ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 2231 by chrisfen, Wed May 18 18:31:40 2005 UTC vs.
Revision 3133 by chuckv, Tue May 22 19:30:27 2007 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.18 2005-05-18 18:31:40 chrisfen Exp $, $Date: 2005-05-18 18:31:40 $, $Name: not supported by cvs2svn $, $Revision: 1.18 $
48 > !! @version $Id: doForces.F90,v 1.90 2007-05-22 19:30:27 chuckv Exp $, $Date: 2007-05-22 19:30:27 $, $Name: not supported by cvs2svn $, $Revision: 1.90 $
49  
50  
51   module doForces
# Line 58 | Line 58 | module doForces
58    use lj
59    use sticky
60    use electrostatic_module
61 <  use reaction_field
62 <  use gb_pair
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 72 | Line 72 | module doForces
72    PRIVATE
73  
74   #define __FORTRAN90
75 < #include "UseTheForce/fSwitchingFunction.h"
75 > #include "UseTheForce/fCutoffPolicy.h"
76 > #include "UseTheForce/DarkSide/fInteractionMap.h"
77 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
78  
79    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
80    INTEGER, PARAMETER:: PAIR_LOOP    = 2
81  
80  logical, save :: haveRlist = .false.
82    logical, save :: haveNeighborList = .false.
83    logical, save :: haveSIMvariables = .false.
83  logical, save :: havePropertyMap = .false.
84    logical, save :: haveSaneForceField = .false.
85 +  logical, save :: haveInteractionHash = .false.
86 +  logical, save :: haveGtypeCutoffMap = .false.
87 +  logical, save :: haveDefaultCutoffs = .false.
88 +  logical, save :: haveSkinThickness = .false.
89 +  logical, save :: haveElectrostaticSummationMethod = .false.
90 +  logical, save :: haveCutoffPolicy = .false.
91 +  logical, save :: VisitCutoffsAfterComputing = .false.
92 +  logical, save :: do_box_dipole = .false.
93  
94    logical, save :: FF_uses_DirectionalAtoms
87  logical, save :: FF_uses_LennardJones
88  logical, save :: FF_uses_Electrostatics
89  logical, save :: FF_uses_Charges
95    logical, save :: FF_uses_Dipoles
91  logical, save :: FF_uses_Quadrupoles
92  logical, save :: FF_uses_Sticky
93  logical, save :: FF_uses_StickyPower
96    logical, save :: FF_uses_GayBerne
97    logical, save :: FF_uses_EAM
98 <  logical, save :: FF_uses_Shapes
99 <  logical, save :: FF_uses_FLARB
100 <  logical, save :: FF_uses_RF
98 >  logical, save :: FF_uses_SC
99 >  logical, save :: FF_uses_MEAM
100 >
101  
102    logical, save :: SIM_uses_DirectionalAtoms
101  logical, save :: SIM_uses_LennardJones
102  logical, save :: SIM_uses_Electrostatics
103  logical, save :: SIM_uses_Charges
104  logical, save :: SIM_uses_Dipoles
105  logical, save :: SIM_uses_Quadrupoles
106  logical, save :: SIM_uses_Sticky
107  logical, save :: SIM_uses_StickyPower
108  logical, save :: SIM_uses_GayBerne
103    logical, save :: SIM_uses_EAM
104 <  logical, save :: SIM_uses_Shapes
105 <  logical, save :: SIM_uses_FLARB
112 <  logical, save :: SIM_uses_RF
104 >  logical, save :: SIM_uses_SC
105 >  logical, save :: SIM_uses_MEAM
106    logical, save :: SIM_requires_postpair_calc
107    logical, save :: SIM_requires_prepair_calc
108    logical, save :: SIM_uses_PBC
109 <  logical, save :: SIM_uses_molecular_cutoffs
109 >  logical, save :: SIM_uses_AtomicVirial
110  
111 <  real(kind=dp), save :: rlist, rlistsq
111 >  integer, save :: electrostaticSummationMethod
112 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
113  
114 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
115 +  real(kind=dp), save :: skinThickness
116 +  logical, save :: defaultDoShiftPot
117 +  logical, save :: defaultDoShiftFrc
118 +
119    public :: init_FF
120 +  public :: setCutoffs
121 +  public :: cWasLame
122 +  public :: setElectrostaticMethod
123 +  public :: setBoxDipole
124 +  public :: getBoxDipole
125 +  public :: setCutoffPolicy
126 +  public :: setSkinThickness
127    public :: do_force_loop
122  public :: setRlistDF
128  
129   #ifdef PROFILE
130    public :: getforcetime
# Line 127 | Line 132 | module doForces
132    real :: forceTimeInitial, forceTimeFinal
133    integer :: nLoops
134   #endif
135 +  
136 +  !! Variables for cutoff mapping and interaction mapping
137 +  ! Bit hash to determine pair-pair interactions.
138 +  integer, dimension(:,:), allocatable :: InteractionHash
139 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
140 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
141 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
142  
143 <  type :: Properties
144 <     logical :: is_Directional   = .false.
133 <     logical :: is_LennardJones  = .false.
134 <     logical :: is_Electrostatic = .false.
135 <     logical :: is_Charge        = .false.
136 <     logical :: is_Dipole        = .false.
137 <     logical :: is_Quadrupole    = .false.
138 <     logical :: is_Sticky        = .false.
139 <     logical :: is_StickyPower   = .false.
140 <     logical :: is_GayBerne      = .false.
141 <     logical :: is_EAM           = .false.
142 <     logical :: is_Shape         = .false.
143 <     logical :: is_FLARB         = .false.
144 <  end type Properties
143 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
144 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
145  
146 <  type(Properties), dimension(:),allocatable :: PropertyMap
146 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
147 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
148 >  type ::gtypeCutoffs
149 >     real(kind=dp) :: rcut
150 >     real(kind=dp) :: rcutsq
151 >     real(kind=dp) :: rlistsq
152 >  end type gtypeCutoffs
153 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
154  
155 +  real(kind=dp), dimension(3) :: boxDipole
156 +
157   contains
158  
159 <  subroutine setRlistDF( this_rlist )
151 <
152 <    real(kind=dp) :: this_rlist
153 <
154 <    rlist = this_rlist
155 <    rlistsq = rlist * rlist
156 <
157 <    haveRlist = .true.
158 <
159 <  end subroutine setRlistDF
160 <
161 <  subroutine createPropertyMap(status)
159 >  subroutine createInteractionHash()
160      integer :: nAtypes
163    integer :: status
161      integer :: i
162 <    logical :: thisProperty
163 <    real (kind=DP) :: thisDPproperty
162 >    integer :: j
163 >    integer :: iHash
164 >    !! Test Types
165 >    logical :: i_is_LJ
166 >    logical :: i_is_Elect
167 >    logical :: i_is_Sticky
168 >    logical :: i_is_StickyP
169 >    logical :: i_is_GB
170 >    logical :: i_is_EAM
171 >    logical :: i_is_Shape
172 >    logical :: i_is_SC
173 >    logical :: i_is_MEAM
174 >    logical :: j_is_LJ
175 >    logical :: j_is_Elect
176 >    logical :: j_is_Sticky
177 >    logical :: j_is_StickyP
178 >    logical :: j_is_GB
179 >    logical :: j_is_EAM
180 >    logical :: j_is_Shape
181 >    logical :: j_is_SC
182 >    logical :: j_is_MEAM
183 >    real(kind=dp) :: myRcut
184  
185 <    status = 0
186 <
185 >    if (.not. associated(atypes)) then
186 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
187 >       return
188 >    endif
189 >    
190      nAtypes = getSize(atypes)
191 <
191 >    
192      if (nAtypes == 0) then
193 <       status = -1
193 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
194         return
195      end if
196  
197 <    if (.not. allocated(PropertyMap)) then
198 <       allocate(PropertyMap(nAtypes))
197 >    if (.not. allocated(InteractionHash)) then
198 >       allocate(InteractionHash(nAtypes,nAtypes))
199 >    else
200 >       deallocate(InteractionHash)
201 >       allocate(InteractionHash(nAtypes,nAtypes))
202      endif
203  
204 +    if (.not. allocated(atypeMaxCutoff)) then
205 +       allocate(atypeMaxCutoff(nAtypes))
206 +    else
207 +       deallocate(atypeMaxCutoff)
208 +       allocate(atypeMaxCutoff(nAtypes))
209 +    endif
210 +        
211      do i = 1, nAtypes
212 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
213 <       PropertyMap(i)%is_Directional = thisProperty
212 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
213 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
214 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
215 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
216 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
217 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
218 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
219 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
220 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
221  
222 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
186 <       PropertyMap(i)%is_LennardJones = thisProperty
222 >       do j = i, nAtypes
223  
224 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
225 <       PropertyMap(i)%is_Electrostatic = thisProperty
224 >          iHash = 0
225 >          myRcut = 0.0_dp
226  
227 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
228 <       PropertyMap(i)%is_Charge = thisProperty
227 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
228 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
229 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
230 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
231 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
232 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
233 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
234 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
235 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
236  
237 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
238 <       PropertyMap(i)%is_Dipole = thisProperty
237 >          if (i_is_LJ .and. j_is_LJ) then
238 >             iHash = ior(iHash, LJ_PAIR)            
239 >          endif
240 >          
241 >          if (i_is_Elect .and. j_is_Elect) then
242 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
243 >          endif
244 >          
245 >          if (i_is_Sticky .and. j_is_Sticky) then
246 >             iHash = ior(iHash, STICKY_PAIR)
247 >          endif
248  
249 <       call getElementProperty(atypes, i, "is_Quadrupole", thisProperty)
250 <       PropertyMap(i)%is_Quadrupole = thisProperty
249 >          if (i_is_StickyP .and. j_is_StickyP) then
250 >             iHash = ior(iHash, STICKYPOWER_PAIR)
251 >          endif
252  
253 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
254 <       PropertyMap(i)%is_Sticky = thisProperty
255 <      
203 <       call getElementProperty(atypes, i, "is_StickyPower", thisProperty)
204 <       PropertyMap(i)%is_StickyPower = thisProperty
205 <
206 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
207 <       PropertyMap(i)%is_GayBerne = thisProperty
253 >          if (i_is_EAM .and. j_is_EAM) then
254 >             iHash = ior(iHash, EAM_PAIR)
255 >          endif
256  
257 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
258 <       PropertyMap(i)%is_EAM = thisProperty
257 >          if (i_is_SC .and. j_is_SC) then
258 >             iHash = ior(iHash, SC_PAIR)
259 >          endif
260  
261 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
262 <       PropertyMap(i)%is_Shape = thisProperty
261 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
262 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
263 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
264  
265 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
266 <       PropertyMap(i)%is_FLARB = thisProperty
265 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
266 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
267 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
268 >
269 >
270 >          InteractionHash(i,j) = iHash
271 >          InteractionHash(j,i) = iHash
272 >
273 >       end do
274 >
275      end do
276  
277 <    havePropertyMap = .true.
277 >    haveInteractionHash = .true.
278 >  end subroutine createInteractionHash
279  
280 <  end subroutine createPropertyMap
280 >  subroutine createGtypeCutoffMap()
281  
282 <  subroutine setSimVariables()
283 <    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
284 <    SIM_uses_LennardJones = SimUsesLennardJones()
285 <    SIM_uses_Electrostatics = SimUsesElectrostatics()
286 <    SIM_uses_Charges = SimUsesCharges()
287 <    SIM_uses_Dipoles = SimUsesDipoles()
288 <    SIM_uses_Sticky = SimUsesSticky()
289 <    SIM_uses_StickyPower = SimUsesStickyPower()
290 <    SIM_uses_GayBerne = SimUsesGayBerne()
232 <    SIM_uses_EAM = SimUsesEAM()
233 <    SIM_uses_Shapes = SimUsesShapes()
234 <    SIM_uses_FLARB = SimUsesFLARB()
235 <    SIM_uses_RF = SimUsesRF()
236 <    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
237 <    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
238 <    SIM_uses_PBC = SimUsesPBC()
282 >    logical :: i_is_LJ
283 >    logical :: i_is_Elect
284 >    logical :: i_is_Sticky
285 >    logical :: i_is_StickyP
286 >    logical :: i_is_GB
287 >    logical :: i_is_EAM
288 >    logical :: i_is_Shape
289 >    logical :: i_is_SC
290 >    logical :: GtypeFound
291  
292 <    haveSIMvariables = .true.
292 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
293 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
294 >    integer :: nGroupsInRow
295 >    integer :: nGroupsInCol
296 >    integer :: nGroupTypesRow,nGroupTypesCol
297 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
298 >    real(kind=dp) :: biggestAtypeCutoff
299  
300 <    return
301 <  end subroutine setSimVariables
300 >    if (.not. haveInteractionHash) then
301 >       call createInteractionHash()      
302 >    endif
303 > #ifdef IS_MPI
304 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
305 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
306 > #endif
307 >    nAtypes = getSize(atypes)
308 > ! Set all of the initial cutoffs to zero.
309 >    atypeMaxCutoff = 0.0_dp
310 >    do i = 1, nAtypes
311 >       if (SimHasAtype(i)) then    
312 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
313 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
314 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
315 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
316 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
317 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
318 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
319 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
320 >
321 >          if (haveDefaultCutoffs) then
322 >             atypeMaxCutoff(i) = defaultRcut
323 >          else
324 >             if (i_is_LJ) then          
325 >                thisRcut = getSigma(i) * 2.5_dp
326 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
327 >             endif
328 >             if (i_is_Elect) then
329 >                thisRcut = defaultRcut
330 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
331 >             endif
332 >             if (i_is_Sticky) then
333 >                thisRcut = getStickyCut(i)
334 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
335 >             endif
336 >             if (i_is_StickyP) then
337 >                thisRcut = getStickyPowerCut(i)
338 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
339 >             endif
340 >             if (i_is_GB) then
341 >                thisRcut = getGayBerneCut(i)
342 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
343 >             endif
344 >             if (i_is_EAM) then
345 >                thisRcut = getEAMCut(i)
346 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
347 >             endif
348 >             if (i_is_Shape) then
349 >                thisRcut = getShapeCut(i)
350 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
351 >             endif
352 >             if (i_is_SC) then
353 >                thisRcut = getSCCut(i)
354 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
355 >             endif
356 >          endif
357 >                    
358 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
359 >             biggestAtypeCutoff = atypeMaxCutoff(i)
360 >          endif
361  
362 <  subroutine doReadyCheck(error)
363 <    integer, intent(out) :: error
362 >       endif
363 >    enddo
364 >    
365 >    istart = 1
366 >    jstart = 1
367 > #ifdef IS_MPI
368 >    iend = nGroupsInRow
369 >    jend = nGroupsInCol
370 > #else
371 >    iend = nGroups
372 >    jend = nGroups
373 > #endif
374 >    
375 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
376 >    if(.not.allocated(groupToGtypeRow)) then
377 >     !  allocate(groupToGtype(iend))
378 >       allocate(groupToGtypeRow(iend))
379 >    else
380 >       deallocate(groupToGtypeRow)
381 >       allocate(groupToGtypeRow(iend))
382 >    endif
383 >    if(.not.allocated(groupMaxCutoffRow)) then
384 >       allocate(groupMaxCutoffRow(iend))
385 >    else
386 >       deallocate(groupMaxCutoffRow)
387 >       allocate(groupMaxCutoffRow(iend))
388 >    end if
389  
390 <    integer :: myStatus
390 >    if(.not.allocated(gtypeMaxCutoffRow)) then
391 >       allocate(gtypeMaxCutoffRow(iend))
392 >    else
393 >       deallocate(gtypeMaxCutoffRow)
394 >       allocate(gtypeMaxCutoffRow(iend))
395 >    endif
396  
250    error = 0
397  
398 <    if (.not. havePropertyMap) then
398 > #ifdef IS_MPI
399 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
400 >    if(.not.associated(groupToGtypeCol)) then
401 >       allocate(groupToGtypeCol(jend))
402 >    else
403 >       deallocate(groupToGtypeCol)
404 >       allocate(groupToGtypeCol(jend))
405 >    end if
406  
407 <       myStatus = 0
407 >    if(.not.associated(groupMaxCutoffCol)) then
408 >       allocate(groupMaxCutoffCol(jend))
409 >    else
410 >       deallocate(groupMaxCutoffCol)
411 >       allocate(groupMaxCutoffCol(jend))
412 >    end if
413 >    if(.not.associated(gtypeMaxCutoffCol)) then
414 >       allocate(gtypeMaxCutoffCol(jend))
415 >    else
416 >       deallocate(gtypeMaxCutoffCol)      
417 >       allocate(gtypeMaxCutoffCol(jend))
418 >    end if
419  
420 <       call createPropertyMap(myStatus)
420 >       groupMaxCutoffCol = 0.0_dp
421 >       gtypeMaxCutoffCol = 0.0_dp
422  
423 <       if (myStatus .ne. 0) then
424 <          write(default_error, *) 'createPropertyMap failed in doForces!'
425 <          error = -1
426 <          return
423 > #endif
424 >       groupMaxCutoffRow = 0.0_dp
425 >       gtypeMaxCutoffRow = 0.0_dp
426 >
427 >
428 >    !! first we do a single loop over the cutoff groups to find the
429 >    !! largest cutoff for any atypes present in this group.  We also
430 >    !! create gtypes at this point.
431 >    
432 >    tol = 1.0e-6_dp
433 >    nGroupTypesRow = 0
434 >    nGroupTypesCol = 0
435 >    do i = istart, iend      
436 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
437 >       groupMaxCutoffRow(i) = 0.0_dp
438 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
439 >          atom1 = groupListRow(ia)
440 > #ifdef IS_MPI
441 >          me_i = atid_row(atom1)
442 > #else
443 >          me_i = atid(atom1)
444 > #endif          
445 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
446 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
447 >          endif          
448 >       enddo
449 >       if (nGroupTypesRow.eq.0) then
450 >          nGroupTypesRow = nGroupTypesRow + 1
451 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
452 >          groupToGtypeRow(i) = nGroupTypesRow
453 >       else
454 >          GtypeFound = .false.
455 >          do g = 1, nGroupTypesRow
456 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
457 >                groupToGtypeRow(i) = g
458 >                GtypeFound = .true.
459 >             endif
460 >          enddo
461 >          if (.not.GtypeFound) then            
462 >             nGroupTypesRow = nGroupTypesRow + 1
463 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
464 >             groupToGtypeRow(i) = nGroupTypesRow
465 >          endif
466         endif
467 +    enddo    
468 +
469 + #ifdef IS_MPI
470 +    do j = jstart, jend      
471 +       n_in_j = groupStartCol(j+1) - groupStartCol(j)
472 +       groupMaxCutoffCol(j) = 0.0_dp
473 +       do ja = groupStartCol(j), groupStartCol(j+1)-1
474 +          atom1 = groupListCol(ja)
475 +
476 +          me_j = atid_col(atom1)
477 +
478 +          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
479 +             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
480 +          endif          
481 +       enddo
482 +
483 +       if (nGroupTypesCol.eq.0) then
484 +          nGroupTypesCol = nGroupTypesCol + 1
485 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
486 +          groupToGtypeCol(j) = nGroupTypesCol
487 +       else
488 +          GtypeFound = .false.
489 +          do g = 1, nGroupTypesCol
490 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
491 +                groupToGtypeCol(j) = g
492 +                GtypeFound = .true.
493 +             endif
494 +          enddo
495 +          if (.not.GtypeFound) then            
496 +             nGroupTypesCol = nGroupTypesCol + 1
497 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
498 +             groupToGtypeCol(j) = nGroupTypesCol
499 +          endif
500 +       endif
501 +    enddo    
502 +
503 + #else
504 + ! Set pointers to information we just found
505 +    nGroupTypesCol = nGroupTypesRow
506 +    groupToGtypeCol => groupToGtypeRow
507 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
508 +    groupMaxCutoffCol => groupMaxCutoffRow
509 + #endif
510 +
511 +    !! allocate the gtypeCutoffMap here.
512 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
513 +    !! then we do a double loop over all the group TYPES to find the cutoff
514 +    !! map between groups of two types
515 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
516 +
517 +    do i = 1, nGroupTypesRow      
518 +       do j = 1, nGroupTypesCol
519 +      
520 +          select case(cutoffPolicy)
521 +          case(TRADITIONAL_CUTOFF_POLICY)
522 +             thisRcut = tradRcut
523 +          case(MIX_CUTOFF_POLICY)
524 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
525 +          case(MAX_CUTOFF_POLICY)
526 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
527 +          case default
528 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
529 +             return
530 +          end select
531 +          gtypeCutoffMap(i,j)%rcut = thisRcut
532 +          
533 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
534 +
535 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
536 +
537 +          if (.not.haveSkinThickness) then
538 +             skinThickness = 1.0_dp
539 +          endif
540 +
541 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
542 +
543 +          ! sanity check
544 +
545 +          if (haveDefaultCutoffs) then
546 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
547 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
548 +             endif
549 +          endif
550 +       enddo
551 +    enddo
552 +
553 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
554 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
555 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
556 + #ifdef IS_MPI
557 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
558 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
559 + #endif
560 +    groupMaxCutoffCol => null()
561 +    gtypeMaxCutoffCol => null()
562 +    
563 +    haveGtypeCutoffMap = .true.
564 +   end subroutine createGtypeCutoffMap
565 +
566 +   subroutine setCutoffs(defRcut, defRsw, defSP, defSF)
567 +
568 +     real(kind=dp),intent(in) :: defRcut, defRsw
569 +     logical, intent(in) :: defSP, defSF
570 +     character(len = statusMsgSize) :: errMsg
571 +     integer :: localError
572 +
573 +     defaultRcut = defRcut
574 +     defaultRsw = defRsw
575 +    
576 +     defaultDoShiftPot = defSP
577 +     defaultDoShiftFrc = defSF
578 +
579 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
580 +        if (defaultDoShiftFrc) then
581 +           write(errMsg, *) &
582 +                'cutoffRadius and switchingRadius are set to the', newline &
583 +                // tab, 'same value.  OOPSE will use shifted force', newline &
584 +                // tab, 'potentials instead of switching functions.'
585 +          
586 +           call handleInfo("setCutoffs", errMsg)
587 +        else
588 +           write(errMsg, *) &
589 +                'cutoffRadius and switchingRadius are set to the', newline &
590 +                // tab, 'same value.  OOPSE will use shifted', newline &
591 +                // tab, 'potentials instead of switching functions.'
592 +          
593 +           call handleInfo("setCutoffs", errMsg)
594 +          
595 +           defaultDoShiftPot = .true.
596 +        endif
597 +                
598 +     endif
599 +    
600 +     localError = 0
601 +     call setLJDefaultCutoff( defaultRcut, defaultDoShiftPot, &
602 +          defaultDoShiftFrc )
603 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
604 +     call setCutoffEAM( defaultRcut )
605 +     call setCutoffSC( defaultRcut )
606 +     call set_switch(defaultRsw, defaultRcut)
607 +     call setHmatDangerousRcutValue(defaultRcut)
608 +        
609 +     haveDefaultCutoffs = .true.
610 +     haveGtypeCutoffMap = .false.
611 +
612 +   end subroutine setCutoffs
613 +
614 +   subroutine cWasLame()
615 +    
616 +     VisitCutoffsAfterComputing = .true.
617 +     return
618 +    
619 +   end subroutine cWasLame
620 +  
621 +   subroutine setCutoffPolicy(cutPolicy)
622 +    
623 +     integer, intent(in) :: cutPolicy
624 +    
625 +     cutoffPolicy = cutPolicy
626 +     haveCutoffPolicy = .true.
627 +     haveGtypeCutoffMap = .false.
628 +    
629 +   end subroutine setCutoffPolicy
630 +    
631 +   subroutine setBoxDipole()
632 +
633 +     do_box_dipole = .true.
634 +    
635 +   end subroutine setBoxDipole
636 +
637 +   subroutine getBoxDipole( box_dipole )
638 +
639 +     real(kind=dp), intent(inout), dimension(3) :: box_dipole
640 +
641 +     box_dipole = boxDipole
642 +
643 +   end subroutine getBoxDipole
644 +
645 +   subroutine setElectrostaticMethod( thisESM )
646 +
647 +     integer, intent(in) :: thisESM
648 +
649 +     electrostaticSummationMethod = thisESM
650 +     haveElectrostaticSummationMethod = .true.
651 +    
652 +   end subroutine setElectrostaticMethod
653 +
654 +   subroutine setSkinThickness( thisSkin )
655 +    
656 +     real(kind=dp), intent(in) :: thisSkin
657 +    
658 +     skinThickness = thisSkin
659 +     haveSkinThickness = .true.    
660 +     haveGtypeCutoffMap = .false.
661 +    
662 +   end subroutine setSkinThickness
663 +      
664 +   subroutine setSimVariables()
665 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
666 +     SIM_uses_EAM = SimUsesEAM()
667 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
668 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
669 +     SIM_uses_PBC = SimUsesPBC()
670 +     SIM_uses_SC = SimUsesSC()
671 +     SIM_uses_AtomicVirial = SimUsesAtomicVirial()
672 +
673 +     haveSIMvariables = .true.
674 +    
675 +     return
676 +   end subroutine setSimVariables
677 +
678 +  subroutine doReadyCheck(error)
679 +    integer, intent(out) :: error
680 +    integer :: myStatus
681 +
682 +    error = 0
683 +
684 +    if (.not. haveInteractionHash) then      
685 +       call createInteractionHash()      
686      endif
687  
688 <    if (.not. haveSIMvariables) then
689 <       call setSimVariables()
688 >    if (.not. haveGtypeCutoffMap) then        
689 >       call createGtypeCutoffMap()      
690      endif
691  
692 <    if (.not. haveRlist) then
693 <       write(default_error, *) 'rList has not been set in doForces!'
694 <       error = -1
695 <       return
692 >    if (VisitCutoffsAfterComputing) then
693 >       call set_switch(largestRcut, largestRcut)      
694 >       call setHmatDangerousRcutValue(largestRcut)
695 >       call setCutoffEAM(largestRcut)
696 >       call setCutoffSC(largestRcut)
697 >       VisitCutoffsAfterComputing = .false.
698      endif
699  
700 +    if (.not. haveSIMvariables) then
701 +       call setSimVariables()
702 +    endif
703 +
704      if (.not. haveNeighborList) then
705         write(default_error, *) 'neighbor list has not been initialized in doForces!'
706         error = -1
707         return
708      end if
709 <
709 >    
710      if (.not. haveSaneForceField) then
711         write(default_error, *) 'Force Field is not sane in doForces!'
712         error = -1
713         return
714      end if
715 <
715 >    
716   #ifdef IS_MPI
717      if (.not. isMPISimSet()) then
718         write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
# Line 295 | Line 724 | contains
724    end subroutine doReadyCheck
725  
726  
727 <  subroutine init_FF(use_RF_c, thisStat)
727 >  subroutine init_FF(thisStat)
728  
300    logical, intent(in) :: use_RF_c
301
729      integer, intent(out) :: thisStat  
730      integer :: my_status, nMatches
731      integer, pointer :: MatchList(:) => null()
305    real(kind=dp) :: rcut, rrf, rt, dielect
732  
733      !! assume things are copacetic, unless they aren't
734      thisStat = 0
735  
310    !! Fortran's version of a cast:
311    FF_uses_RF = use_RF_c
312
736      !! init_FF is called *after* all of the atom types have been
737      !! defined in atype_module using the new_atype subroutine.
738      !!
# Line 317 | Line 740 | contains
740      !! interactions are used by the force field.    
741  
742      FF_uses_DirectionalAtoms = .false.
320    FF_uses_LennardJones = .false.
321    FF_uses_Electrostatics = .false.
322    FF_uses_Charges = .false.    
743      FF_uses_Dipoles = .false.
324    FF_uses_Sticky = .false.
325    FF_uses_StickyPower = .false.
744      FF_uses_GayBerne = .false.
745      FF_uses_EAM = .false.
746 <    FF_uses_Shapes = .false.
329 <    FF_uses_FLARB = .false.
746 >    FF_uses_SC = .false.
747  
748      call getMatchingElementList(atypes, "is_Directional", .true., &
749           nMatches, MatchList)
750      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
751  
335    call getMatchingElementList(atypes, "is_LennardJones", .true., &
336         nMatches, MatchList)
337    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
338
339    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
340         nMatches, MatchList)
341    if (nMatches .gt. 0) then
342       FF_uses_Electrostatics = .true.
343    endif
344
345    call getMatchingElementList(atypes, "is_Charge", .true., &
346         nMatches, MatchList)
347    if (nMatches .gt. 0) then
348       FF_uses_Charges = .true.  
349       FF_uses_Electrostatics = .true.
350    endif
351
752      call getMatchingElementList(atypes, "is_Dipole", .true., &
753           nMatches, MatchList)
754 <    if (nMatches .gt. 0) then
355 <       FF_uses_Dipoles = .true.
356 <       FF_uses_Electrostatics = .true.
357 <       FF_uses_DirectionalAtoms = .true.
358 <    endif
359 <
360 <    call getMatchingElementList(atypes, "is_Quadrupole", .true., &
361 <         nMatches, MatchList)
362 <    if (nMatches .gt. 0) then
363 <       FF_uses_Quadrupoles = .true.
364 <       FF_uses_Electrostatics = .true.
365 <       FF_uses_DirectionalAtoms = .true.
366 <    endif
367 <
368 <    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
369 <         MatchList)
370 <    if (nMatches .gt. 0) then
371 <       FF_uses_Sticky = .true.
372 <       FF_uses_DirectionalAtoms = .true.
373 <    endif
374 <
375 <    call getMatchingElementList(atypes, "is_StickyPower", .true., nMatches, &
376 <         MatchList)
377 <    if (nMatches .gt. 0) then
378 <       FF_uses_StickyPower = .true.
379 <       FF_uses_DirectionalAtoms = .true.
380 <    endif
754 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
755      
756      call getMatchingElementList(atypes, "is_GayBerne", .true., &
757           nMatches, MatchList)
758 <    if (nMatches .gt. 0) then
385 <       FF_uses_GayBerne = .true.
386 <       FF_uses_DirectionalAtoms = .true.
387 <    endif
758 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
759  
760      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
761      if (nMatches .gt. 0) FF_uses_EAM = .true.
762  
763 <    call getMatchingElementList(atypes, "is_Shape", .true., &
764 <         nMatches, MatchList)
394 <    if (nMatches .gt. 0) then
395 <       FF_uses_Shapes = .true.
396 <       FF_uses_DirectionalAtoms = .true.
397 <    endif
763 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
764 >    if (nMatches .gt. 0) FF_uses_SC = .true.
765  
399    call getMatchingElementList(atypes, "is_FLARB", .true., &
400         nMatches, MatchList)
401    if (nMatches .gt. 0) FF_uses_FLARB = .true.
766  
403    !! Assume sanity (for the sake of argument)
767      haveSaneForceField = .true.
768  
406    !! check to make sure the FF_uses_RF setting makes sense
407
408    if (FF_uses_dipoles) then
409       if (FF_uses_RF) then
410          dielect = getDielect()
411          call initialize_rf(dielect)
412       endif
413    else
414       if (FF_uses_RF) then          
415          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
416          thisStat = -1
417          haveSaneForceField = .false.
418          return
419       endif
420    endif
421
422    !sticky module does not contain check_sticky_FF anymore
423    !if (FF_uses_sticky) then
424    !   call check_sticky_FF(my_status)
425    !   if (my_status /= 0) then
426    !      thisStat = -1
427    !      haveSaneForceField = .false.
428    !      return
429    !   end if
430    !endif
431
769      if (FF_uses_EAM) then
770         call init_EAM_FF(my_status)
771         if (my_status /= 0) then
# Line 439 | Line 776 | contains
776         end if
777      endif
778  
442    if (FF_uses_GayBerne) then
443       call check_gb_pair_FF(my_status)
444       if (my_status .ne. 0) then
445          thisStat = -1
446          haveSaneForceField = .false.
447          return
448       endif
449    endif
450
451    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
452    endif
453
779      if (.not. haveNeighborList) then
780         !! Create neighbor lists
781         call expandNeighborList(nLocal, my_status)
# Line 484 | Line 809 | contains
809  
810      !! Stress Tensor
811      real( kind = dp), dimension(9) :: tau  
812 <    real ( kind = dp ) :: pot
812 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
813      logical ( kind = 2) :: do_pot_c, do_stress_c
814      logical :: do_pot
815      logical :: do_stress
816      logical :: in_switching_region
817   #ifdef IS_MPI
818 <    real( kind = DP ) :: pot_local
818 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
819      integer :: nAtomsInRow
820      integer :: nAtomsInCol
821      integer :: nprocs
# Line 503 | Line 828 | contains
828      integer :: istart, iend
829      integer :: ia, jb, atom1, atom2
830      integer :: nlist
831 <    real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
831 >    real( kind = DP ) :: ratmsq, rgrpsq, rgrp, rag, vpair, vij
832      real( kind = DP ) :: sw, dswdr, swderiv, mf
833 <    real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
834 <    real(kind=dp) :: rfpot, mu_i, virial
833 >    real( kind = DP ) :: rVal
834 >    real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij, fg, dag
835 >    real(kind=dp) :: rfpot, mu_i
836 >    real(kind=dp):: rCut
837      integer :: me_i, me_j, n_in_i, n_in_j
838      logical :: is_dp_i
839      integer :: neighborListSize
# Line 514 | Line 841 | contains
841      integer :: localError
842      integer :: propPack_i, propPack_j
843      integer :: loopStart, loopEnd, loop
844 +    integer :: iHash
845 +    integer :: i1
846  
847 <    real(kind=dp) :: listSkin = 1.0  
847 >    !! the variables for the box dipole moment
848 > #ifdef IS_MPI
849 >    integer :: pChgCount_local
850 >    integer :: nChgCount_local
851 >    real(kind=dp) :: pChg_local
852 >    real(kind=dp) :: nChg_local
853 >    real(kind=dp), dimension(3) :: pChgPos_local
854 >    real(kind=dp), dimension(3) :: nChgPos_local
855 >    real(kind=dp), dimension(3) :: dipVec_local
856 > #endif
857 >    integer :: pChgCount
858 >    integer :: nChgCount
859 >    real(kind=dp) :: pChg
860 >    real(kind=dp) :: nChg
861 >    real(kind=dp) :: chg_value
862 >    real(kind=dp), dimension(3) :: pChgPos
863 >    real(kind=dp), dimension(3) :: nChgPos
864 >    real(kind=dp), dimension(3) :: dipVec
865 >    real(kind=dp), dimension(3) :: chgVec
866  
867 +    !! initialize box dipole variables
868 +    if (do_box_dipole) then
869 + #ifdef IS_MPI
870 +       pChg_local = 0.0_dp
871 +       nChg_local = 0.0_dp
872 +       pChgCount_local = 0
873 +       nChgCount_local = 0
874 +       do i=1, 3
875 +          pChgPos_local = 0.0_dp
876 +          nChgPos_local = 0.0_dp
877 +          dipVec_local = 0.0_dp
878 +       enddo
879 + #endif
880 +       pChg = 0.0_dp
881 +       nChg = 0.0_dp
882 +       pChgCount = 0
883 +       nChgCount = 0
884 +       chg_value = 0.0_dp
885 +      
886 +       do i=1, 3
887 +          pChgPos(i) = 0.0_dp
888 +          nChgPos(i) = 0.0_dp
889 +          dipVec(i) = 0.0_dp
890 +          chgVec(i) = 0.0_dp
891 +          boxDipole(i) = 0.0_dp
892 +       enddo
893 +    endif
894 +
895      !! initialize local variables  
896  
897   #ifdef IS_MPI
# Line 579 | Line 954 | contains
954         ! (but only on the first time through):
955         if (loop .eq. loopStart) then
956   #ifdef IS_MPI
957 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
957 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
958                 update_nlist)
959   #else
960 <          call checkNeighborList(nGroups, q_group, listSkin, &
960 >          call checkNeighborList(nGroups, q_group, skinThickness, &
961                 update_nlist)
962   #endif
963         endif
# Line 633 | Line 1008 | contains
1008               endif
1009  
1010   #ifdef IS_MPI
1011 +             me_j = atid_col(j)
1012               call get_interatomic_vector(q_group_Row(:,i), &
1013                    q_group_Col(:,j), d_grp, rgrpsq)
1014   #else
1015 +             me_j = atid(j)
1016               call get_interatomic_vector(q_group(:,i), &
1017                    q_group(:,j), d_grp, rgrpsq)
1018 < #endif
1018 > #endif      
1019  
1020 <             if (rgrpsq < rlistsq) then
1020 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
1021                  if (update_nlist) then
1022                     nlist = nlist + 1
1023  
# Line 660 | Line 1037 | contains
1037  
1038                     list(nlist) = j
1039                  endif
1040 +                
1041 +                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
1042  
1043 <                if (loop .eq. PAIR_LOOP) then
1044 <                   vij = 0.0d0
1045 <                   fij(1:3) = 0.0d0
1046 <                endif
1047 <
1048 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
1049 <                     in_switching_region)
1050 <
1051 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
1052 <
1053 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
1054 <
1055 <                   atom1 = groupListRow(ia)
1056 <
1057 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1058 <
1059 <                      atom2 = groupListCol(jb)
1060 <
1061 <                      if (skipThisPair(atom1, atom2)) cycle inner
1062 <
1063 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1064 <                         d_atm(1:3) = d_grp(1:3)
1065 <                         ratmsq = rgrpsq
1066 <                      else
1067 < #ifdef IS_MPI
1068 <                         call get_interatomic_vector(q_Row(:,atom1), &
1069 <                              q_Col(:,atom2), d_atm, ratmsq)
1070 < #else
1071 <                         call get_interatomic_vector(q(:,atom1), &
1072 <                              q(:,atom2), d_atm, ratmsq)
1073 < #endif
1074 <                      endif
1075 <
1076 <                      if (loop .eq. PREPAIR_LOOP) then
1077 < #ifdef IS_MPI                      
1078 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1079 <                              rgrpsq, d_grp, do_pot, do_stress, &
1080 <                              eFrame, A, f, t, pot_local)
1081 < #else
1082 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1083 <                              rgrpsq, d_grp, do_pot, do_stress, &
1084 <                              eFrame, A, f, t, pot)
1043 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
1044 >                   if (loop .eq. PAIR_LOOP) then
1045 >                      vij = 0.0_dp
1046 >                      fij(1) = 0.0_dp
1047 >                      fij(2) = 0.0_dp
1048 >                      fij(3) = 0.0_dp
1049 >                   endif
1050 >                  
1051 >                   call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
1052 >                  
1053 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
1054 >                  
1055 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
1056 >                      
1057 >                      atom1 = groupListRow(ia)
1058 >                      
1059 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
1060 >                        
1061 >                         atom2 = groupListCol(jb)
1062 >                        
1063 >                         if (skipThisPair(atom1, atom2))  cycle inner
1064 >                        
1065 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1066 >                            d_atm(1) = d_grp(1)
1067 >                            d_atm(2) = d_grp(2)
1068 >                            d_atm(3) = d_grp(3)
1069 >                            ratmsq = rgrpsq
1070 >                         else
1071 > #ifdef IS_MPI
1072 >                            call get_interatomic_vector(q_Row(:,atom1), &
1073 >                                 q_Col(:,atom2), d_atm, ratmsq)
1074 > #else
1075 >                            call get_interatomic_vector(q(:,atom1), &
1076 >                                 q(:,atom2), d_atm, ratmsq)
1077 > #endif
1078 >                         endif
1079 >                        
1080 >                         if (loop .eq. PREPAIR_LOOP) then
1081 > #ifdef IS_MPI                      
1082 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1083 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1084 >                                 eFrame, A, f, t, pot_local)
1085 > #else
1086 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1087 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1088 >                                 eFrame, A, f, t, pot)
1089   #endif                                              
1090 <                      else
1090 >                         else
1091   #ifdef IS_MPI                      
1092 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1093 <                              do_pot, &
1094 <                              eFrame, A, f, t, pot_local, vpair, fpair)
1092 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1093 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1094 >                                 fpair, d_grp, rgrp, rCut)
1095   #else
1096 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1097 <                              do_pot,  &
1098 <                              eFrame, A, f, t, pot, vpair, fpair)
1096 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1097 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1098 >                                 d_grp, rgrp, rCut)
1099   #endif
1100 +                            vij = vij + vpair
1101 +                            fij(1) = fij(1) + fpair(1)
1102 +                            fij(2) = fij(2) + fpair(2)
1103 +                            fij(3) = fij(3) + fpair(3)
1104 +                            if (do_stress) then
1105 +                               call add_stress_tensor(d_atm, fpair, tau)
1106 +                            endif
1107 +                         endif
1108 +                      enddo inner
1109 +                   enddo
1110  
1111 <                         vij = vij + vpair
1112 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1113 <                      endif
1114 <                   enddo inner
1115 <                enddo
1116 <
1117 <                if (loop .eq. PAIR_LOOP) then
1118 <                   if (in_switching_region) then
1119 <                      swderiv = vij*dswdr/rgrp
1120 <                      fij(1) = fij(1) + swderiv*d_grp(1)
1121 <                      fij(2) = fij(2) + swderiv*d_grp(2)
1122 <                      fij(3) = fij(3) + swderiv*d_grp(3)
1123 <
1124 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
1125 <                         atom1=groupListRow(ia)
1126 <                         mf = mfactRow(atom1)
1127 < #ifdef IS_MPI
1128 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1129 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1130 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1131 < #else
1132 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1133 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
741 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
742 < #endif
743 <                      enddo
744 <
745 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
746 <                         atom2=groupListCol(jb)
747 <                         mf = mfactCol(atom2)
748 < #ifdef IS_MPI
749 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
750 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
751 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1111 >                   if (loop .eq. PAIR_LOOP) then
1112 >                      if (in_switching_region) then
1113 >                         swderiv = vij*dswdr/rgrp
1114 >                         fg = swderiv*d_grp
1115 >
1116 >                         fij(1) = fij(1) + fg(1)
1117 >                         fij(2) = fij(2) + fg(2)
1118 >                         fij(3) = fij(3) + fg(3)
1119 >                        
1120 >                         if (do_stress .and. (n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
1121 >                            call add_stress_tensor(d_atm, fg, tau)
1122 >                         endif  
1123 >                        
1124 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1125 >                            atom1=groupListRow(ia)
1126 >                            mf = mfactRow(atom1)
1127 >                            ! fg is the force on atom ia due to cutoff group's
1128 >                            ! presence in switching region
1129 >                            fg = swderiv*d_grp*mf
1130 > #ifdef IS_MPI
1131 >                            f_Row(1,atom1) = f_Row(1,atom1) + fg(1)
1132 >                            f_Row(2,atom1) = f_Row(2,atom1) + fg(2)
1133 >                            f_Row(3,atom1) = f_Row(3,atom1) + fg(3)
1134   #else
1135 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1136 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1137 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1135 >                            f(1,atom1) = f(1,atom1) + fg(1)
1136 >                            f(2,atom1) = f(2,atom1) + fg(2)
1137 >                            f(3,atom1) = f(3,atom1) + fg(3)
1138   #endif
1139 <                      enddo
1139 >                            if (n_in_i .gt. 1) then
1140 >                               if (do_stress.and.SIM_uses_AtomicVirial) then
1141 >                                  ! find the distance between the atom and the center of
1142 >                                  ! the cutoff group:
1143 > #ifdef IS_MPI
1144 >                                  call get_interatomic_vector(q_Row(:,atom1), &
1145 >                                       q_group_Row(:,i), dag, rag)
1146 > #else
1147 >                                  call get_interatomic_vector(q(:,atom1), &
1148 >                                       q_group(:,i), dag, rag)
1149 > #endif
1150 >                                  call add_stress_tensor(dag,fg,tau)
1151 >                               endif
1152 >                            endif
1153 >                         enddo
1154 >                        
1155 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1156 >                            atom2=groupListCol(jb)
1157 >                            mf = mfactCol(atom2)
1158 >                            ! fg is the force on atom jb due to cutoff group's
1159 >                            ! presence in switching region
1160 >                            fg = -swderiv*d_grp*mf
1161 > #ifdef IS_MPI
1162 >                            f_Col(1,atom2) = f_Col(1,atom2) + fg(1)
1163 >                            f_Col(2,atom2) = f_Col(2,atom2) + fg(2)
1164 >                            f_Col(3,atom2) = f_Col(3,atom2) + fg(3)
1165 > #else
1166 >                            f(1,atom2) = f(1,atom2) + fg(1)
1167 >                            f(2,atom2) = f(2,atom2) + fg(2)
1168 >                            f(3,atom2) = f(3,atom2) + fg(3)
1169 > #endif
1170 >                            if (n_in_j .gt. 1) then
1171 >                               if (do_stress.and.SIM_uses_AtomicVirial) then
1172 >                                  ! find the distance between the atom and the center of
1173 >                                  ! the cutoff group:
1174 > #ifdef IS_MPI
1175 >                                  call get_interatomic_vector(q_Col(:,atom2), &
1176 >                                       q_group_Col(:,j), dag, rag)
1177 > #else
1178 >                                  call get_interatomic_vector(q(:,atom2), &
1179 >                                       q_group(:,j), dag, rag)
1180 > #endif
1181 >                                  call add_stress_tensor(dag,fg,tau)                              
1182 >                               endif
1183 >                            endif                            
1184 >                         enddo
1185 >                      endif
1186                     endif
759
760                   if (do_stress) call add_stress_tensor(d_grp, fij)
1187                  endif
1188 <             end if
1188 >             endif
1189            enddo
1190 +          
1191         enddo outer
1192  
1193         if (update_nlist) then
# Line 778 | Line 1205 | contains
1205         endif
1206  
1207         if (loop .eq. PREPAIR_LOOP) then
1208 + #ifdef IS_MPI
1209 +          call do_preforce(nlocal, pot_local)
1210 + #else
1211            call do_preforce(nlocal, pot)
1212 + #endif
1213         endif
1214  
1215      enddo
# Line 820 | Line 1251 | contains
1251  
1252      if (do_pot) then
1253         ! scatter/gather pot_row into the members of my column
1254 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1255 <
1254 >       do i = 1,LR_POT_TYPES
1255 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1256 >       end do
1257         ! scatter/gather pot_local into all other procs
1258         ! add resultant to get total pot
1259         do i = 1, nlocal
1260 <          pot_local = pot_local + pot_Temp(i)
1260 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1261 >               + pot_Temp(1:LR_POT_TYPES,i)
1262         enddo
1263  
1264         pot_Temp = 0.0_DP
1265 <
1266 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1265 >       do i = 1,LR_POT_TYPES
1266 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1267 >       end do
1268         do i = 1, nlocal
1269 <          pot_local = pot_local + pot_Temp(i)
1269 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1270 >               + pot_Temp(1:LR_POT_TYPES,i)
1271         enddo
1272  
1273      endif
1274   #endif
1275  
1276 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1276 >    if (SIM_requires_postpair_calc) then
1277 >       do i = 1, nlocal            
1278 >          
1279 >          ! we loop only over the local atoms, so we don't need row and column
1280 >          ! lookups for the types
1281 >          
1282 >          me_i = atid(i)
1283 >          
1284 >          ! is the atom electrostatic?  See if it would have an
1285 >          ! electrostatic interaction with itself
1286 >          iHash = InteractionHash(me_i,me_i)
1287  
1288 <       if (FF_uses_RF .and. SIM_uses_RF) then
844 <
1288 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1289   #ifdef IS_MPI
1290 <          call scatter(rf_Row,rf,plan_atom_row_3d)
1291 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
1292 <          do i = 1,nlocal
1293 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
1294 <          end do
1290 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1291 >                  t, do_pot)
1292 > #else
1293 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1294 >                  t, do_pot)
1295   #endif
1296 <
1297 <          do i = 1, nLocal
1298 <
1299 <             rfpot = 0.0_DP
1296 >          endif
1297 >  
1298 >          
1299 >          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1300 >            
1301 >             ! loop over the excludes to accumulate RF stuff we've
1302 >             ! left out of the normal pair loop
1303 >            
1304 >             do i1 = 1, nSkipsForAtom(i)
1305 >                j = skipsForAtom(i, i1)
1306 >                
1307 >                ! prevent overcounting of the skips
1308 >                if (i.lt.j) then
1309 >                   call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1310 >                   rVal = sqrt(ratmsq)
1311 >                   call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1312   #ifdef IS_MPI
1313 <             me_i = atid_row(i)
1313 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1314 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1315   #else
1316 <             me_i = atid(i)
1316 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1317 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1318   #endif
1319 +                endif
1320 +             enddo
1321 +          endif
1322  
1323 <             if (PropertyMap(me_i)%is_Dipole) then
863 <
864 <                mu_i = getDipoleMoment(me_i)
865 <
866 <                !! The reaction field needs to include a self contribution
867 <                !! to the field:
868 <                call accumulate_self_rf(i, mu_i, eFrame)
869 <                !! Get the reaction field contribution to the
870 <                !! potential and torques:
871 <                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1323 >          if (do_box_dipole) then
1324   #ifdef IS_MPI
1325 <                pot_local = pot_local + rfpot
1325 >             call accumulate_box_dipole(i, eFrame, q(:,i), pChg_local, &
1326 >                  nChg_local, pChgPos_local, nChgPos_local, dipVec_local, &
1327 >                  pChgCount_local, nChgCount_local)
1328   #else
1329 <                pot = pot + rfpot
1330 <
1329 >             call accumulate_box_dipole(i, eFrame, q(:,i), pChg, nChg, &
1330 >                  pChgPos, nChgPos, dipVec, pChgCount, nChgCount)
1331   #endif
1332 <             endif
1333 <          enddo
880 <       endif
1332 >          endif
1333 >       enddo
1334      endif
1335  
883
1336   #ifdef IS_MPI
885
1337      if (do_pot) then
1338 <       pot = pot + pot_local
1339 <       !! we assume the c code will do the allreduce to get the total potential
1340 <       !! we could do it right here if we needed to...
1338 > #ifdef SINGLE_PRECISION
1339 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_real,mpi_sum, &
1340 >            mpi_comm_world,mpi_err)            
1341 > #else
1342 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision, &
1343 >            mpi_sum, mpi_comm_world,mpi_err)            
1344 > #endif
1345      endif
1346 +        
1347 +    if (do_box_dipole) then
1348  
1349 <    if (do_stress) then
1350 <       call mpi_allreduce(tau_Temp, tau, 9,mpi_double_precision,mpi_sum, &
1351 <            mpi_comm_world,mpi_err)
1352 <       call mpi_allreduce(virial_Temp, virial,1,mpi_double_precision,mpi_sum, &
1353 <            mpi_comm_world,mpi_err)
1354 <    endif
1355 <
1349 > #ifdef SINGLE_PRECISION
1350 >       call mpi_allreduce(pChg_local, pChg, 1, mpi_real, mpi_sum, &
1351 >            mpi_comm_world, mpi_err)
1352 >       call mpi_allreduce(nChg_local, nChg, 1, mpi_real, mpi_sum, &
1353 >            mpi_comm_world, mpi_err)
1354 >       call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer, mpi_sum,&
1355 >            mpi_comm_world, mpi_err)
1356 >       call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer, mpi_sum,&
1357 >            mpi_comm_world, mpi_err)
1358 >       call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_real, mpi_sum, &
1359 >            mpi_comm_world, mpi_err)
1360 >       call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_real, mpi_sum, &
1361 >            mpi_comm_world, mpi_err)
1362 >       call mpi_allreduce(dipVec_local, dipVec, 3, mpi_real, mpi_sum, &
1363 >            mpi_comm_world, mpi_err)
1364   #else
1365 +       call mpi_allreduce(pChg_local, pChg, 1, mpi_double_precision, mpi_sum, &
1366 +            mpi_comm_world, mpi_err)
1367 +       call mpi_allreduce(nChg_local, nChg, 1, mpi_double_precision, mpi_sum, &
1368 +            mpi_comm_world, mpi_err)
1369 +       call mpi_allreduce(pChgCount_local, pChgCount, 1, mpi_integer,&
1370 +            mpi_sum, mpi_comm_world, mpi_err)
1371 +       call mpi_allreduce(nChgCount_local, nChgCount, 1, mpi_integer,&
1372 +            mpi_sum, mpi_comm_world, mpi_err)
1373 +       call mpi_allreduce(pChgPos_local, pChgPos, 3, mpi_double_precision, &
1374 +            mpi_sum, mpi_comm_world, mpi_err)
1375 +       call mpi_allreduce(nChgPos_local, nChgPos, 3, mpi_double_precision, &
1376 +            mpi_sum, mpi_comm_world, mpi_err)
1377 +       call mpi_allreduce(dipVec_local, dipVec, 3, mpi_double_precision, &
1378 +            mpi_sum, mpi_comm_world, mpi_err)
1379 + #endif
1380  
901    if (do_stress) then
902       tau = tau_Temp
903       virial = virial_Temp
1381      endif
1382 <
1382 >    
1383   #endif
1384  
1385 +    if (do_box_dipole) then
1386 +       ! first load the accumulated dipole moment (if dipoles were present)
1387 +       boxDipole(1) = dipVec(1)
1388 +       boxDipole(2) = dipVec(2)
1389 +       boxDipole(3) = dipVec(3)
1390 +
1391 +       ! now include the dipole moment due to charges
1392 +       ! use the lesser of the positive and negative charge totals
1393 +       if (nChg .le. pChg) then
1394 +          chg_value = nChg
1395 +       else
1396 +          chg_value = pChg
1397 +       endif
1398 +      
1399 +       ! find the average positions
1400 +       if (pChgCount .gt. 0 .and. nChgCount .gt. 0) then
1401 +          pChgPos = pChgPos / pChgCount
1402 +          nChgPos = nChgPos / nChgCount
1403 +       endif
1404 +
1405 +       ! dipole is from the negative to the positive (physics notation)
1406 +       chgVec(1) = pChgPos(1) - nChgPos(1)
1407 +       chgVec(2) = pChgPos(2) - nChgPos(2)
1408 +       chgVec(3) = pChgPos(3) - nChgPos(3)
1409 +
1410 +       boxDipole(1) = boxDipole(1) + chgVec(1) * chg_value
1411 +       boxDipole(2) = boxDipole(2) + chgVec(2) * chg_value
1412 +       boxDipole(3) = boxDipole(3) + chgVec(3) * chg_value
1413 +
1414 +    endif
1415 +
1416    end subroutine do_force_loop
1417  
1418    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1419 <       eFrame, A, f, t, pot, vpair, fpair)
1419 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1420  
1421 <    real( kind = dp ) :: pot, vpair, sw
1421 >    real( kind = dp ) :: vpair, sw
1422 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1423      real( kind = dp ), dimension(3) :: fpair
1424      real( kind = dp ), dimension(nLocal)   :: mfact
1425      real( kind = dp ), dimension(9,nLocal) :: eFrame
# Line 921 | Line 1430 | contains
1430      logical, intent(inout) :: do_pot
1431      integer, intent(in) :: i, j
1432      real ( kind = dp ), intent(inout) :: rijsq
1433 <    real ( kind = dp )                :: r
1433 >    real ( kind = dp ), intent(inout) :: r_grp
1434      real ( kind = dp ), intent(inout) :: d(3)
1435 <    real ( kind = dp ) :: ebalance
1435 >    real ( kind = dp ), intent(inout) :: d_grp(3)
1436 >    real ( kind = dp ), intent(inout) :: rCut
1437 >    real ( kind = dp ) :: r
1438 >    real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1439      integer :: me_i, me_j
1440 +    integer :: k
1441  
1442 +    integer :: iHash
1443 +
1444      r = sqrt(rijsq)
1445 <    vpair = 0.0d0
1446 <    fpair(1:3) = 0.0d0
1445 >    
1446 >    vpair = 0.0_dp
1447 >    fpair(1:3) = 0.0_dp
1448  
1449   #ifdef IS_MPI
1450      me_i = atid_row(i)
# Line 938 | Line 1454 | contains
1454      me_j = atid(j)
1455   #endif
1456  
1457 <    !    write(*,*) i, j, me_i, me_j
1458 <
1459 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1460 <
1461 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
946 <            PropertyMap(me_j)%is_LennardJones ) then
947 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
948 <       endif
949 <
1457 >    iHash = InteractionHash(me_i, me_j)
1458 >    
1459 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1460 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1461 >            pot(VDW_POT), f, do_pot)
1462      endif
1463 <
1464 <    if (FF_uses_Electrostatics .and. SIM_uses_Electrostatics) then
1465 <
1466 <       if (PropertyMap(me_i)%is_Electrostatic .and. &
955 <            PropertyMap(me_j)%is_Electrostatic) then
956 <          call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
957 <               pot, eFrame, f, t, do_pot, ebalance)
958 <       endif
959 <
960 <       if (FF_uses_dipoles .and. SIM_uses_dipoles) then      
961 <          if ( PropertyMap(me_i)%is_Dipole .and. &
962 <               PropertyMap(me_j)%is_Dipole) then
963 <             if (FF_uses_RF .and. SIM_uses_RF) then
964 <                call accumulate_rf(i, j, r, eFrame, sw)
965 <                call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
966 <             endif
967 <          endif
968 <       endif
1463 >    
1464 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1465 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1466 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1467      endif
1468 <
1469 <
1470 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1471 <
974 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
975 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
976 <               pot, A, f, t, do_pot)
977 <       endif
978 <
1468 >    
1469 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1470 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1471 >            pot(HB_POT), A, f, t, do_pot)
1472      endif
1473 <
1474 <    if (FF_uses_StickyPower .and. SIM_uses_stickypower) then
1475 <       if ( PropertyMap(me_i)%is_StickyPower .and. &
1476 <            PropertyMap(me_j)%is_StickyPower) then
984 <          call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
985 <               pot, A, f, t, do_pot, ebalance)
986 <       endif
1473 >    
1474 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1475 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1476 >            pot(HB_POT), A, f, t, do_pot)
1477      endif
1478      
1479 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1480 <
1481 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
992 <            PropertyMap(me_j)%is_GayBerne) then
993 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
994 <               pot, A, f, t, do_pot)
995 <       endif
996 <
1479 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1480 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1481 >            pot(VDW_POT), A, f, t, do_pot)
1482      endif
1483 <
1484 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1485 <
1486 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
1002 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
1003 <               do_pot)
1004 <       endif
1005 <
1483 >    
1484 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1485 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1486 >            pot(VDW_POT), A, f, t, do_pot)
1487      endif
1488 <
1489 <
1490 <    !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1491 <
1011 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1012 <       if ( PropertyMap(me_i)%is_Shape .and. &
1013 <            PropertyMap(me_j)%is_Shape ) then
1014 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1015 <               pot, A, f, t, do_pot)
1016 <       endif
1017 <       if ( (PropertyMap(me_i)%is_Shape .and. &
1018 <            PropertyMap(me_j)%is_LennardJones) .or. &
1019 <            (PropertyMap(me_i)%is_LennardJones .and. &
1020 <            PropertyMap(me_j)%is_Shape) ) then
1021 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1022 <               pot, A, f, t, do_pot)
1023 <       endif
1488 >    
1489 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1490 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1491 >            pot(METALLIC_POT), f, do_pot)
1492      endif
1493 +    
1494 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1495 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1496 +            pot(VDW_POT), A, f, t, do_pot)
1497 +    endif
1498 +    
1499 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1500 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1501 +            pot(VDW_POT), A, f, t, do_pot)
1502 +    endif
1503  
1504 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1505 +       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1506 +            pot(METALLIC_POT), f, do_pot)
1507 +    endif
1508 +    
1509    end subroutine do_pair
1510  
1511 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1511 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1512         do_pot, do_stress, eFrame, A, f, t, pot)
1513  
1514 <    real( kind = dp ) :: pot, sw
1514 >    real( kind = dp ) :: sw
1515 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1516      real( kind = dp ), dimension(9,nLocal) :: eFrame
1517      real (kind=dp), dimension(9,nLocal) :: A
1518      real (kind=dp), dimension(3,nLocal) :: f
# Line 1036 | Line 1520 | contains
1520  
1521      logical, intent(inout) :: do_pot, do_stress
1522      integer, intent(in) :: i, j
1523 <    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1523 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1524      real ( kind = dp )                :: r, rc
1525      real ( kind = dp ), intent(inout) :: d(3), dc(3)
1526  
1527 <    logical :: is_EAM_i, is_EAM_j
1527 >    integer :: me_i, me_j, iHash
1528  
1045    integer :: me_i, me_j
1046
1047
1529      r = sqrt(rijsq)
1530 <    if (SIM_uses_molecular_cutoffs) then
1050 <       rc = sqrt(rcijsq)
1051 <    else
1052 <       rc = r
1053 <    endif
1054 <
1055 <
1530 >    
1531   #ifdef IS_MPI  
1532      me_i = atid_row(i)
1533      me_j = atid_col(j)  
# Line 1061 | Line 1536 | contains
1536      me_j = atid(j)  
1537   #endif
1538  
1539 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1539 >    iHash = InteractionHash(me_i, me_j)
1540  
1541 <       if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1542 <            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1068 <
1541 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1542 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1543      endif
1544  
1545 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1546 +            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1547 +    endif
1548 +    
1549    end subroutine do_prepair
1550  
1551  
1552    subroutine do_preforce(nlocal,pot)
1553      integer :: nlocal
1554 <    real( kind = dp ) :: pot
1554 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1555  
1556      if (FF_uses_EAM .and. SIM_uses_EAM) then
1557 <       call calc_EAM_preforce_Frho(nlocal,pot)
1557 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1558      endif
1559 <
1560 <
1559 >    if (FF_uses_SC .and. SIM_uses_SC) then
1560 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1561 >    endif
1562    end subroutine do_preforce
1563  
1564  
# Line 1091 | Line 1570 | contains
1570      real( kind = dp ) :: d(3), scaled(3)
1571      integer i
1572  
1573 <    d(1:3) = q_j(1:3) - q_i(1:3)
1573 >    d(1) = q_j(1) - q_i(1)
1574 >    d(2) = q_j(2) - q_i(2)
1575 >    d(3) = q_j(3) - q_i(3)
1576  
1577      ! Wrap back into periodic box if necessary
1578      if ( SIM_uses_PBC ) then
1579  
1580         if( .not.boxIsOrthorhombic ) then
1581            ! calc the scaled coordinates.
1582 <
1102 <          scaled = matmul(HmatInv, d)
1582 >          ! scaled = matmul(HmatInv, d)
1583  
1584 +          scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1585 +          scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1586 +          scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1587 +          
1588            ! wrap the scaled coordinates
1589  
1590 <          scaled = scaled  - anint(scaled)
1590 >          scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1591 >          scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1592 >          scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1593  
1108
1594            ! calc the wrapped real coordinates from the wrapped scaled
1595            ! coordinates
1596 +          ! d = matmul(Hmat,scaled)
1597 +          d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1598 +          d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1599 +          d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1600  
1112          d = matmul(Hmat,scaled)
1113
1601         else
1602            ! calc the scaled coordinates.
1603  
1604 <          do i = 1, 3
1605 <             scaled(i) = d(i) * HmatInv(i,i)
1604 >          scaled(1) = d(1) * HmatInv(1,1)
1605 >          scaled(2) = d(2) * HmatInv(2,2)
1606 >          scaled(3) = d(3) * HmatInv(3,3)
1607 >          
1608 >          ! wrap the scaled coordinates
1609 >          
1610 >          scaled(1) = scaled(1) - anint(scaled(1), kind=dp)
1611 >          scaled(2) = scaled(2) - anint(scaled(2), kind=dp)
1612 >          scaled(3) = scaled(3) - anint(scaled(3), kind=dp)
1613  
1614 <             ! wrap the scaled coordinates
1614 >          ! calc the wrapped real coordinates from the wrapped scaled
1615 >          ! coordinates
1616  
1617 <             scaled(i) = scaled(i) - anint(scaled(i))
1617 >          d(1) = scaled(1)*Hmat(1,1)
1618 >          d(2) = scaled(2)*Hmat(2,2)
1619 >          d(3) = scaled(3)*Hmat(3,3)
1620  
1124             ! calc the wrapped real coordinates from the wrapped scaled
1125             ! coordinates
1126
1127             d(i) = scaled(i)*Hmat(i,i)
1128          enddo
1621         endif
1622  
1623      endif
1624  
1625 <    r_sq = dot_product(d,d)
1625 >    r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1626  
1627    end subroutine get_interatomic_vector
1628  
# Line 1162 | Line 1654 | contains
1654      pot_Col = 0.0_dp
1655      pot_Temp = 0.0_dp
1656  
1165    rf_Row = 0.0_dp
1166    rf_Col = 0.0_dp
1167    rf_Temp = 0.0_dp
1168
1657   #endif
1658  
1659      if (FF_uses_EAM .and. SIM_uses_EAM) then
1660         call clean_EAM()
1661      endif
1662  
1175    rf = 0.0_dp
1176    tau_Temp = 0.0_dp
1177    virial_Temp = 0.0_dp
1663    end subroutine zero_work_arrays
1664  
1665    function skipThisPair(atom1, atom2) result(skip_it)
# Line 1261 | Line 1746 | contains
1746  
1747    function FF_UsesDirectionalAtoms() result(doesit)
1748      logical :: doesit
1749 <    doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1265 <         FF_uses_Quadrupoles .or. FF_uses_Sticky .or. &
1266 <         FF_uses_StickyPower .or. FF_uses_GayBerne .or. FF_uses_Shapes
1749 >    doesit = FF_uses_DirectionalAtoms
1750    end function FF_UsesDirectionalAtoms
1751  
1752    function FF_RequiresPrepairCalc() result(doesit)
1753      logical :: doesit
1754 <    doesit = FF_uses_EAM
1754 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1755 >         .or. FF_uses_MEAM
1756    end function FF_RequiresPrepairCalc
1757  
1274  function FF_RequiresPostpairCalc() result(doesit)
1275    logical :: doesit
1276    doesit = FF_uses_RF
1277  end function FF_RequiresPostpairCalc
1278
1758   #ifdef PROFILE
1759    function getforcetime() result(totalforcetime)
1760      real(kind=dp) :: totalforcetime
# Line 1285 | Line 1764 | contains
1764  
1765    !! This cleans componets of force arrays belonging only to fortran
1766  
1767 <  subroutine add_stress_tensor(dpair, fpair)
1767 >  subroutine add_stress_tensor(dpair, fpair, tau)
1768  
1769      real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1770 +    real( kind = dp ), dimension(9), intent(inout) :: tau
1771  
1772      ! because the d vector is the rj - ri vector, and
1773      ! because fx, fy, fz are the force on atom i, we need a
1774      ! negative sign here:  
1775  
1776 <    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1777 <    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1778 <    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1779 <    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1780 <    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1781 <    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1782 <    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1783 <    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1784 <    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1776 >    tau(1) = tau(1) - dpair(1) * fpair(1)
1777 >    tau(2) = tau(2) - dpair(1) * fpair(2)
1778 >    tau(3) = tau(3) - dpair(1) * fpair(3)
1779 >    tau(4) = tau(4) - dpair(2) * fpair(1)
1780 >    tau(5) = tau(5) - dpair(2) * fpair(2)
1781 >    tau(6) = tau(6) - dpair(2) * fpair(3)
1782 >    tau(7) = tau(7) - dpair(3) * fpair(1)
1783 >    tau(8) = tau(8) - dpair(3) * fpair(2)
1784 >    tau(9) = tau(9) - dpair(3) * fpair(3)
1785  
1306    virial_Temp = virial_Temp + &
1307         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1308
1786    end subroutine add_stress_tensor
1787  
1788   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines