ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1706 by gezelter, Thu Nov 4 16:20:28 2004 UTC vs.
Revision 2432 by chuckv, Tue Nov 15 16:01:06 2005 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.7 2004-11-04 16:20:28 gezelter Exp $, $Date: 2004-11-04 16:20:28 $, $Name: not supported by cvs2svn $, $Revision: 1.7 $
48 > !! @version $Id: doForces.F90,v 1.68 2005-11-15 16:01:06 chuckv Exp $, $Date: 2005-11-15 16:01:06 $, $Name: not supported by cvs2svn $, $Revision: 1.68 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
21 <  use gb_pair
59 >  use sticky
60 >  use electrostatic_module
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67   #ifdef IS_MPI
68    use mpiSimulation
# Line 32 | Line 73 | module doForces
73  
74   #define __FORTRAN90
75   #include "UseTheForce/fSwitchingFunction.h"
76 + #include "UseTheForce/fCutoffPolicy.h"
77 + #include "UseTheForce/DarkSide/fInteractionMap.h"
78 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80 +
81    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
82    INTEGER, PARAMETER:: PAIR_LOOP    = 2
83  
39  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 <  
87 >  logical, save :: haveInteractionHash = .false.
88 >  logical, save :: haveGtypeCutoffMap = .false.
89 >  logical, save :: haveDefaultCutoffs = .false.
90 >  logical, save :: haveRlist = .false.
91 >
92    logical, save :: FF_uses_DirectionalAtoms
93 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
93 >  logical, save :: FF_uses_Dipoles
94    logical, save :: FF_uses_GayBerne
95    logical, save :: FF_uses_EAM
96 <  logical, save :: FF_uses_Shapes
97 <  logical, save :: FF_uses_FLARB
98 <  logical, save :: FF_uses_RF
96 >  logical, save :: FF_uses_SC
97 >  logical, save :: FF_uses_MEAM
98 >
99  
100    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
101    logical, save :: SIM_uses_EAM
102 <  logical, save :: SIM_uses_Shapes
103 <  logical, save :: SIM_uses_FLARB
67 <  logical, save :: SIM_uses_RF
102 >  logical, save :: SIM_uses_SC
103 >  logical, save :: SIM_uses_MEAM
104    logical, save :: SIM_requires_postpair_calc
105    logical, save :: SIM_requires_prepair_calc
106    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
107  
108 <  real(kind=dp), save :: rlist, rlistsq
108 >  integer, save :: electrostaticSummationMethod
109  
110    public :: init_FF
111 +  public :: setDefaultCutoffs
112    public :: do_force_loop
113 <  public :: setRlistDF
113 >  public :: createInteractionHash
114 >  public :: createGtypeCutoffMap
115 >  public :: getStickyCut
116 >  public :: getStickyPowerCut
117 >  public :: getGayBerneCut
118 >  public :: getEAMCut
119 >  public :: getShapeCut
120  
121   #ifdef PROFILE
122    public :: getforcetime
# Line 82 | Line 124 | module doForces
124    real :: forceTimeInitial, forceTimeFinal
125    integer :: nLoops
126   #endif
127 +  
128 +  !! Variables for cutoff mapping and interaction mapping
129 +  ! Bit hash to determine pair-pair interactions.
130 +  integer, dimension(:,:), allocatable :: InteractionHash
131 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
132 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
133 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
134  
135 <  type :: Properties
136 <     logical :: is_Directional   = .false.
88 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
135 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
136 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
137  
138 <  type(Properties), dimension(:),allocatable :: PropertyMap
138 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
139 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
140 >  type ::gtypeCutoffs
141 >     real(kind=dp) :: rcut
142 >     real(kind=dp) :: rcutsq
143 >     real(kind=dp) :: rlistsq
144 >  end type gtypeCutoffs
145 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
146  
147 +  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
148 +  real(kind=dp),save :: defaultRcut, defaultRsw, defaultRlist
149 +  real(kind=dp),save :: listSkin
150 +  
151   contains
152  
153 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
153 >  subroutine createInteractionHash(status)
154      integer :: nAtypes
155 <    integer :: status
155 >    integer, intent(out) :: status
156      integer :: i
157 <    logical :: thisProperty
158 <    real (kind=DP) :: thisDPproperty
157 >    integer :: j
158 >    integer :: iHash
159 >    !! Test Types
160 >    logical :: i_is_LJ
161 >    logical :: i_is_Elect
162 >    logical :: i_is_Sticky
163 >    logical :: i_is_StickyP
164 >    logical :: i_is_GB
165 >    logical :: i_is_EAM
166 >    logical :: i_is_Shape
167 >    logical :: i_is_SC
168 >    logical :: i_is_MEAM
169 >    logical :: j_is_LJ
170 >    logical :: j_is_Elect
171 >    logical :: j_is_Sticky
172 >    logical :: j_is_StickyP
173 >    logical :: j_is_GB
174 >    logical :: j_is_EAM
175 >    logical :: j_is_Shape
176 >    logical :: j_is_SC
177 >    logical :: j_is_MEAM
178 >    real(kind=dp) :: myRcut
179  
121    status = 0
180  
181 <    nAtypes = getSize(atypes)
181 >    status = 0  
182  
183 +    if (.not. associated(atypes)) then
184 +       call handleError("atype", "atypes was not present before call of createInteractionHash!")
185 +       status = -1
186 +       return
187 +    endif
188 +    
189 +    nAtypes = getSize(atypes)
190 +    
191      if (nAtypes == 0) then
192         status = -1
193         return
194      end if
195 <        
196 <    if (.not. allocated(PropertyMap)) then
197 <       allocate(PropertyMap(nAtypes))
195 >
196 >    if (.not. allocated(InteractionHash)) then
197 >       allocate(InteractionHash(nAtypes,nAtypes))
198 >    else
199 >       deallocate(InteractionHash)
200 >       allocate(InteractionHash(nAtypes,nAtypes))
201      endif
202  
203 +    if (.not. allocated(atypeMaxCutoff)) then
204 +       allocate(atypeMaxCutoff(nAtypes))
205 +    else
206 +       deallocate(atypeMaxCutoff)
207 +       allocate(atypeMaxCutoff(nAtypes))
208 +    endif
209 +        
210      do i = 1, nAtypes
211 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
212 <       PropertyMap(i)%is_Directional = thisProperty
211 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
212 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
213 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
214 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
215 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
216 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
217 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
218 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
219 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
220  
221 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
221 >       do j = i, nAtypes
222  
223 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
224 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
223 >          iHash = 0
224 >          myRcut = 0.0_dp
225  
226 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
227 <       PropertyMap(i)%is_Sticky = thisProperty
226 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
227 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
228 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
229 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
230 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
231 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
232 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
233 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
234 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
235  
236 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
237 <       PropertyMap(i)%is_GayBerne = thisProperty
238 <
239 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
240 <       PropertyMap(i)%is_EAM = thisProperty
236 >          if (i_is_LJ .and. j_is_LJ) then
237 >             iHash = ior(iHash, LJ_PAIR)            
238 >          endif
239 >          
240 >          if (i_is_Elect .and. j_is_Elect) then
241 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
242 >          endif
243 >          
244 >          if (i_is_Sticky .and. j_is_Sticky) then
245 >             iHash = ior(iHash, STICKY_PAIR)
246 >          endif
247  
248 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
249 <       PropertyMap(i)%is_Shape = thisProperty
248 >          if (i_is_StickyP .and. j_is_StickyP) then
249 >             iHash = ior(iHash, STICKYPOWER_PAIR)
250 >          endif
251  
252 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
253 <       PropertyMap(i)%is_FLARB = thisProperty
252 >          if (i_is_EAM .and. j_is_EAM) then
253 >             iHash = ior(iHash, EAM_PAIR)
254 >          endif
255 >
256 >          if (i_is_SC .and. j_is_SC) then
257 >             iHash = ior(iHash, SC_PAIR)
258 >          endif
259 >
260 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
261 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
262 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
263 >
264 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
265 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
266 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
267 >
268 >
269 >          InteractionHash(i,j) = iHash
270 >          InteractionHash(j,i) = iHash
271 >
272 >       end do
273 >
274      end do
275  
276 <    havePropertyMap = .true.
276 >    haveInteractionHash = .true.
277 >  end subroutine createInteractionHash
278  
279 <  end subroutine createPropertyMap
279 >  subroutine createGtypeCutoffMap(stat)
280 >
281 >    integer, intent(out), optional :: stat
282 >    logical :: i_is_LJ
283 >    logical :: i_is_Elect
284 >    logical :: i_is_Sticky
285 >    logical :: i_is_StickyP
286 >    logical :: i_is_GB
287 >    logical :: i_is_EAM
288 >    logical :: i_is_Shape
289 >    logical :: GtypeFound
290 >
291 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
292 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
293 >    integer :: nGroupsInRow
294 >    integer :: nGroupsInCol
295 >    integer :: nGroupTypesRow,nGroupTypesCol
296 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol, skin
297 >    real(kind=dp) :: biggestAtypeCutoff
298 >
299 >    stat = 0
300 >    if (.not. haveInteractionHash) then
301 >       call createInteractionHash(myStatus)      
302 >       if (myStatus .ne. 0) then
303 >          write(default_error, *) 'createInteractionHash failed in doForces!'
304 >          stat = -1
305 >          return
306 >       endif
307 >    endif
308 > #ifdef IS_MPI
309 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
310 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
311 > #endif
312 >    nAtypes = getSize(atypes)
313 > ! Set all of the initial cutoffs to zero.
314 >    atypeMaxCutoff = 0.0_dp
315 >    do i = 1, nAtypes
316 >       if (SimHasAtype(i)) then    
317 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
318 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
319 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
320 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
321 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
322 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
323 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
324 >          
325 >
326 >          if (haveDefaultCutoffs) then
327 >             atypeMaxCutoff(i) = defaultRcut
328 >          else
329 >             if (i_is_LJ) then          
330 >                thisRcut = getSigma(i) * 2.5_dp
331 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
332 >             endif
333 >             if (i_is_Elect) then
334 >                thisRcut = defaultRcut
335 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
336 >             endif
337 >             if (i_is_Sticky) then
338 >                thisRcut = getStickyCut(i)
339 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
340 >             endif
341 >             if (i_is_StickyP) then
342 >                thisRcut = getStickyPowerCut(i)
343 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
344 >             endif
345 >             if (i_is_GB) then
346 >                thisRcut = getGayBerneCut(i)
347 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
348 >             endif
349 >             if (i_is_EAM) then
350 >                thisRcut = getEAMCut(i)
351 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
352 >             endif
353 >             if (i_is_Shape) then
354 >                thisRcut = getShapeCut(i)
355 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
356 >             endif
357 >          endif
358 >          
359 >          
360 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
361 >             biggestAtypeCutoff = atypeMaxCutoff(i)
362 >          endif
363 >
364 >       endif
365 >    enddo
366 >  
367 >
368 >    
369 >    istart = 1
370 >    jstart = 1
371 > #ifdef IS_MPI
372 >    iend = nGroupsInRow
373 >    jend = nGroupsInCol
374 > #else
375 >    iend = nGroups
376 >    jend = nGroups
377 > #endif
378 >    
379 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
380 >    if(.not.allocated(groupToGtypeRow)) then
381 >     !  allocate(groupToGtype(iend))
382 >       allocate(groupToGtypeRow(iend))
383 >    else
384 >       deallocate(groupToGtypeRow)
385 >       allocate(groupToGtypeRow(iend))
386 >    endif
387 >    if(.not.allocated(groupMaxCutoffRow)) then
388 >       allocate(groupMaxCutoffRow(iend))
389 >    else
390 >       deallocate(groupMaxCutoffRow)
391 >       allocate(groupMaxCutoffRow(iend))
392 >    end if
393 >
394 >    if(.not.allocated(gtypeMaxCutoffRow)) then
395 >       allocate(gtypeMaxCutoffRow(iend))
396 >    else
397 >       deallocate(gtypeMaxCutoffRow)
398 >       allocate(gtypeMaxCutoffRow(iend))
399 >    endif
400 >
401 >
402 > #ifdef IS_MPI
403 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
404 >    if(.not.associated(groupToGtypeCol)) then
405 >       allocate(groupToGtypeCol(jend))
406 >    else
407 >       deallocate(groupToGtypeCol)
408 >       allocate(groupToGtypeCol(jend))
409 >    end if
410 >
411 >    if(.not.associated(groupToGtypeCol)) then
412 >       allocate(groupToGtypeCol(jend))
413 >    else
414 >       deallocate(groupToGtypeCol)
415 >       allocate(groupToGtypeCol(jend))
416 >    end if
417 >    if(.not.associated(gtypeMaxCutoffCol)) then
418 >       allocate(gtypeMaxCutoffCol(jend))
419 >    else
420 >       deallocate(gtypeMaxCutoffCol)      
421 >       allocate(gtypeMaxCutoffCol(jend))
422 >    end if
423 >
424 >       groupMaxCutoffCol = 0.0_dp
425 >       gtypeMaxCutoffCol = 0.0_dp
426 >
427 > #endif
428 >       groupMaxCutoffRow = 0.0_dp
429 >       gtypeMaxCutoffRow = 0.0_dp
430 >
431 >
432 >    !! first we do a single loop over the cutoff groups to find the
433 >    !! largest cutoff for any atypes present in this group.  We also
434 >    !! create gtypes at this point.
435 >    
436 >    tol = 1.0d-6
437 >    nGroupTypesRow = 0
438 >
439 >    do i = istart, iend      
440 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
441 >       groupMaxCutoffRow(i) = 0.0_dp
442 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
443 >          atom1 = groupListRow(ia)
444 > #ifdef IS_MPI
445 >          me_i = atid_row(atom1)
446 > #else
447 >          me_i = atid(atom1)
448 > #endif          
449 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
450 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
451 >          endif          
452 >       enddo
453 >
454 >       if (nGroupTypesRow.eq.0) then
455 >          nGroupTypesRow = nGroupTypesRow + 1
456 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
457 >          groupToGtypeRow(i) = nGroupTypesRow
458 >       else
459 >          GtypeFound = .false.
460 >          do g = 1, nGroupTypesRow
461 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
462 >                groupToGtypeRow(i) = g
463 >                GtypeFound = .true.
464 >             endif
465 >          enddo
466 >          if (.not.GtypeFound) then            
467 >             nGroupTypesRow = nGroupTypesRow + 1
468 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
469 >             groupToGtypeRow(i) = nGroupTypesRow
470 >          endif
471 >       endif
472 >    enddo    
473 >
474 > #ifdef IS_MPI
475 >    do j = jstart, jend      
476 >       n_in_j = groupStartCol(j+1) - groupStartCol(j)
477 >       groupMaxCutoffCol(j) = 0.0_dp
478 >       do ja = groupStartCol(j), groupStartCol(j+1)-1
479 >          atom1 = groupListCol(ja)
480 >
481 >          me_j = atid_col(atom1)
482 >
483 >          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
484 >             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
485 >          endif          
486 >       enddo
487  
488 +       if (nGroupTypesCol.eq.0) then
489 +          nGroupTypesCol = nGroupTypesCol + 1
490 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
491 +          groupToGtypeCol(j) = nGroupTypesCol
492 +       else
493 +          GtypeFound = .false.
494 +          do g = 1, nGroupTypesCol
495 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
496 +                groupToGtypeCol(j) = g
497 +                GtypeFound = .true.
498 +             endif
499 +          enddo
500 +          if (.not.GtypeFound) then            
501 +             nGroupTypesCol = nGroupTypesCol + 1
502 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
503 +             groupToGtypeCol(j) = nGroupTypesCol
504 +          endif
505 +       endif
506 +    enddo    
507 +
508 + #else
509 + ! Set pointers to information we just found
510 +    nGroupTypesCol = nGroupTypesRow
511 +    groupToGtypeCol => groupToGtypeRow
512 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
513 +    groupMaxCutoffCol => groupMaxCutoffRow
514 + #endif
515 +
516 +
517 +
518 +
519 +
520 +    !! allocate the gtypeCutoffMap here.
521 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
522 +    !! then we do a double loop over all the group TYPES to find the cutoff
523 +    !! map between groups of two types
524 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
525 +
526 +    do i = 1, nGroupTypesRow
527 +       do j = 1, nGroupTypesCol
528 +      
529 +          select case(cutoffPolicy)
530 +          case(TRADITIONAL_CUTOFF_POLICY)
531 +             thisRcut = tradRcut
532 +          case(MIX_CUTOFF_POLICY)
533 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
534 +          case(MAX_CUTOFF_POLICY)
535 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
536 +          case default
537 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
538 +             return
539 +          end select
540 +          gtypeCutoffMap(i,j)%rcut = thisRcut
541 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
542 +          skin = defaultRlist - defaultRcut
543 +          listSkin = skin ! set neighbor list skin thickness
544 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skin)**2
545 +
546 +          ! sanity check
547 +
548 +          if (haveDefaultCutoffs) then
549 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
550 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
551 +             endif
552 +          endif
553 +       enddo
554 +    enddo
555 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
556 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
557 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
558 + #ifdef IS_MPI
559 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
560 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
561 + #endif
562 +    groupMaxCutoffCol => null()
563 +    gtypeMaxCutoffCol => null()
564 +    
565 +    haveGtypeCutoffMap = .true.
566 +   end subroutine createGtypeCutoffMap
567 +
568 +   subroutine setDefaultCutoffs(defRcut, defRsw, defRlist, cutPolicy)
569 +     real(kind=dp),intent(in) :: defRcut, defRsw, defRlist
570 +     integer, intent(in) :: cutPolicy
571 +
572 +     defaultRcut = defRcut
573 +     defaultRsw = defRsw
574 +     defaultRlist = defRlist
575 +     cutoffPolicy = cutPolicy
576 +
577 +     haveDefaultCutoffs = .true.
578 +   end subroutine setDefaultCutoffs
579 +
580 +   subroutine setCutoffPolicy(cutPolicy)
581 +
582 +     integer, intent(in) :: cutPolicy
583 +     cutoffPolicy = cutPolicy
584 +     call createGtypeCutoffMap()
585 +   end subroutine setCutoffPolicy
586 +    
587 +    
588    subroutine setSimVariables()
589      SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
590      SIM_uses_EAM = SimUsesEAM()
591 <    SIM_uses_Shapes = SimUsesShapes()
180 <    SIM_uses_FLARB = SimUsesFLARB()
181 <    SIM_uses_RF = SimUsesRF()
591 >    SIM_uses_SC  = SimUsesSC()
592      SIM_requires_postpair_calc = SimRequiresPostpairCalc()
593      SIM_requires_prepair_calc = SimRequiresPrepairCalc()
594      SIM_uses_PBC = SimUsesPBC()
# Line 194 | Line 604 | contains
604      integer :: myStatus
605  
606      error = 0
197    
198    if (.not. havePropertyMap) then
607  
608 <       myStatus = 0
608 >    if (.not. haveInteractionHash) then      
609 >       myStatus = 0      
610 >       call createInteractionHash(myStatus)      
611 >       if (myStatus .ne. 0) then
612 >          write(default_error, *) 'createInteractionHash failed in doForces!'
613 >          error = -1
614 >          return
615 >       endif
616 >    endif
617  
618 <       call createPropertyMap(myStatus)
619 <
618 >    if (.not. haveGtypeCutoffMap) then        
619 >       myStatus = 0      
620 >       call createGtypeCutoffMap(myStatus)      
621         if (myStatus .ne. 0) then
622 <          write(default_error, *) 'createPropertyMap failed in doForces!'
622 >          write(default_error, *) 'createGtypeCutoffMap failed in doForces!'
623            error = -1
624            return
625         endif
# Line 212 | Line 629 | contains
629         call setSimVariables()
630      endif
631  
632 <    if (.not. haveRlist) then
633 <       write(default_error, *) 'rList has not been set in doForces!'
634 <       error = -1
635 <       return
636 <    endif
632 >  !  if (.not. haveRlist) then
633 >  !     write(default_error, *) 'rList has not been set in doForces!'
634 >  !     error = -1
635 >  !     return
636 >  !  endif
637  
638      if (.not. haveNeighborList) then
639         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 239 | Line 656 | contains
656   #endif
657      return
658    end subroutine doReadyCheck
242    
659  
244  subroutine init_FF(use_RF_c, thisStat)
660  
661 <    logical, intent(in) :: use_RF_c
661 >  subroutine init_FF(thisESM, thisStat)
662  
663 +    integer, intent(in) :: thisESM
664      integer, intent(out) :: thisStat  
665      integer :: my_status, nMatches
666      integer, pointer :: MatchList(:) => null()
251    real(kind=dp) :: rcut, rrf, rt, dielect
667  
668      !! assume things are copacetic, unless they aren't
669      thisStat = 0
670  
671 <    !! Fortran's version of a cast:
672 <    FF_uses_RF = use_RF_c
258 <    
671 >    electrostaticSummationMethod = thisESM
672 >
673      !! init_FF is called *after* all of the atom types have been
674      !! defined in atype_module using the new_atype subroutine.
675      !!
676      !! this will scan through the known atypes and figure out what
677      !! interactions are used by the force field.    
678 <  
678 >
679      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
680      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
681      FF_uses_GayBerne = .false.
682      FF_uses_EAM = .false.
683 <    FF_uses_Shapes = .false.
274 <    FF_uses_FLARB = .false.
275 <    
683 >
684      call getMatchingElementList(atypes, "is_Directional", .true., &
685           nMatches, MatchList)
686      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
687  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
688      call getMatchingElementList(atypes, "is_Dipole", .true., &
689           nMatches, MatchList)
690 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
690 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
691      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
692      call getMatchingElementList(atypes, "is_GayBerne", .true., &
693           nMatches, MatchList)
694 <    if (nMatches .gt. 0) then
695 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
694 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
695 >
696      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
697      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
698  
329    call getMatchingElementList(atypes, "is_FLARB", .true., &
330         nMatches, MatchList)
331    if (nMatches .gt. 0) FF_uses_FLARB = .true.
699  
333    !! Assume sanity (for the sake of argument)
700      haveSaneForceField = .true.
335    
336    !! check to make sure the FF_uses_RF setting makes sense
337    
338    if (FF_uses_dipoles) then
339       if (FF_uses_RF) then
340          dielect = getDielect()
341          call initialize_rf(dielect)
342       endif
343    else
344       if (FF_uses_RF) then          
345          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
346          thisStat = -1
347          haveSaneForceField = .false.
348          return
349       endif
350    endif
701  
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
359    endif
360
702      if (FF_uses_EAM) then
703 <         call init_EAM_FF(my_status)
703 >       call init_EAM_FF(my_status)
704         if (my_status /= 0) then
705            write(default_error, *) "init_EAM_FF returned a bad status"
706            thisStat = -1
707            haveSaneForceField = .false.
708            return
709         end if
369    endif
370
371    if (FF_uses_GayBerne) then
372       call check_gb_pair_FF(my_status)
373       if (my_status .ne. 0) then
374          thisStat = -1
375          haveSaneForceField = .false.
376          return
377       endif
710      endif
711  
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
712      if (.not. haveNeighborList) then
713         !! Create neighbor lists
714         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 718 | contains
718            return
719         endif
720         haveNeighborList = .true.
721 <    endif    
722 <    
721 >    endif
722 >
723    end subroutine init_FF
395  
724  
725 +
726    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
727    !------------------------------------------------------------->
728 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
728 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
729         do_pot_c, do_stress_c, error)
730      !! Position array provided by C, dimensioned by getNlocal
731      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 734 | contains
734      !! Rotation Matrix for each long range particle in simulation.
735      real( kind = dp), dimension(9, nLocal) :: A    
736      !! Unit vectors for dipoles (lab frame)
737 <    real( kind = dp ), dimension(3,nLocal) :: u_l
737 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
738      !! Force array provided by C, dimensioned by getNlocal
739      real ( kind = dp ), dimension(3,nLocal) :: f
740      !! Torsion array provided by C, dimensioned by getNlocal
# Line 413 | Line 742 | contains
742  
743      !! Stress Tensor
744      real( kind = dp), dimension(9) :: tau  
745 <    real ( kind = dp ) :: pot
745 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
746      logical ( kind = 2) :: do_pot_c, do_stress_c
747      logical :: do_pot
748      logical :: do_stress
749      logical :: in_switching_region
750   #ifdef IS_MPI
751 <    real( kind = DP ) :: pot_local
751 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
752      integer :: nAtomsInRow
753      integer :: nAtomsInCol
754      integer :: nprocs
# Line 434 | Line 763 | contains
763      integer :: nlist
764      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
765      real( kind = DP ) :: sw, dswdr, swderiv, mf
766 +    real( kind = DP ) :: rVal
767      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
768      real(kind=dp) :: rfpot, mu_i, virial
769      integer :: me_i, me_j, n_in_i, n_in_j
# Line 443 | Line 773 | contains
773      integer :: localError
774      integer :: propPack_i, propPack_j
775      integer :: loopStart, loopEnd, loop
776 +    integer :: iHash
777 +    integer :: i1
778 +  
779  
447    real(kind=dp) :: listSkin = 1.0  
448    
780      !! initialize local variables  
781 <    
781 >
782   #ifdef IS_MPI
783      pot_local = 0.0_dp
784      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 788 | contains
788   #else
789      natoms = nlocal
790   #endif
791 <    
791 >
792      call doReadyCheck(localError)
793      if ( localError .ne. 0 ) then
794         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 796 | contains
796         return
797      end if
798      call zero_work_arrays()
799 <        
799 >
800      do_pot = do_pot_c
801      do_stress = do_stress_c
802 <    
802 >
803      ! Gather all information needed by all force loops:
804 <    
804 >
805   #ifdef IS_MPI    
806 <    
806 >
807      call gather(q, q_Row, plan_atom_row_3d)
808      call gather(q, q_Col, plan_atom_col_3d)
809  
810      call gather(q_group, q_group_Row, plan_group_row_3d)
811      call gather(q_group, q_group_Col, plan_group_col_3d)
812 <        
812 >
813      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
814 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
815 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
816 <      
814 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
815 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
816 >
817         call gather(A, A_Row, plan_atom_row_rotation)
818         call gather(A, A_Col, plan_atom_col_rotation)
819      endif
820 <    
820 >
821   #endif
822 <    
822 >
823      !! Begin force loop timing:
824   #ifdef PROFILE
825      call cpu_time(forceTimeInitial)
826      nloops = nloops + 1
827   #endif
828 <    
828 >
829      loopEnd = PAIR_LOOP
830      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
831         loopStart = PREPAIR_LOOP
# Line 509 | Line 840 | contains
840         if (loop .eq. loopStart) then
841   #ifdef IS_MPI
842            call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
843 <             update_nlist)
843 >               update_nlist)
844   #else
845            call checkNeighborList(nGroups, q_group, listSkin, &
846 <             update_nlist)
846 >               update_nlist)
847   #endif
848         endif
849 <      
849 >
850         if (update_nlist) then
851            !! save current configuration and construct neighbor list
852   #ifdef IS_MPI
# Line 526 | Line 857 | contains
857            neighborListSize = size(list)
858            nlist = 0
859         endif
860 <      
860 >
861         istart = 1
862   #ifdef IS_MPI
863         iend = nGroupsInRow
# Line 536 | Line 867 | contains
867         outer: do i = istart, iend
868  
869            if (update_nlist) point(i) = nlist + 1
870 <          
870 >
871            n_in_i = groupStartRow(i+1) - groupStartRow(i)
872 <          
872 >
873            if (update_nlist) then
874   #ifdef IS_MPI
875               jstart = 1
# Line 553 | Line 884 | contains
884               ! make sure group i has neighbors
885               if (jstart .gt. jend) cycle outer
886            endif
887 <          
887 >
888            do jnab = jstart, jend
889               if (update_nlist) then
890                  j = jnab
# Line 562 | Line 893 | contains
893               endif
894  
895   #ifdef IS_MPI
896 +             me_j = atid_col(j)
897               call get_interatomic_vector(q_group_Row(:,i), &
898                    q_group_Col(:,j), d_grp, rgrpsq)
899   #else
900 +             me_j = atid(j)
901               call get_interatomic_vector(q_group(:,i), &
902                    q_group(:,j), d_grp, rgrpsq)
903 < #endif
903 > #endif      
904  
905 <             if (rgrpsq < rlistsq) then
905 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
906                  if (update_nlist) then
907                     nlist = nlist + 1
908 <                  
908 >
909                     if (nlist > neighborListSize) then
910   #ifdef IS_MPI                
911                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 919 | contains
919                        end if
920                        neighborListSize = size(list)
921                     endif
922 <                  
922 >
923                     list(nlist) = j
924                  endif
925                  
926 <                if (loop .eq. PAIR_LOOP) then
927 <                   vij = 0.0d0
928 <                   fij(1:3) = 0.0d0
929 <                endif
930 <                
931 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
599 <                     in_switching_region)
600 <                
601 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
602 <                
603 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
926 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
927 >
928 >                   if (loop .eq. PAIR_LOOP) then
929 >                      vij = 0.0d0
930 >                      fij(1:3) = 0.0d0
931 >                   endif
932                    
933 <                   atom1 = groupListRow(ia)
933 >                   call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
934 >                        in_switching_region)
935                    
936 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
936 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
937 >                  
938 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
939                        
940 <                      atom2 = groupListCol(jb)
940 >                      atom1 = groupListRow(ia)
941                        
942 <                      if (skipThisPair(atom1, atom2)) cycle inner
943 <
944 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
945 <                         d_atm(1:3) = d_grp(1:3)
946 <                         ratmsq = rgrpsq
947 <                      else
942 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
943 >                        
944 >                         atom2 = groupListCol(jb)
945 >                        
946 >                         if (skipThisPair(atom1, atom2))  cycle inner
947 >                        
948 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
949 >                            d_atm(1:3) = d_grp(1:3)
950 >                            ratmsq = rgrpsq
951 >                         else
952   #ifdef IS_MPI
953 <                         call get_interatomic_vector(q_Row(:,atom1), &
954 <                              q_Col(:,atom2), d_atm, ratmsq)
953 >                            call get_interatomic_vector(q_Row(:,atom1), &
954 >                                 q_Col(:,atom2), d_atm, ratmsq)
955   #else
956 <                         call get_interatomic_vector(q(:,atom1), &
957 <                              q(:,atom2), d_atm, ratmsq)
956 >                            call get_interatomic_vector(q(:,atom1), &
957 >                                 q(:,atom2), d_atm, ratmsq)
958   #endif
959 <                      endif
960 <
961 <                      if (loop .eq. PREPAIR_LOOP) then
959 >                         endif
960 >                        
961 >                         if (loop .eq. PREPAIR_LOOP) then
962   #ifdef IS_MPI                      
963 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
964 <                              rgrpsq, d_grp, do_pot, do_stress, &
965 <                              u_l, A, f, t, pot_local)
963 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
964 >                                 rgrpsq, d_grp, do_pot, do_stress, &
965 >                                 eFrame, A, f, t, pot_local)
966   #else
967 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
968 <                              rgrpsq, d_grp, do_pot, do_stress, &
969 <                              u_l, A, f, t, pot)
967 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
968 >                                 rgrpsq, d_grp, do_pot, do_stress, &
969 >                                 eFrame, A, f, t, pot)
970   #endif                                              
971 <                      else
971 >                         else
972   #ifdef IS_MPI                      
973 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
974 <                              do_pot, &
975 <                              u_l, A, f, t, pot_local, vpair, fpair)
973 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
974 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
975 >                                 fpair, d_grp, rgrp)
976   #else
977 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
978 <                              do_pot,  &
979 <                              u_l, A, f, t, pot, vpair, fpair)
977 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
978 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
979 >                                 d_grp, rgrp)
980   #endif
981 +                            vij = vij + vpair
982 +                            fij(1:3) = fij(1:3) + fpair(1:3)
983 +                         endif
984 +                      enddo inner
985 +                   enddo
986  
987 <                         vij = vij + vpair
988 <                         fij(1:3) = fij(1:3) + fpair(1:3)
989 <                      endif
990 <                   enddo inner
991 <                enddo
992 <                
993 <                if (loop .eq. PAIR_LOOP) then
994 <                   if (in_switching_region) then
995 <                      swderiv = vij*dswdr/rgrp
996 <                      fij(1) = fij(1) + swderiv*d_grp(1)
997 <                      fij(2) = fij(2) + swderiv*d_grp(2)
998 <                      fij(3) = fij(3) + swderiv*d_grp(3)
999 <                      
1000 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
1001 <                         atom1=groupListRow(ia)
1002 <                         mf = mfactRow(atom1)
1003 < #ifdef IS_MPI
1004 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
665 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
666 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
667 < #else
668 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
669 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
670 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
987 >                   if (loop .eq. PAIR_LOOP) then
988 >                      if (in_switching_region) then
989 >                         swderiv = vij*dswdr/rgrp
990 >                         fij(1) = fij(1) + swderiv*d_grp(1)
991 >                         fij(2) = fij(2) + swderiv*d_grp(2)
992 >                         fij(3) = fij(3) + swderiv*d_grp(3)
993 >                        
994 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
995 >                            atom1=groupListRow(ia)
996 >                            mf = mfactRow(atom1)
997 > #ifdef IS_MPI
998 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
999 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1000 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1001 > #else
1002 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1003 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1004 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1005   #endif
1006 <                      enddo
1007 <                      
1008 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1009 <                         atom2=groupListCol(jb)
1010 <                         mf = mfactCol(atom2)
1006 >                         enddo
1007 >                        
1008 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1009 >                            atom2=groupListCol(jb)
1010 >                            mf = mfactCol(atom2)
1011   #ifdef IS_MPI
1012 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1013 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1014 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1012 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1013 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1014 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1015   #else
1016 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1017 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1018 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1016 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1017 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1018 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1019   #endif
1020 <                      enddo
1020 >                         enddo
1021 >                      endif
1022 >
1023 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1024                     endif
688                  
689                   if (do_stress) call add_stress_tensor(d_grp, fij)
1025                  endif
1026 <             end if
1026 >             endif
1027            enddo
1028 +          
1029         enddo outer
1030 <      
1030 >
1031         if (update_nlist) then
1032   #ifdef IS_MPI
1033            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 1041 | contains
1041               update_nlist = .false.                              
1042            endif
1043         endif
1044 <            
1044 >
1045         if (loop .eq. PREPAIR_LOOP) then
1046            call do_preforce(nlocal, pot)
1047         endif
1048 <      
1048 >
1049      enddo
1050 <    
1050 >
1051      !! Do timing
1052   #ifdef PROFILE
1053      call cpu_time(forceTimeFinal)
1054      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1055   #endif    
1056 <    
1056 >
1057   #ifdef IS_MPI
1058      !!distribute forces
1059 <    
1059 >
1060      f_temp = 0.0_dp
1061      call scatter(f_Row,f_temp,plan_atom_row_3d)
1062      do i = 1,nlocal
1063         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1064      end do
1065 <    
1065 >
1066      f_temp = 0.0_dp
1067      call scatter(f_Col,f_temp,plan_atom_col_3d)
1068      do i = 1,nlocal
1069         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1070      end do
1071 <    
1071 >
1072      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1073         t_temp = 0.0_dp
1074         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 1077 | contains
1077         end do
1078         t_temp = 0.0_dp
1079         call scatter(t_Col,t_temp,plan_atom_col_3d)
1080 <      
1080 >
1081         do i = 1,nlocal
1082            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1083         end do
1084      endif
1085 <    
1085 >
1086      if (do_pot) then
1087         ! scatter/gather pot_row into the members of my column
1088 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1089 <      
1088 >       do i = 1,LR_POT_TYPES
1089 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1090 >       end do
1091         ! scatter/gather pot_local into all other procs
1092         ! add resultant to get total pot
1093         do i = 1, nlocal
1094 <          pot_local = pot_local + pot_Temp(i)
1094 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1095 >               + pot_Temp(1:LR_POT_TYPES,i)
1096         enddo
1097 <      
1097 >
1098         pot_Temp = 0.0_DP
1099 <      
1100 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1099 >       do i = 1,LR_POT_TYPES
1100 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1101 >       end do
1102         do i = 1, nlocal
1103 <          pot_local = pot_local + pot_Temp(i)
1103 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1104 >               + pot_Temp(1:LR_POT_TYPES,i)
1105         enddo
1106 <      
1106 >
1107      endif
1108   #endif
1109 <    
1110 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1111 <      
772 <       if (FF_uses_RF .and. SIM_uses_RF) then
1109 >
1110 >    if (SIM_requires_postpair_calc) then
1111 >       do i = 1, nlocal            
1112            
1113 < #ifdef IS_MPI
1114 <          call scatter(rf_Row,rf,plan_atom_row_3d)
776 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
777 <          do i = 1,nlocal
778 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
779 <          end do
780 < #endif
1113 >          ! we loop only over the local atoms, so we don't need row and column
1114 >          ! lookups for the types
1115            
1116 <          do i = 1, nLocal
1117 <            
1118 <             rfpot = 0.0_DP
1116 >          me_i = atid(i)
1117 >          
1118 >          ! is the atom electrostatic?  See if it would have an
1119 >          ! electrostatic interaction with itself
1120 >          iHash = InteractionHash(me_i,me_i)
1121 >
1122 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1123   #ifdef IS_MPI
1124 <             me_i = atid_row(i)
1124 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1125 >                  t, do_pot)
1126   #else
1127 <             me_i = atid(i)
1127 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1128 >                  t, do_pot)
1129   #endif
1130 +          endif
1131 +  
1132 +          
1133 +          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1134              
1135 <             if (PropertyMap(me_i)%is_Dipole) then
1135 >             ! loop over the excludes to accumulate RF stuff we've
1136 >             ! left out of the normal pair loop
1137 >            
1138 >             do i1 = 1, nSkipsForAtom(i)
1139 >                j = skipsForAtom(i, i1)
1140                  
1141 <                mu_i = getDipoleMoment(me_i)
1142 <                
1143 <                !! The reaction field needs to include a self contribution
1144 <                !! to the field:
1145 <                call accumulate_self_rf(i, mu_i, u_l)
1146 <                !! Get the reaction field contribution to the
1147 <                !! potential and torques:
800 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1141 >                ! prevent overcounting of the skips
1142 >                if (i.lt.j) then
1143 >                   call get_interatomic_vector(q(:,i), &
1144 >                        q(:,j), d_atm, ratmsq)
1145 >                   rVal = dsqrt(ratmsq)
1146 >                   call get_switch(ratmsq, sw, dswdr, rVal, group_switch, &
1147 >                        in_switching_region)
1148   #ifdef IS_MPI
1149 <                pot_local = pot_local + rfpot
1149 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1150 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1151   #else
1152 <                pot = pot + rfpot
1153 <      
1152 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1153 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1154   #endif
1155 <             endif            
1156 <          enddo
1157 <       endif
1155 >                endif
1156 >             enddo
1157 >          endif
1158 >       enddo
1159      endif
1160      
812    
1161   #ifdef IS_MPI
1162      
1163      if (do_pot) then
1164 <       pot = pot + pot_local
1165 <       !! we assume the c code will do the allreduce to get the total potential
818 <       !! we could do it right here if we needed to...
1164 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1165 >            mpi_comm_world,mpi_err)            
1166      endif
1167      
1168      if (do_stress) then
# Line 833 | Line 1180 | contains
1180      endif
1181      
1182   #endif
1183 <      
1183 >    
1184    end subroutine do_force_loop
1185 <  
1185 >
1186    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1187 <       u_l, A, f, t, pot, vpair, fpair)
1187 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp)
1188  
1189 <    real( kind = dp ) :: pot, vpair, sw
1189 >    real( kind = dp ) :: vpair, sw
1190 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1191      real( kind = dp ), dimension(3) :: fpair
1192      real( kind = dp ), dimension(nLocal)   :: mfact
1193 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1193 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1194      real( kind = dp ), dimension(9,nLocal) :: A
1195      real( kind = dp ), dimension(3,nLocal) :: f
1196      real( kind = dp ), dimension(3,nLocal) :: t
# Line 850 | Line 1198 | contains
1198      logical, intent(inout) :: do_pot
1199      integer, intent(in) :: i, j
1200      real ( kind = dp ), intent(inout) :: rijsq
1201 <    real ( kind = dp )                :: r
1201 >    real ( kind = dp ), intent(inout) :: r_grp
1202      real ( kind = dp ), intent(inout) :: d(3)
1203 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1204 +    real ( kind = dp ) :: r
1205      integer :: me_i, me_j
1206  
1207 +    integer :: iHash
1208 +
1209      r = sqrt(rijsq)
1210      vpair = 0.0d0
1211      fpair(1:3) = 0.0d0
# Line 866 | Line 1218 | contains
1218      me_j = atid(j)
1219   #endif
1220  
1221 <    write(*,*) i, j, me_i, me_j
1221 >    iHash = InteractionHash(me_i, me_j)
1222      
1223 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1224 <      
1225 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
874 <            PropertyMap(me_j)%is_LennardJones ) then
875 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
876 <       endif
877 <      
1223 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1224 >       call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1225 >            pot(VDW_POT), f, do_pot)
1226      endif
1227      
1228 <    if (FF_uses_charges .and. SIM_uses_charges) then
1229 <      
1230 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
883 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
884 <               pot, f, do_pot)
885 <       endif
886 <      
1228 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1229 >       call doElectrostaticPair(i, j, d, r, rijsq, sw, vpair, fpair, &
1230 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1231      endif
1232      
1233 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
1234 <      
1235 <       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
1236 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1237 <               pot, u_l, f, t, do_pot)
1238 <          if (FF_uses_RF .and. SIM_uses_RF) then
1239 <             call accumulate_rf(i, j, r, u_l, sw)
1240 <             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
1241 <          endif
1242 <       endif
1233 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1234 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1235 >            pot(HB_POT), A, f, t, do_pot)
1236 >    endif
1237 >    
1238 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1239 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1240 >            pot(HB_POT), A, f, t, do_pot)
1241 >    endif
1242 >    
1243 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1244 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1245 >            pot(VDW_POT), A, f, t, do_pot)
1246 >    endif
1247 >    
1248 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1249 >       call do_gb_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1250 >            pot(VDW_POT), A, f, t, do_pot)
1251 >    endif
1252 >    
1253 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1254 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1255 >            pot(METALLIC_POT), f, do_pot)
1256 >    endif
1257 >    
1258 >    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1259 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1260 >            pot(VDW_POT), A, f, t, do_pot)
1261 >    endif
1262 >    
1263 >    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1264 >       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1265 >            pot(VDW_POT), A, f, t, do_pot)
1266 >    endif
1267  
1268 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1269 +       call do_SC_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1270 +            pot(METALLIC_POT), f, do_pot)
1271      endif
1272  
1273 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1273 >    
1274 >    
1275 >  end subroutine do_pair
1276  
1277 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
1278 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
906 <               pot, A, f, t, do_pot)
907 <       endif
908 <      
909 <    endif
1277 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1278 >       do_pot, do_stress, eFrame, A, f, t, pot)
1279  
1280 +    real( kind = dp ) :: sw
1281 +    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1282 +    real( kind = dp ), dimension(9,nLocal) :: eFrame
1283 +    real (kind=dp), dimension(9,nLocal) :: A
1284 +    real (kind=dp), dimension(3,nLocal) :: f
1285 +    real (kind=dp), dimension(3,nLocal) :: t
1286  
1287 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1288 <      
1289 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
1290 <            PropertyMap(me_j)%is_GayBerne) then
1291 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1292 <               pot, u_l, f, t, do_pot)
1293 <       endif
1294 <      
1287 >    logical, intent(inout) :: do_pot, do_stress
1288 >    integer, intent(in) :: i, j
1289 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1290 >    real ( kind = dp )                :: r, rc
1291 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1292 >
1293 >    integer :: me_i, me_j, iHash
1294 >
1295 >    r = sqrt(rijsq)
1296 >
1297 > #ifdef IS_MPI  
1298 >    me_i = atid_row(i)
1299 >    me_j = atid_col(j)  
1300 > #else  
1301 >    me_i = atid(i)
1302 >    me_j = atid(j)  
1303 > #endif
1304 >
1305 >    iHash = InteractionHash(me_i, me_j)
1306 >
1307 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1308 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1309      endif
1310 +
1311 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1312 +            call calc_SC_prepair_rho(i, j, d, r, rijsq )
1313 +    endif
1314      
1315 +  end subroutine do_prepair
1316 +
1317 +
1318 +  subroutine do_preforce(nlocal,pot)
1319 +    integer :: nlocal
1320 +    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1321 +
1322      if (FF_uses_EAM .and. SIM_uses_EAM) then
1323 <      
924 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
925 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
926 <               do_pot)
927 <       endif
928 <      
1323 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1324      endif
1325 +    if (FF_uses_SC .and. SIM_uses_SC) then
1326 +       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1327 +    endif
1328  
1329  
1330 <    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1330 >  end subroutine do_preforce
1331  
1332 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1333 <       if ( PropertyMap(me_i)%is_Shape .and. &
1334 <            PropertyMap(me_j)%is_Shape ) then
1335 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1336 <               pot, A, f, t, do_pot)
1332 >
1333 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1334 >
1335 >    real (kind = dp), dimension(3) :: q_i
1336 >    real (kind = dp), dimension(3) :: q_j
1337 >    real ( kind = dp ), intent(out) :: r_sq
1338 >    real( kind = dp ) :: d(3), scaled(3)
1339 >    integer i
1340 >
1341 >    d(1:3) = q_j(1:3) - q_i(1:3)
1342 >
1343 >    ! Wrap back into periodic box if necessary
1344 >    if ( SIM_uses_PBC ) then
1345 >
1346 >       if( .not.boxIsOrthorhombic ) then
1347 >          ! calc the scaled coordinates.
1348 >
1349 >          scaled = matmul(HmatInv, d)
1350 >
1351 >          ! wrap the scaled coordinates
1352 >
1353 >          scaled = scaled  - anint(scaled)
1354 >
1355 >
1356 >          ! calc the wrapped real coordinates from the wrapped scaled
1357 >          ! coordinates
1358 >
1359 >          d = matmul(Hmat,scaled)
1360 >
1361 >       else
1362 >          ! calc the scaled coordinates.
1363 >
1364 >          do i = 1, 3
1365 >             scaled(i) = d(i) * HmatInv(i,i)
1366 >
1367 >             ! wrap the scaled coordinates
1368 >
1369 >             scaled(i) = scaled(i) - anint(scaled(i))
1370 >
1371 >             ! calc the wrapped real coordinates from the wrapped scaled
1372 >             ! coordinates
1373 >
1374 >             d(i) = scaled(i)*Hmat(i,i)
1375 >          enddo
1376         endif
1377 <      
1377 >
1378      endif
942    
943  end subroutine do_pair
1379  
1380 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
946 <       do_pot, do_stress, u_l, A, f, t, pot)
1380 >    r_sq = dot_product(d,d)
1381  
1382 <   real( kind = dp ) :: pot, sw
949 <   real( kind = dp ), dimension(3,nLocal) :: u_l
950 <   real (kind=dp), dimension(9,nLocal) :: A
951 <   real (kind=dp), dimension(3,nLocal) :: f
952 <   real (kind=dp), dimension(3,nLocal) :: t
953 <  
954 <   logical, intent(inout) :: do_pot, do_stress
955 <   integer, intent(in) :: i, j
956 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
957 <   real ( kind = dp )                :: r, rc
958 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
959 <  
960 <   logical :: is_EAM_i, is_EAM_j
961 <  
962 <   integer :: me_i, me_j
963 <  
1382 >  end subroutine get_interatomic_vector
1383  
1384 <    r = sqrt(rijsq)
966 <    if (SIM_uses_molecular_cutoffs) then
967 <       rc = sqrt(rcijsq)
968 <    else
969 <       rc = r
970 <    endif
971 <  
1384 >  subroutine zero_work_arrays()
1385  
1386 < #ifdef IS_MPI  
1387 <   me_i = atid_row(i)
1388 <   me_j = atid_col(j)  
1389 < #else  
1390 <   me_i = atid(i)
1391 <   me_j = atid(j)  
1392 < #endif
1393 <  
1394 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1395 <      
1396 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1397 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1398 <      
1399 <   endif
1400 <  
1401 < end subroutine do_prepair
1402 <
1403 <
1404 < subroutine do_preforce(nlocal,pot)
1405 <   integer :: nlocal
1406 <   real( kind = dp ) :: pot
994 <  
995 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
996 <      call calc_EAM_preforce_Frho(nlocal,pot)
997 <   endif
998 <  
999 <  
1000 < end subroutine do_preforce
1001 <
1002 <
1003 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1004 <  
1005 <   real (kind = dp), dimension(3) :: q_i
1006 <   real (kind = dp), dimension(3) :: q_j
1007 <   real ( kind = dp ), intent(out) :: r_sq
1008 <   real( kind = dp ) :: d(3), scaled(3)
1009 <   integer i
1010 <  
1011 <   d(1:3) = q_j(1:3) - q_i(1:3)
1012 <  
1013 <   ! Wrap back into periodic box if necessary
1014 <   if ( SIM_uses_PBC ) then
1015 <      
1016 <      if( .not.boxIsOrthorhombic ) then
1017 <         ! calc the scaled coordinates.
1018 <        
1019 <         scaled = matmul(HmatInv, d)
1020 <        
1021 <         ! wrap the scaled coordinates
1022 <        
1023 <         scaled = scaled  - anint(scaled)
1024 <        
1025 <        
1026 <         ! calc the wrapped real coordinates from the wrapped scaled
1027 <         ! coordinates
1028 <        
1029 <         d = matmul(Hmat,scaled)
1030 <        
1031 <      else
1032 <         ! calc the scaled coordinates.
1033 <        
1034 <         do i = 1, 3
1035 <            scaled(i) = d(i) * HmatInv(i,i)
1036 <            
1037 <            ! wrap the scaled coordinates
1038 <            
1039 <            scaled(i) = scaled(i) - anint(scaled(i))
1040 <            
1041 <            ! calc the wrapped real coordinates from the wrapped scaled
1042 <            ! coordinates
1043 <            
1044 <            d(i) = scaled(i)*Hmat(i,i)
1045 <         enddo
1046 <      endif
1047 <      
1048 <   endif
1049 <  
1050 <   r_sq = dot_product(d,d)
1051 <  
1052 < end subroutine get_interatomic_vector
1053 <
1054 < subroutine zero_work_arrays()
1055 <  
1056 < #ifdef IS_MPI
1057 <  
1058 <   q_Row = 0.0_dp
1059 <   q_Col = 0.0_dp
1386 > #ifdef IS_MPI
1387 >
1388 >    q_Row = 0.0_dp
1389 >    q_Col = 0.0_dp
1390 >
1391 >    q_group_Row = 0.0_dp
1392 >    q_group_Col = 0.0_dp  
1393 >
1394 >    eFrame_Row = 0.0_dp
1395 >    eFrame_Col = 0.0_dp
1396 >
1397 >    A_Row = 0.0_dp
1398 >    A_Col = 0.0_dp
1399 >
1400 >    f_Row = 0.0_dp
1401 >    f_Col = 0.0_dp
1402 >    f_Temp = 0.0_dp
1403 >
1404 >    t_Row = 0.0_dp
1405 >    t_Col = 0.0_dp
1406 >    t_Temp = 0.0_dp
1407  
1408 <   q_group_Row = 0.0_dp
1409 <   q_group_Col = 0.0_dp  
1410 <  
1411 <   u_l_Row = 0.0_dp
1065 <   u_l_Col = 0.0_dp
1066 <  
1067 <   A_Row = 0.0_dp
1068 <   A_Col = 0.0_dp
1069 <  
1070 <   f_Row = 0.0_dp
1071 <   f_Col = 0.0_dp
1072 <   f_Temp = 0.0_dp
1073 <  
1074 <   t_Row = 0.0_dp
1075 <   t_Col = 0.0_dp
1076 <   t_Temp = 0.0_dp
1077 <  
1078 <   pot_Row = 0.0_dp
1079 <   pot_Col = 0.0_dp
1080 <   pot_Temp = 0.0_dp
1081 <  
1082 <   rf_Row = 0.0_dp
1083 <   rf_Col = 0.0_dp
1084 <   rf_Temp = 0.0_dp
1085 <  
1408 >    pot_Row = 0.0_dp
1409 >    pot_Col = 0.0_dp
1410 >    pot_Temp = 0.0_dp
1411 >
1412   #endif
1413 <
1414 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1415 <      call clean_EAM()
1416 <   endif
1417 <  
1418 <   rf = 0.0_dp
1419 <   tau_Temp = 0.0_dp
1420 <   virial_Temp = 0.0_dp
1421 < end subroutine zero_work_arrays
1422 <
1423 < function skipThisPair(atom1, atom2) result(skip_it)
1424 <   integer, intent(in) :: atom1
1425 <   integer, intent(in), optional :: atom2
1426 <   logical :: skip_it
1427 <   integer :: unique_id_1, unique_id_2
1428 <   integer :: me_i,me_j
1429 <   integer :: i
1430 <  
1431 <   skip_it = .false.
1432 <  
1433 <   !! there are a number of reasons to skip a pair or a particle
1434 <   !! mostly we do this to exclude atoms who are involved in short
1435 <   !! range interactions (bonds, bends, torsions), but we also need
1436 <   !! to exclude some overcounted interactions that result from
1437 <   !! the parallel decomposition
1112 <  
1413 >
1414 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1415 >       call clean_EAM()
1416 >    endif
1417 >
1418 >    tau_Temp = 0.0_dp
1419 >    virial_Temp = 0.0_dp
1420 >  end subroutine zero_work_arrays
1421 >
1422 >  function skipThisPair(atom1, atom2) result(skip_it)
1423 >    integer, intent(in) :: atom1
1424 >    integer, intent(in), optional :: atom2
1425 >    logical :: skip_it
1426 >    integer :: unique_id_1, unique_id_2
1427 >    integer :: me_i,me_j
1428 >    integer :: i
1429 >
1430 >    skip_it = .false.
1431 >
1432 >    !! there are a number of reasons to skip a pair or a particle
1433 >    !! mostly we do this to exclude atoms who are involved in short
1434 >    !! range interactions (bonds, bends, torsions), but we also need
1435 >    !! to exclude some overcounted interactions that result from
1436 >    !! the parallel decomposition
1437 >
1438   #ifdef IS_MPI
1439 <   !! in MPI, we have to look up the unique IDs for each atom
1440 <   unique_id_1 = AtomRowToGlobal(atom1)
1439 >    !! in MPI, we have to look up the unique IDs for each atom
1440 >    unique_id_1 = AtomRowToGlobal(atom1)
1441   #else
1442 <   !! in the normal loop, the atom numbers are unique
1443 <   unique_id_1 = atom1
1442 >    !! in the normal loop, the atom numbers are unique
1443 >    unique_id_1 = atom1
1444   #endif
1445 <  
1446 <   !! We were called with only one atom, so just check the global exclude
1447 <   !! list for this atom
1448 <   if (.not. present(atom2)) then
1449 <      do i = 1, nExcludes_global
1450 <         if (excludesGlobal(i) == unique_id_1) then
1451 <            skip_it = .true.
1452 <            return
1453 <         end if
1454 <      end do
1455 <      return
1456 <   end if
1457 <  
1445 >
1446 >    !! We were called with only one atom, so just check the global exclude
1447 >    !! list for this atom
1448 >    if (.not. present(atom2)) then
1449 >       do i = 1, nExcludes_global
1450 >          if (excludesGlobal(i) == unique_id_1) then
1451 >             skip_it = .true.
1452 >             return
1453 >          end if
1454 >       end do
1455 >       return
1456 >    end if
1457 >
1458   #ifdef IS_MPI
1459 <   unique_id_2 = AtomColToGlobal(atom2)
1459 >    unique_id_2 = AtomColToGlobal(atom2)
1460   #else
1461 <   unique_id_2 = atom2
1461 >    unique_id_2 = atom2
1462   #endif
1463 <  
1463 >
1464   #ifdef IS_MPI
1465 <   !! this situation should only arise in MPI simulations
1466 <   if (unique_id_1 == unique_id_2) then
1467 <      skip_it = .true.
1468 <      return
1469 <   end if
1470 <  
1471 <   !! this prevents us from doing the pair on multiple processors
1472 <   if (unique_id_1 < unique_id_2) then
1473 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1474 <         skip_it = .true.
1475 <         return
1476 <      endif
1477 <   else                
1478 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1479 <         skip_it = .true.
1480 <         return
1481 <      endif
1482 <   endif
1465 >    !! this situation should only arise in MPI simulations
1466 >    if (unique_id_1 == unique_id_2) then
1467 >       skip_it = .true.
1468 >       return
1469 >    end if
1470 >
1471 >    !! this prevents us from doing the pair on multiple processors
1472 >    if (unique_id_1 < unique_id_2) then
1473 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1474 >          skip_it = .true.
1475 >          return
1476 >       endif
1477 >    else                
1478 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1479 >          skip_it = .true.
1480 >          return
1481 >       endif
1482 >    endif
1483   #endif
1484 <  
1485 <   !! the rest of these situations can happen in all simulations:
1486 <   do i = 1, nExcludes_global      
1487 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1488 <           (excludesGlobal(i) == unique_id_2)) then
1489 <         skip_it = .true.
1490 <         return
1491 <      endif
1492 <   enddo
1493 <  
1494 <   do i = 1, nSkipsForAtom(atom1)
1495 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1496 <         skip_it = .true.
1497 <         return
1498 <      endif
1499 <   end do
1500 <  
1501 <   return
1502 < end function skipThisPair
1503 <
1504 < function FF_UsesDirectionalAtoms() result(doesit)
1505 <   logical :: doesit
1506 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1507 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1508 < end function FF_UsesDirectionalAtoms
1509 <
1510 < function FF_RequiresPrepairCalc() result(doesit)
1511 <   logical :: doesit
1512 <   doesit = FF_uses_EAM
1513 < end function FF_RequiresPrepairCalc
1514 <
1190 < function FF_RequiresPostpairCalc() result(doesit)
1191 <   logical :: doesit
1192 <   doesit = FF_uses_RF
1193 < end function FF_RequiresPostpairCalc
1194 <
1484 >
1485 >    !! the rest of these situations can happen in all simulations:
1486 >    do i = 1, nExcludes_global      
1487 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1488 >            (excludesGlobal(i) == unique_id_2)) then
1489 >          skip_it = .true.
1490 >          return
1491 >       endif
1492 >    enddo
1493 >
1494 >    do i = 1, nSkipsForAtom(atom1)
1495 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1496 >          skip_it = .true.
1497 >          return
1498 >       endif
1499 >    end do
1500 >
1501 >    return
1502 >  end function skipThisPair
1503 >
1504 >  function FF_UsesDirectionalAtoms() result(doesit)
1505 >    logical :: doesit
1506 >    doesit = FF_uses_DirectionalAtoms
1507 >  end function FF_UsesDirectionalAtoms
1508 >
1509 >  function FF_RequiresPrepairCalc() result(doesit)
1510 >    logical :: doesit
1511 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1512 >         .or. FF_uses_MEAM
1513 >  end function FF_RequiresPrepairCalc
1514 >
1515   #ifdef PROFILE
1516 < function getforcetime() result(totalforcetime)
1517 <   real(kind=dp) :: totalforcetime
1518 <   totalforcetime = forcetime
1519 < end function getforcetime
1516 >  function getforcetime() result(totalforcetime)
1517 >    real(kind=dp) :: totalforcetime
1518 >    totalforcetime = forcetime
1519 >  end function getforcetime
1520   #endif
1201
1202 !! This cleans componets of force arrays belonging only to fortran
1521  
1522 < subroutine add_stress_tensor(dpair, fpair)
1205 <  
1206 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1207 <  
1208 <   ! because the d vector is the rj - ri vector, and
1209 <   ! because fx, fy, fz are the force on atom i, we need a
1210 <   ! negative sign here:  
1211 <  
1212 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1213 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1214 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1215 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1216 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1217 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1218 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1219 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1220 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1221 <  
1222 <   virial_Temp = virial_Temp + &
1223 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1224 <  
1225 < end subroutine add_stress_tensor
1226 <
1227 < end module doForces
1522 >  !! This cleans componets of force arrays belonging only to fortran
1523  
1524 < !! Interfaces for C programs to module....
1524 >  subroutine add_stress_tensor(dpair, fpair)
1525  
1526 < subroutine initFortranFF(use_RF_c, thisStat)
1232 <    use doForces, ONLY: init_FF
1233 <    logical, intent(in) :: use_RF_c
1526 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1527  
1528 <    integer, intent(out) :: thisStat  
1529 <    call init_FF(use_RF_c, thisStat)
1528 >    ! because the d vector is the rj - ri vector, and
1529 >    ! because fx, fy, fz are the force on atom i, we need a
1530 >    ! negative sign here:  
1531  
1532 < end subroutine initFortranFF
1532 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1533 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1534 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1535 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1536 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1537 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1538 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1539 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1540 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1541  
1542 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1543 <       do_pot_c, do_stress_c, error)
1242 <      
1243 <       use definitions, ONLY: dp
1244 <       use simulation
1245 <       use doForces, ONLY: do_force_loop
1246 <    !! Position array provided by C, dimensioned by getNlocal
1247 <    real ( kind = dp ), dimension(3, nLocal) :: q
1248 <    !! molecular center-of-mass position array
1249 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1250 <    !! Rotation Matrix for each long range particle in simulation.
1251 <    real( kind = dp), dimension(9, nLocal) :: A    
1252 <    !! Unit vectors for dipoles (lab frame)
1253 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1254 <    !! Force array provided by C, dimensioned by getNlocal
1255 <    real ( kind = dp ), dimension(3,nLocal) :: f
1256 <    !! Torsion array provided by C, dimensioned by getNlocal
1257 <    real( kind = dp ), dimension(3,nLocal) :: t    
1542 >    virial_Temp = virial_Temp + &
1543 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1544  
1545 <    !! Stress Tensor
1546 <    real( kind = dp), dimension(9) :: tau  
1547 <    real ( kind = dp ) :: pot
1262 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1263 <    integer :: error
1264 <    
1265 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1266 <       do_pot_c, do_stress_c, error)
1267 <      
1268 < end subroutine doForceloop
1545 >  end subroutine add_stress_tensor
1546 >
1547 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines