostpairCalc
1117 <
1548 >
1549 >    !! the rest of these situations can happen in all simulations:
1550 >    do i = 1, nExcludes_global      
1551 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1552 >            (excludesGlobal(i) == unique_id_2)) then
1553 >          skip_it = .true.
1554 >          return
1555 >       endif
1556 >    enddo
1557 >
1558 >    do i = 1, nSkipsForAtom(atom1)
1559 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1560 >          skip_it = .true.
1561 >          return
1562 >       endif
1563 >    end do
1564 >
1565 >    return
1566 >  end function skipThisPair
1567 >
1568 >  function FF_UsesDirectionalAtoms() result(doesit)
1569 >    logical :: doesit
1570 >    doesit = FF_uses_DirectionalAtoms
1571 >  end function FF_UsesDirectionalAtoms
1572 >
1573 >  function FF_RequiresPrepairCalc() result(doesit)
1574 >    logical :: doesit
1575 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1576 >         .or. FF_uses_MEAM
1577 >  end function FF_RequiresPrepairCalc
1578 >
1579   #ifdef PROFILE
1580 < function getforcetime() result(totalforcetime)
1581 <   real(kind=dp) :: totalforcetime
1582 <   totalforcetime = forcetime
1583 < end function getforcetime
1580 >  function getforcetime() result(totalforcetime)
1581 >    real(kind=dp) :: totalforcetime
1582 >    totalforcetime = forcetime
1583 >  end function getforcetime
1584   #endif
1124
1125 !! This cleans componets of force arrays belonging only to fortran
1585  
1586 < subroutine add_stress_tensor(dpair, fpair)
1128 <  
1129 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1130 <  
1131 <   ! because the d vector is the rj - ri vector, and
1132 <   ! because fx, fy, fz are the force on atom i, we need a
1133 <   ! negative sign here:  
1134 <  
1135 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1136 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1137 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1138 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1139 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1140 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1141 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1142 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1143 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1144 <  
1145 <   virial_Temp = virial_Temp + &
1146 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1147 <  
1148 < end subroutine add_stress_tensor
1149 <
1150 < end module doForces
1586 >  !! This cleans componets of force arrays belonging only to fortran
1587  
1588 < !! Interfaces for C programs to module....
1588 >  subroutine add_stress_tensor(dpair, fpair)
1589  
1590 < subroutine initFortranFF(use_RF_c, thisStat)
1155 <    use doForces, ONLY: init_FF
1156 <    logical, intent(in) :: use_RF_c
1590 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1591  
1592 <    integer, intent(out) :: thisStat  
1593 <    call init_FF(use_RF_c, thisStat)
1592 >    ! because the d vector is the rj - ri vector, and
1593 >    ! because fx, fy, fz are the force on atom i, we need a
1594 >    ! negative sign here:  
1595  
1596 < end subroutine initFortranFF
1596 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1597 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1598 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1599 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1600 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1601 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1602 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1603 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1604 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1605  
1606 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1607 <       do_pot_c, do_stress_c, error)
1165 <      
1166 <       use definitions, ONLY: dp
1167 <       use simulation
1168 <       use doForces, ONLY: do_force_loop
1169 <    !! Position array provided by C, dimensioned by getNlocal
1170 <    real ( kind = dp ), dimension(3, nLocal) :: q
1171 <    !! molecular center-of-mass position array
1172 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1173 <    !! Rotation Matrix for each long range particle in simulation.
1174 <    real( kind = dp), dimension(9, nLocal) :: A    
1175 <    !! Unit vectors for dipoles (lab frame)
1176 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1177 <    !! Force array provided by C, dimensioned by getNlocal
1178 <    real ( kind = dp ), dimension(3,nLocal) :: f
1179 <    !! Torsion array provided by C, dimensioned by getNlocal
1180 <    real( kind = dp ), dimension(3,nLocal) :: t    
1606 >    virial_Temp = virial_Temp + &
1607 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1608  
1609 <    !! Stress Tensor
1610 <    real( kind = dp), dimension(9) :: tau  
1611 <    real ( kind = dp ) :: pot
1185 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1186 <    integer :: error
1187 <    
1188 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1189 <       do_pot_c, do_stress_c, error)
1190 <      
1191 < end subroutine doForceloop
1609 >  end subroutine add_stress_tensor
1610 >
1611 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines