ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 2085 by gezelter, Tue Mar 8 21:05:46 2005 UTC vs.
Revision 3131 by chrisfen, Wed May 2 00:18:08 2007 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.11 2005-03-08 21:05:46 gezelter Exp $, $Date: 2005-03-08 21:05:46 $, $Name: not supported by cvs2svn $, $Revision: 1.11 $
48 > !! @version $Id: doForces.F90,v 1.88 2007-05-02 00:18:08 chrisfen Exp $, $Date: 2007-05-02 00:18:08 $, $Name: not supported by cvs2svn $, $Revision: 1.88 $
49  
50  
51   module doForces
# Line 58 | Line 58 | module doForces
58    use lj
59    use sticky
60    use electrostatic_module
61 <  use reaction_field
62 <  use gb_pair
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 72 | Line 72 | module doForces
72    PRIVATE
73  
74   #define __FORTRAN90
75 < #include "UseTheForce/fSwitchingFunction.h"
75 > #include "UseTheForce/fCutoffPolicy.h"
76 > #include "UseTheForce/DarkSide/fInteractionMap.h"
77 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78  
79    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
80    INTEGER, PARAMETER:: PAIR_LOOP    = 2
81  
80  logical, save :: haveRlist = .false.
82    logical, save :: haveNeighborList = .false.
83    logical, save :: haveSIMvariables = .false.
83  logical, save :: havePropertyMap = .false.
84    logical, save :: haveSaneForceField = .false.
85 <  
85 >  logical, save :: haveInteractionHash = .false.
86 >  logical, save :: haveGtypeCutoffMap = .false.
87 >  logical, save :: haveDefaultCutoffs = .false.
88 >  logical, save :: haveSkinThickness = .false.
89 >  logical, save :: haveElectrostaticSummationMethod = .false.
90 >  logical, save :: haveCutoffPolicy = .false.
91 >  logical, save :: VisitCutoffsAfterComputing = .false.
92 >  logical, save :: do_box_dipole = .false.
93 >
94    logical, save :: FF_uses_DirectionalAtoms
87  logical, save :: FF_uses_LennardJones
88  logical, save :: FF_uses_Electrostatics
89  logical, save :: FF_uses_Charges
95    logical, save :: FF_uses_Dipoles
91  logical, save :: FF_uses_Quadrupoles
92  logical, save :: FF_uses_sticky
96    logical, save :: FF_uses_GayBerne
97    logical, save :: FF_uses_EAM
98 <  logical, save :: FF_uses_Shapes
99 <  logical, save :: FF_uses_FLARB
100 <  logical, save :: FF_uses_RF
98 >  logical, save :: FF_uses_SC
99 >  logical, save :: FF_uses_MEAM
100 >
101  
102    logical, save :: SIM_uses_DirectionalAtoms
100  logical, save :: SIM_uses_LennardJones
101  logical, save :: SIM_uses_Electrostatics
102  logical, save :: SIM_uses_Charges
103  logical, save :: SIM_uses_Dipoles
104  logical, save :: SIM_uses_Quadrupoles
105  logical, save :: SIM_uses_Sticky
106  logical, save :: SIM_uses_GayBerne
103    logical, save :: SIM_uses_EAM
104 <  logical, save :: SIM_uses_Shapes
105 <  logical, save :: SIM_uses_FLARB
110 <  logical, save :: SIM_uses_RF
104 >  logical, save :: SIM_uses_SC
105 >  logical, save :: SIM_uses_MEAM
106    logical, save :: SIM_requires_postpair_calc
107    logical, save :: SIM_requires_prepair_calc
108    logical, save :: SIM_uses_PBC
109 <  logical, save :: SIM_uses_molecular_cutoffs
109 >  logical, save :: SIM_uses_AtomicVirial
110  
111 <  real(kind=dp), save :: rlist, rlistsq
111 >  integer, save :: electrostaticSummationMethod
112 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
113  
114 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
115 +  real(kind=dp), save :: skinThickness
116 +  logical, save :: defaultDoShiftPot
117 +  logical, save :: defaultDoShiftFrc
118 +
119    public :: init_FF
120 +  public :: setCutoffs
121 +  public :: cWasLame
122 +  public :: setElectrostaticMethod
123 +  public :: setBoxDipole
124 +  public :: getBoxDipole
125 +  public :: setCutoffPolicy
126 +  public :: setSkinThickness
127    public :: do_force_loop
120  public :: setRlistDF
128  
129   #ifdef PROFILE
130    public :: getforcetime
# Line 125 | Line 132 | module doForces
132    real :: forceTimeInitial, forceTimeFinal
133    integer :: nLoops
134   #endif
135 +  
136 +  !! Variables for cutoff mapping and interaction mapping
137 +  ! Bit hash to determine pair-pair interactions.
138 +  integer, dimension(:,:), allocatable :: InteractionHash
139 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
140 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
141 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
142  
143 <  type :: Properties
144 <     logical :: is_Directional   = .false.
131 <     logical :: is_LennardJones  = .false.
132 <     logical :: is_Electrostatic = .false.
133 <     logical :: is_Charge        = .false.
134 <     logical :: is_Dipole        = .false.
135 <     logical :: is_Quadrupole    = .false.
136 <     logical :: is_Sticky        = .false.
137 <     logical :: is_GayBerne      = .false.
138 <     logical :: is_EAM           = .false.
139 <     logical :: is_Shape         = .false.
140 <     logical :: is_FLARB         = .false.
141 <  end type Properties
143 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
144 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
145  
146 <  type(Properties), dimension(:),allocatable :: PropertyMap
146 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
147 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
148 >  type ::gtypeCutoffs
149 >     real(kind=dp) :: rcut
150 >     real(kind=dp) :: rcutsq
151 >     real(kind=dp) :: rlistsq
152 >  end type gtypeCutoffs
153 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
154  
155 +  real(kind=dp), dimension(3) :: boxDipole
156 +
157   contains
158  
159 <  subroutine setRlistDF( this_rlist )
148 <    
149 <    real(kind=dp) :: this_rlist
150 <
151 <    rlist = this_rlist
152 <    rlistsq = rlist * rlist
153 <    
154 <    haveRlist = .true.
155 <
156 <  end subroutine setRlistDF    
157 <
158 <  subroutine createPropertyMap(status)
159 >  subroutine createInteractionHash()
160      integer :: nAtypes
160    integer :: status
161      integer :: i
162 <    logical :: thisProperty
163 <    real (kind=DP) :: thisDPproperty
162 >    integer :: j
163 >    integer :: iHash
164 >    !! Test Types
165 >    logical :: i_is_LJ
166 >    logical :: i_is_Elect
167 >    logical :: i_is_Sticky
168 >    logical :: i_is_StickyP
169 >    logical :: i_is_GB
170 >    logical :: i_is_EAM
171 >    logical :: i_is_Shape
172 >    logical :: i_is_SC
173 >    logical :: i_is_MEAM
174 >    logical :: j_is_LJ
175 >    logical :: j_is_Elect
176 >    logical :: j_is_Sticky
177 >    logical :: j_is_StickyP
178 >    logical :: j_is_GB
179 >    logical :: j_is_EAM
180 >    logical :: j_is_Shape
181 >    logical :: j_is_SC
182 >    logical :: j_is_MEAM
183 >    real(kind=dp) :: myRcut
184  
185 <    status = 0
186 <
185 >    if (.not. associated(atypes)) then
186 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
187 >       return
188 >    endif
189 >    
190      nAtypes = getSize(atypes)
191 <
191 >    
192      if (nAtypes == 0) then
193 <       status = -1
193 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
194         return
195      end if
196 <        
197 <    if (.not. allocated(PropertyMap)) then
198 <       allocate(PropertyMap(nAtypes))
196 >
197 >    if (.not. allocated(InteractionHash)) then
198 >       allocate(InteractionHash(nAtypes,nAtypes))
199 >    else
200 >       deallocate(InteractionHash)
201 >       allocate(InteractionHash(nAtypes,nAtypes))
202      endif
203  
204 +    if (.not. allocated(atypeMaxCutoff)) then
205 +       allocate(atypeMaxCutoff(nAtypes))
206 +    else
207 +       deallocate(atypeMaxCutoff)
208 +       allocate(atypeMaxCutoff(nAtypes))
209 +    endif
210 +        
211      do i = 1, nAtypes
212 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
213 <       PropertyMap(i)%is_Directional = thisProperty
212 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
213 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
214 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
215 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
216 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
217 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
218 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
219 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
220 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
221  
222 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
183 <       PropertyMap(i)%is_LennardJones = thisProperty
184 <      
185 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
186 <       PropertyMap(i)%is_Electrostatic = thisProperty
222 >       do j = i, nAtypes
223  
224 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
225 <       PropertyMap(i)%is_Charge = thisProperty
190 <      
191 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
192 <       PropertyMap(i)%is_Dipole = thisProperty
224 >          iHash = 0
225 >          myRcut = 0.0_dp
226  
227 <       call getElementProperty(atypes, i, "is_Quadrupole", thisProperty)
228 <       PropertyMap(i)%is_Quadrupole = thisProperty
227 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
228 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
229 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
230 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
231 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
232 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
233 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
234 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
235 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
236  
237 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
238 <       PropertyMap(i)%is_Sticky = thisProperty
237 >          if (i_is_LJ .and. j_is_LJ) then
238 >             iHash = ior(iHash, LJ_PAIR)            
239 >          endif
240 >          
241 >          if (i_is_Elect .and. j_is_Elect) then
242 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
243 >          endif
244 >          
245 >          if (i_is_Sticky .and. j_is_Sticky) then
246 >             iHash = ior(iHash, STICKY_PAIR)
247 >          endif
248  
249 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
250 <       PropertyMap(i)%is_GayBerne = thisProperty
249 >          if (i_is_StickyP .and. j_is_StickyP) then
250 >             iHash = ior(iHash, STICKYPOWER_PAIR)
251 >          endif
252  
253 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
254 <       PropertyMap(i)%is_EAM = thisProperty
253 >          if (i_is_EAM .and. j_is_EAM) then
254 >             iHash = ior(iHash, EAM_PAIR)
255 >          endif
256  
257 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
258 <       PropertyMap(i)%is_Shape = thisProperty
257 >          if (i_is_SC .and. j_is_SC) then
258 >             iHash = ior(iHash, SC_PAIR)
259 >          endif
260  
261 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
262 <       PropertyMap(i)%is_FLARB = thisProperty
263 <    end do
261 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
262 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
263 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
264  
265 <    havePropertyMap = .true.
265 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
266 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
267 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
268  
215  end subroutine createPropertyMap
269  
270 <  subroutine setSimVariables()
271 <    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
219 <    SIM_uses_LennardJones = SimUsesLennardJones()
220 <    SIM_uses_Electrostatics = SimUsesElectrostatics()
221 <    SIM_uses_Charges = SimUsesCharges()
222 <    SIM_uses_Dipoles = SimUsesDipoles()
223 <    SIM_uses_Sticky = SimUsesSticky()
224 <    SIM_uses_GayBerne = SimUsesGayBerne()
225 <    SIM_uses_EAM = SimUsesEAM()
226 <    SIM_uses_Shapes = SimUsesShapes()
227 <    SIM_uses_FLARB = SimUsesFLARB()
228 <    SIM_uses_RF = SimUsesRF()
229 <    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
230 <    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
231 <    SIM_uses_PBC = SimUsesPBC()
270 >          InteractionHash(i,j) = iHash
271 >          InteractionHash(j,i) = iHash
272  
273 <    haveSIMvariables = .true.
273 >       end do
274  
275 <    return
236 <  end subroutine setSimVariables
275 >    end do
276  
277 <  subroutine doReadyCheck(error)
278 <    integer, intent(out) :: error
277 >    haveInteractionHash = .true.
278 >  end subroutine createInteractionHash
279  
280 <    integer :: myStatus
280 >  subroutine createGtypeCutoffMap()
281  
282 <    error = 0
283 <    
284 <    if (.not. havePropertyMap) then
285 <
286 <       myStatus = 0
287 <
288 <       call createPropertyMap(myStatus)
289 <
290 <       if (myStatus .ne. 0) then
291 <          write(default_error, *) 'createPropertyMap failed in doForces!'
292 <          error = -1
293 <          return
282 >    logical :: i_is_LJ
283 >    logical :: i_is_Elect
284 >    logical :: i_is_Sticky
285 >    logical :: i_is_StickyP
286 >    logical :: i_is_GB
287 >    logical :: i_is_EAM
288 >    logical :: i_is_Shape
289 >    logical :: i_is_SC
290 >    logical :: GtypeFound
291 >
292 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
293 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
294 >    integer :: nGroupsInRow
295 >    integer :: nGroupsInCol
296 >    integer :: nGroupTypesRow,nGroupTypesCol
297 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
298 >    real(kind=dp) :: biggestAtypeCutoff
299 >
300 >    if (.not. haveInteractionHash) then
301 >       call createInteractionHash()      
302 >    endif
303 > #ifdef IS_MPI
304 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
305 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
306 > #endif
307 >    nAtypes = getSize(atypes)
308 > ! Set all of the initial cutoffs to zero.
309 >    atypeMaxCutoff = 0.0_dp
310 >    do i = 1, nAtypes
311 >       if (SimHasAtype(i)) then    
312 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
313 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
314 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
315 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
316 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
317 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
318 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
319 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
320 >
321 >          if (haveDefaultCutoffs) then
322 >             atypeMaxCutoff(i) = defaultRcut
323 >          else
324 >             if (i_is_LJ) then          
325 >                thisRcut = getSigma(i) * 2.5_dp
326 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
327 >             endif
328 >             if (i_is_Elect) then
329 >                thisRcut = defaultRcut
330 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
331 >             endif
332 >             if (i_is_Sticky) then
333 >                thisRcut = getStickyCut(i)
334 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
335 >             endif
336 >             if (i_is_StickyP) then
337 >                thisRcut = getStickyPowerCut(i)
338 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
339 >             endif
340 >             if (i_is_GB) then
341 >                thisRcut = getGayBerneCut(i)
342 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
343 >             endif
344 >             if (i_is_EAM) then
345 >                thisRcut = getEAMCut(i)
346 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
347 >             endif
348 >             if (i_is_Shape) then
349 >                thisRcut = getShapeCut(i)
350 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
351 >             endif
352 >             if (i_is_SC) then
353 >                thisRcut = getSCCut(i)
354 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
355 >             endif
356 >          endif
357 >                    
358 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
359 >             biggestAtypeCutoff = atypeMaxCutoff(i)
360 >          endif
361 >
362         endif
363 +    enddo
364 +    
365 +    istart = 1
366 +    jstart = 1
367 + #ifdef IS_MPI
368 +    iend = nGroupsInRow
369 +    jend = nGroupsInCol
370 + #else
371 +    iend = nGroups
372 +    jend = nGroups
373 + #endif
374 +    
375 +    !! allocate the groupToGtype and gtypeMaxCutoff here.
376 +    if(.not.allocated(groupToGtypeRow)) then
377 +     !  allocate(groupToGtype(iend))
378 +       allocate(groupToGtypeRow(iend))
379 +    else
380 +       deallocate(groupToGtypeRow)
381 +       allocate(groupToGtypeRow(iend))
382 +    endif
383 +    if(.not.allocated(groupMaxCutoffRow)) then
384 +       allocate(groupMaxCutoffRow(iend))
385 +    else
386 +       deallocate(groupMaxCutoffRow)
387 +       allocate(groupMaxCutoffRow(iend))
388 +    end if
389 +
390 +    if(.not.allocated(gtypeMaxCutoffRow)) then
391 +       allocate(gtypeMaxCutoffRow(iend))
392 +    else
393 +       deallocate(gtypeMaxCutoffRow)
394 +       allocate(gtypeMaxCutoffRow(iend))
395 +    endif
396 +
397 +
398 + #ifdef IS_MPI
399 +       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
400 +    if(.not.associated(groupToGtypeCol)) then
401 +       allocate(groupToGtypeCol(jend))
402 +    else
403 +       deallocate(groupToGtypeCol)
404 +       allocate(groupToGtypeCol(jend))
405 +    end if
406 +
407 +    if(.not.associated(groupMaxCutoffCol)) then
408 +       allocate(groupMaxCutoffCol(jend))
409 +    else
410 +       deallocate(groupMaxCutoffCol)
411 +       allocate(groupMaxCutoffCol(jend))
412 +    end if
413 +    if(.not.associated(gtypeMaxCutoffCol)) then
414 +       allocate(gtypeMaxCutoffCol(jend))
415 +    else
416 +       deallocate(gtypeMaxCutoffCol)      
417 +       allocate(gtypeMaxCutoffCol(jend))
418 +    end if
419 +
420 +       groupMaxCutoffCol = 0.0_dp
421 +       gtypeMaxCutoffCol = 0.0_dp
422 +
423 + #endif
424 +       groupMaxCutoffRow = 0.0_dp
425 +       gtypeMaxCutoffRow = 0.0_dp
426 +
427 +
428 +    !! first we do a single loop over the cutoff groups to find the
429 +    !! largest cutoff for any atypes present in this group.  We also
430 +    !! create gtypes at this point.
431 +    
432 +    tol = 1.0e-6_dp
433 +    nGroupTypesRow = 0
434 +    nGroupTypesCol = 0
435 +    do i = istart, iend      
436 +       n_in_i = groupStartRow(i+1) - groupStartRow(i)
437 +       groupMaxCutoffRow(i) = 0.0_dp
438 +       do ia = groupStartRow(i), groupStartRow(i+1)-1
439 +          atom1 = groupListRow(ia)
440 + #ifdef IS_MPI
441 +          me_i = atid_row(atom1)
442 + #else
443 +          me_i = atid(atom1)
444 + #endif          
445 +          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
446 +             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
447 +          endif          
448 +       enddo
449 +       if (nGroupTypesRow.eq.0) then
450 +          nGroupTypesRow = nGroupTypesRow + 1
451 +          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
452 +          groupToGtypeRow(i) = nGroupTypesRow
453 +       else
454 +          GtypeFound = .false.
455 +          do g = 1, nGroupTypesRow
456 +             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
457 +                groupToGtypeRow(i) = g
458 +                GtypeFound = .true.
459 +             endif
460 +          enddo
461 +          if (.not.GtypeFound) then            
462 +             nGroupTypesRow = nGroupTypesRow + 1
463 +             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
464 +             groupToGtypeRow(i) = nGroupTypesRow
465 +          endif
466 +       endif
467 +    enddo    
468 +
469 + #ifdef IS_MPI
470 +    do j = jstart, jend      
471 +       n_in_j = groupStartCol(j+1) - groupStartCol(j)
472 +       groupMaxCutoffCol(j) = 0.0_dp
473 +       do ja = groupStartCol(j), groupStartCol(j+1)-1
474 +          atom1 = groupListCol(ja)
475 +
476 +          me_j = atid_col(atom1)
477 +
478 +          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
479 +             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
480 +          endif          
481 +       enddo
482 +
483 +       if (nGroupTypesCol.eq.0) then
484 +          nGroupTypesCol = nGroupTypesCol + 1
485 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
486 +          groupToGtypeCol(j) = nGroupTypesCol
487 +       else
488 +          GtypeFound = .false.
489 +          do g = 1, nGroupTypesCol
490 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
491 +                groupToGtypeCol(j) = g
492 +                GtypeFound = .true.
493 +             endif
494 +          enddo
495 +          if (.not.GtypeFound) then            
496 +             nGroupTypesCol = nGroupTypesCol + 1
497 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
498 +             groupToGtypeCol(j) = nGroupTypesCol
499 +          endif
500 +       endif
501 +    enddo    
502 +
503 + #else
504 + ! Set pointers to information we just found
505 +    nGroupTypesCol = nGroupTypesRow
506 +    groupToGtypeCol => groupToGtypeRow
507 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
508 +    groupMaxCutoffCol => groupMaxCutoffRow
509 + #endif
510 +
511 +    !! allocate the gtypeCutoffMap here.
512 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
513 +    !! then we do a double loop over all the group TYPES to find the cutoff
514 +    !! map between groups of two types
515 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
516 +
517 +    do i = 1, nGroupTypesRow      
518 +       do j = 1, nGroupTypesCol
519 +      
520 +          select case(cutoffPolicy)
521 +          case(TRADITIONAL_CUTOFF_POLICY)
522 +             thisRcut = tradRcut
523 +          case(MIX_CUTOFF_POLICY)
524 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
525 +          case(MAX_CUTOFF_POLICY)
526 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
527 +          case default
528 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
529 +             return
530 +          end select
531 +          gtypeCutoffMap(i,j)%rcut = thisRcut
532 +          
533 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
534 +
535 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
536 +
537 +          if (.not.haveSkinThickness) then
538 +             skinThickness = 1.0_dp
539 +          endif
540 +
541 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
542 +
543 +          ! sanity check
544 +
545 +          if (haveDefaultCutoffs) then
546 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
547 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
548 +             endif
549 +          endif
550 +       enddo
551 +    enddo
552 +
553 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
554 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
555 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
556 + #ifdef IS_MPI
557 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
558 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
559 + #endif
560 +    groupMaxCutoffCol => null()
561 +    gtypeMaxCutoffCol => null()
562 +    
563 +    haveGtypeCutoffMap = .true.
564 +   end subroutine createGtypeCutoffMap
565 +
566 +   subroutine setCutoffs(defRcut, defRsw, defSP, defSF)
567 +
568 +     real(kind=dp),intent(in) :: defRcut, defRsw
569 +     logical, intent(in) :: defSP, defSF
570 +     character(len = statusMsgSize) :: errMsg
571 +     integer :: localError
572 +
573 +     defaultRcut = defRcut
574 +     defaultRsw = defRsw
575 +    
576 +     defaultDoShiftPot = defSP
577 +     defaultDoShiftFrc = defSF
578 +
579 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
580 +        if (defaultDoShiftFrc) then
581 +           write(errMsg, *) &
582 +                'cutoffRadius and switchingRadius are set to the', newline &
583 +                // tab, 'same value.  OOPSE will use shifted force', newline &
584 +                // tab, 'potentials instead of switching functions.'
585 +          
586 +           call handleInfo("setCutoffs", errMsg)
587 +        else
588 +           write(errMsg, *) &
589 +                'cutoffRadius and switchingRadius are set to the', newline &
590 +                // tab, 'same value.  OOPSE will use shifted', newline &
591 +                // tab, 'potentials instead of switching functions.'
592 +          
593 +           call handleInfo("setCutoffs", errMsg)
594 +          
595 +           defaultDoShiftPot = .true.
596 +        endif
597 +                
598 +     endif
599 +    
600 +     localError = 0
601 +     call setLJDefaultCutoff( defaultRcut, defaultDoShiftPot, &
602 +          defaultDoShiftFrc )
603 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
604 +     call setCutoffEAM( defaultRcut )
605 +     call setCutoffSC( defaultRcut )
606 +     call set_switch(defaultRsw, defaultRcut)
607 +     call setHmatDangerousRcutValue(defaultRcut)
608 +        
609 +     haveDefaultCutoffs = .true.
610 +     haveGtypeCutoffMap = .false.
611 +
612 +   end subroutine setCutoffs
613 +
614 +   subroutine cWasLame()
615 +    
616 +     VisitCutoffsAfterComputing = .true.
617 +     return
618 +    
619 +   end subroutine cWasLame
620 +  
621 +   subroutine setCutoffPolicy(cutPolicy)
622 +    
623 +     integer, intent(in) :: cutPolicy
624 +    
625 +     cutoffPolicy = cutPolicy
626 +     haveCutoffPolicy = .true.
627 +     haveGtypeCutoffMap = .false.
628 +    
629 +   end subroutine setCutoffPolicy
630 +    
631 +   subroutine setBoxDipole()
632 +
633 +     do_box_dipole = .true.
634 +    
635 +   end subroutine setBoxDipole
636 +
637 +   subroutine getBoxDipole( box_dipole )
638 +
639 +     real(kind=dp), intent(inout), dimension(3) :: box_dipole
640 +
641 +     box_dipole = boxDipole
642 +
643 +   end subroutine getBoxDipole
644 +
645 +   subroutine setElectrostaticMethod( thisESM )
646 +
647 +     integer, intent(in) :: thisESM
648 +
649 +     electrostaticSummationMethod = thisESM
650 +     haveElectrostaticSummationMethod = .true.
651 +    
652 +   end subroutine setElectrostaticMethod
653 +
654 +   subroutine setSkinThickness( thisSkin )
655 +    
656 +     real(kind=dp), intent(in) :: thisSkin
657 +    
658 +     skinThickness = thisSkin
659 +     haveSkinThickness = .true.    
660 +     haveGtypeCutoffMap = .false.
661 +    
662 +   end subroutine setSkinThickness
663 +      
664 +   subroutine setSimVariables()
665 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
666 +     SIM_uses_EAM = SimUsesEAM()
667 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
668 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
669 +     SIM_uses_PBC = SimUsesPBC()
670 +     SIM_uses_SC = SimUsesSC()
671 +     SIM_uses_AtomicVirial = SimUsesAtomicVirial()
672 +
673 +     haveSIMvariables = .true.
674 +    
675 +     return
676 +   end subroutine setSimVariables
677 +
678 +  subroutine doReadyCheck(error)
679 +    integer, intent(out) :: error
680 +    integer :: myStatus
681 +
682 +    error = 0
683 +
684 +    if (.not. haveInteractionHash) then      
685 +       call createInteractionHash()      
686      endif
687  
688 <    if (.not. haveSIMvariables) then
689 <       call setSimVariables()
688 >    if (.not. haveGtypeCutoffMap) then        
689 >       call createGtypeCutoffMap()      
690      endif
691  
692 <    if (.not. haveRlist) then
693 <       write(default_error, *) 'rList has not been set in doForces!'
694 <       error = -1
695 <       return
692 >    if (VisitCutoffsAfterComputing) then
693 >       call set_switch(largestRcut, largestRcut)      
694 >       call setHmatDangerousRcutValue(largestRcut)
695 >       call setCutoffEAM(largestRcut)
696 >       call setCutoffSC(largestRcut)
697 >       VisitCutoffsAfterComputing = .false.
698      endif
699  
700 +    if (.not. haveSIMvariables) then
701 +       call setSimVariables()
702 +    endif
703 +
704      if (.not. haveNeighborList) then
705         write(default_error, *) 'neighbor list has not been initialized in doForces!'
706         error = -1
707         return
708      end if
709 <
709 >    
710      if (.not. haveSaneForceField) then
711         write(default_error, *) 'Force Field is not sane in doForces!'
712         error = -1
713         return
714      end if
715 <
715 >    
716   #ifdef IS_MPI
717      if (.not. isMPISimSet()) then
718         write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
# Line 286 | Line 722 | contains
722   #endif
723      return
724    end subroutine doReadyCheck
289    
725  
291  subroutine init_FF(use_RF_c, thisStat)
726  
727 <    logical, intent(in) :: use_RF_c
727 >  subroutine init_FF(thisStat)
728  
729      integer, intent(out) :: thisStat  
730      integer :: my_status, nMatches
731      integer, pointer :: MatchList(:) => null()
298    real(kind=dp) :: rcut, rrf, rt, dielect
732  
733      !! assume things are copacetic, unless they aren't
734      thisStat = 0
735  
303    !! Fortran's version of a cast:
304    FF_uses_RF = use_RF_c
305    
736      !! init_FF is called *after* all of the atom types have been
737      !! defined in atype_module using the new_atype subroutine.
738      !!
739      !! this will scan through the known atypes and figure out what
740      !! interactions are used by the force field.    
741 <  
741 >
742      FF_uses_DirectionalAtoms = .false.
313    FF_uses_LennardJones = .false.
314    FF_uses_Electrostatics = .false.
315    FF_uses_Charges = .false.    
743      FF_uses_Dipoles = .false.
317    FF_uses_Sticky = .false.
744      FF_uses_GayBerne = .false.
745      FF_uses_EAM = .false.
746 <    FF_uses_Shapes = .false.
747 <    FF_uses_FLARB = .false.
322 <    
746 >    FF_uses_SC = .false.
747 >
748      call getMatchingElementList(atypes, "is_Directional", .true., &
749           nMatches, MatchList)
750      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
751  
327    call getMatchingElementList(atypes, "is_LennardJones", .true., &
328         nMatches, MatchList)
329    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
330    
331    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
332         nMatches, MatchList)
333    if (nMatches .gt. 0) then
334       FF_uses_Electrostatics = .true.
335    endif
336
337    call getMatchingElementList(atypes, "is_Charge", .true., &
338         nMatches, MatchList)
339    if (nMatches .gt. 0) then
340       FF_uses_Charges = .true.  
341       FF_uses_Electrostatics = .true.
342    endif
343    
752      call getMatchingElementList(atypes, "is_Dipole", .true., &
753           nMatches, MatchList)
754 <    if (nMatches .gt. 0) then
347 <       FF_uses_Dipoles = .true.
348 <       FF_uses_Electrostatics = .true.
349 <       FF_uses_DirectionalAtoms = .true.
350 <    endif
351 <
352 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
353 <         nMatches, MatchList)
354 <    if (nMatches .gt. 0) then
355 <       FF_uses_Quadrupoles = .true.
356 <       FF_uses_Electrostatics = .true.
357 <       FF_uses_DirectionalAtoms = .true.
358 <    endif
754 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
755      
360    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
361         MatchList)
362    if (nMatches .gt. 0) then
363       FF_uses_Sticky = .true.
364       FF_uses_DirectionalAtoms = .true.
365    endif
366    
756      call getMatchingElementList(atypes, "is_GayBerne", .true., &
757           nMatches, MatchList)
758 <    if (nMatches .gt. 0) then
759 <       FF_uses_GayBerne = .true.
371 <       FF_uses_DirectionalAtoms = .true.
372 <    endif
373 <    
758 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
759 >
760      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
761      if (nMatches .gt. 0) FF_uses_EAM = .true.
376    
377    call getMatchingElementList(atypes, "is_Shape", .true., &
378         nMatches, MatchList)
379    if (nMatches .gt. 0) then
380       FF_uses_Shapes = .true.
381       FF_uses_DirectionalAtoms = .true.
382    endif
762  
763 <    call getMatchingElementList(atypes, "is_FLARB", .true., &
764 <         nMatches, MatchList)
386 <    if (nMatches .gt. 0) FF_uses_FLARB = .true.
763 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
764 >    if (nMatches .gt. 0) FF_uses_SC = .true.
765  
766 <    !! Assume sanity (for the sake of argument)
766 >
767      haveSaneForceField = .true.
390    
391    !! check to make sure the FF_uses_RF setting makes sense
392    
393    if (FF_uses_dipoles) then
394       if (FF_uses_RF) then
395          dielect = getDielect()
396          call initialize_rf(dielect)
397       endif
398    else
399       if (FF_uses_RF) then          
400          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
401          thisStat = -1
402          haveSaneForceField = .false.
403          return
404       endif
405    endif
768  
407    !sticky module does not contain check_sticky_FF anymore
408    !if (FF_uses_sticky) then
409    !   call check_sticky_FF(my_status)
410    !   if (my_status /= 0) then
411    !      thisStat = -1
412    !      haveSaneForceField = .false.
413    !      return
414    !   end if
415    !endif
416
769      if (FF_uses_EAM) then
770 <         call init_EAM_FF(my_status)
770 >       call init_EAM_FF(my_status)
771         if (my_status /= 0) then
772            write(default_error, *) "init_EAM_FF returned a bad status"
773            thisStat = -1
# Line 424 | Line 776 | contains
776         end if
777      endif
778  
427    if (FF_uses_GayBerne) then
428       call check_gb_pair_FF(my_status)
429       if (my_status .ne. 0) then
430          thisStat = -1
431          haveSaneForceField = .false.
432          return
433       endif
434    endif
435
436    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
437    endif
438    
779      if (.not. haveNeighborList) then
780         !! Create neighbor lists
781         call expandNeighborList(nLocal, my_status)
# Line 445 | Line 785 | contains
785            return
786         endif
787         haveNeighborList = .true.
788 <    endif    
789 <    
788 >    endif
789 >
790    end subroutine init_FF
451  
791  
792 +
793    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
794    !------------------------------------------------------------->
795    subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
# Line 469 | Line 809 | contains
809  
810      !! Stress Tensor
811      real( kind = dp), dimension(9) :: tau  
812 <    real ( kind = dp ) :: pot
812 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
813      logical ( kind = 2) :: do_pot_c, do_stress_c
814      logical :: do_pot
815      logical :: do_stress
816      logical :: in_switching_region
817   #ifdef IS_MPI
818 <    real( kind = DP ) :: pot_local
818 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
819      integer :: nAtomsInRow
820      integer :: nAtomsInCol
821      integer :: nprocs
# Line 488 | Line 828 | contains
828      integer :: istart, iend
829      integer :: ia, jb, atom1, atom2
830      integer :: nlist
831 <    real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
831 >    real( kind = DP ) :: ratmsq, rgrpsq, rgrp, rag, vpair, vij
832      real( kind = DP ) :: sw, dswdr, swderiv, mf
833 <    real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
834 <    real(kind=dp) :: rfpot, mu_i, virial
833 >    real( kind = DP ) :: rVal
834 >    real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij, fg, dag
835 >    real(kind=dp) :: rfpot, mu_i
836 >    real(kind=dp):: rCut
837      integer :: me_i, me_j, n_in_i, n_in_j
838      logical :: is_dp_i
839      integer :: neighborListSize
# Line 499 | Line 841 | contains
841      integer :: localError
842      integer :: propPack_i, propPack_j
843      integer :: loopStart, loopEnd, loop
844 +    integer :: iHash
845 +    integer :: i1
846  
847 <    real(kind=dp) :: listSkin = 1.0  
848 <    
847 >    !! the variables for the box dipole moment
848 > #ifdef IS_MPI
849 >    integer :: pChgCount_local
850 >    integer :: nChgCount_local
851 >    real(kind=dp) :: pChg_local
852 >    real(kind=dp) :: nChg_local
853 >    real(kind=dp), dimension(3) :: pChgPos_local
854 >    real(kind=dp), dimension(3) :: nChgPos_local
855 >    real(kind=dp), dimension(3) :: dipVec_local
856 > #endif
857 >    integer :: pChgCount
858 >    integer :: nChgCount
859 >    real(kind=dp) :: pChg
860 >    real(kind=dp) :: nChg
861 >    real(kind=dp) :: chg_value
862 >    real(kind=dp), dimension(3) :: pChgPos
863 >    real(kind=dp), dimension(3) :: nChgPos
864 >    real(kind=dp), dimension(3) :: dipVec
865 >    real(kind=dp), dimension(3) :: chgVec
866 >
867 >    !! initialize box dipole variables
868 >    if (do_box_dipole) then
869 > #ifdef IS_MPI
870 >       pChg_local = 0.0_dp
871 >       nChg_local = 0.0_dp
872 >       pChgCount_local = 0
873 >       nChgCount_local = 0
874 >       do i=1, 3
875 >          pChgPos_local = 0.0_dp
876 >          nChgPos_local = 0.0_dp
877 >          dipVec_local = 0.0_dp
878 >       enddo
879 > #endif
880 >       pChg = 0.0_dp
881 >       nChg = 0.0_dp
882 >       pChgCount = 0
883 >       nChgCount = 0
884 >       chg_value = 0.0_dp
885 >      
886 >       do i=1, 3
887 >          pChgPos(i) = 0.0_dp
888 >          nChgPos(i) = 0.0_dp
889 >          dipVec(i) = 0.0_dp
890 >          chgVec(i) = 0.0_dp
891 >          boxDipole(i) = 0.0_dp
892 >       enddo
893 >    endif
894 >
895      !! initialize local variables  
896 <    
896 >
897   #ifdef IS_MPI
898      pot_local = 0.0_dp
899      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 513 | Line 903 | contains
903   #else
904      natoms = nlocal
905   #endif
906 <    
906 >
907      call doReadyCheck(localError)
908      if ( localError .ne. 0 ) then
909         call handleError("do_force_loop", "Not Initialized")
# Line 521 | Line 911 | contains
911         return
912      end if
913      call zero_work_arrays()
914 <        
914 >
915      do_pot = do_pot_c
916      do_stress = do_stress_c
917 <    
917 >
918      ! Gather all information needed by all force loops:
919 <    
919 >
920   #ifdef IS_MPI    
921 <    
921 >
922      call gather(q, q_Row, plan_atom_row_3d)
923      call gather(q, q_Col, plan_atom_col_3d)
924  
925      call gather(q_group, q_group_Row, plan_group_row_3d)
926      call gather(q_group, q_group_Col, plan_group_col_3d)
927 <        
927 >
928      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
929         call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
930         call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
931 <      
931 >
932         call gather(A, A_Row, plan_atom_row_rotation)
933         call gather(A, A_Col, plan_atom_col_rotation)
934      endif
935 <    
935 >
936   #endif
937 <    
937 >
938      !! Begin force loop timing:
939   #ifdef PROFILE
940      call cpu_time(forceTimeInitial)
941      nloops = nloops + 1
942   #endif
943 <    
943 >
944      loopEnd = PAIR_LOOP
945      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
946         loopStart = PREPAIR_LOOP
# Line 564 | Line 954 | contains
954         ! (but only on the first time through):
955         if (loop .eq. loopStart) then
956   #ifdef IS_MPI
957 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
958 <             update_nlist)
957 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
958 >               update_nlist)
959   #else
960 <          call checkNeighborList(nGroups, q_group, listSkin, &
961 <             update_nlist)
960 >          call checkNeighborList(nGroups, q_group, skinThickness, &
961 >               update_nlist)
962   #endif
963         endif
964 <      
964 >
965         if (update_nlist) then
966            !! save current configuration and construct neighbor list
967   #ifdef IS_MPI
# Line 582 | Line 972 | contains
972            neighborListSize = size(list)
973            nlist = 0
974         endif
975 <      
975 >
976         istart = 1
977   #ifdef IS_MPI
978         iend = nGroupsInRow
# Line 592 | Line 982 | contains
982         outer: do i = istart, iend
983  
984            if (update_nlist) point(i) = nlist + 1
985 <          
985 >
986            n_in_i = groupStartRow(i+1) - groupStartRow(i)
987 <          
987 >
988            if (update_nlist) then
989   #ifdef IS_MPI
990               jstart = 1
# Line 609 | Line 999 | contains
999               ! make sure group i has neighbors
1000               if (jstart .gt. jend) cycle outer
1001            endif
1002 <          
1002 >
1003            do jnab = jstart, jend
1004               if (update_nlist) then
1005                  j = jnab
# Line 618 | Line 1008 | contains
1008               endif
1009  
1010   #ifdef IS_MPI
1011 +             me_j = atid_col(j)
1012               call get_interatomic_vector(q_group_Row(:,i), &
1013                    q_group_Col(:,j), d_grp, rgrpsq)
1014   #else
1015 +             me_j = atid(j)
1016               call get_interatomic_vector(q_group(:,i), &
1017                    q_group(:,j), d_grp, rgrpsq)
1018 < #endif
1018 > #endif      
1019  
1020 <             if (rgrpsq < rlistsq) then
1020 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
1021                  if (update_nlist) then
1022                     nlist = nlist + 1
1023 <                  
1023 >
1024                     if (nlist > neighborListSize) then
1025   #ifdef IS_MPI                
1026                        call expandNeighborList(nGroupsInRow, listerror)
# Line 642 | Line 1034 | contains
1034                        end if
1035                        neighborListSize = size(list)
1036                     endif
1037 <                  
1037 >
1038                     list(nlist) = j
1039                  endif
1040 <                
1041 <                if (loop .eq. PAIR_LOOP) then
1042 <                   vij = 0.0d0
1043 <                   fij(1:3) = 0.0d0
1044 <                endif
1045 <                
1046 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
1047 <                     in_switching_region)
1048 <                
1049 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
658 <                
659 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
1040 >                
1041 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
1042 >
1043 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
1044 >                   if (loop .eq. PAIR_LOOP) then
1045 >                      vij = 0.0_dp
1046 >                      fij(1) = 0.0_dp
1047 >                      fij(2) = 0.0_dp
1048 >                      fij(3) = 0.0_dp
1049 >                   endif
1050                    
1051 <                   atom1 = groupListRow(ia)
1051 >                   call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
1052                    
1053 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1053 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
1054 >                  
1055 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
1056                        
1057 <                      atom2 = groupListCol(jb)
1057 >                      atom1 = groupListRow(ia)
1058                        
1059 <                      if (skipThisPair(atom1, atom2)) cycle inner
1060 <
1061 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1062 <                         d_atm(1:3) = d_grp(1:3)
1063 <                         ratmsq = rgrpsq
1064 <                      else
1059 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1060 >                        
1061 >                         atom2 = groupListCol(jb)
1062 >                        
1063 >                         if (skipThisPair(atom1, atom2))  cycle inner
1064 >                        
1065 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1066 >                            d_atm(1) = d_grp(1)
1067 >                            d_atm(2) = d_grp(2)
1068 >                            d_atm(3) = d_grp(3)
1069 >                            ratmsq = rgrpsq
1070 >                         else
1071   #ifdef IS_MPI
1072 <                         call get_interatomic_vector(q_Row(:,atom1), &
1073 <                              q_Col(:,atom2), d_atm, ratmsq)
1072 >                            call get_interatomic_vector(q_Row(:,atom1), &
1073 >                                 q_Col(:,atom2), d_atm, ratmsq)
1074   #else
1075 <                         call get_interatomic_vector(q(:,atom1), &
1076 <                              q(:,atom2), d_atm, ratmsq)
1075 >                            call get_interatomic_vector(q(:,atom1), &
1076 >                                 q(:,atom2), d_atm, ratmsq)
1077   #endif
1078 <                      endif
1079 <
1080 <                      if (loop .eq. PREPAIR_LOOP) then
1078 >                         endif
1079 >                        
1080 >                         if (loop .eq. PREPAIR_LOOP) then
1081   #ifdef IS_MPI                      
1082 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1083 <                              rgrpsq, d_grp, do_pot, do_stress, &
1084 <                              eFrame, A, f, t, pot_local)
1082 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1083 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1084 >                                 eFrame, A, f, t, pot_local)
1085   #else
1086 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1087 <                              rgrpsq, d_grp, do_pot, do_stress, &
1088 <                              eFrame, A, f, t, pot)
1086 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1087 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1088 >                                 eFrame, A, f, t, pot)
1089   #endif                                              
1090 <                      else
1090 >                         else
1091   #ifdef IS_MPI                      
1092 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1093 <                              do_pot, &
1094 <                              eFrame, A, f, t, pot_local, vpair, fpair)
1092 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1093 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1094 >                                 fpair, d_grp, rgrp, rCut)
1095   #else
1096 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1097 <                              do_pot,  &
1098 <                              eFrame, A, f, t, pot, vpair, fpair)
1096 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1097 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1098 >                                 d_grp, rgrp, rCut)
1099   #endif
1100 +                            vij = vij + vpair
1101 +                            fij(1) = fij(1) + fpair(1)
1102 +                            fij(2) = fij(2) + fpair(2)
1103 +                            fij(3) = fij(3) + fpair(3)
1104 +                            if (do_stress) then
1105 +                               call add_stress_tensor(d_atm, fpair, tau)
1106 +                            endif
1107 +                         endif
1108 +                      enddo inner
1109 +                   enddo
1110  
1111 <                         vij = vij + vpair
1112 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1113 <                      endif
1114 <                   enddo inner
1115 <                enddo
1116 <                
1117 <                if (loop .eq. PAIR_LOOP) then
1118 <                   if (in_switching_region) then
1119 <                      swderiv = vij*dswdr/rgrp
1120 <                      fij(1) = fij(1) + swderiv*d_grp(1)
1121 <                      fij(2) = fij(2) + swderiv*d_grp(2)
1122 <                      fij(3) = fij(3) + swderiv*d_grp(3)
1123 <                      
1124 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
1125 <                         atom1=groupListRow(ia)
1126 <                         mf = mfactRow(atom1)
1111 >                   if (loop .eq. PAIR_LOOP) then
1112 >                      if (in_switching_region) then
1113 >                         swderiv = vij*dswdr/rgrp
1114 >                         fg = swderiv*d_grp
1115 >
1116 >                         fij(1) = fij(1) + fg(1)
1117 >                         fij(2) = fij(2) + fg(2)
1118 >                         fij(3) = fij(3) + fg(3)
1119 >                        
1120 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1121 >                            call add_stress_tensor(d_atm, fg, tau)
1122 >                         endif  
1123 >                        
1124 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1125 >                            atom1=groupListRow(ia)
1126 >                            mf = mfactRow(atom1)
1127 >                            ! fg is the force on atom ia due to cutoff group's
1128 >                            ! presence in switching region
1129 >                            fg = swderiv*d_grp*mf
1130   #ifdef IS_MPI
1131 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1132 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1133 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1131 >                            f_Row(1,atom1) = f_Row(1,atom1) + fg(1)
1132 >                            f_Row(2,atom1) = f_Row(2,atom1) + fg(2)
1133 >                            f_Row(3,atom1) = f_Row(3,atom1) + fg(3)
1134   #else
1135 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1136 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1137 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1135 >                            f(1,atom1) = f(1,atom1) + fg(1)
1136 >                            f(2,atom1) = f(2,atom1) + fg(2)
1137 >                            f(3,atom1) = f(3,atom1) + fg(3)
1138   #endif
1139 <                      enddo
1140 <                      
1141 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1142 <                         atom2=groupListCol(jb)
732 <                         mf = mfactCol(atom2)
1139 >                            if (n_in_i .gt. 1) then
1140 >                               if (do_stress.and.SIM_uses_AtomicVirial) then
1141 >                                  ! find the distance between the atom and the center of
1142 >                                  ! the cutoff group:
1143   #ifdef IS_MPI
1144 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1145 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
736 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1144 >                                  call get_interatomic_vector(q_Row(:,atom1), &
1145 >                                       q_group_Row(:,i), dag, rag)
1146   #else
1147 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1148 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
740 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1147 >                                  call get_interatomic_vector(q(:,atom1), &
1148 >                                       q_group(:,i), dag, rag)
1149   #endif
1150 <                      enddo
1150 >                                  call add_stress_tensor(dag,fg,tau)
1151 >                               endif
1152 >                            endif
1153 >                         enddo
1154 >                        
1155 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1156 >                            atom2=groupListCol(jb)
1157 >                            mf = mfactCol(atom2)
1158 >                            ! fg is the force on atom jb due to cutoff group's
1159 >                            ! presence in switching region
1160 >                            fg = -swderiv*d_grp*mf
1161 > #ifdef IS_MPI
1162 >                            f_Col(1,atom2) = f_Col(1,atom2) + fg(1)
1163 >                            f_Col(2,atom2) = f_Col(2,atom2) + fg(2)
1164 >                            f_Col(3,atom2) = f_Col(3,atom2) + fg(3)
1165 > #else
1166 >                            f(1,atom2) = f(1,atom2) + fg(1)
1167 >                            f(2,atom2) = f(2,atom2) + fg(2)
1168 >                            f(3,atom2) = f(3,atom2) + fg(3)
1169 > #endif
1170 >                            if (n_in_j .gt. 1) then
1171 >                               if (do_stress.and.SIM_uses_AtomicVirial) then
1172 >                                  ! find the distance between the atom and the center of
1173 >                                  ! the cutoff group:
1174 > #ifdef IS_MPI
1175 >                                  call get_interatomic_vector(q_Col(:,atom2), &
1176 >                                       q_group_Col(:,j), dag, rag)
1177 > #else
1178 >                                  call get_interatomic_vector(q(:,atom2), &
1179 >                                       q_group(:,j), dag, rag)
1180 > #endif
1181 >                                  call add_stress_tensor(dag,fg,tau)                              
1182 >                               endif
1183 >                            endif                            
1184 >                         enddo
1185 >                      endif
1186                     endif
744                  
745                   if (do_stress) call add_stress_tensor(d_grp, fij)
1187                  endif
1188 <             end if
1188 >             endif
1189            enddo
1190 +          
1191         enddo outer
1192 <      
1192 >
1193         if (update_nlist) then
1194   #ifdef IS_MPI
1195            point(nGroupsInRow + 1) = nlist + 1
# Line 761 | Line 1203 | contains
1203               update_nlist = .false.                              
1204            endif
1205         endif
1206 <            
1206 >
1207         if (loop .eq. PREPAIR_LOOP) then
1208            call do_preforce(nlocal, pot)
1209         endif
1210 <      
1210 >
1211      enddo
1212 <    
1212 >
1213      !! Do timing
1214   #ifdef PROFILE
1215      call cpu_time(forceTimeFinal)
1216      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1217   #endif    
1218 <    
1218 >
1219   #ifdef IS_MPI
1220      !!distribute forces
1221 <    
1221 >
1222      f_temp = 0.0_dp
1223      call scatter(f_Row,f_temp,plan_atom_row_3d)
1224      do i = 1,nlocal
1225         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1226      end do
1227 <    
1227 >
1228      f_temp = 0.0_dp
1229      call scatter(f_Col,f_temp,plan_atom_col_3d)
1230      do i = 1,nlocal
1231         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1232      end do
1233 <    
1233 >
1234      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1235         t_temp = 0.0_dp
1236         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 797 | Line 1239 | contains
1239         end do
1240         t_temp = 0.0_dp
1241         call scatter(t_Col,t_temp,plan_atom_col_3d)
1242 <      
1242 >
1243         do i = 1,nlocal
1244            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1245         end do
1246      endif
1247 <    
1247 >
1248      if (do_pot) then
1249         ! scatter/gather pot_row into the members of my column
1250 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1251 <      
1250 >       do i = 1,LR_POT_TYPES
1251 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1252 >       end do
1253         ! scatter/gather pot_local into all other procs
1254         ! add resultant to get total pot
1255         do i = 1, nlocal
1256 <          pot_local = pot_local + pot_Temp(i)
1256 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1257 >               + pot_Temp(1:LR_POT_TYPES,i)
1258         enddo
1259 <      
1259 >
1260         pot_Temp = 0.0_DP
1261 <      
1262 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1261 >       do i = 1,LR_POT_TYPES
1262 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1263 >       end do
1264         do i = 1, nlocal
1265 <          pot_local = pot_local + pot_Temp(i)
1265 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1266 >               + pot_Temp(1:LR_POT_TYPES,i)
1267         enddo
1268 <      
1268 >
1269      endif
1270   #endif
1271 <    
1272 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1273 <      
828 <       if (FF_uses_RF .and. SIM_uses_RF) then
1271 >
1272 >    if (SIM_requires_postpair_calc) then
1273 >       do i = 1, nlocal            
1274            
1275 +          ! we loop only over the local atoms, so we don't need row and column
1276 +          ! lookups for the types
1277 +          
1278 +          me_i = atid(i)
1279 +          
1280 +          ! is the atom electrostatic?  See if it would have an
1281 +          ! electrostatic interaction with itself
1282 +          iHash = InteractionHash(me_i,me_i)
1283 +
1284 +          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1285   #ifdef IS_MPI
1286 <          call scatter(rf_Row,rf,plan_atom_row_3d)
1287 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
1288 <          do i = 1,nlocal
1289 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1290 <          end do
1286 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1287 >                  t, do_pot)
1288 > #else
1289 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1290 >                  t, do_pot)
1291   #endif
1292 +          endif
1293 +  
1294            
1295 <          do i = 1, nLocal
1295 >          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1296              
1297 <             rfpot = 0.0_DP
1297 >             ! loop over the excludes to accumulate RF stuff we've
1298 >             ! left out of the normal pair loop
1299 >            
1300 >             do i1 = 1, nSkipsForAtom(i)
1301 >                j = skipsForAtom(i, i1)
1302 >                
1303 >                ! prevent overcounting of the skips
1304 >                if (i.lt.j) then
1305 >                   call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1306 >                   rVal = sqrt(ratmsq)
1307 >                   call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1308   #ifdef IS_MPI
1309 <             me_i = atid_row(i)
1309 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1310 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1311   #else
1312 <             me_i = atid(i)
1312 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1313 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1314   #endif
1315 <            
1316 <             if (PropertyMap(me_i)%is_Dipole) then
1317 <                
1318 <                mu_i = getDipoleMoment(me_i)
1319 <                
851 <                !! The reaction field needs to include a self contribution
852 <                !! to the field:
853 <                call accumulate_self_rf(i, mu_i, eFrame)
854 <                !! Get the reaction field contribution to the
855 <                !! potential and torques:
856 <                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1315 >                endif
1316 >             enddo
1317 >          endif
1318 >
1319 >          if (do_box_dipole) then
1320   #ifdef IS_MPI
1321 <                pot_local = pot_local + rfpot
1321 >             call accumulate_box_dipole(i, eFrame, q(:,i), pChg_local, &
1322 >                  nChg_local, pChgPos_local, nChgPos_local, dipVec_local, &
1323 >                  pChgCount_local, nChgCount_local)
1324   #else
1325 <                pot = pot + rfpot
1326 <      
1325 >             call accumulate_box_dipole(i, eFrame, q(:,i), pChg, nChg, &
1326 >                  pChgPos, nChgPos, dipVec, pChgCount, nChgCount)
1327   #endif
1328 <             endif            
1329 <          enddo
865 <       endif
1328 >          endif
1329 >       enddo
1330      endif
1331 <    
868 <    
1331 >
1332   #ifdef IS_MPI
870    
1333      if (do_pot) then
1334 <       pot = pot + pot_local
1335 <       !! we assume the c code will do the allreduce to get the total potential
1336 <       !! we could do it right here if we needed to...
1334 > #ifdef SINGLE_PRECISION
1335 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_real,mpi_sum, &
1336 >            mpi_comm_world,mpi_err)            
1337 > #else
1338 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision, &
1339 >            mpi_sum, mpi_comm_world,mpi_err)            
1340 > #endif
1341      endif
1342 <    
1343 <    if (do_stress) then
1344 <       call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1345 <            mpi_comm_world,mpi_err)
1346 <       call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1347 <            mpi_comm_world,mpi_err)
1348 <    endif
1349 <    
1342 >        
1343 >    if (do_box_dipole) then
1344 >
1345 > #ifdef SINGLE_PRECISION
1346 >       call mpi_allreduce(pChg_local, pChg, 1, mpi_real, mpi_sum, &
1347 >            mpi_comm_world, mpi_err)
1348 >       call mpi_allreduce(nChg_local, nChg, 1, mpi_real, mpi_sum, &
1349 >            mpi_comm_world, mpi_err)
1350 >       call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer, mpi_sum,&
1351 >            mpi_comm_world, mpi_err)
1352 >       call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer, mpi_sum,&
1353 >            mpi_comm_world, mpi_err)
1354 >       call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_real, mpi_sum, &
1355 >            mpi_comm_world, mpi_err)
1356 >       call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_real, mpi_sum, &
1357 >            mpi_comm_world, mpi_err)
1358 >       call mpi_allreduce(dipVec_local, dipVec, 3, mpi_real, mpi_sum, &
1359 >            mpi_comm_world, mpi_err)
1360   #else
1361 <    
1362 <    if (do_stress) then
1363 <       tau = tau_Temp
1364 <       virial = virial_Temp
1361 >       call mpi_allreduce(pChg_local, pChg, 1, mpi_double_precision, mpi_sum, &
1362 >            mpi_comm_world, mpi_err)
1363 >       call mpi_allreduce(nChg_local, nChg, 1, mpi_double_precision, mpi_sum, &
1364 >            mpi_comm_world, mpi_err)
1365 >       call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer,&
1366 >            mpi_sum, mpi_comm_world, mpi_err)
1367 >       call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer,&
1368 >            mpi_sum, mpi_comm_world, mpi_err)
1369 >       call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_double_precision, &
1370 >            mpi_sum, mpi_comm_world, mpi_err)
1371 >       call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_double_precision, &
1372 >            mpi_sum, mpi_comm_world, mpi_err)
1373 >       call mpi_allreduce(dipVec_local, dipVec, 3, mpi_double_precision, &
1374 >            mpi_sum, mpi_comm_world, mpi_err)
1375 > #endif
1376 >
1377      endif
1378      
1379   #endif
1380 +
1381 +    if (do_box_dipole) then
1382 +       ! first load the accumulated dipole moment (if dipoles were present)
1383 +       boxDipole(1) = dipVec(1)
1384 +       boxDipole(2) = dipVec(2)
1385 +       boxDipole(3) = dipVec(3)
1386 +
1387 +       ! now include the dipole moment due to charges
1388 +       ! use the lesser of the positive and negative charge totals
1389 +       if (nChg .le. pChg) then
1390 +          chg_value = nChg
1391 +       else
1392 +          chg_value = pChg
1393 +       endif
1394        
1395 +       ! find the average positions
1396 +       if (pChgCount .gt. 0 .and. nChgCount .gt. 0) then
1397 +          pChgPos = pChgPos / pChgCount
1398 +          nChgPos = nChgPos / nChgCount
1399 +       endif
1400 +
1401 +       ! dipole is from the negative to the positive (physics notation)
1402 +       chgVec(1) = pChgPos(1) - nChgPos(1)
1403 +       chgVec(2) = pChgPos(2) - nChgPos(2)
1404 +       chgVec(3) = pChgPos(3) - nChgPos(3)
1405 +
1406 +       boxDipole(1) = boxDipole(1) + chgVec(1) * chg_value
1407 +       boxDipole(2) = boxDipole(2) + chgVec(2) * chg_value
1408 +       boxDipole(3) = boxDipole(3) + chgVec(3) * chg_value
1409 +
1410 +    endif
1411 +
1412    end subroutine do_force_loop
1413 <  
1413 >
1414    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1415 <       eFrame, A, f, t, pot, vpair, fpair)
1415 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1416  
1417 <    real( kind = dp ) :: pot, vpair, sw
1417 >    real( kind = dp ) :: vpair, sw
1418 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1419      real( kind = dp ), dimension(3) :: fpair
1420      real( kind = dp ), dimension(nLocal)   :: mfact
1421      real( kind = dp ), dimension(9,nLocal) :: eFrame
# Line 906 | Line 1426 | contains
1426      logical, intent(inout) :: do_pot
1427      integer, intent(in) :: i, j
1428      real ( kind = dp ), intent(inout) :: rijsq
1429 <    real ( kind = dp )                :: r
1429 >    real ( kind = dp ), intent(inout) :: r_grp
1430      real ( kind = dp ), intent(inout) :: d(3)
1431 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1432 +    real ( kind = dp ), intent(inout) :: rCut
1433 +    real ( kind = dp ) :: r
1434 +    real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1435      integer :: me_i, me_j
1436 +    integer :: k
1437  
1438 +    integer :: iHash
1439 +
1440      r = sqrt(rijsq)
1441 <    vpair = 0.0d0
1442 <    fpair(1:3) = 0.0d0
1441 >    
1442 >    vpair = 0.0_dp
1443 >    fpair(1:3) = 0.0_dp
1444  
1445   #ifdef IS_MPI
1446      me_i = atid_row(i)
# Line 922 | Line 1450 | contains
1450      me_j = atid(j)
1451   #endif
1452  
1453 < !    write(*,*) i, j, me_i, me_j
1453 >    iHash = InteractionHash(me_i, me_j)
1454      
1455 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1456 <      
1457 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
930 <            PropertyMap(me_j)%is_LennardJones ) then
931 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
932 <       endif
933 <      
1455 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1456 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1457 >            pot(VDW_POT), f, do_pot)
1458      endif
1459      
1460 <    if (FF_uses_Electrostatics .and. SIM_uses_Electrostatics) then
1461 <      
1462 <       if (PropertyMap(me_i)%is_Electrostatic .and. &
939 <            PropertyMap(me_j)%is_Electrostatic) then
940 <          call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
941 <               pot, eFrame, f, t, do_pot)
942 <       endif
943 <      
944 <       if (FF_uses_dipoles .and. SIM_uses_dipoles) then      
945 <          if ( PropertyMap(me_i)%is_Dipole .and. &
946 <               PropertyMap(me_j)%is_Dipole) then
947 <             if (FF_uses_RF .and. SIM_uses_RF) then
948 <                call accumulate_rf(i, j, r, eFrame, sw)
949 <                call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
950 <             endif
951 <          endif
952 <       endif
1460 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1461 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1462 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1463      endif
1464 <
1465 <
1466 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1467 <
958 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
959 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
960 <               pot, A, f, t, do_pot)
961 <       endif
962 <      
1464 >    
1465 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1466 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1467 >            pot(HB_POT), A, f, t, do_pot)
1468      endif
1469 <
1470 <
1471 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1472 <      
968 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
969 <            PropertyMap(me_j)%is_GayBerne) then
970 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
971 <               pot, A, f, t, do_pot)
972 <       endif
973 <      
1469 >    
1470 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1471 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1472 >            pot(HB_POT), A, f, t, do_pot)
1473      endif
1474      
1475 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1476 <      
1477 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
979 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
980 <               do_pot)
981 <       endif
982 <      
1475 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1476 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1477 >            pot(VDW_POT), A, f, t, do_pot)
1478      endif
1479 <
1480 <
1481 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1482 <
988 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
989 <       if ( PropertyMap(me_i)%is_Shape .and. &
990 <            PropertyMap(me_j)%is_Shape ) then
991 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
992 <               pot, A, f, t, do_pot)
993 <       endif
994 <      
1479 >    
1480 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1481 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1482 >            pot(VDW_POT), A, f, t, do_pot)
1483      endif
1484      
1485 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1486 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1487 +            pot(METALLIC_POT), f, do_pot)
1488 +    endif
1489 +    
1490 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1491 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1492 +            pot(VDW_POT), A, f, t, do_pot)
1493 +    endif
1494 +    
1495 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1496 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1497 +            pot(VDW_POT), A, f, t, do_pot)
1498 +    endif
1499 +
1500 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1501 +       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1502 +            pot(METALLIC_POT), f, do_pot)
1503 +    endif
1504 +    
1505    end subroutine do_pair
1506  
1507 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1507 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1508         do_pot, do_stress, eFrame, A, f, t, pot)
1509  
1510 <   real( kind = dp ) :: pot, sw
1511 <   real( kind = dp ), dimension(9,nLocal) :: eFrame
1512 <   real (kind=dp), dimension(9,nLocal) :: A
1513 <   real (kind=dp), dimension(3,nLocal) :: f
1514 <   real (kind=dp), dimension(3,nLocal) :: t
1515 <  
1008 <   logical, intent(inout) :: do_pot, do_stress
1009 <   integer, intent(in) :: i, j
1010 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1011 <   real ( kind = dp )                :: r, rc
1012 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
1013 <  
1014 <   logical :: is_EAM_i, is_EAM_j
1015 <  
1016 <   integer :: me_i, me_j
1017 <  
1510 >    real( kind = dp ) :: sw
1511 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1512 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1513 >    real (kind=dp), dimension(9,nLocal) :: A
1514 >    real (kind=dp), dimension(3,nLocal) :: f
1515 >    real (kind=dp), dimension(3,nLocal) :: t
1516  
1517 <    r = sqrt(rijsq)
1518 <    if (SIM_uses_molecular_cutoffs) then
1519 <       rc = sqrt(rcijsq)
1520 <    else
1521 <       rc = r
1024 <    endif
1025 <  
1517 >    logical, intent(inout) :: do_pot, do_stress
1518 >    integer, intent(in) :: i, j
1519 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1520 >    real ( kind = dp )                :: r, rc
1521 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1522  
1523 +    integer :: me_i, me_j, iHash
1524 +
1525 +    r = sqrt(rijsq)
1526 +    
1527   #ifdef IS_MPI  
1528 <   me_i = atid_row(i)
1529 <   me_j = atid_col(j)  
1528 >    me_i = atid_row(i)
1529 >    me_j = atid_col(j)  
1530   #else  
1531 <   me_i = atid(i)
1532 <   me_j = atid(j)  
1531 >    me_i = atid(i)
1532 >    me_j = atid(j)  
1533   #endif
1534 <  
1535 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1536 <      
1537 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1538 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1539 <      
1540 <   endif
1541 <  
1542 < end subroutine do_prepair
1543 <
1544 <
1545 < subroutine do_preforce(nlocal,pot)
1546 <   integer :: nlocal
1547 <   real( kind = dp ) :: pot
1548 <  
1549 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1550 <      call calc_EAM_preforce_Frho(nlocal,pot)
1551 <   endif
1552 <  
1553 <  
1554 < end subroutine do_preforce
1555 <
1556 <
1557 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1558 <  
1559 <   real (kind = dp), dimension(3) :: q_i
1560 <   real (kind = dp), dimension(3) :: q_j
1561 <   real ( kind = dp ), intent(out) :: r_sq
1562 <   real( kind = dp ) :: d(3), scaled(3)
1563 <   integer i
1564 <  
1565 <   d(1:3) = q_j(1:3) - q_i(1:3)
1566 <  
1567 <   ! Wrap back into periodic box if necessary
1568 <   if ( SIM_uses_PBC ) then
1569 <      
1570 <      if( .not.boxIsOrthorhombic ) then
1571 <         ! calc the scaled coordinates.
1572 <        
1573 <         scaled = matmul(HmatInv, d)
1574 <        
1575 <         ! wrap the scaled coordinates
1576 <        
1577 <         scaled = scaled  - anint(scaled)
1578 <        
1579 <        
1580 <         ! calc the wrapped real coordinates from the wrapped scaled
1581 <         ! coordinates
1582 <        
1583 <         d = matmul(Hmat,scaled)
1584 <        
1585 <      else
1586 <         ! calc the scaled coordinates.
1587 <        
1588 <         do i = 1, 3
1589 <            scaled(i) = d(i) * HmatInv(i,i)
1590 <            
1591 <            ! wrap the scaled coordinates
1592 <            
1593 <            scaled(i) = scaled(i) - anint(scaled(i))
1594 <            
1595 <            ! calc the wrapped real coordinates from the wrapped scaled
1596 <            ! coordinates
1597 <            
1598 <            d(i) = scaled(i)*Hmat(i,i)
1599 <         enddo
1600 <      endif
1601 <      
1602 <   endif
1603 <  
1604 <   r_sq = dot_product(d,d)
1605 <  
1606 < end subroutine get_interatomic_vector
1607 <
1608 < subroutine zero_work_arrays()
1609 <  
1534 >
1535 >    iHash = InteractionHash(me_i, me_j)
1536 >
1537 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1538 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1539 >    endif
1540 >
1541 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1542 >            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1543 >    endif
1544 >    
1545 >  end subroutine do_prepair
1546 >
1547 >
1548 >  subroutine do_preforce(nlocal,pot)
1549 >    integer :: nlocal
1550 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1551 >
1552 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1553 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1554 >    endif
1555 >    if (FF_uses_SC .and. SIM_uses_SC) then
1556 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1557 >    endif
1558 >  end subroutine do_preforce
1559 >
1560 >
1561 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1562 >
1563 >    real (kind = dp), dimension(3) :: q_i
1564 >    real (kind = dp), dimension(3) :: q_j
1565 >    real ( kind = dp ), intent(out) :: r_sq
1566 >    real( kind = dp ) :: d(3), scaled(3)
1567 >    integer i
1568 >
1569 >    d(1) = q_j(1) - q_i(1)
1570 >    d(2) = q_j(2) - q_i(2)
1571 >    d(3) = q_j(3) - q_i(3)
1572 >
1573 >    ! Wrap back into periodic box if necessary
1574 >    if ( SIM_uses_PBC ) then
1575 >
1576 >       if( .not.boxIsOrthorhombic ) then
1577 >          ! calc the scaled coordinates.
1578 >          ! scaled = matmul(HmatInv, d)
1579 >
1580 >          scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1581 >          scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1582 >          scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1583 >          
1584 >          ! wrap the scaled coordinates
1585 >
1586 >          scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1587 >          scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1588 >          scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1589 >
1590 >          ! calc the wrapped real coordinates from the wrapped scaled
1591 >          ! coordinates
1592 >          ! d = matmul(Hmat,scaled)
1593 >          d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1594 >          d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1595 >          d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1596 >
1597 >       else
1598 >          ! calc the scaled coordinates.
1599 >
1600 >          scaled(1) = d(1) * HmatInv(1,1)
1601 >          scaled(2) = d(2) * HmatInv(2,2)
1602 >          scaled(3) = d(3) * HmatInv(3,3)
1603 >          
1604 >          ! wrap the scaled coordinates
1605 >          
1606 >          scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1607 >          scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1608 >          scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1609 >
1610 >          ! calc the wrapped real coordinates from the wrapped scaled
1611 >          ! coordinates
1612 >
1613 >          d(1) = scaled(1)*Hmat(1,1)
1614 >          d(2) = scaled(2)*Hmat(2,2)
1615 >          d(3) = scaled(3)*Hmat(3,3)
1616 >
1617 >       endif
1618 >
1619 >    endif
1620 >
1621 >    r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1622 >
1623 >  end subroutine get_interatomic_vector
1624 >
1625 >  subroutine zero_work_arrays()
1626 >
1627   #ifdef IS_MPI
1111  
1112   q_Row = 0.0_dp
1113   q_Col = 0.0_dp
1628  
1629 <   q_group_Row = 0.0_dp
1630 <   q_group_Col = 0.0_dp  
1631 <  
1632 <   eFrame_Row = 0.0_dp
1633 <   eFrame_Col = 0.0_dp
1634 <  
1635 <   A_Row = 0.0_dp
1636 <   A_Col = 0.0_dp
1637 <  
1638 <   f_Row = 0.0_dp
1639 <   f_Col = 0.0_dp
1640 <   f_Temp = 0.0_dp
1641 <  
1642 <   t_Row = 0.0_dp
1643 <   t_Col = 0.0_dp
1644 <   t_Temp = 0.0_dp
1645 <  
1646 <   pot_Row = 0.0_dp
1647 <   pot_Col = 0.0_dp
1648 <   pot_Temp = 0.0_dp
1649 <  
1650 <   rf_Row = 0.0_dp
1651 <   rf_Col = 0.0_dp
1652 <   rf_Temp = 0.0_dp
1139 <  
1629 >    q_Row = 0.0_dp
1630 >    q_Col = 0.0_dp
1631 >
1632 >    q_group_Row = 0.0_dp
1633 >    q_group_Col = 0.0_dp  
1634 >
1635 >    eFrame_Row = 0.0_dp
1636 >    eFrame_Col = 0.0_dp
1637 >
1638 >    A_Row = 0.0_dp
1639 >    A_Col = 0.0_dp
1640 >
1641 >    f_Row = 0.0_dp
1642 >    f_Col = 0.0_dp
1643 >    f_Temp = 0.0_dp
1644 >
1645 >    t_Row = 0.0_dp
1646 >    t_Col = 0.0_dp
1647 >    t_Temp = 0.0_dp
1648 >
1649 >    pot_Row = 0.0_dp
1650 >    pot_Col = 0.0_dp
1651 >    pot_Temp = 0.0_dp
1652 >
1653   #endif
1654 <
1655 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1656 <      call clean_EAM()
1657 <   endif
1658 <  
1659 <   rf = 0.0_dp
1660 <   tau_Temp = 0.0_dp
1661 <   virial_Temp = 0.0_dp
1662 < end subroutine zero_work_arrays
1663 <
1664 < function skipThisPair(atom1, atom2) result(skip_it)
1665 <   integer, intent(in) :: atom1
1666 <   integer, intent(in), optional :: atom2
1667 <   logical :: skip_it
1668 <   integer :: unique_id_1, unique_id_2
1669 <   integer :: me_i,me_j
1670 <   integer :: i
1671 <  
1672 <   skip_it = .false.
1673 <  
1674 <   !! there are a number of reasons to skip a pair or a particle
1675 <   !! mostly we do this to exclude atoms who are involved in short
1676 <   !! range interactions (bonds, bends, torsions), but we also need
1164 <   !! to exclude some overcounted interactions that result from
1165 <   !! the parallel decomposition
1166 <  
1654 >
1655 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1656 >       call clean_EAM()
1657 >    endif
1658 >
1659 >  end subroutine zero_work_arrays
1660 >
1661 >  function skipThisPair(atom1, atom2) result(skip_it)
1662 >    integer, intent(in) :: atom1
1663 >    integer, intent(in), optional :: atom2
1664 >    logical :: skip_it
1665 >    integer :: unique_id_1, unique_id_2
1666 >    integer :: me_i,me_j
1667 >    integer :: i
1668 >
1669 >    skip_it = .false.
1670 >
1671 >    !! there are a number of reasons to skip a pair or a particle
1672 >    !! mostly we do this to exclude atoms who are involved in short
1673 >    !! range interactions (bonds, bends, torsions), but we also need
1674 >    !! to exclude some overcounted interactions that result from
1675 >    !! the parallel decomposition
1676 >
1677   #ifdef IS_MPI
1678 <   !! in MPI, we have to look up the unique IDs for each atom
1679 <   unique_id_1 = AtomRowToGlobal(atom1)
1678 >    !! in MPI, we have to look up the unique IDs for each atom
1679 >    unique_id_1 = AtomRowToGlobal(atom1)
1680   #else
1681 <   !! in the normal loop, the atom numbers are unique
1682 <   unique_id_1 = atom1
1681 >    !! in the normal loop, the atom numbers are unique
1682 >    unique_id_1 = atom1
1683   #endif
1684 <  
1685 <   !! We were called with only one atom, so just check the global exclude
1686 <   !! list for this atom
1687 <   if (.not. present(atom2)) then
1688 <      do i = 1, nExcludes_global
1689 <         if (excludesGlobal(i) == unique_id_1) then
1690 <            skip_it = .true.
1691 <            return
1692 <         end if
1693 <      end do
1694 <      return
1695 <   end if
1696 <  
1684 >
1685 >    !! We were called with only one atom, so just check the global exclude
1686 >    !! list for this atom
1687 >    if (.not. present(atom2)) then
1688 >       do i = 1, nExcludes_global
1689 >          if (excludesGlobal(i) == unique_id_1) then
1690 >             skip_it = .true.
1691 >             return
1692 >          end if
1693 >       end do
1694 >       return
1695 >    end if
1696 >
1697   #ifdef IS_MPI
1698 <   unique_id_2 = AtomColToGlobal(atom2)
1698 >    unique_id_2 = AtomColToGlobal(atom2)
1699   #else
1700 <   unique_id_2 = atom2
1700 >    unique_id_2 = atom2
1701   #endif
1702 <  
1702 >
1703   #ifdef IS_MPI
1704 <   !! this situation should only arise in MPI simulations
1705 <   if (unique_id_1 == unique_id_2) then
1706 <      skip_it = .true.
1707 <      return
1708 <   end if
1709 <  
1710 <   !! this prevents us from doing the pair on multiple processors
1711 <   if (unique_id_1 < unique_id_2) then
1712 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1713 <         skip_it = .true.
1714 <         return
1715 <      endif
1716 <   else                
1717 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1718 <         skip_it = .true.
1719 <         return
1720 <      endif
1721 <   endif
1704 >    !! this situation should only arise in MPI simulations
1705 >    if (unique_id_1 == unique_id_2) then
1706 >       skip_it = .true.
1707 >       return
1708 >    end if
1709 >
1710 >    !! this prevents us from doing the pair on multiple processors
1711 >    if (unique_id_1 < unique_id_2) then
1712 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1713 >          skip_it = .true.
1714 >          return
1715 >       endif
1716 >    else                
1717 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1718 >          skip_it = .true.
1719 >          return
1720 >       endif
1721 >    endif
1722   #endif
1723 <  
1724 <   !! the rest of these situations can happen in all simulations:
1725 <   do i = 1, nExcludes_global      
1726 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1727 <           (excludesGlobal(i) == unique_id_2)) then
1728 <         skip_it = .true.
1729 <         return
1730 <      endif
1731 <   enddo
1732 <  
1733 <   do i = 1, nSkipsForAtom(atom1)
1734 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1735 <         skip_it = .true.
1736 <         return
1737 <      endif
1738 <   end do
1739 <  
1740 <   return
1741 < end function skipThisPair
1742 <
1743 < function FF_UsesDirectionalAtoms() result(doesit)
1744 <   logical :: doesit
1745 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1746 <        FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1747 <        FF_uses_GayBerne .or. FF_uses_Shapes
1748 < end function FF_UsesDirectionalAtoms
1749 <
1750 < function FF_RequiresPrepairCalc() result(doesit)
1751 <   logical :: doesit
1752 <   doesit = FF_uses_EAM
1753 < end function FF_RequiresPrepairCalc
1244 <
1245 < function FF_RequiresPostpairCalc() result(doesit)
1246 <   logical :: doesit
1247 <   doesit = FF_uses_RF
1248 < end function FF_RequiresPostpairCalc
1249 <
1723 >
1724 >    !! the rest of these situations can happen in all simulations:
1725 >    do i = 1, nExcludes_global      
1726 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1727 >            (excludesGlobal(i) == unique_id_2)) then
1728 >          skip_it = .true.
1729 >          return
1730 >       endif
1731 >    enddo
1732 >
1733 >    do i = 1, nSkipsForAtom(atom1)
1734 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1735 >          skip_it = .true.
1736 >          return
1737 >       endif
1738 >    end do
1739 >
1740 >    return
1741 >  end function skipThisPair
1742 >
1743 >  function FF_UsesDirectionalAtoms() result(doesit)
1744 >    logical :: doesit
1745 >    doesit = FF_uses_DirectionalAtoms
1746 >  end function FF_UsesDirectionalAtoms
1747 >
1748 >  function FF_RequiresPrepairCalc() result(doesit)
1749 >    logical :: doesit
1750 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1751 >         .or. FF_uses_MEAM
1752 >  end function FF_RequiresPrepairCalc
1753 >
1754   #ifdef PROFILE
1755 < function getforcetime() result(totalforcetime)
1756 <   real(kind=dp) :: totalforcetime
1757 <   totalforcetime = forcetime
1758 < end function getforcetime
1755 >  function getforcetime() result(totalforcetime)
1756 >    real(kind=dp) :: totalforcetime
1757 >    totalforcetime = forcetime
1758 >  end function getforcetime
1759   #endif
1256
1257 !! This cleans componets of force arrays belonging only to fortran
1760  
1761 < subroutine add_stress_tensor(dpair, fpair)
1762 <  
1763 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1764 <  
1765 <   ! because the d vector is the rj - ri vector, and
1766 <   ! because fx, fy, fz are the force on atom i, we need a
1767 <   ! negative sign here:  
1768 <  
1769 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1770 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1771 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1772 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1773 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1774 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1775 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1776 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1777 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1778 <  
1779 <   virial_Temp = virial_Temp + &
1780 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1781 <  
1782 < end subroutine add_stress_tensor
1783 <
1761 >  !! This cleans componets of force arrays belonging only to fortran
1762 >
1763 >  subroutine add_stress_tensor(dpair, fpair, tau)
1764 >
1765 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1766 >    real( kind = dp ), dimension(9), intent(inout) :: tau
1767 >
1768 >    ! because the d vector is the rj - ri vector, and
1769 >    ! because fx, fy, fz are the force on atom i, we need a
1770 >    ! negative sign here:  
1771 >
1772 >    tau(1) = tau(1) - dpair(1) * fpair(1)
1773 >    tau(2) = tau(2) - dpair(1) * fpair(2)
1774 >    tau(3) = tau(3) - dpair(1) * fpair(3)
1775 >    tau(4) = tau(4) - dpair(2) * fpair(1)
1776 >    tau(5) = tau(5) - dpair(2) * fpair(2)
1777 >    tau(6) = tau(6) - dpair(2) * fpair(3)
1778 >    tau(7) = tau(7) - dpair(3) * fpair(1)
1779 >    tau(8) = tau(8) - dpair(3) * fpair(2)
1780 >    tau(9) = tau(9) - dpair(3) * fpair(3)
1781 >
1782 >  end subroutine add_stress_tensor
1783 >
1784   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines