ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1948 by gezelter, Fri Jan 14 20:31:16 2005 UTC vs.
Revision 2715 by chrisfen, Sun Apr 16 02:51:16 2006 UTC

# Line 45 | Line 45
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.10 2005-01-14 20:31:12 gezelter Exp $, $Date: 2005-01-14 20:31:12 $, $Name: not supported by cvs2svn $, $Revision: 1.10 $
48 > !! @version $Id: doForces.F90,v 1.77 2006-04-16 02:51:16 chrisfen Exp $, $Date: 2006-04-16 02:51:16 $, $Name: not supported by cvs2svn $, $Revision: 1.77 $
49  
50  
51   module doForces
# Line 57 | Line 57 | module doForces
57    use neighborLists  
58    use lj
59    use sticky
60 <  use dipole_dipole
61 <  use charge_charge
62 <  use reaction_field
63 <  use gb_pair
60 >  use electrostatic_module
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67 +  use interpolation
68   #ifdef IS_MPI
69    use mpiSimulation
70   #endif
# Line 74 | Line 74 | module doForces
74  
75   #define __FORTRAN90
76   #include "UseTheForce/fSwitchingFunction.h"
77 + #include "UseTheForce/fCutoffPolicy.h"
78 + #include "UseTheForce/DarkSide/fInteractionMap.h"
79 + #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
80  
81 +
82    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
83    INTEGER, PARAMETER:: PAIR_LOOP    = 2
84  
81  logical, save :: haveRlist = .false.
85    logical, save :: haveNeighborList = .false.
86    logical, save :: haveSIMvariables = .false.
84  logical, save :: havePropertyMap = .false.
87    logical, save :: haveSaneForceField = .false.
88 <  
88 >  logical, save :: haveInteractionHash = .false.
89 >  logical, save :: haveGtypeCutoffMap = .false.
90 >  logical, save :: haveDefaultCutoffs = .false.
91 >  logical, save :: haveSkinThickness = .false.
92 >  logical, save :: haveElectrostaticSummationMethod = .false.
93 >  logical, save :: haveCutoffPolicy = .false.
94 >  logical, save :: VisitCutoffsAfterComputing = .false.
95 >
96    logical, save :: FF_uses_DirectionalAtoms
97 <  logical, save :: FF_uses_LennardJones
89 <  logical, save :: FF_uses_Electrostatic
90 <  logical, save :: FF_uses_charges
91 <  logical, save :: FF_uses_dipoles
92 <  logical, save :: FF_uses_sticky
97 >  logical, save :: FF_uses_Dipoles
98    logical, save :: FF_uses_GayBerne
99    logical, save :: FF_uses_EAM
100 <  logical, save :: FF_uses_Shapes
101 <  logical, save :: FF_uses_FLARB
102 <  logical, save :: FF_uses_RF
100 >  logical, save :: FF_uses_SC
101 >  logical, save :: FF_uses_MEAM
102 >
103  
104    logical, save :: SIM_uses_DirectionalAtoms
100  logical, save :: SIM_uses_LennardJones
101  logical, save :: SIM_uses_Electrostatics
102  logical, save :: SIM_uses_Charges
103  logical, save :: SIM_uses_Dipoles
104  logical, save :: SIM_uses_Sticky
105  logical, save :: SIM_uses_GayBerne
105    logical, save :: SIM_uses_EAM
106 <  logical, save :: SIM_uses_Shapes
107 <  logical, save :: SIM_uses_FLARB
109 <  logical, save :: SIM_uses_RF
106 >  logical, save :: SIM_uses_SC
107 >  logical, save :: SIM_uses_MEAM
108    logical, save :: SIM_requires_postpair_calc
109    logical, save :: SIM_requires_prepair_calc
110    logical, save :: SIM_uses_PBC
113  logical, save :: SIM_uses_molecular_cutoffs
111  
112 <  real(kind=dp), save :: rlist, rlistsq
112 >  integer, save :: electrostaticSummationMethod
113 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
114  
115 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
116 +  real(kind=dp), save :: skinThickness
117 +  logical, save :: defaultDoShift
118 +
119    public :: init_FF
120 +  public :: setCutoffs
121 +  public :: cWasLame
122 +  public :: setElectrostaticMethod
123 +  public :: setCutoffPolicy
124 +  public :: setSkinThickness
125    public :: do_force_loop
119  public :: setRlistDF
126  
127   #ifdef PROFILE
128    public :: getforcetime
# Line 124 | Line 130 | module doForces
130    real :: forceTimeInitial, forceTimeFinal
131    integer :: nLoops
132   #endif
133 +  
134 +  !! Variables for cutoff mapping and interaction mapping
135 +  ! Bit hash to determine pair-pair interactions.
136 +  integer, dimension(:,:), allocatable :: InteractionHash
137 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
138 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
139 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
140  
141 <  type :: Properties
142 <     logical :: is_Directional   = .false.
130 <     logical :: is_LennardJones  = .false.
131 <     logical :: is_Electrostatic = .false.
132 <     logical :: is_Charge        = .false.
133 <     logical :: is_Dipole        = .false.
134 <     logical :: is_Sticky        = .false.
135 <     logical :: is_GayBerne      = .false.
136 <     logical :: is_EAM           = .false.
137 <     logical :: is_Shape         = .false.
138 <     logical :: is_FLARB         = .false.
139 <  end type Properties
141 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
142 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
143  
144 <  type(Properties), dimension(:),allocatable :: PropertyMap
144 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
145 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
146 >  type ::gtypeCutoffs
147 >     real(kind=dp) :: rcut
148 >     real(kind=dp) :: rcutsq
149 >     real(kind=dp) :: rlistsq
150 >  end type gtypeCutoffs
151 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
152  
153   contains
154  
155 <  subroutine setRlistDF( this_rlist )
146 <    
147 <    real(kind=dp) :: this_rlist
148 <
149 <    rlist = this_rlist
150 <    rlistsq = rlist * rlist
151 <    
152 <    haveRlist = .true.
153 <
154 <  end subroutine setRlistDF    
155 <
156 <  subroutine createPropertyMap(status)
155 >  subroutine createInteractionHash()
156      integer :: nAtypes
158    integer :: status
157      integer :: i
158 <    logical :: thisProperty
159 <    real (kind=DP) :: thisDPproperty
158 >    integer :: j
159 >    integer :: iHash
160 >    !! Test Types
161 >    logical :: i_is_LJ
162 >    logical :: i_is_Elect
163 >    logical :: i_is_Sticky
164 >    logical :: i_is_StickyP
165 >    logical :: i_is_GB
166 >    logical :: i_is_EAM
167 >    logical :: i_is_Shape
168 >    logical :: i_is_SC
169 >    logical :: i_is_MEAM
170 >    logical :: j_is_LJ
171 >    logical :: j_is_Elect
172 >    logical :: j_is_Sticky
173 >    logical :: j_is_StickyP
174 >    logical :: j_is_GB
175 >    logical :: j_is_EAM
176 >    logical :: j_is_Shape
177 >    logical :: j_is_SC
178 >    logical :: j_is_MEAM
179 >    real(kind=dp) :: myRcut
180  
181 <    status = 0
182 <
181 >    if (.not. associated(atypes)) then
182 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
183 >       return
184 >    endif
185 >    
186      nAtypes = getSize(atypes)
187 <
187 >    
188      if (nAtypes == 0) then
189 <       status = -1
189 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
190         return
191      end if
192 <        
193 <    if (.not. allocated(PropertyMap)) then
194 <       allocate(PropertyMap(nAtypes))
192 >
193 >    if (.not. allocated(InteractionHash)) then
194 >       allocate(InteractionHash(nAtypes,nAtypes))
195 >    else
196 >       deallocate(InteractionHash)
197 >       allocate(InteractionHash(nAtypes,nAtypes))
198      endif
199  
200 +    if (.not. allocated(atypeMaxCutoff)) then
201 +       allocate(atypeMaxCutoff(nAtypes))
202 +    else
203 +       deallocate(atypeMaxCutoff)
204 +       allocate(atypeMaxCutoff(nAtypes))
205 +    endif
206 +        
207      do i = 1, nAtypes
208 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
209 <       PropertyMap(i)%is_Directional = thisProperty
208 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
209 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
210 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
211 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
212 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
213 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
214 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
215 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
216 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
217  
218 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
181 <       PropertyMap(i)%is_LennardJones = thisProperty
182 <      
183 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
184 <       PropertyMap(i)%is_Electrostatic = thisProperty
218 >       do j = i, nAtypes
219  
220 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
221 <       PropertyMap(i)%is_Charge = thisProperty
188 <      
189 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
190 <       PropertyMap(i)%is_Dipole = thisProperty
220 >          iHash = 0
221 >          myRcut = 0.0_dp
222  
223 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
224 <       PropertyMap(i)%is_Sticky = thisProperty
223 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
224 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
225 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
226 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
227 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
228 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
229 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
230 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
231 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
232  
233 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
234 <       PropertyMap(i)%is_GayBerne = thisProperty
233 >          if (i_is_LJ .and. j_is_LJ) then
234 >             iHash = ior(iHash, LJ_PAIR)            
235 >          endif
236 >          
237 >          if (i_is_Elect .and. j_is_Elect) then
238 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
239 >          endif
240 >          
241 >          if (i_is_Sticky .and. j_is_Sticky) then
242 >             iHash = ior(iHash, STICKY_PAIR)
243 >          endif
244  
245 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
246 <       PropertyMap(i)%is_EAM = thisProperty
245 >          if (i_is_StickyP .and. j_is_StickyP) then
246 >             iHash = ior(iHash, STICKYPOWER_PAIR)
247 >          endif
248  
249 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
250 <       PropertyMap(i)%is_Shape = thisProperty
249 >          if (i_is_EAM .and. j_is_EAM) then
250 >             iHash = ior(iHash, EAM_PAIR)
251 >          endif
252  
253 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
254 <       PropertyMap(i)%is_FLARB = thisProperty
255 <    end do
253 >          if (i_is_SC .and. j_is_SC) then
254 >             iHash = ior(iHash, SC_PAIR)
255 >          endif
256  
257 <    havePropertyMap = .true.
257 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
258 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
259 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
260  
261 <  end subroutine createPropertyMap
261 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
262 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
263 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
264  
212  subroutine setSimVariables()
213    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
214    SIM_uses_LennardJones = SimUsesLennardJones()
215    SIM_uses_Electrostatics = SimUsesElectrostatics()
216    SIM_uses_Charges = SimUsesCharges()
217    SIM_uses_Dipoles = SimUsesDipoles()
218    SIM_uses_Sticky = SimUsesSticky()
219    SIM_uses_GayBerne = SimUsesGayBerne()
220    SIM_uses_EAM = SimUsesEAM()
221    SIM_uses_Shapes = SimUsesShapes()
222    SIM_uses_FLARB = SimUsesFLARB()
223    SIM_uses_RF = SimUsesRF()
224    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
225    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
226    SIM_uses_PBC = SimUsesPBC()
265  
266 <    haveSIMvariables = .true.
266 >          InteractionHash(i,j) = iHash
267 >          InteractionHash(j,i) = iHash
268  
269 <    return
270 <  end subroutine setSimVariables
269 >       end do
270 >
271 >    end do
272  
273 <  subroutine doReadyCheck(error)
274 <    integer, intent(out) :: error
273 >    haveInteractionHash = .true.
274 >  end subroutine createInteractionHash
275  
276 <    integer :: myStatus
276 >  subroutine createGtypeCutoffMap()
277  
278 <    error = 0
278 >    logical :: i_is_LJ
279 >    logical :: i_is_Elect
280 >    logical :: i_is_Sticky
281 >    logical :: i_is_StickyP
282 >    logical :: i_is_GB
283 >    logical :: i_is_EAM
284 >    logical :: i_is_Shape
285 >    logical :: i_is_SC
286 >    logical :: GtypeFound
287 >
288 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
289 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
290 >    integer :: nGroupsInRow
291 >    integer :: nGroupsInCol
292 >    integer :: nGroupTypesRow,nGroupTypesCol
293 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
294 >    real(kind=dp) :: biggestAtypeCutoff
295 >
296 >    if (.not. haveInteractionHash) then
297 >       call createInteractionHash()      
298 >    endif
299 > #ifdef IS_MPI
300 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
301 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
302 > #endif
303 >    nAtypes = getSize(atypes)
304 > ! Set all of the initial cutoffs to zero.
305 >    atypeMaxCutoff = 0.0_dp
306 >    do i = 1, nAtypes
307 >       if (SimHasAtype(i)) then    
308 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
309 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
310 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
311 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
312 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
313 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
314 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
315 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
316 >
317 >          if (haveDefaultCutoffs) then
318 >             atypeMaxCutoff(i) = defaultRcut
319 >          else
320 >             if (i_is_LJ) then          
321 >                thisRcut = getSigma(i) * 2.5_dp
322 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
323 >             endif
324 >             if (i_is_Elect) then
325 >                thisRcut = defaultRcut
326 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
327 >             endif
328 >             if (i_is_Sticky) then
329 >                thisRcut = getStickyCut(i)
330 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
331 >             endif
332 >             if (i_is_StickyP) then
333 >                thisRcut = getStickyPowerCut(i)
334 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
335 >             endif
336 >             if (i_is_GB) then
337 >                thisRcut = getGayBerneCut(i)
338 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
339 >             endif
340 >             if (i_is_EAM) then
341 >                thisRcut = getEAMCut(i)
342 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
343 >             endif
344 >             if (i_is_Shape) then
345 >                thisRcut = getShapeCut(i)
346 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
347 >             endif
348 >             if (i_is_SC) then
349 >                thisRcut = getSCCut(i)
350 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
351 >             endif
352 >          endif
353 >                    
354 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
355 >             biggestAtypeCutoff = atypeMaxCutoff(i)
356 >          endif
357 >
358 >       endif
359 >    enddo
360      
361 <    if (.not. havePropertyMap) then
361 >    istart = 1
362 >    jstart = 1
363 > #ifdef IS_MPI
364 >    iend = nGroupsInRow
365 >    jend = nGroupsInCol
366 > #else
367 >    iend = nGroups
368 >    jend = nGroups
369 > #endif
370 >    
371 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
372 >    if(.not.allocated(groupToGtypeRow)) then
373 >     !  allocate(groupToGtype(iend))
374 >       allocate(groupToGtypeRow(iend))
375 >    else
376 >       deallocate(groupToGtypeRow)
377 >       allocate(groupToGtypeRow(iend))
378 >    endif
379 >    if(.not.allocated(groupMaxCutoffRow)) then
380 >       allocate(groupMaxCutoffRow(iend))
381 >    else
382 >       deallocate(groupMaxCutoffRow)
383 >       allocate(groupMaxCutoffRow(iend))
384 >    end if
385  
386 <       myStatus = 0
386 >    if(.not.allocated(gtypeMaxCutoffRow)) then
387 >       allocate(gtypeMaxCutoffRow(iend))
388 >    else
389 >       deallocate(gtypeMaxCutoffRow)
390 >       allocate(gtypeMaxCutoffRow(iend))
391 >    endif
392  
244       call createPropertyMap(myStatus)
393  
394 <       if (myStatus .ne. 0) then
395 <          write(default_error, *) 'createPropertyMap failed in doForces!'
396 <          error = -1
397 <          return
394 > #ifdef IS_MPI
395 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
396 >    if(.not.associated(groupToGtypeCol)) then
397 >       allocate(groupToGtypeCol(jend))
398 >    else
399 >       deallocate(groupToGtypeCol)
400 >       allocate(groupToGtypeCol(jend))
401 >    end if
402 >
403 >    if(.not.associated(groupMaxCutoffCol)) then
404 >       allocate(groupMaxCutoffCol(jend))
405 >    else
406 >       deallocate(groupMaxCutoffCol)
407 >       allocate(groupMaxCutoffCol(jend))
408 >    end if
409 >    if(.not.associated(gtypeMaxCutoffCol)) then
410 >       allocate(gtypeMaxCutoffCol(jend))
411 >    else
412 >       deallocate(gtypeMaxCutoffCol)      
413 >       allocate(gtypeMaxCutoffCol(jend))
414 >    end if
415 >
416 >       groupMaxCutoffCol = 0.0_dp
417 >       gtypeMaxCutoffCol = 0.0_dp
418 >
419 > #endif
420 >       groupMaxCutoffRow = 0.0_dp
421 >       gtypeMaxCutoffRow = 0.0_dp
422 >
423 >
424 >    !! first we do a single loop over the cutoff groups to find the
425 >    !! largest cutoff for any atypes present in this group.  We also
426 >    !! create gtypes at this point.
427 >    
428 >    tol = 1.0d-6
429 >    nGroupTypesRow = 0
430 >    nGroupTypesCol = 0
431 >    do i = istart, iend      
432 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
433 >       groupMaxCutoffRow(i) = 0.0_dp
434 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
435 >          atom1 = groupListRow(ia)
436 > #ifdef IS_MPI
437 >          me_i = atid_row(atom1)
438 > #else
439 >          me_i = atid(atom1)
440 > #endif          
441 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
442 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
443 >          endif          
444 >       enddo
445 >       if (nGroupTypesRow.eq.0) then
446 >          nGroupTypesRow = nGroupTypesRow + 1
447 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
448 >          groupToGtypeRow(i) = nGroupTypesRow
449 >       else
450 >          GtypeFound = .false.
451 >          do g = 1, nGroupTypesRow
452 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
453 >                groupToGtypeRow(i) = g
454 >                GtypeFound = .true.
455 >             endif
456 >          enddo
457 >          if (.not.GtypeFound) then            
458 >             nGroupTypesRow = nGroupTypesRow + 1
459 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
460 >             groupToGtypeRow(i) = nGroupTypesRow
461 >          endif
462         endif
463 +    enddo    
464 +
465 + #ifdef IS_MPI
466 +    do j = jstart, jend      
467 +       n_in_j = groupStartCol(j+1) - groupStartCol(j)
468 +       groupMaxCutoffCol(j) = 0.0_dp
469 +       do ja = groupStartCol(j), groupStartCol(j+1)-1
470 +          atom1 = groupListCol(ja)
471 +
472 +          me_j = atid_col(atom1)
473 +
474 +          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
475 +             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
476 +          endif          
477 +       enddo
478 +
479 +       if (nGroupTypesCol.eq.0) then
480 +          nGroupTypesCol = nGroupTypesCol + 1
481 +          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
482 +          groupToGtypeCol(j) = nGroupTypesCol
483 +       else
484 +          GtypeFound = .false.
485 +          do g = 1, nGroupTypesCol
486 +             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
487 +                groupToGtypeCol(j) = g
488 +                GtypeFound = .true.
489 +             endif
490 +          enddo
491 +          if (.not.GtypeFound) then            
492 +             nGroupTypesCol = nGroupTypesCol + 1
493 +             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
494 +             groupToGtypeCol(j) = nGroupTypesCol
495 +          endif
496 +       endif
497 +    enddo    
498 +
499 + #else
500 + ! Set pointers to information we just found
501 +    nGroupTypesCol = nGroupTypesRow
502 +    groupToGtypeCol => groupToGtypeRow
503 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
504 +    groupMaxCutoffCol => groupMaxCutoffRow
505 + #endif
506 +
507 +    !! allocate the gtypeCutoffMap here.
508 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
509 +    !! then we do a double loop over all the group TYPES to find the cutoff
510 +    !! map between groups of two types
511 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
512 +
513 +    do i = 1, nGroupTypesRow      
514 +       do j = 1, nGroupTypesCol
515 +      
516 +          select case(cutoffPolicy)
517 +          case(TRADITIONAL_CUTOFF_POLICY)
518 +             thisRcut = tradRcut
519 +          case(MIX_CUTOFF_POLICY)
520 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
521 +          case(MAX_CUTOFF_POLICY)
522 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
523 +          case default
524 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
525 +             return
526 +          end select
527 +          gtypeCutoffMap(i,j)%rcut = thisRcut
528 +          
529 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
530 +
531 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
532 +
533 +          if (.not.haveSkinThickness) then
534 +             skinThickness = 1.0_dp
535 +          endif
536 +
537 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
538 +
539 +          ! sanity check
540 +
541 +          if (haveDefaultCutoffs) then
542 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
543 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
544 +             endif
545 +          endif
546 +       enddo
547 +    enddo
548 +
549 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
550 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
551 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
552 + #ifdef IS_MPI
553 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
554 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
555 + #endif
556 +    groupMaxCutoffCol => null()
557 +    gtypeMaxCutoffCol => null()
558 +    
559 +    haveGtypeCutoffMap = .true.
560 +   end subroutine createGtypeCutoffMap
561 +
562 +   subroutine setCutoffs(defRcut, defRsw)
563 +
564 +     real(kind=dp),intent(in) :: defRcut, defRsw
565 +     character(len = statusMsgSize) :: errMsg
566 +     integer :: localError
567 +
568 +     defaultRcut = defRcut
569 +     defaultRsw = defRsw
570 +    
571 +     defaultDoShift = .false.
572 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
573 +        
574 +        write(errMsg, *) &
575 +             'cutoffRadius and switchingRadius are set to the same', newline &
576 +             // tab, 'value.  OOPSE will use shifted ', newline &
577 +             // tab, 'potentials instead of switching functions.'
578 +        
579 +        call handleInfo("setCutoffs", errMsg)
580 +        
581 +        defaultDoShift = .true.
582 +        
583 +     endif
584 +
585 +     localError = 0
586 +     call setLJDefaultCutoff( defaultRcut, defaultDoShift )
587 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
588 +     call setCutoffEAM( defaultRcut, localError)
589 +     if (localError /= 0) then
590 +       write(errMsg, *) 'An error has occured in setting the EAM cutoff'
591 +       call handleError("setCutoffs", errMsg)
592 +     end if
593 +     call set_switch(GROUP_SWITCH, defaultRsw, defaultRcut)
594 +     call setHmatDangerousRcutValue(defaultRcut)
595 +
596 +     haveDefaultCutoffs = .true.
597 +     haveGtypeCutoffMap = .false.
598 +   end subroutine setCutoffs
599 +
600 +   subroutine cWasLame()
601 +    
602 +     VisitCutoffsAfterComputing = .true.
603 +     return
604 +    
605 +   end subroutine cWasLame
606 +  
607 +   subroutine setCutoffPolicy(cutPolicy)
608 +    
609 +     integer, intent(in) :: cutPolicy
610 +    
611 +     cutoffPolicy = cutPolicy
612 +     haveCutoffPolicy = .true.
613 +     haveGtypeCutoffMap = .false.
614 +    
615 +   end subroutine setCutoffPolicy
616 +  
617 +   subroutine setElectrostaticMethod( thisESM )
618 +
619 +     integer, intent(in) :: thisESM
620 +
621 +     electrostaticSummationMethod = thisESM
622 +     haveElectrostaticSummationMethod = .true.
623 +    
624 +   end subroutine setElectrostaticMethod
625 +
626 +   subroutine setSkinThickness( thisSkin )
627 +    
628 +     real(kind=dp), intent(in) :: thisSkin
629 +    
630 +     skinThickness = thisSkin
631 +     haveSkinThickness = .true.    
632 +     haveGtypeCutoffMap = .false.
633 +    
634 +   end subroutine setSkinThickness
635 +      
636 +   subroutine setSimVariables()
637 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
638 +     SIM_uses_EAM = SimUsesEAM()
639 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
640 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
641 +     SIM_uses_PBC = SimUsesPBC()
642 +     SIM_uses_SC = SimUsesSC()
643 +    
644 +     haveSIMvariables = .true.
645 +    
646 +     return
647 +   end subroutine setSimVariables
648 +
649 +  subroutine doReadyCheck(error)
650 +    integer, intent(out) :: error
651 +
652 +    integer :: myStatus
653 +
654 +    error = 0
655 +
656 +    if (.not. haveInteractionHash) then      
657 +       call createInteractionHash()      
658      endif
659  
660 +    if (.not. haveGtypeCutoffMap) then        
661 +       call createGtypeCutoffMap()      
662 +    endif
663 +
664 +
665 +    if (VisitCutoffsAfterComputing) then
666 +       call set_switch(GROUP_SWITCH, largestRcut, largestRcut)      
667 +       call setHmatDangerousRcutValue(largestRcut)
668 +    endif
669 +
670 +
671      if (.not. haveSIMvariables) then
672         call setSimVariables()
673      endif
674  
675 <    if (.not. haveRlist) then
676 <       write(default_error, *) 'rList has not been set in doForces!'
677 <       error = -1
678 <       return
679 <    endif
675 >  !  if (.not. haveRlist) then
676 >  !     write(default_error, *) 'rList has not been set in doForces!'
677 >  !     error = -1
678 >  !     return
679 >  !  endif
680  
681      if (.not. haveNeighborList) then
682         write(default_error, *) 'neighbor list has not been initialized in doForces!'
# Line 281 | Line 699 | contains
699   #endif
700      return
701    end subroutine doReadyCheck
284    
702  
286  subroutine init_FF(use_RF_c, thisStat)
703  
704 <    logical, intent(in) :: use_RF_c
704 >  subroutine init_FF(thisStat)
705  
706      integer, intent(out) :: thisStat  
707      integer :: my_status, nMatches
708      integer, pointer :: MatchList(:) => null()
293    real(kind=dp) :: rcut, rrf, rt, dielect
709  
710      !! assume things are copacetic, unless they aren't
711      thisStat = 0
712  
298    !! Fortran's version of a cast:
299    FF_uses_RF = use_RF_c
300    
713      !! init_FF is called *after* all of the atom types have been
714      !! defined in atype_module using the new_atype subroutine.
715      !!
716      !! this will scan through the known atypes and figure out what
717      !! interactions are used by the force field.    
718 <  
718 >
719      FF_uses_DirectionalAtoms = .false.
308    FF_uses_LennardJones = .false.
309    FF_uses_Electrostatic = .false.
310    FF_uses_Charges = .false.    
720      FF_uses_Dipoles = .false.
312    FF_uses_Sticky = .false.
721      FF_uses_GayBerne = .false.
722      FF_uses_EAM = .false.
723 <    FF_uses_Shapes = .false.
724 <    FF_uses_FLARB = .false.
317 <    
723 >    FF_uses_SC = .false.
724 >
725      call getMatchingElementList(atypes, "is_Directional", .true., &
726           nMatches, MatchList)
727      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
728  
322    call getMatchingElementList(atypes, "is_LennardJones", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
325    
326    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
327         nMatches, MatchList)
328    if (nMatches .gt. 0) then
329       FF_uses_Electrostatic = .true.
330    endif
331
332    call getMatchingElementList(atypes, "is_Charge", .true., &
333         nMatches, MatchList)
334    if (nMatches .gt. 0) then
335       FF_uses_charges = .true.  
336       FF_uses_electrostatic = .true.
337    endif
338    
729      call getMatchingElementList(atypes, "is_Dipole", .true., &
730           nMatches, MatchList)
731 <    if (nMatches .gt. 0) then
342 <       FF_uses_dipoles = .true.
343 <       FF_uses_electrostatic = .true.
344 <       FF_uses_DirectionalAtoms = .true.
345 <    endif
731 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
732      
347    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
348         MatchList)
349    if (nMatches .gt. 0) then
350       FF_uses_Sticky = .true.
351       FF_uses_DirectionalAtoms = .true.
352    endif
353    
733      call getMatchingElementList(atypes, "is_GayBerne", .true., &
734           nMatches, MatchList)
735 <    if (nMatches .gt. 0) then
736 <       FF_uses_GayBerne = .true.
358 <       FF_uses_DirectionalAtoms = .true.
359 <    endif
360 <    
735 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
736 >
737      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
738      if (nMatches .gt. 0) FF_uses_EAM = .true.
363    
364    call getMatchingElementList(atypes, "is_Shape", .true., &
365         nMatches, MatchList)
366    if (nMatches .gt. 0) then
367       FF_uses_Shapes = .true.
368       FF_uses_DirectionalAtoms = .true.
369    endif
739  
740 <    call getMatchingElementList(atypes, "is_FLARB", .true., &
741 <         nMatches, MatchList)
373 <    if (nMatches .gt. 0) FF_uses_FLARB = .true.
740 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
741 >    if (nMatches .gt. 0) FF_uses_SC = .true.
742  
743 <    !! Assume sanity (for the sake of argument)
743 >
744      haveSaneForceField = .true.
377    
378    !! check to make sure the FF_uses_RF setting makes sense
379    
380    if (FF_uses_dipoles) then
381       if (FF_uses_RF) then
382          dielect = getDielect()
383          call initialize_rf(dielect)
384       endif
385    else
386       if (FF_uses_RF) then          
387          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
388          thisStat = -1
389          haveSaneForceField = .false.
390          return
391       endif
392    endif
745  
394    !sticky module does not contain check_sticky_FF anymore
395    !if (FF_uses_sticky) then
396    !   call check_sticky_FF(my_status)
397    !   if (my_status /= 0) then
398    !      thisStat = -1
399    !      haveSaneForceField = .false.
400    !      return
401    !   end if
402    !endif
403
746      if (FF_uses_EAM) then
747 <         call init_EAM_FF(my_status)
747 >       call init_EAM_FF(my_status)
748         if (my_status /= 0) then
749            write(default_error, *) "init_EAM_FF returned a bad status"
750            thisStat = -1
# Line 411 | Line 753 | contains
753         end if
754      endif
755  
414    if (FF_uses_GayBerne) then
415       call check_gb_pair_FF(my_status)
416       if (my_status .ne. 0) then
417          thisStat = -1
418          haveSaneForceField = .false.
419          return
420       endif
421    endif
422
423    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
424    endif
425    
756      if (.not. haveNeighborList) then
757         !! Create neighbor lists
758         call expandNeighborList(nLocal, my_status)
# Line 432 | Line 762 | contains
762            return
763         endif
764         haveNeighborList = .true.
765 <    endif    
766 <    
765 >    endif
766 >
767    end subroutine init_FF
438  
768  
769 +
770    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
771    !------------------------------------------------------------->
772    subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
# Line 456 | Line 786 | contains
786  
787      !! Stress Tensor
788      real( kind = dp), dimension(9) :: tau  
789 <    real ( kind = dp ) :: pot
789 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
790      logical ( kind = 2) :: do_pot_c, do_stress_c
791      logical :: do_pot
792      logical :: do_stress
793      logical :: in_switching_region
794   #ifdef IS_MPI
795 <    real( kind = DP ) :: pot_local
795 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
796      integer :: nAtomsInRow
797      integer :: nAtomsInCol
798      integer :: nprocs
# Line 477 | Line 807 | contains
807      integer :: nlist
808      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
809      real( kind = DP ) :: sw, dswdr, swderiv, mf
810 +    real( kind = DP ) :: rVal
811      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
812      real(kind=dp) :: rfpot, mu_i, virial
813 +    real(kind=dp):: rCut
814      integer :: me_i, me_j, n_in_i, n_in_j
815      logical :: is_dp_i
816      integer :: neighborListSize
# Line 486 | Line 818 | contains
818      integer :: localError
819      integer :: propPack_i, propPack_j
820      integer :: loopStart, loopEnd, loop
821 +    integer :: iHash
822 +    integer :: i1
823 +  
824  
490    real(kind=dp) :: listSkin = 1.0  
491    
825      !! initialize local variables  
826 <    
826 >
827   #ifdef IS_MPI
828      pot_local = 0.0_dp
829      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 500 | Line 833 | contains
833   #else
834      natoms = nlocal
835   #endif
836 <    
836 >
837      call doReadyCheck(localError)
838      if ( localError .ne. 0 ) then
839         call handleError("do_force_loop", "Not Initialized")
# Line 508 | Line 841 | contains
841         return
842      end if
843      call zero_work_arrays()
844 <        
844 >
845      do_pot = do_pot_c
846      do_stress = do_stress_c
847 <    
847 >
848      ! Gather all information needed by all force loops:
849 <    
849 >
850   #ifdef IS_MPI    
851 <    
851 >
852      call gather(q, q_Row, plan_atom_row_3d)
853      call gather(q, q_Col, plan_atom_col_3d)
854  
855      call gather(q_group, q_group_Row, plan_group_row_3d)
856      call gather(q_group, q_group_Col, plan_group_col_3d)
857 <        
857 >
858      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
859         call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
860         call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
861 <      
861 >
862         call gather(A, A_Row, plan_atom_row_rotation)
863         call gather(A, A_Col, plan_atom_col_rotation)
864      endif
865 <    
865 >
866   #endif
867 <    
867 >
868      !! Begin force loop timing:
869   #ifdef PROFILE
870      call cpu_time(forceTimeInitial)
871      nloops = nloops + 1
872   #endif
873 <    
873 >
874      loopEnd = PAIR_LOOP
875      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
876         loopStart = PREPAIR_LOOP
# Line 551 | Line 884 | contains
884         ! (but only on the first time through):
885         if (loop .eq. loopStart) then
886   #ifdef IS_MPI
887 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
888 <             update_nlist)
887 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
888 >               update_nlist)
889   #else
890 <          call checkNeighborList(nGroups, q_group, listSkin, &
891 <             update_nlist)
890 >          call checkNeighborList(nGroups, q_group, skinThickness, &
891 >               update_nlist)
892   #endif
893         endif
894 <      
894 >
895         if (update_nlist) then
896            !! save current configuration and construct neighbor list
897   #ifdef IS_MPI
# Line 569 | Line 902 | contains
902            neighborListSize = size(list)
903            nlist = 0
904         endif
905 <      
905 >
906         istart = 1
907   #ifdef IS_MPI
908         iend = nGroupsInRow
# Line 579 | Line 912 | contains
912         outer: do i = istart, iend
913  
914            if (update_nlist) point(i) = nlist + 1
915 <          
915 >
916            n_in_i = groupStartRow(i+1) - groupStartRow(i)
917 <          
917 >
918            if (update_nlist) then
919   #ifdef IS_MPI
920               jstart = 1
# Line 596 | Line 929 | contains
929               ! make sure group i has neighbors
930               if (jstart .gt. jend) cycle outer
931            endif
932 <          
932 >
933            do jnab = jstart, jend
934               if (update_nlist) then
935                  j = jnab
# Line 605 | Line 938 | contains
938               endif
939  
940   #ifdef IS_MPI
941 +             me_j = atid_col(j)
942               call get_interatomic_vector(q_group_Row(:,i), &
943                    q_group_Col(:,j), d_grp, rgrpsq)
944   #else
945 +             me_j = atid(j)
946               call get_interatomic_vector(q_group(:,i), &
947                    q_group(:,j), d_grp, rgrpsq)
948 < #endif
948 > #endif      
949  
950 <             if (rgrpsq < rlistsq) then
950 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
951                  if (update_nlist) then
952                     nlist = nlist + 1
953 <                  
953 >
954                     if (nlist > neighborListSize) then
955   #ifdef IS_MPI                
956                        call expandNeighborList(nGroupsInRow, listerror)
# Line 629 | Line 964 | contains
964                        end if
965                        neighborListSize = size(list)
966                     endif
967 <                  
967 >
968                     list(nlist) = j
969                  endif
970 +
971 +
972                  
973 <                if (loop .eq. PAIR_LOOP) then
974 <                   vij = 0.0d0
975 <                   fij(1:3) = 0.0d0
976 <                endif
977 <                
978 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
979 <                     in_switching_region)
643 <                
644 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
645 <                
646 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
973 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
974 >
975 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
976 >                   if (loop .eq. PAIR_LOOP) then
977 >                      vij = 0.0d0
978 >                      fij(1:3) = 0.0d0
979 >                   endif
980                    
981 <                   atom1 = groupListRow(ia)
981 >                   call get_switch(rgrpsq, sw, dswdr, rgrp, &
982 >                        group_switch, in_switching_region)
983                    
984 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
984 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
985 >                  
986 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
987                        
988 <                      atom2 = groupListCol(jb)
988 >                      atom1 = groupListRow(ia)
989                        
990 <                      if (skipThisPair(atom1, atom2)) cycle inner
991 <
992 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
993 <                         d_atm(1:3) = d_grp(1:3)
994 <                         ratmsq = rgrpsq
995 <                      else
990 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
991 >                        
992 >                         atom2 = groupListCol(jb)
993 >                        
994 >                         if (skipThisPair(atom1, atom2))  cycle inner
995 >                        
996 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
997 >                            d_atm(1:3) = d_grp(1:3)
998 >                            ratmsq = rgrpsq
999 >                         else
1000   #ifdef IS_MPI
1001 <                         call get_interatomic_vector(q_Row(:,atom1), &
1002 <                              q_Col(:,atom2), d_atm, ratmsq)
1001 >                            call get_interatomic_vector(q_Row(:,atom1), &
1002 >                                 q_Col(:,atom2), d_atm, ratmsq)
1003   #else
1004 <                         call get_interatomic_vector(q(:,atom1), &
1005 <                              q(:,atom2), d_atm, ratmsq)
1004 >                            call get_interatomic_vector(q(:,atom1), &
1005 >                                 q(:,atom2), d_atm, ratmsq)
1006   #endif
1007 <                      endif
1008 <
1009 <                      if (loop .eq. PREPAIR_LOOP) then
1007 >                         endif
1008 >                        
1009 >                         if (loop .eq. PREPAIR_LOOP) then
1010   #ifdef IS_MPI                      
1011 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1012 <                              rgrpsq, d_grp, do_pot, do_stress, &
1013 <                              eFrame, A, f, t, pot_local)
1011 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1012 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1013 >                                 eFrame, A, f, t, pot_local)
1014   #else
1015 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1016 <                              rgrpsq, d_grp, do_pot, do_stress, &
1017 <                              eFrame, A, f, t, pot)
1015 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1016 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1017 >                                 eFrame, A, f, t, pot)
1018   #endif                                              
1019 <                      else
1019 >                         else
1020   #ifdef IS_MPI                      
1021 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1022 <                              do_pot, &
1023 <                              eFrame, A, f, t, pot_local, vpair, fpair)
1021 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1022 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1023 >                                 fpair, d_grp, rgrp, rCut)
1024   #else
1025 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1026 <                              do_pot,  &
1027 <                              eFrame, A, f, t, pot, vpair, fpair)
1028 < #endif
1025 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1026 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1027 >                                 d_grp, rgrp, rCut)
1028 > #endif
1029 >                            vij = vij + vpair
1030 >                            fij(1:3) = fij(1:3) + fpair(1:3)
1031 >                         endif
1032 >                      enddo inner
1033 >                   enddo
1034  
1035 <                         vij = vij + vpair
1036 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1037 <                      endif
1038 <                   enddo inner
1039 <                enddo
1040 <                
1041 <                if (loop .eq. PAIR_LOOP) then
1042 <                   if (in_switching_region) then
1043 <                      swderiv = vij*dswdr/rgrp
1044 <                      fij(1) = fij(1) + swderiv*d_grp(1)
700 <                      fij(2) = fij(2) + swderiv*d_grp(2)
701 <                      fij(3) = fij(3) + swderiv*d_grp(3)
702 <                      
703 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
704 <                         atom1=groupListRow(ia)
705 <                         mf = mfactRow(atom1)
1035 >                   if (loop .eq. PAIR_LOOP) then
1036 >                      if (in_switching_region) then
1037 >                         swderiv = vij*dswdr/rgrp
1038 >                         fij(1) = fij(1) + swderiv*d_grp(1)
1039 >                         fij(2) = fij(2) + swderiv*d_grp(2)
1040 >                         fij(3) = fij(3) + swderiv*d_grp(3)
1041 >                        
1042 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1043 >                            atom1=groupListRow(ia)
1044 >                            mf = mfactRow(atom1)
1045   #ifdef IS_MPI
1046 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1047 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1048 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1046 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1047 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1048 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1049   #else
1050 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1051 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1052 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1050 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1051 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1052 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1053   #endif
1054 <                      enddo
1055 <                      
1056 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1057 <                         atom2=groupListCol(jb)
1058 <                         mf = mfactCol(atom2)
1054 >                         enddo
1055 >                        
1056 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1057 >                            atom2=groupListCol(jb)
1058 >                            mf = mfactCol(atom2)
1059   #ifdef IS_MPI
1060 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1061 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1062 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1060 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1061 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1062 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1063   #else
1064 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1065 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1066 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1064 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1065 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1066 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1067   #endif
1068 <                      enddo
1068 >                         enddo
1069 >                      endif
1070 >
1071 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1072                     endif
731                  
732                   if (do_stress) call add_stress_tensor(d_grp, fij)
1073                  endif
1074 <             end if
1074 >             endif
1075            enddo
1076 +          
1077         enddo outer
1078 <      
1078 >
1079         if (update_nlist) then
1080   #ifdef IS_MPI
1081            point(nGroupsInRow + 1) = nlist + 1
# Line 748 | Line 1089 | contains
1089               update_nlist = .false.                              
1090            endif
1091         endif
1092 <            
1092 >
1093         if (loop .eq. PREPAIR_LOOP) then
1094            call do_preforce(nlocal, pot)
1095         endif
1096 <      
1096 >
1097      enddo
1098 <    
1098 >
1099      !! Do timing
1100   #ifdef PROFILE
1101      call cpu_time(forceTimeFinal)
1102      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1103   #endif    
1104 <    
1104 >
1105   #ifdef IS_MPI
1106      !!distribute forces
1107 <    
1107 >
1108      f_temp = 0.0_dp
1109      call scatter(f_Row,f_temp,plan_atom_row_3d)
1110      do i = 1,nlocal
1111         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1112      end do
1113 <    
1113 >
1114      f_temp = 0.0_dp
1115      call scatter(f_Col,f_temp,plan_atom_col_3d)
1116      do i = 1,nlocal
1117         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1118      end do
1119 <    
1119 >
1120      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1121         t_temp = 0.0_dp
1122         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 784 | Line 1125 | contains
1125         end do
1126         t_temp = 0.0_dp
1127         call scatter(t_Col,t_temp,plan_atom_col_3d)
1128 <      
1128 >
1129         do i = 1,nlocal
1130            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1131         end do
1132      endif
1133 <    
1133 >
1134      if (do_pot) then
1135         ! scatter/gather pot_row into the members of my column
1136 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1137 <      
1136 >       do i = 1,LR_POT_TYPES
1137 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1138 >       end do
1139         ! scatter/gather pot_local into all other procs
1140         ! add resultant to get total pot
1141         do i = 1, nlocal
1142 <          pot_local = pot_local + pot_Temp(i)
1142 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1143 >               + pot_Temp(1:LR_POT_TYPES,i)
1144         enddo
1145 <      
1145 >
1146         pot_Temp = 0.0_DP
1147 <      
1148 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1147 >       do i = 1,LR_POT_TYPES
1148 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1149 >       end do
1150         do i = 1, nlocal
1151 <          pot_local = pot_local + pot_Temp(i)
1151 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1152 >               + pot_Temp(1:LR_POT_TYPES,i)
1153         enddo
1154 <      
1154 >
1155      endif
1156   #endif
1157 <    
1158 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1159 <      
815 <       if (FF_uses_RF .and. SIM_uses_RF) then
1157 >
1158 >    if (SIM_requires_postpair_calc) then
1159 >       do i = 1, nlocal            
1160            
1161 < #ifdef IS_MPI
1162 <          call scatter(rf_Row,rf,plan_atom_row_3d)
819 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
820 <          do i = 1,nlocal
821 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
822 <          end do
823 < #endif
1161 >          ! we loop only over the local atoms, so we don't need row and column
1162 >          ! lookups for the types
1163            
1164 <          do i = 1, nLocal
1165 <            
1166 <             rfpot = 0.0_DP
1164 >          me_i = atid(i)
1165 >          
1166 >          ! is the atom electrostatic?  See if it would have an
1167 >          ! electrostatic interaction with itself
1168 >          iHash = InteractionHash(me_i,me_i)
1169 >
1170 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1171   #ifdef IS_MPI
1172 <             me_i = atid_row(i)
1172 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1173 >                  t, do_pot)
1174   #else
1175 <             me_i = atid(i)
1175 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1176 >                  t, do_pot)
1177   #endif
1178 +          endif
1179 +  
1180 +          
1181 +          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1182              
1183 <             if (PropertyMap(me_i)%is_Dipole) then
1183 >             ! loop over the excludes to accumulate RF stuff we've
1184 >             ! left out of the normal pair loop
1185 >            
1186 >             do i1 = 1, nSkipsForAtom(i)
1187 >                j = skipsForAtom(i, i1)
1188                  
1189 <                mu_i = getDipoleMoment(me_i)
1190 <                
1191 <                !! The reaction field needs to include a self contribution
1192 <                !! to the field:
1193 <                call accumulate_self_rf(i, mu_i, eFrame)
1194 <                !! Get the reaction field contribution to the
1195 <                !! potential and torques:
843 <                call reaction_field_final(i, mu_i, eFrame, rfpot, t, do_pot)
1189 >                ! prevent overcounting of the skips
1190 >                if (i.lt.j) then
1191 >                   call get_interatomic_vector(q(:,i), &
1192 >                        q(:,j), d_atm, ratmsq)
1193 >                   rVal = dsqrt(ratmsq)
1194 >                   call get_switch(ratmsq, sw, dswdr, rVal, group_switch, &
1195 >                        in_switching_region)
1196   #ifdef IS_MPI
1197 <                pot_local = pot_local + rfpot
1197 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1198 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1199   #else
1200 <                pot = pot + rfpot
1201 <      
1200 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1201 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1202   #endif
1203 <             endif            
1204 <          enddo
1205 <       endif
1203 >                endif
1204 >             enddo
1205 >          endif
1206 >       enddo
1207      endif
1208      
855    
1209   #ifdef IS_MPI
1210      
1211      if (do_pot) then
1212 <       pot = pot + pot_local
1213 <       !! we assume the c code will do the allreduce to get the total potential
861 <       !! we could do it right here if we needed to...
1212 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1213 >            mpi_comm_world,mpi_err)            
1214      endif
1215      
1216      if (do_stress) then
# Line 876 | Line 1228 | contains
1228      endif
1229      
1230   #endif
1231 <      
1231 >    
1232    end subroutine do_force_loop
1233 <  
1233 >
1234    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1235 <       eFrame, A, f, t, pot, vpair, fpair)
1235 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1236  
1237 <    real( kind = dp ) :: pot, vpair, sw
1237 >    real( kind = dp ) :: vpair, sw
1238 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1239      real( kind = dp ), dimension(3) :: fpair
1240      real( kind = dp ), dimension(nLocal)   :: mfact
1241      real( kind = dp ), dimension(9,nLocal) :: eFrame
# Line 893 | Line 1246 | contains
1246      logical, intent(inout) :: do_pot
1247      integer, intent(in) :: i, j
1248      real ( kind = dp ), intent(inout) :: rijsq
1249 <    real ( kind = dp )                :: r
1249 >    real ( kind = dp ), intent(inout) :: r_grp
1250      real ( kind = dp ), intent(inout) :: d(3)
1251 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1252 +    real ( kind = dp ), intent(inout) :: rCut
1253 +    real ( kind = dp ) :: r
1254      integer :: me_i, me_j
1255  
1256 +    integer :: iHash
1257 +
1258      r = sqrt(rijsq)
1259      vpair = 0.0d0
1260      fpair(1:3) = 0.0d0
# Line 909 | Line 1267 | contains
1267      me_j = atid(j)
1268   #endif
1269  
1270 < !    write(*,*) i, j, me_i, me_j
1270 >    iHash = InteractionHash(me_i, me_j)
1271      
1272 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1273 <      
1274 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
917 <            PropertyMap(me_j)%is_LennardJones ) then
918 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
919 <       endif
920 <      
1272 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1273 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1274 >            pot(VDW_POT), f, do_pot)
1275      endif
1276      
1277 <    if (FF_uses_charges .and. SIM_uses_charges) then
1278 <      
1279 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
926 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
927 <               pot, f, do_pot)
928 <       endif
929 <      
1277 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1278 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1279 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1280      endif
1281      
1282 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
1283 <      
1284 <       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
935 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
936 <               pot, eFrame, f, t, do_pot)
937 <          if (FF_uses_RF .and. SIM_uses_RF) then
938 <             call accumulate_rf(i, j, r, eFrame, sw)
939 <             call rf_correct_forces(i, j, d, r, eFrame, sw, f, fpair)
940 <          endif
941 <       endif
942 <
1282 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1283 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1284 >            pot(HB_POT), A, f, t, do_pot)
1285      endif
1286 <
1287 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1288 <
1289 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
948 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
949 <               pot, A, f, t, do_pot)
950 <       endif
951 <      
1286 >    
1287 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1288 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1289 >            pot(HB_POT), A, f, t, do_pot)
1290      endif
1291 <
1292 <
1293 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1294 <      
957 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
958 <            PropertyMap(me_j)%is_GayBerne) then
959 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
960 <               pot, A, f, t, do_pot)
961 <       endif
962 <      
1291 >    
1292 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1293 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1294 >            pot(VDW_POT), A, f, t, do_pot)
1295      endif
1296      
1297 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1298 <      
1299 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
968 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
969 <               do_pot)
970 <       endif
971 <      
1297 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1298 >       call do_gb_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1299 >            pot(VDW_POT), A, f, t, do_pot)
1300      endif
1301 +    
1302 +    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1303 +       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1304 +            pot(METALLIC_POT), f, do_pot)
1305 +    endif
1306 +    
1307 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1308 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1309 +            pot(VDW_POT), A, f, t, do_pot)
1310 +    endif
1311 +    
1312 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1313 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1314 +            pot(VDW_POT), A, f, t, do_pot)
1315 +    endif
1316  
1317 <
1318 < !    write(*,*) PropertyMap(me_i)%is_Shape,PropertyMap(me_j)%is_Shape
1319 <
977 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
978 <       if ( PropertyMap(me_i)%is_Shape .and. &
979 <            PropertyMap(me_j)%is_Shape ) then
980 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
981 <               pot, A, f, t, do_pot)
982 <       endif
983 <      
1317 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1318 >       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1319 >            pot(METALLIC_POT), f, do_pot)
1320      endif
1321 +
1322      
1323 +    
1324    end subroutine do_pair
1325  
1326 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1326 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1327         do_pot, do_stress, eFrame, A, f, t, pot)
1328  
1329 <   real( kind = dp ) :: pot, sw
1330 <   real( kind = dp ), dimension(9,nLocal) :: eFrame
1331 <   real (kind=dp), dimension(9,nLocal) :: A
1332 <   real (kind=dp), dimension(3,nLocal) :: f
1333 <   real (kind=dp), dimension(3,nLocal) :: t
1334 <  
997 <   logical, intent(inout) :: do_pot, do_stress
998 <   integer, intent(in) :: i, j
999 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
1000 <   real ( kind = dp )                :: r, rc
1001 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
1002 <  
1003 <   logical :: is_EAM_i, is_EAM_j
1004 <  
1005 <   integer :: me_i, me_j
1006 <  
1329 >    real( kind = dp ) :: sw
1330 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1331 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1332 >    real (kind=dp), dimension(9,nLocal) :: A
1333 >    real (kind=dp), dimension(3,nLocal) :: f
1334 >    real (kind=dp), dimension(3,nLocal) :: t
1335  
1336 +    logical, intent(inout) :: do_pot, do_stress
1337 +    integer, intent(in) :: i, j
1338 +    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1339 +    real ( kind = dp )                :: r, rc
1340 +    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1341 +
1342 +    integer :: me_i, me_j, iHash
1343 +
1344      r = sqrt(rijsq)
1009    if (SIM_uses_molecular_cutoffs) then
1010       rc = sqrt(rcijsq)
1011    else
1012       rc = r
1013    endif
1014  
1345  
1346   #ifdef IS_MPI  
1347 <   me_i = atid_row(i)
1348 <   me_j = atid_col(j)  
1347 >    me_i = atid_row(i)
1348 >    me_j = atid_col(j)  
1349   #else  
1350 <   me_i = atid(i)
1351 <   me_j = atid(j)  
1350 >    me_i = atid(i)
1351 >    me_j = atid(j)  
1352   #endif
1353 <  
1354 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1355 <      
1356 <      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
1357 <           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
1358 <      
1359 <   endif
1360 <  
1361 < end subroutine do_prepair
1362 <
1363 <
1364 < subroutine do_preforce(nlocal,pot)
1365 <   integer :: nlocal
1366 <   real( kind = dp ) :: pot
1367 <  
1368 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1369 <      call calc_EAM_preforce_Frho(nlocal,pot)
1370 <   endif
1371 <  
1372 <  
1373 < end subroutine do_preforce
1374 <
1375 <
1376 < subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1377 <  
1378 <   real (kind = dp), dimension(3) :: q_i
1379 <   real (kind = dp), dimension(3) :: q_j
1380 <   real ( kind = dp ), intent(out) :: r_sq
1381 <   real( kind = dp ) :: d(3), scaled(3)
1382 <   integer i
1383 <  
1384 <   d(1:3) = q_j(1:3) - q_i(1:3)
1385 <  
1386 <   ! Wrap back into periodic box if necessary
1387 <   if ( SIM_uses_PBC ) then
1388 <      
1389 <      if( .not.boxIsOrthorhombic ) then
1390 <         ! calc the scaled coordinates.
1391 <        
1392 <         scaled = matmul(HmatInv, d)
1393 <        
1394 <         ! wrap the scaled coordinates
1395 <        
1396 <         scaled = scaled  - anint(scaled)
1397 <        
1398 <        
1399 <         ! calc the wrapped real coordinates from the wrapped scaled
1400 <         ! coordinates
1401 <        
1402 <         d = matmul(Hmat,scaled)
1403 <        
1404 <      else
1405 <         ! calc the scaled coordinates.
1406 <        
1407 <         do i = 1, 3
1408 <            scaled(i) = d(i) * HmatInv(i,i)
1409 <            
1410 <            ! wrap the scaled coordinates
1411 <            
1412 <            scaled(i) = scaled(i) - anint(scaled(i))
1413 <            
1414 <            ! calc the wrapped real coordinates from the wrapped scaled
1415 <            ! coordinates
1416 <            
1417 <            d(i) = scaled(i)*Hmat(i,i)
1418 <         enddo
1419 <      endif
1420 <      
1421 <   endif
1422 <  
1423 <   r_sq = dot_product(d,d)
1424 <  
1425 < end subroutine get_interatomic_vector
1426 <
1427 < subroutine zero_work_arrays()
1428 <  
1353 >
1354 >    iHash = InteractionHash(me_i, me_j)
1355 >
1356 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1357 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1358 >    endif
1359 >
1360 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1361 >            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1362 >    endif
1363 >    
1364 >  end subroutine do_prepair
1365 >
1366 >
1367 >  subroutine do_preforce(nlocal,pot)
1368 >    integer :: nlocal
1369 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1370 >
1371 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1372 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1373 >    endif
1374 >    if (FF_uses_SC .and. SIM_uses_SC) then
1375 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1376 >    endif
1377 >
1378 >
1379 >  end subroutine do_preforce
1380 >
1381 >
1382 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1383 >
1384 >    real (kind = dp), dimension(3) :: q_i
1385 >    real (kind = dp), dimension(3) :: q_j
1386 >    real ( kind = dp ), intent(out) :: r_sq
1387 >    real( kind = dp ) :: d(3), scaled(3)
1388 >    integer i
1389 >
1390 >    d(1:3) = q_j(1:3) - q_i(1:3)
1391 >
1392 >    ! Wrap back into periodic box if necessary
1393 >    if ( SIM_uses_PBC ) then
1394 >
1395 >       if( .not.boxIsOrthorhombic ) then
1396 >          ! calc the scaled coordinates.
1397 >
1398 >          scaled = matmul(HmatInv, d)
1399 >
1400 >          ! wrap the scaled coordinates
1401 >
1402 >          scaled = scaled  - anint(scaled)
1403 >
1404 >
1405 >          ! calc the wrapped real coordinates from the wrapped scaled
1406 >          ! coordinates
1407 >
1408 >          d = matmul(Hmat,scaled)
1409 >
1410 >       else
1411 >          ! calc the scaled coordinates.
1412 >
1413 >          do i = 1, 3
1414 >             scaled(i) = d(i) * HmatInv(i,i)
1415 >
1416 >             ! wrap the scaled coordinates
1417 >
1418 >             scaled(i) = scaled(i) - anint(scaled(i))
1419 >
1420 >             ! calc the wrapped real coordinates from the wrapped scaled
1421 >             ! coordinates
1422 >
1423 >             d(i) = scaled(i)*Hmat(i,i)
1424 >          enddo
1425 >       endif
1426 >
1427 >    endif
1428 >
1429 >    r_sq = dot_product(d,d)
1430 >
1431 >  end subroutine get_interatomic_vector
1432 >
1433 >  subroutine zero_work_arrays()
1434 >
1435   #ifdef IS_MPI
1100  
1101   q_Row = 0.0_dp
1102   q_Col = 0.0_dp
1436  
1437 <   q_group_Row = 0.0_dp
1438 <   q_group_Col = 0.0_dp  
1439 <  
1440 <   eFrame_Row = 0.0_dp
1441 <   eFrame_Col = 0.0_dp
1442 <  
1443 <   A_Row = 0.0_dp
1444 <   A_Col = 0.0_dp
1445 <  
1446 <   f_Row = 0.0_dp
1447 <   f_Col = 0.0_dp
1448 <   f_Temp = 0.0_dp
1449 <  
1450 <   t_Row = 0.0_dp
1451 <   t_Col = 0.0_dp
1452 <   t_Temp = 0.0_dp
1453 <  
1454 <   pot_Row = 0.0_dp
1455 <   pot_Col = 0.0_dp
1456 <   pot_Temp = 0.0_dp
1457 <  
1458 <   rf_Row = 0.0_dp
1459 <   rf_Col = 0.0_dp
1460 <   rf_Temp = 0.0_dp
1128 <  
1437 >    q_Row = 0.0_dp
1438 >    q_Col = 0.0_dp
1439 >
1440 >    q_group_Row = 0.0_dp
1441 >    q_group_Col = 0.0_dp  
1442 >
1443 >    eFrame_Row = 0.0_dp
1444 >    eFrame_Col = 0.0_dp
1445 >
1446 >    A_Row = 0.0_dp
1447 >    A_Col = 0.0_dp
1448 >
1449 >    f_Row = 0.0_dp
1450 >    f_Col = 0.0_dp
1451 >    f_Temp = 0.0_dp
1452 >
1453 >    t_Row = 0.0_dp
1454 >    t_Col = 0.0_dp
1455 >    t_Temp = 0.0_dp
1456 >
1457 >    pot_Row = 0.0_dp
1458 >    pot_Col = 0.0_dp
1459 >    pot_Temp = 0.0_dp
1460 >
1461   #endif
1462 <
1463 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1464 <      call clean_EAM()
1465 <   endif
1466 <  
1467 <   rf = 0.0_dp
1468 <   tau_Temp = 0.0_dp
1469 <   virial_Temp = 0.0_dp
1470 < end subroutine zero_work_arrays
1471 <
1472 < function skipThisPair(atom1, atom2) result(skip_it)
1473 <   integer, intent(in) :: atom1
1474 <   integer, intent(in), optional :: atom2
1475 <   logical :: skip_it
1476 <   integer :: unique_id_1, unique_id_2
1477 <   integer :: me_i,me_j
1478 <   integer :: i
1479 <  
1480 <   skip_it = .false.
1481 <  
1482 <   !! there are a number of reasons to skip a pair or a particle
1483 <   !! mostly we do this to exclude atoms who are involved in short
1484 <   !! range interactions (bonds, bends, torsions), but we also need
1485 <   !! to exclude some overcounted interactions that result from
1486 <   !! the parallel decomposition
1155 <  
1462 >
1463 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1464 >       call clean_EAM()
1465 >    endif
1466 >
1467 >    tau_Temp = 0.0_dp
1468 >    virial_Temp = 0.0_dp
1469 >  end subroutine zero_work_arrays
1470 >
1471 >  function skipThisPair(atom1, atom2) result(skip_it)
1472 >    integer, intent(in) :: atom1
1473 >    integer, intent(in), optional :: atom2
1474 >    logical :: skip_it
1475 >    integer :: unique_id_1, unique_id_2
1476 >    integer :: me_i,me_j
1477 >    integer :: i
1478 >
1479 >    skip_it = .false.
1480 >
1481 >    !! there are a number of reasons to skip a pair or a particle
1482 >    !! mostly we do this to exclude atoms who are involved in short
1483 >    !! range interactions (bonds, bends, torsions), but we also need
1484 >    !! to exclude some overcounted interactions that result from
1485 >    !! the parallel decomposition
1486 >
1487   #ifdef IS_MPI
1488 <   !! in MPI, we have to look up the unique IDs for each atom
1489 <   unique_id_1 = AtomRowToGlobal(atom1)
1488 >    !! in MPI, we have to look up the unique IDs for each atom
1489 >    unique_id_1 = AtomRowToGlobal(atom1)
1490   #else
1491 <   !! in the normal loop, the atom numbers are unique
1492 <   unique_id_1 = atom1
1491 >    !! in the normal loop, the atom numbers are unique
1492 >    unique_id_1 = atom1
1493   #endif
1494 <  
1495 <   !! We were called with only one atom, so just check the global exclude
1496 <   !! list for this atom
1497 <   if (.not. present(atom2)) then
1498 <      do i = 1, nExcludes_global
1499 <         if (excludesGlobal(i) == unique_id_1) then
1500 <            skip_it = .true.
1501 <            return
1502 <         end if
1503 <      end do
1504 <      return
1505 <   end if
1506 <  
1494 >
1495 >    !! We were called with only one atom, so just check the global exclude
1496 >    !! list for this atom
1497 >    if (.not. present(atom2)) then
1498 >       do i = 1, nExcludes_global
1499 >          if (excludesGlobal(i) == unique_id_1) then
1500 >             skip_it = .true.
1501 >             return
1502 >          end if
1503 >       end do
1504 >       return
1505 >    end if
1506 >
1507   #ifdef IS_MPI
1508 <   unique_id_2 = AtomColToGlobal(atom2)
1508 >    unique_id_2 = AtomColToGlobal(atom2)
1509   #else
1510 <   unique_id_2 = atom2
1510 >    unique_id_2 = atom2
1511   #endif
1512 <  
1512 >
1513   #ifdef IS_MPI
1514 <   !! this situation should only arise in MPI simulations
1515 <   if (unique_id_1 == unique_id_2) then
1516 <      skip_it = .true.
1517 <      return
1518 <   end if
1519 <  
1520 <   !! this prevents us from doing the pair on multiple processors
1521 <   if (unique_id_1 < unique_id_2) then
1522 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1523 <         skip_it = .true.
1524 <         return
1525 <      endif
1526 <   else                
1527 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1528 <         skip_it = .true.
1529 <         return
1530 <      endif
1531 <   endif
1514 >    !! this situation should only arise in MPI simulations
1515 >    if (unique_id_1 == unique_id_2) then
1516 >       skip_it = .true.
1517 >       return
1518 >    end if
1519 >
1520 >    !! this prevents us from doing the pair on multiple processors
1521 >    if (unique_id_1 < unique_id_2) then
1522 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1523 >          skip_it = .true.
1524 >          return
1525 >       endif
1526 >    else                
1527 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1528 >          skip_it = .true.
1529 >          return
1530 >       endif
1531 >    endif
1532   #endif
1533 <  
1534 <   !! the rest of these situations can happen in all simulations:
1535 <   do i = 1, nExcludes_global      
1536 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1537 <           (excludesGlobal(i) == unique_id_2)) then
1538 <         skip_it = .true.
1539 <         return
1540 <      endif
1541 <   enddo
1542 <  
1543 <   do i = 1, nSkipsForAtom(atom1)
1544 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1545 <         skip_it = .true.
1546 <         return
1547 <      endif
1548 <   end do
1549 <  
1550 <   return
1551 < end function skipThisPair
1552 <
1553 < function FF_UsesDirectionalAtoms() result(doesit)
1554 <   logical :: doesit
1555 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1556 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1557 < end function FF_UsesDirectionalAtoms
1558 <
1559 < function FF_RequiresPrepairCalc() result(doesit)
1560 <   logical :: doesit
1561 <   doesit = FF_uses_EAM
1562 < end function FF_RequiresPrepairCalc
1563 <
1233 < function FF_RequiresPostpairCalc() result(doesit)
1234 <   logical :: doesit
1235 <   doesit = FF_uses_RF
1236 < end function FF_RequiresPostpairCalc
1237 <
1533 >
1534 >    !! the rest of these situations can happen in all simulations:
1535 >    do i = 1, nExcludes_global      
1536 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1537 >            (excludesGlobal(i) == unique_id_2)) then
1538 >          skip_it = .true.
1539 >          return
1540 >       endif
1541 >    enddo
1542 >
1543 >    do i = 1, nSkipsForAtom(atom1)
1544 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1545 >          skip_it = .true.
1546 >          return
1547 >       endif
1548 >    end do
1549 >
1550 >    return
1551 >  end function skipThisPair
1552 >
1553 >  function FF_UsesDirectionalAtoms() result(doesit)
1554 >    logical :: doesit
1555 >    doesit = FF_uses_DirectionalAtoms
1556 >  end function FF_UsesDirectionalAtoms
1557 >
1558 >  function FF_RequiresPrepairCalc() result(doesit)
1559 >    logical :: doesit
1560 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1561 >         .or. FF_uses_MEAM
1562 >  end function FF_RequiresPrepairCalc
1563 >
1564   #ifdef PROFILE
1565 < function getforcetime() result(totalforcetime)
1566 <   real(kind=dp) :: totalforcetime
1567 <   totalforcetime = forcetime
1568 < end function getforcetime
1565 >  function getforcetime() result(totalforcetime)
1566 >    real(kind=dp) :: totalforcetime
1567 >    totalforcetime = forcetime
1568 >  end function getforcetime
1569   #endif
1244
1245 !! This cleans componets of force arrays belonging only to fortran
1570  
1571 < subroutine add_stress_tensor(dpair, fpair)
1572 <  
1573 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1574 <  
1575 <   ! because the d vector is the rj - ri vector, and
1576 <   ! because fx, fy, fz are the force on atom i, we need a
1577 <   ! negative sign here:  
1578 <  
1579 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1580 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1581 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1582 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1583 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1584 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1585 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1586 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1587 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1588 <  
1589 <   virial_Temp = virial_Temp + &
1590 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1591 <  
1592 < end subroutine add_stress_tensor
1593 <
1571 >  !! This cleans componets of force arrays belonging only to fortran
1572 >
1573 >  subroutine add_stress_tensor(dpair, fpair)
1574 >
1575 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1576 >
1577 >    ! because the d vector is the rj - ri vector, and
1578 >    ! because fx, fy, fz are the force on atom i, we need a
1579 >    ! negative sign here:  
1580 >
1581 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1582 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1583 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1584 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1585 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1586 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1587 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1588 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1589 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1590 >
1591 >    virial_Temp = virial_Temp + &
1592 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1593 >
1594 >  end subroutine add_stress_tensor
1595 >
1596   end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines