ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 2269 by chuckv, Tue Aug 9 19:40:56 2005 UTC vs.
Revision 3132 by chrisfen, Thu May 3 15:52:08 2007 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.27 2005-08-09 19:40:56 chuckv Exp $, $Date: 2005-08-09 19:40:56 $, $Name: not supported by cvs2svn $, $Revision: 1.27 $
48 > !! @version $Id: doForces.F90,v 1.89 2007-05-03 15:52:08 chrisfen Exp $, $Date: 2007-05-03 15:52:08 $, $Name: not supported by cvs2svn $, $Revision: 1.89 $
49  
50  
51   module doForces
# Line 58 | Line 58 | module doForces
58    use lj
59    use sticky
60    use electrostatic_module
61 <  use reaction_field
62 <  use gb_pair
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 72 | Line 72 | module doForces
72    PRIVATE
73  
74   #define __FORTRAN90
75 < #include "UseTheForce/fSwitchingFunction.h"
75 > #include "UseTheForce/fCutoffPolicy.h"
76   #include "UseTheForce/DarkSide/fInteractionMap.h"
77 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78  
79    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
80    INTEGER, PARAMETER:: PAIR_LOOP    = 2
81  
81  logical, save :: haveRlist = .false.
82    logical, save :: haveNeighborList = .false.
83    logical, save :: haveSIMvariables = .false.
84    logical, save :: haveSaneForceField = .false.
85 <  logical, save :: haveInteractionMap = .false.
85 >  logical, save :: haveInteractionHash = .false.
86 >  logical, save :: haveGtypeCutoffMap = .false.
87 >  logical, save :: haveDefaultCutoffs = .false.
88 >  logical, save :: haveSkinThickness = .false.
89 >  logical, save :: haveElectrostaticSummationMethod = .false.
90 >  logical, save :: haveCutoffPolicy = .false.
91 >  logical, save :: VisitCutoffsAfterComputing = .false.
92 >  logical, save :: do_box_dipole = .false.
93  
94    logical, save :: FF_uses_DirectionalAtoms
88  logical, save :: FF_uses_LennardJones
89  logical, save :: FF_uses_Electrostatics
90  logical, save :: FF_uses_Charges
95    logical, save :: FF_uses_Dipoles
92  logical, save :: FF_uses_Quadrupoles
93  logical, save :: FF_uses_Sticky
94  logical, save :: FF_uses_StickyPower
96    logical, save :: FF_uses_GayBerne
97    logical, save :: FF_uses_EAM
98 <  logical, save :: FF_uses_Shapes
99 <  logical, save :: FF_uses_FLARB
100 <  logical, save :: FF_uses_RF
98 >  logical, save :: FF_uses_SC
99 >  logical, save :: FF_uses_MEAM
100 >
101  
102    logical, save :: SIM_uses_DirectionalAtoms
102  logical, save :: SIM_uses_LennardJones
103  logical, save :: SIM_uses_Electrostatics
104  logical, save :: SIM_uses_Charges
105  logical, save :: SIM_uses_Dipoles
106  logical, save :: SIM_uses_Quadrupoles
107  logical, save :: SIM_uses_Sticky
108  logical, save :: SIM_uses_StickyPower
109  logical, save :: SIM_uses_GayBerne
103    logical, save :: SIM_uses_EAM
104 <  logical, save :: SIM_uses_Shapes
105 <  logical, save :: SIM_uses_FLARB
113 <  logical, save :: SIM_uses_RF
104 >  logical, save :: SIM_uses_SC
105 >  logical, save :: SIM_uses_MEAM
106    logical, save :: SIM_requires_postpair_calc
107    logical, save :: SIM_requires_prepair_calc
108    logical, save :: SIM_uses_PBC
109 <  logical, save :: SIM_uses_molecular_cutoffs
109 >  logical, save :: SIM_uses_AtomicVirial
110  
111 +  integer, save :: electrostaticSummationMethod
112 +  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
113  
114 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
115 +  real(kind=dp), save :: skinThickness
116 +  logical, save :: defaultDoShiftPot
117 +  logical, save :: defaultDoShiftFrc
118 +
119    public :: init_FF
120 +  public :: setCutoffs
121 +  public :: cWasLame
122 +  public :: setElectrostaticMethod
123 +  public :: setBoxDipole
124 +  public :: getBoxDipole
125 +  public :: setCutoffPolicy
126 +  public :: setSkinThickness
127    public :: do_force_loop
122 !  public :: setRlistDF
123  !public :: addInteraction
124  !public :: setInteractionHash
125  !public :: getInteractionHash
126  public :: createInteractionMap
127  public :: createGroupCutoffs
128  
129   #ifdef PROFILE
130    public :: getforcetime
# Line 133 | Line 133 | module doForces
133    integer :: nLoops
134   #endif
135    
136 < !! Variables for cutoff mapping and interaction mapping
137 < ! Bit hash to determine pair-pair interactions.
138 <  integer, dimension(:,:),allocatable :: InteractionHash
139 < !! Cuttoffs in OOPSE are handled on a Group-Group pair basis.
140 < ! Largest cutoff for atypes for all potentials
141 <  real(kind=dp), dimension(:), allocatable :: atypeMaxCuttoff
142 < ! Largest cutoff for groups
143 <  real(kind=dp), dimension(:), allocatable :: groupMaxCutoff
144 < ! Group to Gtype transformation Map
145 <  integer,dimension(:), allocatable :: groupToGtype
146 < ! Group Type Max Cutoff
147 <  real(kind=dp), dimension(:), allocatable :: gtypeMaxCutoff
148 < ! GroupType definition
149 <  type ::gtype
150 <     real(kind=dp) :: rcut ! Group Cutoff
151 <     real(kind=dp) :: rcutsq ! Group Cutoff Squared
152 <     real(kind=dp) :: rlistsq ! List cutoff Squared    
153 <  end type gtype
136 >  !! Variables for cutoff mapping and interaction mapping
137 >  ! Bit hash to determine pair-pair interactions.
138 >  integer, dimension(:,:), allocatable :: InteractionHash
139 >  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
140 >  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
141 >  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
142  
143 <  type(gtype), dimension(:,:), allocatable :: gtypeCutoffMap
144 <  
143 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
144 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
145 >
146 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
147 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
148 >  type ::gtypeCutoffs
149 >     real(kind=dp) :: rcut
150 >     real(kind=dp) :: rcutsq
151 >     real(kind=dp) :: rlistsq
152 >  end type gtypeCutoffs
153 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
154 >
155 >  real(kind=dp), dimension(3) :: boxDipole
156 >
157   contains
158  
159 <
160 <  subroutine createInteractionMap(status)
159 >  subroutine createInteractionHash()
160      integer :: nAtypes
162    integer, intent(out) :: status
161      integer :: i
162      integer :: j
163 <    integer :: ihash
166 <    real(kind=dp) :: myRcut
163 >    integer :: iHash
164      !! Test Types
165      logical :: i_is_LJ
166      logical :: i_is_Elect
# Line 172 | Line 169 | contains
169      logical :: i_is_GB
170      logical :: i_is_EAM
171      logical :: i_is_Shape
172 +    logical :: i_is_SC
173 +    logical :: i_is_MEAM
174      logical :: j_is_LJ
175      logical :: j_is_Elect
176      logical :: j_is_Sticky
# Line 179 | Line 178 | contains
178      logical :: j_is_GB
179      logical :: j_is_EAM
180      logical :: j_is_Shape
181 <    
182 <    status = 0  
181 >    logical :: j_is_SC
182 >    logical :: j_is_MEAM
183 >    real(kind=dp) :: myRcut
184  
185      if (.not. associated(atypes)) then
186 <       call handleError("atype", "atypes was not present before call of createDefaultInteractionHash!")
187 <       status = -1
186 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
187         return
188      endif
189      
190      nAtypes = getSize(atypes)
191      
192      if (nAtypes == 0) then
193 <       status = -1
193 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
194         return
195      end if
196  
197      if (.not. allocated(InteractionHash)) then
198         allocate(InteractionHash(nAtypes,nAtypes))
199 +    else
200 +       deallocate(InteractionHash)
201 +       allocate(InteractionHash(nAtypes,nAtypes))
202      endif
203 +
204 +    if (.not. allocated(atypeMaxCutoff)) then
205 +       allocate(atypeMaxCutoff(nAtypes))
206 +    else
207 +       deallocate(atypeMaxCutoff)
208 +       allocate(atypeMaxCutoff(nAtypes))
209 +    endif
210          
211      do i = 1, nAtypes
212         call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
# Line 207 | Line 216 | contains
216         call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
217         call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
218         call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
219 +       call getElementProperty(atypes, i, "is_SC", i_is_SC)
220 +       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
221  
222         do j = i, nAtypes
223  
# Line 220 | Line 231 | contains
231            call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
232            call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
233            call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
234 +          call getElementProperty(atypes, j, "is_SC", j_is_SC)
235 +          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
236  
237            if (i_is_LJ .and. j_is_LJ) then
238               iHash = ior(iHash, LJ_PAIR)            
# Line 241 | Line 254 | contains
254               iHash = ior(iHash, EAM_PAIR)
255            endif
256  
257 +          if (i_is_SC .and. j_is_SC) then
258 +             iHash = ior(iHash, SC_PAIR)
259 +          endif
260 +
261            if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
262            if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
263            if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
# Line 257 | Line 274 | contains
274  
275      end do
276  
277 <    haveInteractionMap = .true.
278 <  end subroutine createInteractionMap
277 >    haveInteractionHash = .true.
278 >  end subroutine createInteractionHash
279  
280 <  subroutine createGroupCutoffs(skinThickness,defaultrList,stat)
264 <    real(kind=dp), intent(in), optional :: defaultRList
265 <    real(kind-dp), intent(in), :: skinThickenss
266 <  ! Query each potential and return the cutoff for that potential. We
267 <  ! build the neighbor list based on the largest cutoff value for that
268 <  ! atype. Each potential can decide whether to calculate the force for
269 <  ! that atype based upon it's own cutoff.
270 <  
280 >  subroutine createGtypeCutoffMap()
281  
282 <    real(kind=dp), intent(in), optional :: defaultRCut, defaultSkinThickness
282 >    logical :: i_is_LJ
283 >    logical :: i_is_Elect
284 >    logical :: i_is_Sticky
285 >    logical :: i_is_StickyP
286 >    logical :: i_is_GB
287 >    logical :: i_is_EAM
288 >    logical :: i_is_Shape
289 >    logical :: i_is_SC
290 >    logical :: GtypeFound
291  
292 <    integer :: iMap
293 <    integer :: map_i,map_j
294 <    real(kind=dp) :: thisRCut = 0.0_dp
295 <    real(kind=dp) :: actualCutoff = 0.0_dp
296 <    integer, intent(out) :: stat
297 <    integer :: nAtypes
298 <    integer :: myStatus
292 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
293 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
294 >    integer :: nGroupsInRow
295 >    integer :: nGroupsInCol
296 >    integer :: nGroupTypesRow,nGroupTypesCol
297 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
298 >    real(kind=dp) :: biggestAtypeCutoff
299  
300 <    stat = 0
301 <    if (.not. haveInteractionMap) then
302 <
303 <       call createInteractionMap(myStatus)
304 <
305 <       if (myStatus .ne. 0) then
306 <          write(default_error, *) 'createInteractionMap failed in doForces!'
307 <          stat = -1
308 <          return
300 >    if (.not. haveInteractionHash) then
301 >       call createInteractionHash()      
302 >    endif
303 > #ifdef IS_MPI
304 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
305 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
306 > #endif
307 >    nAtypes = getSize(atypes)
308 > ! Set all of the initial cutoffs to zero.
309 >    atypeMaxCutoff = 0.0_dp
310 >    do i = 1, nAtypes
311 >       if (SimHasAtype(i)) then    
312 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
313 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
314 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
315 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
316 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
317 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
318 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
319 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
320 >
321 >          if (haveDefaultCutoffs) then
322 >             atypeMaxCutoff(i) = defaultRcut
323 >          else
324 >             if (i_is_LJ) then          
325 >                thisRcut = getSigma(i) * 2.5_dp
326 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
327 >             endif
328 >             if (i_is_Elect) then
329 >                thisRcut = defaultRcut
330 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
331 >             endif
332 >             if (i_is_Sticky) then
333 >                thisRcut = getStickyCut(i)
334 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
335 >             endif
336 >             if (i_is_StickyP) then
337 >                thisRcut = getStickyPowerCut(i)
338 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
339 >             endif
340 >             if (i_is_GB) then
341 >                thisRcut = getGayBerneCut(i)
342 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
343 >             endif
344 >             if (i_is_EAM) then
345 >                thisRcut = getEAMCut(i)
346 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
347 >             endif
348 >             if (i_is_Shape) then
349 >                thisRcut = getShapeCut(i)
350 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
351 >             endif
352 >             if (i_is_SC) then
353 >                thisRcut = getSCCut(i)
354 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
355 >             endif
356 >          endif
357 >                    
358 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
359 >             biggestAtypeCutoff = atypeMaxCutoff(i)
360 >          endif
361 >
362         endif
363 +    enddo
364 +    
365 +    istart = 1
366 +    jstart = 1
367 + #ifdef IS_MPI
368 +    iend = nGroupsInRow
369 +    jend = nGroupsInCol
370 + #else
371 +    iend = nGroups
372 +    jend = nGroups
373 + #endif
374 +    
375 +    !! allocate the groupToGtype and gtypeMaxCutoff here.
376 +    if(.not.allocated(groupToGtypeRow)) then
377 +     !  allocate(groupToGtype(iend))
378 +       allocate(groupToGtypeRow(iend))
379 +    else
380 +       deallocate(groupToGtypeRow)
381 +       allocate(groupToGtypeRow(iend))
382      endif
383 <
384 <    nAtypes = getSize(atypes)
385 <    !! If we pass a default rcut, set all atypes to that cutoff distance
386 <    if(present(defaultRList)) then
387 <       InteractionMap(:,:)%rCut = defaultRCut
298 <       InteractionMap(:,:)%rCutSq = defaultRCut*defaultRCut
299 <       InteractionMap(:,:)%rListSq = (defaultRCut+defaultSkinThickness)**2
300 <       haveRlist = .true.
301 <       return
383 >    if(.not.allocated(groupMaxCutoffRow)) then
384 >       allocate(groupMaxCutoffRow(iend))
385 >    else
386 >       deallocate(groupMaxCutoffRow)
387 >       allocate(groupMaxCutoffRow(iend))
388      end if
389  
390 <    do map_i = 1,nAtypes
391 <       do map_j = map_i,nAtypes
392 <          iMap = InteractionMap(map_i, map_j)%InteractionHash
393 <          
394 <          if ( iand(iMap, LJ_PAIR).ne.0 ) then
395 <             ! thisRCut = getLJCutOff(map_i,map_j)
310 <             if (thisRcut > actualCutoff) actualCutoff = thisRcut
311 <          endif
312 <          
313 <          if ( iand(iMap, ELECTROSTATIC_PAIR).ne.0 ) then
314 <             ! thisRCut = getElectrostaticCutOff(map_i,map_j)
315 <             if (thisRcut > actualCutoff) actualCutoff = thisRcut
316 <          endif
317 <          
318 <          if ( iand(iMap, STICKY_PAIR).ne.0 ) then
319 <             ! thisRCut = getStickyCutOff(map_i,map_j)
320 <              if (thisRcut > actualCutoff) actualCutoff = thisRcut
321 <           endif
322 <          
323 <           if ( iand(iMap, STICKYPOWER_PAIR).ne.0 ) then
324 <              ! thisRCut = getStickyPowerCutOff(map_i,map_j)
325 <              if (thisRcut > actualCutoff) actualCutoff = thisRcut
326 <           endif
327 <          
328 <           if ( iand(iMap, GAYBERNE_PAIR).ne.0 ) then
329 <              ! thisRCut = getGayberneCutOff(map_i,map_j)
330 <              if (thisRcut > actualCutoff) actualCutoff = thisRcut
331 <           endif
332 <          
333 <           if ( iand(iMap, GAYBERNE_LJ).ne.0 ) then
334 < !              thisRCut = getGaybrneLJCutOff(map_i,map_j)
335 <              if (thisRcut > actualCutoff) actualCutoff = thisRcut
336 <           endif
337 <          
338 <           if ( iand(iMap, EAM_PAIR).ne.0 ) then      
339 < !              thisRCut = getEAMCutOff(map_i,map_j)
340 <              if (thisRcut > actualCutoff) actualCutoff = thisRcut
341 <           endif
342 <          
343 <           if ( iand(iMap, SHAPE_PAIR).ne.0 ) then      
344 < !              thisRCut = getShapeCutOff(map_i,map_j)
345 <              if (thisRcut > actualCutoff) actualCutoff = thisRcut
346 <           endif
347 <          
348 <           if ( iand(iMap, SHAPE_LJ).ne.0 ) then      
349 < !              thisRCut = getShapeLJCutOff(map_i,map_j)
350 <              if (thisRcut > actualCutoff) actualCutoff = thisRcut
351 <           endif
352 <           InteractionMap(map_i, map_j)%rCut = actualCutoff
353 <           InteractionMap(map_i, map_j)%rCutSq = actualCutoff * actualCutoff
354 <           InteractionMap(map_i, map_j)%rListSq = (actualCutoff + skinThickness)**2
390 >    if(.not.allocated(gtypeMaxCutoffRow)) then
391 >       allocate(gtypeMaxCutoffRow(iend))
392 >    else
393 >       deallocate(gtypeMaxCutoffRow)
394 >       allocate(gtypeMaxCutoffRow(iend))
395 >    endif
396  
356           InteractionMap(map_j, map_i)%rCut = InteractionMap(map_i, map_j)%rCut
357           InteractionMap(map_j, map_i)%rCutSq = InteractionMap(map_i, map_j)%rCutSq
358           InteractionMap(map_j, map_i)%rListSq = InteractionMap(map_i, map_j)%rListSq
359        end do
360     end do
361     ! now the groups
397  
398 + #ifdef IS_MPI
399 +       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
400 +    if(.not.associated(groupToGtypeCol)) then
401 +       allocate(groupToGtypeCol(jend))
402 +    else
403 +       deallocate(groupToGtypeCol)
404 +       allocate(groupToGtypeCol(jend))
405 +    end if
406  
407 +    if(.not.associated(groupMaxCutoffCol)) then
408 +       allocate(groupMaxCutoffCol(jend))
409 +    else
410 +       deallocate(groupMaxCutoffCol)
411 +       allocate(groupMaxCutoffCol(jend))
412 +    end if
413 +    if(.not.associated(gtypeMaxCutoffCol)) then
414 +       allocate(gtypeMaxCutoffCol(jend))
415 +    else
416 +       deallocate(gtypeMaxCutoffCol)      
417 +       allocate(gtypeMaxCutoffCol(jend))
418 +    end if
419  
420 <     haveRlist = .true.
421 <   end subroutine createGroupCutoffs
420 >       groupMaxCutoffCol = 0.0_dp
421 >       gtypeMaxCutoffCol = 0.0_dp
422  
423 <  subroutine setSimVariables()
424 <    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
425 <    SIM_uses_LennardJones = SimUsesLennardJones()
371 <    SIM_uses_Electrostatics = SimUsesElectrostatics()
372 <    SIM_uses_Charges = SimUsesCharges()
373 <    SIM_uses_Dipoles = SimUsesDipoles()
374 <    SIM_uses_Sticky = SimUsesSticky()
375 <    SIM_uses_StickyPower = SimUsesStickyPower()
376 <    SIM_uses_GayBerne = SimUsesGayBerne()
377 <    SIM_uses_EAM = SimUsesEAM()
378 <    SIM_uses_Shapes = SimUsesShapes()
379 <    SIM_uses_FLARB = SimUsesFLARB()
380 <    SIM_uses_RF = SimUsesRF()
381 <    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
382 <    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
383 <    SIM_uses_PBC = SimUsesPBC()
423 > #endif
424 >       groupMaxCutoffRow = 0.0_dp
425 >       gtypeMaxCutoffRow = 0.0_dp
426  
385    haveSIMvariables = .true.
427  
428 <    return
429 <  end subroutine setSimVariables
428 >    !! first we do a single loop over the cutoff groups to find the
429 >    !! largest cutoff for any atypes present in this group.  We also
430 >    !! create gtypes at this point.
431 >    
432 >    tol = 1.0e-6_dp
433 >    nGroupTypesRow = 0
434 >    nGroupTypesCol = 0
435 >    do i = istart, iend      
436 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
437 >       groupMaxCutoffRow(i) = 0.0_dp
438 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
439 >          atom1 = groupListRow(ia)
440 > #ifdef IS_MPI
441 >          me_i = atid_row(atom1)
442 > #else
443 >          me_i = atid(atom1)
444 > #endif          
445 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
446 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
447 >          endif          
448 >       enddo
449 >       if (nGroupTypesRow.eq.0) then
450 >          nGroupTypesRow = nGroupTypesRow + 1
451 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
452 >          groupToGtypeRow(i) = nGroupTypesRow
453 >       else
454 >          GtypeFound = .false.
455 >          do g = 1, nGroupTypesRow
456 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
457 >                groupToGtypeRow(i) = g
458 >                GtypeFound = .true.
459 >             endif
460 >          enddo
461 >          if (.not.GtypeFound) then            
462 >             nGroupTypesRow = nGroupTypesRow + 1
463 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
464 >             groupToGtypeRow(i) = nGroupTypesRow
465 >          endif
466 >       endif
467 >    enddo    
468 >
469 > #ifdef IS_MPI
470 >    do j = jstart, jend      
471 >       n_in_j = groupStartCol(j+1) - groupStartCol(j)
472 >       groupMaxCutoffCol(j) = 0.0_dp
473 >       do ja = groupStartCol(j), groupStartCol(j+1)-1
474 >          atom1 = groupListCol(ja)
475 >
476 >          me_j = atid_col(atom1)
477 >
478 >          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
479 >             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
480 >          endif          
481 >       enddo
482 >
483 >       if (nGroupTypesCol.eq.0) then
484 >          nGroupTypesCol = nGroupTypesCol + 1
485 >          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
486 >          groupToGtypeCol(j) = nGroupTypesCol
487 >       else
488 >          GtypeFound = .false.
489 >          do g = 1, nGroupTypesCol
490 >             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
491 >                groupToGtypeCol(j) = g
492 >                GtypeFound = .true.
493 >             endif
494 >          enddo
495 >          if (.not.GtypeFound) then            
496 >             nGroupTypesCol = nGroupTypesCol + 1
497 >             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
498 >             groupToGtypeCol(j) = nGroupTypesCol
499 >          endif
500 >       endif
501 >    enddo    
502 >
503 > #else
504 > ! Set pointers to information we just found
505 >    nGroupTypesCol = nGroupTypesRow
506 >    groupToGtypeCol => groupToGtypeRow
507 >    gtypeMaxCutoffCol => gtypeMaxCutoffRow
508 >    groupMaxCutoffCol => groupMaxCutoffRow
509 > #endif
510 >
511 >    !! allocate the gtypeCutoffMap here.
512 >    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
513 >    !! then we do a double loop over all the group TYPES to find the cutoff
514 >    !! map between groups of two types
515 >    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
516 >
517 >    do i = 1, nGroupTypesRow      
518 >       do j = 1, nGroupTypesCol
519 >      
520 >          select case(cutoffPolicy)
521 >          case(TRADITIONAL_CUTOFF_POLICY)
522 >             thisRcut = tradRcut
523 >          case(MIX_CUTOFF_POLICY)
524 >             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
525 >          case(MAX_CUTOFF_POLICY)
526 >             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
527 >          case default
528 >             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
529 >             return
530 >          end select
531 >          gtypeCutoffMap(i,j)%rcut = thisRcut
532 >          
533 >          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
534 >
535 >          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
536 >
537 >          if (.not.haveSkinThickness) then
538 >             skinThickness = 1.0_dp
539 >          endif
540 >
541 >          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
542 >
543 >          ! sanity check
544 >
545 >          if (haveDefaultCutoffs) then
546 >             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
547 >                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
548 >             endif
549 >          endif
550 >       enddo
551 >    enddo
552 >
553 >    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
554 >    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
555 >    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
556 > #ifdef IS_MPI
557 >    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
558 >    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
559 > #endif
560 >    groupMaxCutoffCol => null()
561 >    gtypeMaxCutoffCol => null()
562 >    
563 >    haveGtypeCutoffMap = .true.
564 >   end subroutine createGtypeCutoffMap
565 >
566 >   subroutine setCutoffs(defRcut, defRsw, defSP, defSF)
567 >
568 >     real(kind=dp),intent(in) :: defRcut, defRsw
569 >     logical, intent(in) :: defSP, defSF
570 >     character(len = statusMsgSize) :: errMsg
571 >     integer :: localError
572 >
573 >     defaultRcut = defRcut
574 >     defaultRsw = defRsw
575 >    
576 >     defaultDoShiftPot = defSP
577 >     defaultDoShiftFrc = defSF
578 >
579 >     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
580 >        if (defaultDoShiftFrc) then
581 >           write(errMsg, *) &
582 >                'cutoffRadius and switchingRadius are set to the', newline &
583 >                // tab, 'same value.  OOPSE will use shifted force', newline &
584 >                // tab, 'potentials instead of switching functions.'
585 >          
586 >           call handleInfo("setCutoffs", errMsg)
587 >        else
588 >           write(errMsg, *) &
589 >                'cutoffRadius and switchingRadius are set to the', newline &
590 >                // tab, 'same value.  OOPSE will use shifted', newline &
591 >                // tab, 'potentials instead of switching functions.'
592 >          
593 >           call handleInfo("setCutoffs", errMsg)
594 >          
595 >           defaultDoShiftPot = .true.
596 >        endif
597 >                
598 >     endif
599 >    
600 >     localError = 0
601 >     call setLJDefaultCutoff( defaultRcut, defaultDoShiftPot, &
602 >          defaultDoShiftFrc )
603 >     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
604 >     call setCutoffEAM( defaultRcut )
605 >     call setCutoffSC( defaultRcut )
606 >     call set_switch(defaultRsw, defaultRcut)
607 >     call setHmatDangerousRcutValue(defaultRcut)
608 >        
609 >     haveDefaultCutoffs = .true.
610 >     haveGtypeCutoffMap = .false.
611 >
612 >   end subroutine setCutoffs
613 >
614 >   subroutine cWasLame()
615 >    
616 >     VisitCutoffsAfterComputing = .true.
617 >     return
618 >    
619 >   end subroutine cWasLame
620 >  
621 >   subroutine setCutoffPolicy(cutPolicy)
622 >    
623 >     integer, intent(in) :: cutPolicy
624 >    
625 >     cutoffPolicy = cutPolicy
626 >     haveCutoffPolicy = .true.
627 >     haveGtypeCutoffMap = .false.
628 >    
629 >   end subroutine setCutoffPolicy
630 >    
631 >   subroutine setBoxDipole()
632 >
633 >     do_box_dipole = .true.
634 >    
635 >   end subroutine setBoxDipole
636  
637 +   subroutine getBoxDipole( box_dipole )
638 +
639 +     real(kind=dp), intent(inout), dimension(3) :: box_dipole
640 +
641 +     box_dipole = boxDipole
642 +
643 +   end subroutine getBoxDipole
644 +
645 +   subroutine setElectrostaticMethod( thisESM )
646 +
647 +     integer, intent(in) :: thisESM
648 +
649 +     electrostaticSummationMethod = thisESM
650 +     haveElectrostaticSummationMethod = .true.
651 +    
652 +   end subroutine setElectrostaticMethod
653 +
654 +   subroutine setSkinThickness( thisSkin )
655 +    
656 +     real(kind=dp), intent(in) :: thisSkin
657 +    
658 +     skinThickness = thisSkin
659 +     haveSkinThickness = .true.    
660 +     haveGtypeCutoffMap = .false.
661 +    
662 +   end subroutine setSkinThickness
663 +      
664 +   subroutine setSimVariables()
665 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
666 +     SIM_uses_EAM = SimUsesEAM()
667 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
668 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
669 +     SIM_uses_PBC = SimUsesPBC()
670 +     SIM_uses_SC = SimUsesSC()
671 +     SIM_uses_AtomicVirial = SimUsesAtomicVirial()
672 +
673 +     haveSIMvariables = .true.
674 +    
675 +     return
676 +   end subroutine setSimVariables
677 +
678    subroutine doReadyCheck(error)
679      integer, intent(out) :: error
392
680      integer :: myStatus
681  
682      error = 0
683  
684 <    if (.not. haveInteractionMap) then
685 <      
399 <       myStatus = 0      
400 <       call createInteractionMap(myStatus)
401 <      
402 <       if (myStatus .ne. 0) then
403 <          write(default_error, *) 'createInteractionMap failed in doForces!'
404 <          error = -1
405 <          return
406 <       endif
684 >    if (.not. haveInteractionHash) then      
685 >       call createInteractionHash()      
686      endif
687  
688 <    if (.not. haveSIMvariables) then
689 <       call setSimVariables()
688 >    if (.not. haveGtypeCutoffMap) then        
689 >       call createGtypeCutoffMap()      
690      endif
691  
692 <    if (.not. haveRlist) then
693 <       write(default_error, *) 'rList has not been set in doForces!'
694 <       error = -1
695 <       return
692 >    if (VisitCutoffsAfterComputing) then
693 >       call set_switch(largestRcut, largestRcut)      
694 >       call setHmatDangerousRcutValue(largestRcut)
695 >       call setCutoffEAM(largestRcut)
696 >       call setCutoffSC(largestRcut)
697 >       VisitCutoffsAfterComputing = .false.
698      endif
699  
700 +    if (.not. haveSIMvariables) then
701 +       call setSimVariables()
702 +    endif
703 +
704      if (.not. haveNeighborList) then
705         write(default_error, *) 'neighbor list has not been initialized in doForces!'
706         error = -1
707         return
708      end if
709 <
709 >    
710      if (.not. haveSaneForceField) then
711         write(default_error, *) 'Force Field is not sane in doForces!'
712         error = -1
713         return
714      end if
715 <
715 >    
716   #ifdef IS_MPI
717      if (.not. isMPISimSet()) then
718         write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
# Line 439 | Line 724 | contains
724    end subroutine doReadyCheck
725  
726  
727 <  subroutine init_FF(use_RF_c, thisStat)
727 >  subroutine init_FF(thisStat)
728  
444    logical, intent(in) :: use_RF_c
445
729      integer, intent(out) :: thisStat  
730      integer :: my_status, nMatches
731      integer, pointer :: MatchList(:) => null()
449    real(kind=dp) :: rcut, rrf, rt, dielect
732  
733      !! assume things are copacetic, unless they aren't
734      thisStat = 0
735  
454    !! Fortran's version of a cast:
455    FF_uses_RF = use_RF_c
456
736      !! init_FF is called *after* all of the atom types have been
737      !! defined in atype_module using the new_atype subroutine.
738      !!
# Line 461 | Line 740 | contains
740      !! interactions are used by the force field.    
741  
742      FF_uses_DirectionalAtoms = .false.
464    FF_uses_LennardJones = .false.
465    FF_uses_Electrostatics = .false.
466    FF_uses_Charges = .false.    
743      FF_uses_Dipoles = .false.
468    FF_uses_Sticky = .false.
469    FF_uses_StickyPower = .false.
744      FF_uses_GayBerne = .false.
745      FF_uses_EAM = .false.
746 <    FF_uses_Shapes = .false.
473 <    FF_uses_FLARB = .false.
746 >    FF_uses_SC = .false.
747  
748      call getMatchingElementList(atypes, "is_Directional", .true., &
749           nMatches, MatchList)
750      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
751  
479    call getMatchingElementList(atypes, "is_LennardJones", .true., &
480         nMatches, MatchList)
481    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
482
483    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
484         nMatches, MatchList)
485    if (nMatches .gt. 0) then
486       FF_uses_Electrostatics = .true.
487    endif
488
489    call getMatchingElementList(atypes, "is_Charge", .true., &
490         nMatches, MatchList)
491    if (nMatches .gt. 0) then
492       FF_uses_Charges = .true.  
493       FF_uses_Electrostatics = .true.
494    endif
495
752      call getMatchingElementList(atypes, "is_Dipole", .true., &
753           nMatches, MatchList)
754 <    if (nMatches .gt. 0) then
499 <       FF_uses_Dipoles = .true.
500 <       FF_uses_Electrostatics = .true.
501 <       FF_uses_DirectionalAtoms = .true.
502 <    endif
503 <
504 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
505 <         nMatches, MatchList)
506 <    if (nMatches .gt. 0) then
507 <       FF_uses_Quadrupoles = .true.
508 <       FF_uses_Electrostatics = .true.
509 <       FF_uses_DirectionalAtoms = .true.
510 <    endif
511 <
512 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
513 <         MatchList)
514 <    if (nMatches .gt. 0) then
515 <       FF_uses_Sticky = .true.
516 <       FF_uses_DirectionalAtoms = .true.
517 <    endif
518 <
519 <    call getMatchingElementList(atypes, "is_StickyPower", .true., nMatches, &
520 <         MatchList)
521 <    if (nMatches .gt. 0) then
522 <       FF_uses_StickyPower = .true.
523 <       FF_uses_DirectionalAtoms = .true.
524 <    endif
754 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
755      
756      call getMatchingElementList(atypes, "is_GayBerne", .true., &
757           nMatches, MatchList)
758 <    if (nMatches .gt. 0) then
529 <       FF_uses_GayBerne = .true.
530 <       FF_uses_DirectionalAtoms = .true.
531 <    endif
758 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
759  
760      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
761      if (nMatches .gt. 0) FF_uses_EAM = .true.
762  
763 <    call getMatchingElementList(atypes, "is_Shape", .true., &
764 <         nMatches, MatchList)
538 <    if (nMatches .gt. 0) then
539 <       FF_uses_Shapes = .true.
540 <       FF_uses_DirectionalAtoms = .true.
541 <    endif
763 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
764 >    if (nMatches .gt. 0) FF_uses_SC = .true.
765  
543    call getMatchingElementList(atypes, "is_FLARB", .true., &
544         nMatches, MatchList)
545    if (nMatches .gt. 0) FF_uses_FLARB = .true.
766  
547    !! Assume sanity (for the sake of argument)
767      haveSaneForceField = .true.
768  
550    !! check to make sure the FF_uses_RF setting makes sense
551
552    if (FF_uses_dipoles) then
553       if (FF_uses_RF) then
554          dielect = getDielect()
555          call initialize_rf(dielect)
556       endif
557    else
558       if (FF_uses_RF) then          
559          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
560          thisStat = -1
561          haveSaneForceField = .false.
562          return
563       endif
564    endif
565
566    !sticky module does not contain check_sticky_FF anymore
567    !if (FF_uses_sticky) then
568    !   call check_sticky_FF(my_status)
569    !   if (my_status /= 0) then
570    !      thisStat = -1
571    !      haveSaneForceField = .false.
572    !      return
573    !   end if
574    !endif
575
769      if (FF_uses_EAM) then
770         call init_EAM_FF(my_status)
771         if (my_status /= 0) then
# Line 583 | Line 776 | contains
776         end if
777      endif
778  
586    if (FF_uses_GayBerne) then
587       call check_gb_pair_FF(my_status)
588       if (my_status .ne. 0) then
589          thisStat = -1
590          haveSaneForceField = .false.
591          return
592       endif
593    endif
594
595    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
596    endif
597
779      if (.not. haveNeighborList) then
780         !! Create neighbor lists
781         call expandNeighborList(nLocal, my_status)
# Line 628 | Line 809 | contains
809  
810      !! Stress Tensor
811      real( kind = dp), dimension(9) :: tau  
812 <    real ( kind = dp ) :: pot
812 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
813      logical ( kind = 2) :: do_pot_c, do_stress_c
814      logical :: do_pot
815      logical :: do_stress
816      logical :: in_switching_region
817   #ifdef IS_MPI
818 <    real( kind = DP ) :: pot_local
818 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
819      integer :: nAtomsInRow
820      integer :: nAtomsInCol
821      integer :: nprocs
# Line 647 | Line 828 | contains
828      integer :: istart, iend
829      integer :: ia, jb, atom1, atom2
830      integer :: nlist
831 <    real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
831 >    real( kind = DP ) :: ratmsq, rgrpsq, rgrp, rag, vpair, vij
832      real( kind = DP ) :: sw, dswdr, swderiv, mf
833 <    real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
834 <    real(kind=dp) :: rfpot, mu_i, virial
833 >    real( kind = DP ) :: rVal
834 >    real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij, fg, dag
835 >    real(kind=dp) :: rfpot, mu_i
836 >    real(kind=dp):: rCut
837      integer :: me_i, me_j, n_in_i, n_in_j
838      logical :: is_dp_i
839      integer :: neighborListSize
# Line 658 | Line 841 | contains
841      integer :: localError
842      integer :: propPack_i, propPack_j
843      integer :: loopStart, loopEnd, loop
844 <    integer :: iMap
845 <    real(kind=dp) :: listSkin = 1.0  
844 >    integer :: iHash
845 >    integer :: i1
846  
847 +    !! the variables for the box dipole moment
848 + #ifdef IS_MPI
849 +    integer :: pChgCount_local
850 +    integer :: nChgCount_local
851 +    real(kind=dp) :: pChg_local
852 +    real(kind=dp) :: nChg_local
853 +    real(kind=dp), dimension(3) :: pChgPos_local
854 +    real(kind=dp), dimension(3) :: nChgPos_local
855 +    real(kind=dp), dimension(3) :: dipVec_local
856 + #endif
857 +    integer :: pChgCount
858 +    integer :: nChgCount
859 +    real(kind=dp) :: pChg
860 +    real(kind=dp) :: nChg
861 +    real(kind=dp) :: chg_value
862 +    real(kind=dp), dimension(3) :: pChgPos
863 +    real(kind=dp), dimension(3) :: nChgPos
864 +    real(kind=dp), dimension(3) :: dipVec
865 +    real(kind=dp), dimension(3) :: chgVec
866 +
867 +    !! initialize box dipole variables
868 +    if (do_box_dipole) then
869 + #ifdef IS_MPI
870 +       pChg_local = 0.0_dp
871 +       nChg_local = 0.0_dp
872 +       pChgCount_local = 0
873 +       nChgCount_local = 0
874 +       do i=1, 3
875 +          pChgPos_local = 0.0_dp
876 +          nChgPos_local = 0.0_dp
877 +          dipVec_local = 0.0_dp
878 +       enddo
879 + #endif
880 +       pChg = 0.0_dp
881 +       nChg = 0.0_dp
882 +       pChgCount = 0
883 +       nChgCount = 0
884 +       chg_value = 0.0_dp
885 +      
886 +       do i=1, 3
887 +          pChgPos(i) = 0.0_dp
888 +          nChgPos(i) = 0.0_dp
889 +          dipVec(i) = 0.0_dp
890 +          chgVec(i) = 0.0_dp
891 +          boxDipole(i) = 0.0_dp
892 +       enddo
893 +    endif
894 +
895      !! initialize local variables  
896  
897   #ifdef IS_MPI
# Line 723 | Line 954 | contains
954         ! (but only on the first time through):
955         if (loop .eq. loopStart) then
956   #ifdef IS_MPI
957 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
957 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
958                 update_nlist)
959   #else
960 <          call checkNeighborList(nGroups, q_group, listSkin, &
960 >          call checkNeighborList(nGroups, q_group, skinThickness, &
961                 update_nlist)
962   #endif
963         endif
# Line 750 | Line 981 | contains
981   #endif
982         outer: do i = istart, iend
983  
753 #ifdef IS_MPI
754             me_i = atid_row(i)
755 #else
756             me_i = atid(i)
757 #endif
758
984            if (update_nlist) point(i) = nlist + 1
985  
986            n_in_i = groupStartRow(i+1) - groupStartRow(i)
# Line 790 | Line 1015 | contains
1015               me_j = atid(j)
1016               call get_interatomic_vector(q_group(:,i), &
1017                    q_group(:,j), d_grp, rgrpsq)
1018 < #endif
1018 > #endif      
1019  
1020 <             if (rgrpsq < InteractionMap(me_i,me_j)%rListsq) then
1020 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
1021                  if (update_nlist) then
1022                     nlist = nlist + 1
1023  
# Line 812 | Line 1037 | contains
1037  
1038                     list(nlist) = j
1039                  endif
1040 +                
1041 +                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
1042  
1043 <                if (loop .eq. PAIR_LOOP) then
1044 <                   vij = 0.0d0
1045 <                   fij(1:3) = 0.0d0
1046 <                endif
1047 <
1048 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
1049 <                     in_switching_region)
1050 <
1051 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
1052 <
1053 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
1054 <
1055 <                   atom1 = groupListRow(ia)
1056 <
1057 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1058 <
1059 <                      atom2 = groupListCol(jb)
1060 <
1061 <                      if (skipThisPair(atom1, atom2)) cycle inner
1062 <
1063 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1064 <                         d_atm(1:3) = d_grp(1:3)
1065 <                         ratmsq = rgrpsq
1066 <                      else
1067 < #ifdef IS_MPI
1068 <                         call get_interatomic_vector(q_Row(:,atom1), &
1069 <                              q_Col(:,atom2), d_atm, ratmsq)
1043 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
1044 >                   if (loop .eq. PAIR_LOOP) then
1045 >                      vij = 0.0_dp
1046 >                      fij(1) = 0.0_dp
1047 >                      fij(2) = 0.0_dp
1048 >                      fij(3) = 0.0_dp
1049 >                   endif
1050 >                  
1051 >                   call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
1052 >                  
1053 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
1054 >                  
1055 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
1056 >                      
1057 >                      atom1 = groupListRow(ia)
1058 >                      
1059 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1060 >                        
1061 >                         atom2 = groupListCol(jb)
1062 >                        
1063 >                         if (skipThisPair(atom1, atom2))  cycle inner
1064 >                        
1065 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1066 >                            d_atm(1) = d_grp(1)
1067 >                            d_atm(2) = d_grp(2)
1068 >                            d_atm(3) = d_grp(3)
1069 >                            ratmsq = rgrpsq
1070 >                         else
1071 > #ifdef IS_MPI
1072 >                            call get_interatomic_vector(q_Row(:,atom1), &
1073 >                                 q_Col(:,atom2), d_atm, ratmsq)
1074   #else
1075 <                         call get_interatomic_vector(q(:,atom1), &
1076 <                              q(:,atom2), d_atm, ratmsq)
1075 >                            call get_interatomic_vector(q(:,atom1), &
1076 >                                 q(:,atom2), d_atm, ratmsq)
1077   #endif
1078 <                      endif
1079 <
1080 <                      if (loop .eq. PREPAIR_LOOP) then
1078 >                         endif
1079 >                        
1080 >                         if (loop .eq. PREPAIR_LOOP) then
1081   #ifdef IS_MPI                      
1082 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1083 <                              rgrpsq, d_grp, do_pot, do_stress, &
1084 <                              eFrame, A, f, t, pot_local)
1082 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1083 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1084 >                                 eFrame, A, f, t, pot_local)
1085   #else
1086 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1087 <                              rgrpsq, d_grp, do_pot, do_stress, &
1088 <                              eFrame, A, f, t, pot)
1086 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1087 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1088 >                                 eFrame, A, f, t, pot)
1089   #endif                                              
1090 <                      else
1090 >                         else
1091   #ifdef IS_MPI                      
1092 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1093 <                              do_pot, &
1094 <                              eFrame, A, f, t, pot_local, vpair, fpair)
1092 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1093 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1094 >                                 fpair, d_grp, rgrp, rCut)
1095   #else
1096 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1097 <                              do_pot,  &
1098 <                              eFrame, A, f, t, pot, vpair, fpair)
1096 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1097 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1098 >                                 d_grp, rgrp, rCut)
1099   #endif
1100 +                            vij = vij + vpair
1101 +                            fij(1) = fij(1) + fpair(1)
1102 +                            fij(2) = fij(2) + fpair(2)
1103 +                            fij(3) = fij(3) + fpair(3)
1104 +                            if (do_stress) then
1105 +                               call add_stress_tensor(d_atm, fpair, tau)
1106 +                            endif
1107 +                         endif
1108 +                      enddo inner
1109 +                   enddo
1110  
1111 <                         vij = vij + vpair
1112 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1113 <                      endif
1114 <                   enddo inner
1115 <                enddo
1116 <
1117 <                if (loop .eq. PAIR_LOOP) then
1118 <                   if (in_switching_region) then
1119 <                      swderiv = vij*dswdr/rgrp
1120 <                      fij(1) = fij(1) + swderiv*d_grp(1)
1121 <                      fij(2) = fij(2) + swderiv*d_grp(2)
1122 <                      fij(3) = fij(3) + swderiv*d_grp(3)
1123 <
1124 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
1125 <                         atom1=groupListRow(ia)
1126 <                         mf = mfactRow(atom1)
1111 >                   if (loop .eq. PAIR_LOOP) then
1112 >                      if (in_switching_region) then
1113 >                         swderiv = vij*dswdr/rgrp
1114 >                         fg = swderiv*d_grp
1115 >
1116 >                         fij(1) = fij(1) + fg(1)
1117 >                         fij(2) = fij(2) + fg(2)
1118 >                         fij(3) = fij(3) + fg(3)
1119 >                        
1120 >                         if (do_stress .and. (n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1121 >                            call add_stress_tensor(d_atm, fg, tau)
1122 >                         endif  
1123 >                        
1124 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1125 >                            atom1=groupListRow(ia)
1126 >                            mf = mfactRow(atom1)
1127 >                            ! fg is the force on atom ia due to cutoff group's
1128 >                            ! presence in switching region
1129 >                            fg = swderiv*d_grp*mf
1130   #ifdef IS_MPI
1131 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1132 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1133 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1131 >                            f_Row(1,atom1) = f_Row(1,atom1) + fg(1)
1132 >                            f_Row(2,atom1) = f_Row(2,atom1) + fg(2)
1133 >                            f_Row(3,atom1) = f_Row(3,atom1) + fg(3)
1134   #else
1135 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1136 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1137 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1135 >                            f(1,atom1) = f(1,atom1) + fg(1)
1136 >                            f(2,atom1) = f(2,atom1) + fg(2)
1137 >                            f(3,atom1) = f(3,atom1) + fg(3)
1138   #endif
1139 <                      enddo
1140 <
1141 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1142 <                         atom2=groupListCol(jb)
899 <                         mf = mfactCol(atom2)
1139 >                            if (n_in_i .gt. 1) then
1140 >                               if (do_stress.and.SIM_uses_AtomicVirial) then
1141 >                                  ! find the distance between the atom and the center of
1142 >                                  ! the cutoff group:
1143   #ifdef IS_MPI
1144 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1145 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
903 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1144 >                                  call get_interatomic_vector(q_Row(:,atom1), &
1145 >                                       q_group_Row(:,i), dag, rag)
1146   #else
1147 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1148 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
907 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1147 >                                  call get_interatomic_vector(q(:,atom1), &
1148 >                                       q_group(:,i), dag, rag)
1149   #endif
1150 <                      enddo
1150 >                                  call add_stress_tensor(dag,fg,tau)
1151 >                               endif
1152 >                            endif
1153 >                         enddo
1154 >                        
1155 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1156 >                            atom2=groupListCol(jb)
1157 >                            mf = mfactCol(atom2)
1158 >                            ! fg is the force on atom jb due to cutoff group's
1159 >                            ! presence in switching region
1160 >                            fg = -swderiv*d_grp*mf
1161 > #ifdef IS_MPI
1162 >                            f_Col(1,atom2) = f_Col(1,atom2) + fg(1)
1163 >                            f_Col(2,atom2) = f_Col(2,atom2) + fg(2)
1164 >                            f_Col(3,atom2) = f_Col(3,atom2) + fg(3)
1165 > #else
1166 >                            f(1,atom2) = f(1,atom2) + fg(1)
1167 >                            f(2,atom2) = f(2,atom2) + fg(2)
1168 >                            f(3,atom2) = f(3,atom2) + fg(3)
1169 > #endif
1170 >                            if (n_in_j .gt. 1) then
1171 >                               if (do_stress.and.SIM_uses_AtomicVirial) then
1172 >                                  ! find the distance between the atom and the center of
1173 >                                  ! the cutoff group:
1174 > #ifdef IS_MPI
1175 >                                  call get_interatomic_vector(q_Col(:,atom2), &
1176 >                                       q_group_Col(:,j), dag, rag)
1177 > #else
1178 >                                  call get_interatomic_vector(q(:,atom2), &
1179 >                                       q_group(:,j), dag, rag)
1180 > #endif
1181 >                                  call add_stress_tensor(dag,fg,tau)                              
1182 >                               endif
1183 >                            endif                            
1184 >                         enddo
1185 >                      endif
1186                     endif
911
912                   if (do_stress) call add_stress_tensor(d_grp, fij)
1187                  endif
1188 <             end if
1188 >             endif
1189            enddo
1190 +          
1191         enddo outer
1192  
1193         if (update_nlist) then
# Line 972 | Line 1247 | contains
1247  
1248      if (do_pot) then
1249         ! scatter/gather pot_row into the members of my column
1250 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1251 <
1250 >       do i = 1,LR_POT_TYPES
1251 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1252 >       end do
1253         ! scatter/gather pot_local into all other procs
1254         ! add resultant to get total pot
1255         do i = 1, nlocal
1256 <          pot_local = pot_local + pot_Temp(i)
1256 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1257 >               + pot_Temp(1:LR_POT_TYPES,i)
1258         enddo
1259  
1260         pot_Temp = 0.0_DP
1261 <
1262 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1261 >       do i = 1,LR_POT_TYPES
1262 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1263 >       end do
1264         do i = 1, nlocal
1265 <          pot_local = pot_local + pot_Temp(i)
1265 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1266 >               + pot_Temp(1:LR_POT_TYPES,i)
1267         enddo
1268  
1269      endif
1270   #endif
1271  
1272 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1272 >    if (SIM_requires_postpair_calc) then
1273 >       do i = 1, nlocal            
1274 >          
1275 >          ! we loop only over the local atoms, so we don't need row and column
1276 >          ! lookups for the types
1277 >          
1278 >          me_i = atid(i)
1279 >          
1280 >          ! is the atom electrostatic?  See if it would have an
1281 >          ! electrostatic interaction with itself
1282 >          iHash = InteractionHash(me_i,me_i)
1283  
1284 <       if (FF_uses_RF .and. SIM_uses_RF) then
996 <
1284 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1285   #ifdef IS_MPI
1286 <          call scatter(rf_Row,rf,plan_atom_row_3d)
1287 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
1000 <          do i = 1,nlocal
1001 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1002 <          end do
1003 < #endif
1004 <
1005 <          do i = 1, nLocal
1006 <
1007 <             rfpot = 0.0_DP
1008 < #ifdef IS_MPI
1009 <             me_i = atid_row(i)
1286 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1287 >                  t, do_pot)
1288   #else
1289 <             me_i = atid(i)
1289 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1290 >                  t, do_pot)
1291   #endif
1292 <             iMap = InteractionHash(me_i,me_j)
1292 >          endif
1293 >  
1294 >          
1295 >          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1296              
1297 <             if ( iand(iMap, ELECTROSTATIC_PAIR).ne.0 ) then
1298 <
1299 <                mu_i = getDipoleMoment(me_i)
1300 <
1301 <                !! The reaction field needs to include a self contribution
1302 <                !! to the field:
1303 <                call accumulate_self_rf(i, mu_i, eFrame)
1304 <                !! Get the reaction field contribution to the
1305 <                !! potential and torques:
1306 <                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1297 >             ! loop over the excludes to accumulate RF stuff we've
1298 >             ! left out of the normal pair loop
1299 >            
1300 >             do i1 = 1, nSkipsForAtom(i)
1301 >                j = skipsForAtom(i, i1)
1302 >                
1303 >                ! prevent overcounting of the skips
1304 >                if (i.lt.j) then
1305 >                   call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1306 >                   rVal = sqrt(ratmsq)
1307 >                   call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1308   #ifdef IS_MPI
1309 <                pot_local = pot_local + rfpot
1309 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1310 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1311   #else
1312 <                pot = pot + rfpot
1312 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1313 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1314 > #endif
1315 >                endif
1316 >             enddo
1317 >          endif
1318  
1319 +          if (do_box_dipole) then
1320 + #ifdef IS_MPI
1321 +             call accumulate_box_dipole(i, eFrame, q(:,i), pChg_local, &
1322 +                  nChg_local, pChgPos_local, nChgPos_local, dipVec_local, &
1323 +                  pChgCount_local, nChgCount_local)
1324 + #else
1325 +             call accumulate_box_dipole(i, eFrame, q(:,i), pChg, nChg, &
1326 +                  pChgPos, nChgPos, dipVec, pChgCount, nChgCount)
1327   #endif
1328 <             endif
1329 <          enddo
1033 <       endif
1328 >          endif
1329 >       enddo
1330      endif
1331  
1036
1332   #ifdef IS_MPI
1038
1333      if (do_pot) then
1334 <       pot = pot + pot_local
1335 <       !! we assume the c code will do the allreduce to get the total potential
1336 <       !! we could do it right here if we needed to...
1334 > #ifdef SINGLE_PRECISION
1335 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_real,mpi_sum, &
1336 >            mpi_comm_world,mpi_err)            
1337 > #else
1338 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision, &
1339 >            mpi_sum, mpi_comm_world,mpi_err)            
1340 > #endif
1341      endif
1342 +        
1343 +    if (do_box_dipole) then
1344  
1345 <    if (do_stress) then
1346 <       call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1347 <            mpi_comm_world,mpi_err)
1348 <       call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1349 <            mpi_comm_world,mpi_err)
1350 <    endif
1351 <
1345 > #ifdef SINGLE_PRECISION
1346 >       call mpi_allreduce(pChg_local, pChg, 1, mpi_real, mpi_sum, &
1347 >            mpi_comm_world, mpi_err)
1348 >       call mpi_allreduce(nChg_local, nChg, 1, mpi_real, mpi_sum, &
1349 >            mpi_comm_world, mpi_err)
1350 >       call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer, mpi_sum,&
1351 >            mpi_comm_world, mpi_err)
1352 >       call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer, mpi_sum,&
1353 >            mpi_comm_world, mpi_err)
1354 >       call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_real, mpi_sum, &
1355 >            mpi_comm_world, mpi_err)
1356 >       call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_real, mpi_sum, &
1357 >            mpi_comm_world, mpi_err)
1358 >       call mpi_allreduce(dipVec_local, dipVec, 3, mpi_real, mpi_sum, &
1359 >            mpi_comm_world, mpi_err)
1360   #else
1361 +       call mpi_allreduce(pChg_local, pChg, 1, mpi_double_precision, mpi_sum, &
1362 +            mpi_comm_world, mpi_err)
1363 +       call mpi_allreduce(nChg_local, nChg, 1, mpi_double_precision, mpi_sum, &
1364 +            mpi_comm_world, mpi_err)
1365 +       call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer,&
1366 +            mpi_sum, mpi_comm_world, mpi_err)
1367 +       call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer,&
1368 +            mpi_sum, mpi_comm_world, mpi_err)
1369 +       call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_double_precision, &
1370 +            mpi_sum, mpi_comm_world, mpi_err)
1371 +       call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_double_precision, &
1372 +            mpi_sum, mpi_comm_world, mpi_err)
1373 +       call mpi_allreduce(dipVec_local, dipVec, 3, mpi_double_precision, &
1374 +            mpi_sum, mpi_comm_world, mpi_err)
1375 + #endif
1376  
1054    if (do_stress) then
1055       tau = tau_Temp
1056       virial = virial_Temp
1377      endif
1378 <
1378 >    
1379   #endif
1380  
1381 +    if (do_box_dipole) then
1382 +       ! first load the accumulated dipole moment (if dipoles were present)
1383 +       boxDipole(1) = dipVec(1)
1384 +       boxDipole(2) = dipVec(2)
1385 +       boxDipole(3) = dipVec(3)
1386 +
1387 +       ! now include the dipole moment due to charges
1388 +       ! use the lesser of the positive and negative charge totals
1389 +       if (nChg .le. pChg) then
1390 +          chg_value = nChg
1391 +       else
1392 +          chg_value = pChg
1393 +       endif
1394 +      
1395 +       ! find the average positions
1396 +       if (pChgCount .gt. 0 .and. nChgCount .gt. 0) then
1397 +          pChgPos = pChgPos / pChgCount
1398 +          nChgPos = nChgPos / nChgCount
1399 +       endif
1400 +
1401 +       ! dipole is from the negative to the positive (physics notation)
1402 +       chgVec(1) = pChgPos(1) - nChgPos(1)
1403 +       chgVec(2) = pChgPos(2) - nChgPos(2)
1404 +       chgVec(3) = pChgPos(3) - nChgPos(3)
1405 +
1406 +       boxDipole(1) = boxDipole(1) + chgVec(1) * chg_value
1407 +       boxDipole(2) = boxDipole(2) + chgVec(2) * chg_value
1408 +       boxDipole(3) = boxDipole(3) + chgVec(3) * chg_value
1409 +
1410 +    endif
1411 +
1412    end subroutine do_force_loop
1413  
1414    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1415 <       eFrame, A, f, t, pot, vpair, fpair)
1415 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1416  
1417 <    real( kind = dp ) :: pot, vpair, sw
1417 >    real( kind = dp ) :: vpair, sw
1418 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1419      real( kind = dp ), dimension(3) :: fpair
1420      real( kind = dp ), dimension(nLocal)   :: mfact
1421      real( kind = dp ), dimension(9,nLocal) :: eFrame
# Line 1074 | Line 1426 | contains
1426      logical, intent(inout) :: do_pot
1427      integer, intent(in) :: i, j
1428      real ( kind = dp ), intent(inout) :: rijsq
1429 <    real ( kind = dp )                :: r
1429 >    real ( kind = dp ), intent(inout) :: r_grp
1430      real ( kind = dp ), intent(inout) :: d(3)
1431 <    real ( kind = dp ) :: ebalance
1431 >    real ( kind = dp ), intent(inout) :: d_grp(3)
1432 >    real ( kind = dp ), intent(inout) :: rCut
1433 >    real ( kind = dp ) :: r
1434 >    real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1435      integer :: me_i, me_j
1436 +    integer :: k
1437  
1438 <    integer :: iMap
1438 >    integer :: iHash
1439  
1440      r = sqrt(rijsq)
1441 <    vpair = 0.0d0
1442 <    fpair(1:3) = 0.0d0
1441 >    
1442 >    vpair = 0.0_dp
1443 >    fpair(1:3) = 0.0_dp
1444  
1445   #ifdef IS_MPI
1446      me_i = atid_row(i)
# Line 1093 | Line 1450 | contains
1450      me_j = atid(j)
1451   #endif
1452  
1453 <    iMap = InteractionMap(me_i, me_j)%InteractionHash
1454 <
1455 <    if ( iand(iMap, LJ_PAIR).ne.0 ) then
1456 <       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
1453 >    iHash = InteractionHash(me_i, me_j)
1454 >    
1455 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1456 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1457 >            pot(VDW_POT), f, do_pot)
1458      endif
1459 <
1460 <    if ( iand(iMap, ELECTROSTATIC_PAIR).ne.0 ) then
1461 <       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1462 <            pot, eFrame, f, t, do_pot)
1105 <
1106 <       if (FF_uses_RF .and. SIM_uses_RF) then
1107 <
1108 <          ! CHECK ME (RF needs to know about all electrostatic types)
1109 <          call accumulate_rf(i, j, r, eFrame, sw)
1110 <          call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
1111 <       endif
1112 <
1459 >    
1460 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1461 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1462 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1463      endif
1464 <
1465 <    if ( iand(iMap, STICKY_PAIR).ne.0 ) then
1464 >    
1465 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1466         call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1467 <            pot, A, f, t, do_pot)
1467 >            pot(HB_POT), A, f, t, do_pot)
1468      endif
1469 <
1470 <    if ( iand(iMap, STICKYPOWER_PAIR).ne.0 ) then
1469 >    
1470 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1471         call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1472 <            pot, A, f, t, do_pot)
1472 >            pot(HB_POT), A, f, t, do_pot)
1473      endif
1474 <
1475 <    if ( iand(iMap, GAYBERNE_PAIR).ne.0 ) then
1474 >    
1475 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1476         call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1477 <            pot, A, f, t, do_pot)
1477 >            pot(VDW_POT), A, f, t, do_pot)
1478      endif
1479      
1480 <    if ( iand(iMap, GAYBERNE_LJ).ne.0 ) then
1481 < !      call do_gblj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1482 < !           pot, A, f, t, do_pot)
1480 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1481 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1482 >            pot(VDW_POT), A, f, t, do_pot)
1483      endif
1484 <
1485 <    if ( iand(iMap, EAM_PAIR).ne.0 ) then      
1486 <       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1487 <            do_pot)
1484 >    
1485 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1486 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1487 >            pot(METALLIC_POT), f, do_pot)
1488      endif
1489 <
1490 <    if ( iand(iMap, SHAPE_PAIR).ne.0 ) then      
1489 >    
1490 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1491         call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1492 <            pot, A, f, t, do_pot)
1492 >            pot(VDW_POT), A, f, t, do_pot)
1493      endif
1494 <
1495 <    if ( iand(iMap, SHAPE_LJ).ne.0 ) then      
1494 >    
1495 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1496         call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1497 <            pot, A, f, t, do_pot)
1497 >            pot(VDW_POT), A, f, t, do_pot)
1498      endif
1499 <    
1499 >
1500 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1501 >       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1502 >            pot(METALLIC_POT), f, do_pot)
1503 >    endif
1504 >    
1505    end subroutine do_pair
1506  
1507 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1507 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1508         do_pot, do_stress, eFrame, A, f, t, pot)
1509  
1510 <    real( kind = dp ) :: pot, sw
1510 >    real( kind = dp ) :: sw
1511 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1512      real( kind = dp ), dimension(9,nLocal) :: eFrame
1513      real (kind=dp), dimension(9,nLocal) :: A
1514      real (kind=dp), dimension(3,nLocal) :: f
# Line 1160 | Line 1516 | contains
1516  
1517      logical, intent(inout) :: do_pot, do_stress
1518      integer, intent(in) :: i, j
1519 <    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1519 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1520      real ( kind = dp )                :: r, rc
1521      real ( kind = dp ), intent(inout) :: d(3), dc(3)
1522  
1523 <    integer :: me_i, me_j, iMap
1523 >    integer :: me_i, me_j, iHash
1524  
1525 +    r = sqrt(rijsq)
1526 +    
1527   #ifdef IS_MPI  
1528      me_i = atid_row(i)
1529      me_j = atid_col(j)  
# Line 1174 | Line 1532 | contains
1532      me_j = atid(j)  
1533   #endif
1534  
1535 <    iMap = InteractionMap(me_i, me_j)%InteractionHash
1535 >    iHash = InteractionHash(me_i, me_j)
1536  
1537 <    if ( iand(iMap, EAM_PAIR).ne.0 ) then      
1538 <            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1537 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1538 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1539      endif
1540 +
1541 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1542 +            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1543 +    endif
1544      
1545    end subroutine do_prepair
1546  
1547  
1548    subroutine do_preforce(nlocal,pot)
1549      integer :: nlocal
1550 <    real( kind = dp ) :: pot
1550 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1551  
1552      if (FF_uses_EAM .and. SIM_uses_EAM) then
1553 <       call calc_EAM_preforce_Frho(nlocal,pot)
1553 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1554      endif
1555 <
1556 <
1555 >    if (FF_uses_SC .and. SIM_uses_SC) then
1556 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1557 >    endif
1558    end subroutine do_preforce
1559  
1560  
# Line 1203 | Line 1566 | contains
1566      real( kind = dp ) :: d(3), scaled(3)
1567      integer i
1568  
1569 <    d(1:3) = q_j(1:3) - q_i(1:3)
1569 >    d(1) = q_j(1) - q_i(1)
1570 >    d(2) = q_j(2) - q_i(2)
1571 >    d(3) = q_j(3) - q_i(3)
1572  
1573      ! Wrap back into periodic box if necessary
1574      if ( SIM_uses_PBC ) then
1575  
1576         if( .not.boxIsOrthorhombic ) then
1577            ! calc the scaled coordinates.
1578 +          ! scaled = matmul(HmatInv, d)
1579  
1580 <          scaled = matmul(HmatInv, d)
1581 <
1580 >          scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1581 >          scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1582 >          scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1583 >          
1584            ! wrap the scaled coordinates
1585  
1586 <          scaled = scaled  - anint(scaled)
1586 >          scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1587 >          scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1588 >          scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1589  
1220
1590            ! calc the wrapped real coordinates from the wrapped scaled
1591            ! coordinates
1592 <
1593 <          d = matmul(Hmat,scaled)
1592 >          ! d = matmul(Hmat,scaled)
1593 >          d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1594 >          d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1595 >          d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1596  
1597         else
1598            ! calc the scaled coordinates.
1599  
1600 <          do i = 1, 3
1601 <             scaled(i) = d(i) * HmatInv(i,i)
1600 >          scaled(1) = d(1) * HmatInv(1,1)
1601 >          scaled(2) = d(2) * HmatInv(2,2)
1602 >          scaled(3) = d(3) * HmatInv(3,3)
1603 >          
1604 >          ! wrap the scaled coordinates
1605 >          
1606 >          scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1607 >          scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1608 >          scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1609  
1610 <             ! wrap the scaled coordinates
1610 >          ! calc the wrapped real coordinates from the wrapped scaled
1611 >          ! coordinates
1612  
1613 <             scaled(i) = scaled(i) - anint(scaled(i))
1613 >          d(1) = scaled(1)*Hmat(1,1)
1614 >          d(2) = scaled(2)*Hmat(2,2)
1615 >          d(3) = scaled(3)*Hmat(3,3)
1616  
1236             ! calc the wrapped real coordinates from the wrapped scaled
1237             ! coordinates
1238
1239             d(i) = scaled(i)*Hmat(i,i)
1240          enddo
1617         endif
1618  
1619      endif
1620  
1621 <    r_sq = dot_product(d,d)
1621 >    r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1622  
1623    end subroutine get_interatomic_vector
1624  
# Line 1274 | Line 1650 | contains
1650      pot_Col = 0.0_dp
1651      pot_Temp = 0.0_dp
1652  
1277    rf_Row = 0.0_dp
1278    rf_Col = 0.0_dp
1279    rf_Temp = 0.0_dp
1280
1653   #endif
1654  
1655      if (FF_uses_EAM .and. SIM_uses_EAM) then
1656         call clean_EAM()
1657      endif
1658  
1287    rf = 0.0_dp
1288    tau_Temp = 0.0_dp
1289    virial_Temp = 0.0_dp
1659    end subroutine zero_work_arrays
1660  
1661    function skipThisPair(atom1, atom2) result(skip_it)
# Line 1373 | Line 1742 | contains
1742  
1743    function FF_UsesDirectionalAtoms() result(doesit)
1744      logical :: doesit
1745 <    doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1377 <         FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1378 <         FF_uses_StickyPower .or. FF_uses_GayBerne .or. FF_uses_Shapes
1745 >    doesit = FF_uses_DirectionalAtoms
1746    end function FF_UsesDirectionalAtoms
1747  
1748    function FF_RequiresPrepairCalc() result(doesit)
1749      logical :: doesit
1750 <    doesit = FF_uses_EAM
1750 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1751 >         .or. FF_uses_MEAM
1752    end function FF_RequiresPrepairCalc
1753  
1386  function FF_RequiresPostpairCalc() result(doesit)
1387    logical :: doesit
1388    doesit = FF_uses_RF
1389  end function FF_RequiresPostpairCalc
1390
1754   #ifdef PROFILE
1755    function getforcetime() result(totalforcetime)
1756      real(kind=dp) :: totalforcetime
# Line 1397 | Line 1760 | contains
1760  
1761    !! This cleans componets of force arrays belonging only to fortran
1762  
1763 <  subroutine add_stress_tensor(dpair, fpair)
1763 >  subroutine add_stress_tensor(dpair, fpair, tau)
1764  
1765      real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1766 +    real( kind = dp ), dimension(9), intent(inout) :: tau
1767  
1768      ! because the d vector is the rj - ri vector, and
1769      ! because fx, fy, fz are the force on atom i, we need a
1770      ! negative sign here:  
1771  
1772 <    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1773 <    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1774 <    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1775 <    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1776 <    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1777 <    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1778 <    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1779 <    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1780 <    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1772 >    tau(1) = tau(1) - dpair(1) * fpair(1)
1773 >    tau(2) = tau(2) - dpair(1) * fpair(2)
1774 >    tau(3) = tau(3) - dpair(1) * fpair(3)
1775 >    tau(4) = tau(4) - dpair(2) * fpair(1)
1776 >    tau(5) = tau(5) - dpair(2) * fpair(2)
1777 >    tau(6) = tau(6) - dpair(2) * fpair(3)
1778 >    tau(7) = tau(7) - dpair(3) * fpair(1)
1779 >    tau(8) = tau(8) - dpair(3) * fpair(2)
1780 >    tau(9) = tau(9) - dpair(3) * fpair(3)
1781  
1418    virial_Temp = virial_Temp + &
1419         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1420
1782    end subroutine add_stress_tensor
1783  
1784   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines