ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/UseTheForce/doForces.F90
(Generate patch)

Comparing trunk/OOPSE-4/src/UseTheForce/doForces.F90 (file contents):
Revision 1688 by chrisfen, Fri Oct 29 22:28:12 2004 UTC vs.
Revision 2722 by gezelter, Thu Apr 20 18:24:24 2006 UTC

# Line 1 | Line 1
1 + !!
2 + !! Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 + !!
4 + !! The University of Notre Dame grants you ("Licensee") a
5 + !! non-exclusive, royalty free, license to use, modify and
6 + !! redistribute this software in source and binary code form, provided
7 + !! that the following conditions are met:
8 + !!
9 + !! 1. Acknowledgement of the program authors must be made in any
10 + !!    publication of scientific results based in part on use of the
11 + !!    program.  An acceptable form of acknowledgement is citation of
12 + !!    the article in which the program was described (Matthew
13 + !!    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 + !!    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 + !!    Parallel Simulation Engine for Molecular Dynamics,"
16 + !!    J. Comput. Chem. 26, pp. 252-271 (2005))
17 + !!
18 + !! 2. Redistributions of source code must retain the above copyright
19 + !!    notice, this list of conditions and the following disclaimer.
20 + !!
21 + !! 3. Redistributions in binary form must reproduce the above copyright
22 + !!    notice, this list of conditions and the following disclaimer in the
23 + !!    documentation and/or other materials provided with the
24 + !!    distribution.
25 + !!
26 + !! This software is provided "AS IS," without a warranty of any
27 + !! kind. All express or implied conditions, representations and
28 + !! warranties, including any implied warranty of merchantability,
29 + !! fitness for a particular purpose or non-infringement, are hereby
30 + !! excluded.  The University of Notre Dame and its licensors shall not
31 + !! be liable for any damages suffered by licensee as a result of
32 + !! using, modifying or distributing the software or its
33 + !! derivatives. In no event will the University of Notre Dame or its
34 + !! licensors be liable for any lost revenue, profit or data, or for
35 + !! direct, indirect, special, consequential, incidental or punitive
36 + !! damages, however caused and regardless of the theory of liability,
37 + !! arising out of the use of or inability to use software, even if the
38 + !! University of Notre Dame has been advised of the possibility of
39 + !! such damages.
40 + !!
41 +
42   !! doForces.F90
43   !! module doForces
44   !! Calculates Long Range forces.
45  
46   !! @author Charles F. Vardeman II
47   !! @author Matthew Meineke
48 < !! @version $Id: doForces.F90,v 1.6 2004-10-29 22:28:12 chrisfen Exp $, $Date: 2004-10-29 22:28:12 $, $Name: not supported by cvs2svn $, $Revision: 1.6 $
48 > !! @version $Id: doForces.F90,v 1.79 2006-04-20 18:24:24 gezelter Exp $, $Date: 2006-04-20 18:24:24 $, $Name: not supported by cvs2svn $, $Revision: 1.79 $
49  
50 +
51   module doForces
52    use force_globals
53    use simulation
# Line 14 | Line 56 | module doForces
56    use switcheroo
57    use neighborLists  
58    use lj
59 <  use sticky_pair
60 <  use dipole_dipole
61 <  use charge_charge
20 <  use reaction_field
21 <  use gb_pair
59 >  use sticky
60 >  use electrostatic_module
61 >  use gayberne
62    use shapes
63    use vector_class
64    use eam
65 +  use suttonchen
66    use status
67 +  use interpolation
68   #ifdef IS_MPI
69    use mpiSimulation
70   #endif
# Line 31 | Line 73 | module doForces
73    PRIVATE
74  
75   #define __FORTRAN90
76 < #include "UseTheForce/fSwitchingFunction.h"
76 > #include "UseTheForce/fCutoffPolicy.h"
77 > #include "UseTheForce/DarkSide/fInteractionMap.h"
78 > #include "UseTheForce/DarkSide/fElectrostaticSummationMethod.h"
79  
80    INTEGER, PARAMETER:: PREPAIR_LOOP = 1
81    INTEGER, PARAMETER:: PAIR_LOOP    = 2
82 +  INTEGER, PARAMETER:: np = 500
83  
39  logical, save :: haveRlist = .false.
84    logical, save :: haveNeighborList = .false.
85    logical, save :: haveSIMvariables = .false.
42  logical, save :: havePropertyMap = .false.
86    logical, save :: haveSaneForceField = .false.
87 <  
87 >  logical, save :: haveInteractionHash = .false.
88 >  logical, save :: haveGtypeCutoffMap = .false.
89 >  logical, save :: haveDefaultCutoffs = .false.
90 >  logical, save :: haveSkinThickness = .false.
91 >  logical, save :: haveElectrostaticSummationMethod = .false.
92 >  logical, save :: haveCutoffPolicy = .false.
93 >  logical, save :: VisitCutoffsAfterComputing = .false.
94 >  logical, save :: haveSplineSqrt = .false.
95 >
96    logical, save :: FF_uses_DirectionalAtoms
97 <  logical, save :: FF_uses_LennardJones
47 <  logical, save :: FF_uses_Electrostatic
48 <  logical, save :: FF_uses_charges
49 <  logical, save :: FF_uses_dipoles
50 <  logical, save :: FF_uses_sticky
97 >  logical, save :: FF_uses_Dipoles
98    logical, save :: FF_uses_GayBerne
99    logical, save :: FF_uses_EAM
100 <  logical, save :: FF_uses_Shapes
101 <  logical, save :: FF_uses_FLARB
102 <  logical, save :: FF_uses_RF
100 >  logical, save :: FF_uses_SC
101 >  logical, save :: FF_uses_MEAM
102 >
103  
104    logical, save :: SIM_uses_DirectionalAtoms
58  logical, save :: SIM_uses_LennardJones
59  logical, save :: SIM_uses_Electrostatics
60  logical, save :: SIM_uses_Charges
61  logical, save :: SIM_uses_Dipoles
62  logical, save :: SIM_uses_Sticky
63  logical, save :: SIM_uses_GayBerne
105    logical, save :: SIM_uses_EAM
106 <  logical, save :: SIM_uses_Shapes
107 <  logical, save :: SIM_uses_FLARB
67 <  logical, save :: SIM_uses_RF
106 >  logical, save :: SIM_uses_SC
107 >  logical, save :: SIM_uses_MEAM
108    logical, save :: SIM_requires_postpair_calc
109    logical, save :: SIM_requires_prepair_calc
110    logical, save :: SIM_uses_PBC
71  logical, save :: SIM_uses_molecular_cutoffs
111  
112 <  real(kind=dp), save :: rlist, rlistsq
112 >  integer, save :: electrostaticSummationMethod
113 >  integer, save :: cutoffPolicy = TRADITIONAL_CUTOFF_POLICY
114  
115 +  real(kind=dp), save :: defaultRcut, defaultRsw, largestRcut
116 +  real(kind=dp), save :: skinThickness
117 +  logical, save :: defaultDoShift
118 +
119    public :: init_FF
120 +  public :: setCutoffs
121 +  public :: cWasLame
122 +  public :: setElectrostaticMethod
123 +  public :: setCutoffPolicy
124 +  public :: setSkinThickness
125    public :: do_force_loop
77  public :: setRlistDF
126  
127   #ifdef PROFILE
128    public :: getforcetime
# Line 82 | Line 130 | module doForces
130    real :: forceTimeInitial, forceTimeFinal
131    integer :: nLoops
132   #endif
133 +  
134 +  !! Variables for cutoff mapping and interaction mapping
135 +  ! Bit hash to determine pair-pair interactions.
136 +  integer, dimension(:,:), allocatable :: InteractionHash
137 +  real(kind=dp), dimension(:), allocatable :: atypeMaxCutoff
138 +  real(kind=dp), dimension(:), allocatable, target :: groupMaxCutoffRow
139 +  real(kind=dp), dimension(:), pointer :: groupMaxCutoffCol
140  
141 <  type :: Properties
142 <     logical :: is_Directional   = .false.
88 <     logical :: is_LennardJones  = .false.
89 <     logical :: is_Electrostatic = .false.
90 <     logical :: is_Charge        = .false.
91 <     logical :: is_Dipole        = .false.
92 <     logical :: is_Sticky        = .false.
93 <     logical :: is_GayBerne      = .false.
94 <     logical :: is_EAM           = .false.
95 <     logical :: is_Shape         = .false.
96 <     logical :: is_FLARB         = .false.
97 <  end type Properties
141 >  integer, dimension(:), allocatable, target :: groupToGtypeRow
142 >  integer, dimension(:), pointer :: groupToGtypeCol => null()
143  
144 <  type(Properties), dimension(:),allocatable :: PropertyMap
144 >  real(kind=dp), dimension(:), allocatable,target :: gtypeMaxCutoffRow
145 >  real(kind=dp), dimension(:), pointer :: gtypeMaxCutoffCol
146 >  type ::gtypeCutoffs
147 >     real(kind=dp) :: rcut
148 >     real(kind=dp) :: rcutsq
149 >     real(kind=dp) :: rlistsq
150 >  end type gtypeCutoffs
151 >  type(gtypeCutoffs), dimension(:,:), allocatable :: gtypeCutoffMap
152  
153 +  ! variables for the spline of the sqrt
154 +  type(cubicSpline), save :: splineSqrt
155 +  logical, save :: useSpline = .true.
156 +  
157 +
158   contains
159  
160 <  subroutine setRlistDF( this_rlist )
104 <    
105 <    real(kind=dp) :: this_rlist
106 <
107 <    rlist = this_rlist
108 <    rlistsq = rlist * rlist
109 <    
110 <    haveRlist = .true.
111 <
112 <  end subroutine setRlistDF    
113 <
114 <  subroutine createPropertyMap(status)
160 >  subroutine createInteractionHash()
161      integer :: nAtypes
116    integer :: status
162      integer :: i
163 <    logical :: thisProperty
164 <    real (kind=DP) :: thisDPproperty
163 >    integer :: j
164 >    integer :: iHash
165 >    !! Test Types
166 >    logical :: i_is_LJ
167 >    logical :: i_is_Elect
168 >    logical :: i_is_Sticky
169 >    logical :: i_is_StickyP
170 >    logical :: i_is_GB
171 >    logical :: i_is_EAM
172 >    logical :: i_is_Shape
173 >    logical :: i_is_SC
174 >    logical :: i_is_MEAM
175 >    logical :: j_is_LJ
176 >    logical :: j_is_Elect
177 >    logical :: j_is_Sticky
178 >    logical :: j_is_StickyP
179 >    logical :: j_is_GB
180 >    logical :: j_is_EAM
181 >    logical :: j_is_Shape
182 >    logical :: j_is_SC
183 >    logical :: j_is_MEAM
184 >    real(kind=dp) :: myRcut
185  
186 <    status = 0
187 <
186 >    if (.not. associated(atypes)) then
187 >       call handleError("doForces", "atypes was not present before call of createInteractionHash!")
188 >       return
189 >    endif
190 >    
191      nAtypes = getSize(atypes)
192 <
192 >    
193      if (nAtypes == 0) then
194 <       status = -1
194 >       call handleError("doForces", "nAtypes was zero during call of createInteractionHash!")
195         return
196      end if
197 <        
198 <    if (.not. allocated(PropertyMap)) then
199 <       allocate(PropertyMap(nAtypes))
197 >
198 >    if (.not. allocated(InteractionHash)) then
199 >       allocate(InteractionHash(nAtypes,nAtypes))
200 >    else
201 >       deallocate(InteractionHash)
202 >       allocate(InteractionHash(nAtypes,nAtypes))
203      endif
204  
205 +    if (.not. allocated(atypeMaxCutoff)) then
206 +       allocate(atypeMaxCutoff(nAtypes))
207 +    else
208 +       deallocate(atypeMaxCutoff)
209 +       allocate(atypeMaxCutoff(nAtypes))
210 +    endif
211 +        
212      do i = 1, nAtypes
213 <       call getElementProperty(atypes, i, "is_Directional", thisProperty)
214 <       PropertyMap(i)%is_Directional = thisProperty
213 >       call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
214 >       call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
215 >       call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
216 >       call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
217 >       call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
218 >       call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
219 >       call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
220 >       call getElementProperty(atypes, i, "is_SC", i_is_SC)
221 >       call getElementProperty(atypes, i, "is_MEAM", i_is_MEAM)
222  
223 <       call getElementProperty(atypes, i, "is_LennardJones", thisProperty)
139 <       PropertyMap(i)%is_LennardJones = thisProperty
140 <      
141 <       call getElementProperty(atypes, i, "is_Electrostatic", thisProperty)
142 <       PropertyMap(i)%is_Electrostatic = thisProperty
223 >       do j = i, nAtypes
224  
225 <       call getElementProperty(atypes, i, "is_Charge", thisProperty)
226 <       PropertyMap(i)%is_Charge = thisProperty
146 <      
147 <       call getElementProperty(atypes, i, "is_Dipole", thisProperty)
148 <       PropertyMap(i)%is_Dipole = thisProperty
225 >          iHash = 0
226 >          myRcut = 0.0_dp
227  
228 <       call getElementProperty(atypes, i, "is_Sticky", thisProperty)
229 <       PropertyMap(i)%is_Sticky = thisProperty
228 >          call getElementProperty(atypes, j, "is_LennardJones", j_is_LJ)
229 >          call getElementProperty(atypes, j, "is_Electrostatic", j_is_Elect)
230 >          call getElementProperty(atypes, j, "is_Sticky", j_is_Sticky)
231 >          call getElementProperty(atypes, j, "is_StickyPower", j_is_StickyP)
232 >          call getElementProperty(atypes, j, "is_GayBerne", j_is_GB)
233 >          call getElementProperty(atypes, j, "is_EAM", j_is_EAM)
234 >          call getElementProperty(atypes, j, "is_Shape", j_is_Shape)
235 >          call getElementProperty(atypes, j, "is_SC", j_is_SC)
236 >          call getElementProperty(atypes, j, "is_MEAM", j_is_MEAM)
237  
238 <       call getElementProperty(atypes, i, "is_GayBerne", thisProperty)
239 <       PropertyMap(i)%is_GayBerne = thisProperty
238 >          if (i_is_LJ .and. j_is_LJ) then
239 >             iHash = ior(iHash, LJ_PAIR)            
240 >          endif
241 >          
242 >          if (i_is_Elect .and. j_is_Elect) then
243 >             iHash = ior(iHash, ELECTROSTATIC_PAIR)
244 >          endif
245 >          
246 >          if (i_is_Sticky .and. j_is_Sticky) then
247 >             iHash = ior(iHash, STICKY_PAIR)
248 >          endif
249  
250 <       call getElementProperty(atypes, i, "is_EAM", thisProperty)
251 <       PropertyMap(i)%is_EAM = thisProperty
250 >          if (i_is_StickyP .and. j_is_StickyP) then
251 >             iHash = ior(iHash, STICKYPOWER_PAIR)
252 >          endif
253  
254 <       call getElementProperty(atypes, i, "is_Shape", thisProperty)
255 <       PropertyMap(i)%is_Shape = thisProperty
254 >          if (i_is_EAM .and. j_is_EAM) then
255 >             iHash = ior(iHash, EAM_PAIR)
256 >          endif
257  
258 <       call getElementProperty(atypes, i, "is_FLARB", thisProperty)
259 <       PropertyMap(i)%is_FLARB = thisProperty
260 <    end do
258 >          if (i_is_SC .and. j_is_SC) then
259 >             iHash = ior(iHash, SC_PAIR)
260 >          endif
261  
262 <    havePropertyMap = .true.
262 >          if (i_is_GB .and. j_is_GB) iHash = ior(iHash, GAYBERNE_PAIR)
263 >          if (i_is_GB .and. j_is_LJ) iHash = ior(iHash, GAYBERNE_LJ)
264 >          if (i_is_LJ .and. j_is_GB) iHash = ior(iHash, GAYBERNE_LJ)
265  
266 <  end subroutine createPropertyMap
266 >          if (i_is_Shape .and. j_is_Shape) iHash = ior(iHash, SHAPE_PAIR)
267 >          if (i_is_Shape .and. j_is_LJ) iHash = ior(iHash, SHAPE_LJ)
268 >          if (i_is_LJ .and. j_is_Shape) iHash = ior(iHash, SHAPE_LJ)
269  
170  subroutine setSimVariables()
171    SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
172    SIM_uses_LennardJones = SimUsesLennardJones()
173    SIM_uses_Electrostatics = SimUsesElectrostatics()
174    SIM_uses_Charges = SimUsesCharges()
175    SIM_uses_Dipoles = SimUsesDipoles()
176    SIM_uses_Sticky = SimUsesSticky()
177    SIM_uses_GayBerne = SimUsesGayBerne()
178    SIM_uses_EAM = SimUsesEAM()
179    SIM_uses_Shapes = SimUsesShapes()
180    SIM_uses_FLARB = SimUsesFLARB()
181    SIM_uses_RF = SimUsesRF()
182    SIM_requires_postpair_calc = SimRequiresPostpairCalc()
183    SIM_requires_prepair_calc = SimRequiresPrepairCalc()
184    SIM_uses_PBC = SimUsesPBC()
270  
271 <    haveSIMvariables = .true.
271 >          InteractionHash(i,j) = iHash
272 >          InteractionHash(j,i) = iHash
273  
274 <    return
189 <  end subroutine setSimVariables
274 >       end do
275  
276 <  subroutine doReadyCheck(error)
192 <    integer, intent(out) :: error
276 >    end do
277  
278 <    integer :: myStatus
278 >    haveInteractionHash = .true.
279 >  end subroutine createInteractionHash
280  
281 <    error = 0
281 >  subroutine createGtypeCutoffMap()
282 >
283 >    logical :: i_is_LJ
284 >    logical :: i_is_Elect
285 >    logical :: i_is_Sticky
286 >    logical :: i_is_StickyP
287 >    logical :: i_is_GB
288 >    logical :: i_is_EAM
289 >    logical :: i_is_Shape
290 >    logical :: i_is_SC
291 >    logical :: GtypeFound
292 >
293 >    integer :: myStatus, nAtypes,  i, j, istart, iend, jstart, jend
294 >    integer :: n_in_i, me_i, ia, g, atom1, ja, n_in_j,me_j
295 >    integer :: nGroupsInRow
296 >    integer :: nGroupsInCol
297 >    integer :: nGroupTypesRow,nGroupTypesCol
298 >    real(kind=dp):: thisSigma, bigSigma, thisRcut, tradRcut, tol
299 >    real(kind=dp) :: biggestAtypeCutoff
300 >
301 >    if (.not. haveInteractionHash) then
302 >       call createInteractionHash()      
303 >    endif
304 > #ifdef IS_MPI
305 >    nGroupsInRow = getNgroupsInRow(plan_group_row)
306 >    nGroupsInCol = getNgroupsInCol(plan_group_col)
307 > #endif
308 >    nAtypes = getSize(atypes)
309 > ! Set all of the initial cutoffs to zero.
310 >    atypeMaxCutoff = 0.0_dp
311 >    do i = 1, nAtypes
312 >       if (SimHasAtype(i)) then    
313 >          call getElementProperty(atypes, i, "is_LennardJones", i_is_LJ)
314 >          call getElementProperty(atypes, i, "is_Electrostatic", i_is_Elect)
315 >          call getElementProperty(atypes, i, "is_Sticky", i_is_Sticky)
316 >          call getElementProperty(atypes, i, "is_StickyPower", i_is_StickyP)
317 >          call getElementProperty(atypes, i, "is_GayBerne", i_is_GB)
318 >          call getElementProperty(atypes, i, "is_EAM", i_is_EAM)
319 >          call getElementProperty(atypes, i, "is_Shape", i_is_Shape)
320 >          call getElementProperty(atypes, i, "is_SC", i_is_SC)
321 >
322 >          if (haveDefaultCutoffs) then
323 >             atypeMaxCutoff(i) = defaultRcut
324 >          else
325 >             if (i_is_LJ) then          
326 >                thisRcut = getSigma(i) * 2.5_dp
327 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
328 >             endif
329 >             if (i_is_Elect) then
330 >                thisRcut = defaultRcut
331 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
332 >             endif
333 >             if (i_is_Sticky) then
334 >                thisRcut = getStickyCut(i)
335 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
336 >             endif
337 >             if (i_is_StickyP) then
338 >                thisRcut = getStickyPowerCut(i)
339 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
340 >             endif
341 >             if (i_is_GB) then
342 >                thisRcut = getGayBerneCut(i)
343 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
344 >             endif
345 >             if (i_is_EAM) then
346 >                thisRcut = getEAMCut(i)
347 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
348 >             endif
349 >             if (i_is_Shape) then
350 >                thisRcut = getShapeCut(i)
351 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
352 >             endif
353 >             if (i_is_SC) then
354 >                thisRcut = getSCCut(i)
355 >                if (thisRCut .gt. atypeMaxCutoff(i)) atypeMaxCutoff(i) = thisRCut
356 >             endif
357 >          endif
358 >                    
359 >          if (atypeMaxCutoff(i).gt.biggestAtypeCutoff) then
360 >             biggestAtypeCutoff = atypeMaxCutoff(i)
361 >          endif
362 >
363 >       endif
364 >    enddo
365      
366 <    if (.not. havePropertyMap) then
366 >    istart = 1
367 >    jstart = 1
368 > #ifdef IS_MPI
369 >    iend = nGroupsInRow
370 >    jend = nGroupsInCol
371 > #else
372 >    iend = nGroups
373 >    jend = nGroups
374 > #endif
375 >    
376 >    !! allocate the groupToGtype and gtypeMaxCutoff here.
377 >    if(.not.allocated(groupToGtypeRow)) then
378 >     !  allocate(groupToGtype(iend))
379 >       allocate(groupToGtypeRow(iend))
380 >    else
381 >       deallocate(groupToGtypeRow)
382 >       allocate(groupToGtypeRow(iend))
383 >    endif
384 >    if(.not.allocated(groupMaxCutoffRow)) then
385 >       allocate(groupMaxCutoffRow(iend))
386 >    else
387 >       deallocate(groupMaxCutoffRow)
388 >       allocate(groupMaxCutoffRow(iend))
389 >    end if
390  
391 <       myStatus = 0
391 >    if(.not.allocated(gtypeMaxCutoffRow)) then
392 >       allocate(gtypeMaxCutoffRow(iend))
393 >    else
394 >       deallocate(gtypeMaxCutoffRow)
395 >       allocate(gtypeMaxCutoffRow(iend))
396 >    endif
397  
202       call createPropertyMap(myStatus)
398  
399 <       if (myStatus .ne. 0) then
400 <          write(default_error, *) 'createPropertyMap failed in doForces!'
401 <          error = -1
402 <          return
399 > #ifdef IS_MPI
400 >       ! We only allocate new storage if we are in MPI because Ncol /= Nrow
401 >    if(.not.associated(groupToGtypeCol)) then
402 >       allocate(groupToGtypeCol(jend))
403 >    else
404 >       deallocate(groupToGtypeCol)
405 >       allocate(groupToGtypeCol(jend))
406 >    end if
407 >
408 >    if(.not.associated(groupMaxCutoffCol)) then
409 >       allocate(groupMaxCutoffCol(jend))
410 >    else
411 >       deallocate(groupMaxCutoffCol)
412 >       allocate(groupMaxCutoffCol(jend))
413 >    end if
414 >    if(.not.associated(gtypeMaxCutoffCol)) then
415 >       allocate(gtypeMaxCutoffCol(jend))
416 >    else
417 >       deallocate(gtypeMaxCutoffCol)      
418 >       allocate(gtypeMaxCutoffCol(jend))
419 >    end if
420 >
421 >       groupMaxCutoffCol = 0.0_dp
422 >       gtypeMaxCutoffCol = 0.0_dp
423 >
424 > #endif
425 >       groupMaxCutoffRow = 0.0_dp
426 >       gtypeMaxCutoffRow = 0.0_dp
427 >
428 >
429 >    !! first we do a single loop over the cutoff groups to find the
430 >    !! largest cutoff for any atypes present in this group.  We also
431 >    !! create gtypes at this point.
432 >    
433 >    tol = 1.0d-6
434 >    nGroupTypesRow = 0
435 >    nGroupTypesCol = 0
436 >    do i = istart, iend      
437 >       n_in_i = groupStartRow(i+1) - groupStartRow(i)
438 >       groupMaxCutoffRow(i) = 0.0_dp
439 >       do ia = groupStartRow(i), groupStartRow(i+1)-1
440 >          atom1 = groupListRow(ia)
441 > #ifdef IS_MPI
442 >          me_i = atid_row(atom1)
443 > #else
444 >          me_i = atid(atom1)
445 > #endif          
446 >          if (atypeMaxCutoff(me_i).gt.groupMaxCutoffRow(i)) then
447 >             groupMaxCutoffRow(i)=atypeMaxCutoff(me_i)
448 >          endif          
449 >       enddo
450 >       if (nGroupTypesRow.eq.0) then
451 >          nGroupTypesRow = nGroupTypesRow + 1
452 >          gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
453 >          groupToGtypeRow(i) = nGroupTypesRow
454 >       else
455 >          GtypeFound = .false.
456 >          do g = 1, nGroupTypesRow
457 >             if ( abs(groupMaxCutoffRow(i) - gtypeMaxCutoffRow(g)).lt.tol) then
458 >                groupToGtypeRow(i) = g
459 >                GtypeFound = .true.
460 >             endif
461 >          enddo
462 >          if (.not.GtypeFound) then            
463 >             nGroupTypesRow = nGroupTypesRow + 1
464 >             gtypeMaxCutoffRow(nGroupTypesRow) = groupMaxCutoffRow(i)
465 >             groupToGtypeRow(i) = nGroupTypesRow
466 >          endif
467 >       endif
468 >    enddo    
469 >
470 > #ifdef IS_MPI
471 >    do j = jstart, jend      
472 >       n_in_j = groupStartCol(j+1) - groupStartCol(j)
473 >       groupMaxCutoffCol(j) = 0.0_dp
474 >       do ja = groupStartCol(j), groupStartCol(j+1)-1
475 >          atom1 = groupListCol(ja)
476 >
477 >          me_j = atid_col(atom1)
478 >
479 >          if (atypeMaxCutoff(me_j).gt.groupMaxCutoffCol(j)) then
480 >             groupMaxCutoffCol(j)=atypeMaxCutoff(me_j)
481 >          endif          
482 >       enddo
483 >
484 >       if (nGroupTypesCol.eq.0) then
485 >          nGroupTypesCol = nGroupTypesCol + 1
486 >          gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
487 >          groupToGtypeCol(j) = nGroupTypesCol
488 >       else
489 >          GtypeFound = .false.
490 >          do g = 1, nGroupTypesCol
491 >             if ( abs(groupMaxCutoffCol(j) - gtypeMaxCutoffCol(g)).lt.tol) then
492 >                groupToGtypeCol(j) = g
493 >                GtypeFound = .true.
494 >             endif
495 >          enddo
496 >          if (.not.GtypeFound) then            
497 >             nGroupTypesCol = nGroupTypesCol + 1
498 >             gtypeMaxCutoffCol(nGroupTypesCol) = groupMaxCutoffCol(j)
499 >             groupToGtypeCol(j) = nGroupTypesCol
500 >          endif
501         endif
502 +    enddo    
503 +
504 + #else
505 + ! Set pointers to information we just found
506 +    nGroupTypesCol = nGroupTypesRow
507 +    groupToGtypeCol => groupToGtypeRow
508 +    gtypeMaxCutoffCol => gtypeMaxCutoffRow
509 +    groupMaxCutoffCol => groupMaxCutoffRow
510 + #endif
511 +
512 +    !! allocate the gtypeCutoffMap here.
513 +    allocate(gtypeCutoffMap(nGroupTypesRow,nGroupTypesCol))
514 +    !! then we do a double loop over all the group TYPES to find the cutoff
515 +    !! map between groups of two types
516 +    tradRcut = max(maxval(gtypeMaxCutoffRow),maxval(gtypeMaxCutoffCol))
517 +
518 +    do i = 1, nGroupTypesRow      
519 +       do j = 1, nGroupTypesCol
520 +      
521 +          select case(cutoffPolicy)
522 +          case(TRADITIONAL_CUTOFF_POLICY)
523 +             thisRcut = tradRcut
524 +          case(MIX_CUTOFF_POLICY)
525 +             thisRcut = 0.5_dp * (gtypeMaxCutoffRow(i) + gtypeMaxCutoffCol(j))
526 +          case(MAX_CUTOFF_POLICY)
527 +             thisRcut = max(gtypeMaxCutoffRow(i), gtypeMaxCutoffCol(j))
528 +          case default
529 +             call handleError("createGtypeCutoffMap", "Unknown Cutoff Policy")
530 +             return
531 +          end select
532 +          gtypeCutoffMap(i,j)%rcut = thisRcut
533 +          
534 +          if (thisRcut.gt.largestRcut) largestRcut = thisRcut
535 +
536 +          gtypeCutoffMap(i,j)%rcutsq = thisRcut*thisRcut
537 +
538 +          if (.not.haveSkinThickness) then
539 +             skinThickness = 1.0_dp
540 +          endif
541 +
542 +          gtypeCutoffMap(i,j)%rlistsq = (thisRcut + skinThickness)**2
543 +
544 +          ! sanity check
545 +
546 +          if (haveDefaultCutoffs) then
547 +             if (abs(gtypeCutoffMap(i,j)%rcut - defaultRcut).gt.0.0001) then
548 +                call handleError("createGtypeCutoffMap", "user-specified rCut does not match computed group Cutoff")
549 +             endif
550 +          endif
551 +       enddo
552 +    enddo
553 +
554 +    if(allocated(gtypeMaxCutoffRow)) deallocate(gtypeMaxCutoffRow)
555 +    if(allocated(groupMaxCutoffRow)) deallocate(groupMaxCutoffRow)
556 +    if(allocated(atypeMaxCutoff)) deallocate(atypeMaxCutoff)
557 + #ifdef IS_MPI
558 +    if(associated(groupMaxCutoffCol)) deallocate(groupMaxCutoffCol)
559 +    if(associated(gtypeMaxCutoffCol)) deallocate(gtypeMaxCutoffCol)
560 + #endif
561 +    groupMaxCutoffCol => null()
562 +    gtypeMaxCutoffCol => null()
563 +    
564 +    haveGtypeCutoffMap = .true.
565 +   end subroutine createGtypeCutoffMap
566 +
567 +   subroutine setCutoffs(defRcut, defRsw)
568 +
569 +     real(kind=dp),intent(in) :: defRcut, defRsw
570 +     character(len = statusMsgSize) :: errMsg
571 +     integer :: localError
572 +
573 +     defaultRcut = defRcut
574 +     defaultRsw = defRsw
575 +    
576 +     defaultDoShift = .false.
577 +     if (abs(defaultRcut-defaultRsw) .lt. 0.0001) then
578 +        
579 +        write(errMsg, *) &
580 +             'cutoffRadius and switchingRadius are set to the same', newline &
581 +             // tab, 'value.  OOPSE will use shifted ', newline &
582 +             // tab, 'potentials instead of switching functions.'
583 +        
584 +        call handleInfo("setCutoffs", errMsg)
585 +        
586 +        defaultDoShift = .true.
587 +        
588 +     endif
589 +    
590 +     localError = 0
591 +     call setLJDefaultCutoff( defaultRcut, defaultDoShift )
592 +     call setElectrostaticCutoffRadius( defaultRcut, defaultRsw )
593 +     call setCutoffEAM( defaultRcut )
594 +     call setCutoffSC( defaultRcut )
595 +     call set_switch(defaultRsw, defaultRcut)
596 +     call setHmatDangerousRcutValue(defaultRcut)
597 +     call setupSplineSqrt(defaultRcut)
598 +        
599 +     haveDefaultCutoffs = .true.
600 +     haveGtypeCutoffMap = .false.
601 +
602 +   end subroutine setCutoffs
603 +
604 +   subroutine cWasLame()
605 +    
606 +     VisitCutoffsAfterComputing = .true.
607 +     return
608 +    
609 +   end subroutine cWasLame
610 +  
611 +   subroutine setCutoffPolicy(cutPolicy)
612 +    
613 +     integer, intent(in) :: cutPolicy
614 +    
615 +     cutoffPolicy = cutPolicy
616 +     haveCutoffPolicy = .true.
617 +     haveGtypeCutoffMap = .false.
618 +    
619 +   end subroutine setCutoffPolicy
620 +  
621 +   subroutine setElectrostaticMethod( thisESM )
622 +
623 +     integer, intent(in) :: thisESM
624 +
625 +     electrostaticSummationMethod = thisESM
626 +     haveElectrostaticSummationMethod = .true.
627 +    
628 +   end subroutine setElectrostaticMethod
629 +
630 +   subroutine setSkinThickness( thisSkin )
631 +    
632 +     real(kind=dp), intent(in) :: thisSkin
633 +    
634 +     skinThickness = thisSkin
635 +     haveSkinThickness = .true.    
636 +     haveGtypeCutoffMap = .false.
637 +    
638 +   end subroutine setSkinThickness
639 +      
640 +   subroutine setSimVariables()
641 +     SIM_uses_DirectionalAtoms = SimUsesDirectionalAtoms()
642 +     SIM_uses_EAM = SimUsesEAM()
643 +     SIM_requires_postpair_calc = SimRequiresPostpairCalc()
644 +     SIM_requires_prepair_calc = SimRequiresPrepairCalc()
645 +     SIM_uses_PBC = SimUsesPBC()
646 +     SIM_uses_SC = SimUsesSC()
647 +    
648 +     haveSIMvariables = .true.
649 +    
650 +     return
651 +   end subroutine setSimVariables
652 +
653 +  subroutine doReadyCheck(error)
654 +    integer, intent(out) :: error
655 +    integer :: myStatus
656 +
657 +    error = 0
658 +
659 +    if (.not. haveInteractionHash) then      
660 +       call createInteractionHash()      
661      endif
662  
663 <    if (.not. haveSIMvariables) then
664 <       call setSimVariables()
663 >    if (.not. haveGtypeCutoffMap) then        
664 >       call createGtypeCutoffMap()      
665      endif
666  
667 <    if (.not. haveRlist) then
668 <       write(default_error, *) 'rList has not been set in doForces!'
669 <       error = -1
670 <       return
667 >    if (VisitCutoffsAfterComputing) then
668 >       call set_switch(largestRcut, largestRcut)      
669 >       call setHmatDangerousRcutValue(largestRcut)
670 >       call setLJsplineRmax(largestRcut)
671 >       call setCutoffEAM(largestRcut)
672 >       call setCutoffSC(largestRcut)
673 >       VisitCutoffsAfterComputing = .false.
674      endif
675  
676 +    if (.not. haveSplineSqrt) then
677 +       call setupSplineSqrt(largestRcut)
678 +    endif
679 +
680 +    if (.not. haveSIMvariables) then
681 +       call setSimVariables()
682 +    endif
683 +
684      if (.not. haveNeighborList) then
685         write(default_error, *) 'neighbor list has not been initialized in doForces!'
686         error = -1
687         return
688      end if
689 <
689 >    
690      if (.not. haveSaneForceField) then
691         write(default_error, *) 'Force Field is not sane in doForces!'
692         error = -1
693         return
694      end if
695 <
695 >    
696   #ifdef IS_MPI
697      if (.not. isMPISimSet()) then
698         write(default_error,*) "ERROR: mpiSimulation has not been initialized!"
# Line 239 | Line 702 | contains
702   #endif
703      return
704    end subroutine doReadyCheck
242    
705  
244  subroutine init_FF(use_RF_c, thisStat)
706  
707 <    logical, intent(in) :: use_RF_c
707 >  subroutine init_FF(thisStat)
708  
709      integer, intent(out) :: thisStat  
710      integer :: my_status, nMatches
711      integer, pointer :: MatchList(:) => null()
251    real(kind=dp) :: rcut, rrf, rt, dielect
712  
713      !! assume things are copacetic, unless they aren't
714      thisStat = 0
715  
256    !! Fortran's version of a cast:
257    FF_uses_RF = use_RF_c
258    
716      !! init_FF is called *after* all of the atom types have been
717      !! defined in atype_module using the new_atype subroutine.
718      !!
719      !! this will scan through the known atypes and figure out what
720      !! interactions are used by the force field.    
721 <  
721 >
722      FF_uses_DirectionalAtoms = .false.
266    FF_uses_LennardJones = .false.
267    FF_uses_Electrostatic = .false.
268    FF_uses_Charges = .false.    
723      FF_uses_Dipoles = .false.
270    FF_uses_Sticky = .false.
724      FF_uses_GayBerne = .false.
725      FF_uses_EAM = .false.
726 <    FF_uses_Shapes = .false.
727 <    FF_uses_FLARB = .false.
275 <    
726 >    FF_uses_SC = .false.
727 >
728      call getMatchingElementList(atypes, "is_Directional", .true., &
729           nMatches, MatchList)
730      if (nMatches .gt. 0) FF_uses_DirectionalAtoms = .true.
731  
280    call getMatchingElementList(atypes, "is_LennardJones", .true., &
281         nMatches, MatchList)
282    if (nMatches .gt. 0) FF_uses_LennardJones = .true.
283    
284    call getMatchingElementList(atypes, "is_Electrostatic", .true., &
285         nMatches, MatchList)
286    if (nMatches .gt. 0) then
287       FF_uses_Electrostatic = .true.
288    endif
289
290    call getMatchingElementList(atypes, "is_Charge", .true., &
291         nMatches, MatchList)
292    if (nMatches .gt. 0) then
293       FF_uses_charges = .true.  
294       FF_uses_electrostatic = .true.
295    endif
296    
732      call getMatchingElementList(atypes, "is_Dipole", .true., &
733           nMatches, MatchList)
734 <    if (nMatches .gt. 0) then
300 <       FF_uses_dipoles = .true.
301 <       FF_uses_electrostatic = .true.
302 <       FF_uses_DirectionalAtoms = .true.
303 <    endif
734 >    if (nMatches .gt. 0) FF_uses_Dipoles = .true.
735      
305    call getMatchingElementList(atypes, "is_Sticky", .true., nMatches, &
306         MatchList)
307    if (nMatches .gt. 0) then
308       FF_uses_Sticky = .true.
309       FF_uses_DirectionalAtoms = .true.
310    endif
311    
736      call getMatchingElementList(atypes, "is_GayBerne", .true., &
737           nMatches, MatchList)
738 <    if (nMatches .gt. 0) then
739 <       FF_uses_GayBerne = .true.
316 <       FF_uses_DirectionalAtoms = .true.
317 <    endif
318 <    
738 >    if (nMatches .gt. 0) FF_uses_GayBerne = .true.
739 >
740      call getMatchingElementList(atypes, "is_EAM", .true., nMatches, MatchList)
741      if (nMatches .gt. 0) FF_uses_EAM = .true.
321    
322    call getMatchingElementList(atypes, "is_Shape", .true., &
323         nMatches, MatchList)
324    if (nMatches .gt. 0) then
325       FF_uses_Shapes = .true.
326       FF_uses_DirectionalAtoms = .true.
327    endif
742  
743 <    call getMatchingElementList(atypes, "is_FLARB", .true., &
744 <         nMatches, MatchList)
331 <    if (nMatches .gt. 0) FF_uses_FLARB = .true.
743 >    call getMatchingElementList(atypes, "is_SC", .true., nMatches, MatchList)
744 >    if (nMatches .gt. 0) FF_uses_SC = .true.
745  
746 <    !! Assume sanity (for the sake of argument)
746 >
747      haveSaneForceField = .true.
335    
336    !! check to make sure the FF_uses_RF setting makes sense
337    
338    if (FF_uses_dipoles) then
339       if (FF_uses_RF) then
340          dielect = getDielect()
341          call initialize_rf(dielect)
342       endif
343    else
344       if (FF_uses_RF) then          
345          write(default_error,*) 'Using Reaction Field with no dipoles?  Huh?'
346          thisStat = -1
347          haveSaneForceField = .false.
348          return
349       endif
350    endif
748  
352    if (FF_uses_sticky) then
353       call check_sticky_FF(my_status)
354       if (my_status /= 0) then
355          thisStat = -1
356          haveSaneForceField = .false.
357          return
358       end if
359    endif
360
749      if (FF_uses_EAM) then
750 <         call init_EAM_FF(my_status)
750 >       call init_EAM_FF(my_status)
751         if (my_status /= 0) then
752            write(default_error, *) "init_EAM_FF returned a bad status"
753            thisStat = -1
# Line 368 | Line 756 | contains
756         end if
757      endif
758  
371    if (FF_uses_GayBerne) then
372       call check_gb_pair_FF(my_status)
373       if (my_status .ne. 0) then
374          thisStat = -1
375          haveSaneForceField = .false.
376          return
377       endif
378    endif
379
380    if (FF_uses_GayBerne .and. FF_uses_LennardJones) then
381    endif
382    
759      if (.not. haveNeighborList) then
760         !! Create neighbor lists
761         call expandNeighborList(nLocal, my_status)
# Line 389 | Line 765 | contains
765            return
766         endif
767         haveNeighborList = .true.
768 <    endif    
769 <    
768 >    endif
769 >
770    end subroutine init_FF
395  
771  
772 +
773    !! Does force loop over i,j pairs. Calls do_pair to calculates forces.
774    !------------------------------------------------------------->
775 <  subroutine do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
775 >  subroutine do_force_loop(q, q_group, A, eFrame, f, t, tau, pot, &
776         do_pot_c, do_stress_c, error)
777      !! Position array provided by C, dimensioned by getNlocal
778      real ( kind = dp ), dimension(3, nLocal) :: q
# Line 405 | Line 781 | contains
781      !! Rotation Matrix for each long range particle in simulation.
782      real( kind = dp), dimension(9, nLocal) :: A    
783      !! Unit vectors for dipoles (lab frame)
784 <    real( kind = dp ), dimension(3,nLocal) :: u_l
784 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
785      !! Force array provided by C, dimensioned by getNlocal
786      real ( kind = dp ), dimension(3,nLocal) :: f
787      !! Torsion array provided by C, dimensioned by getNlocal
# Line 413 | Line 789 | contains
789  
790      !! Stress Tensor
791      real( kind = dp), dimension(9) :: tau  
792 <    real ( kind = dp ) :: pot
792 >    real ( kind = dp ),dimension(LR_POT_TYPES) :: pot
793      logical ( kind = 2) :: do_pot_c, do_stress_c
794      logical :: do_pot
795      logical :: do_stress
796      logical :: in_switching_region
797   #ifdef IS_MPI
798 <    real( kind = DP ) :: pot_local
798 >    real( kind = DP ), dimension(LR_POT_TYPES) :: pot_local
799      integer :: nAtomsInRow
800      integer :: nAtomsInCol
801      integer :: nprocs
# Line 434 | Line 810 | contains
810      integer :: nlist
811      real( kind = DP ) :: ratmsq, rgrpsq, rgrp, vpair, vij
812      real( kind = DP ) :: sw, dswdr, swderiv, mf
813 +    real( kind = DP ) :: rVal
814      real(kind=dp),dimension(3) :: d_atm, d_grp, fpair, fij
815      real(kind=dp) :: rfpot, mu_i, virial
816 +    real(kind=dp):: rCut
817      integer :: me_i, me_j, n_in_i, n_in_j
818      logical :: is_dp_i
819      integer :: neighborListSize
# Line 443 | Line 821 | contains
821      integer :: localError
822      integer :: propPack_i, propPack_j
823      integer :: loopStart, loopEnd, loop
824 +    integer :: iHash
825 +    integer :: i1
826 +  
827  
447    real(kind=dp) :: listSkin = 1.0  
448    
828      !! initialize local variables  
829 <    
829 >
830   #ifdef IS_MPI
831      pot_local = 0.0_dp
832      nAtomsInRow   = getNatomsInRow(plan_atom_row)
# Line 457 | Line 836 | contains
836   #else
837      natoms = nlocal
838   #endif
839 <    
839 >
840      call doReadyCheck(localError)
841      if ( localError .ne. 0 ) then
842         call handleError("do_force_loop", "Not Initialized")
# Line 465 | Line 844 | contains
844         return
845      end if
846      call zero_work_arrays()
847 <        
847 >
848      do_pot = do_pot_c
849      do_stress = do_stress_c
850 <    
850 >
851      ! Gather all information needed by all force loops:
852 <    
852 >
853   #ifdef IS_MPI    
854 <    
854 >
855      call gather(q, q_Row, plan_atom_row_3d)
856      call gather(q, q_Col, plan_atom_col_3d)
857  
858      call gather(q_group, q_group_Row, plan_group_row_3d)
859      call gather(q_group, q_group_Col, plan_group_col_3d)
860 <        
860 >
861      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
862 <       call gather(u_l, u_l_Row, plan_atom_row_3d)
863 <       call gather(u_l, u_l_Col, plan_atom_col_3d)
864 <      
862 >       call gather(eFrame, eFrame_Row, plan_atom_row_rotation)
863 >       call gather(eFrame, eFrame_Col, plan_atom_col_rotation)
864 >
865         call gather(A, A_Row, plan_atom_row_rotation)
866         call gather(A, A_Col, plan_atom_col_rotation)
867      endif
868 <    
868 >
869   #endif
870 <    
870 >
871      !! Begin force loop timing:
872   #ifdef PROFILE
873      call cpu_time(forceTimeInitial)
874      nloops = nloops + 1
875   #endif
876 <    
876 >
877      loopEnd = PAIR_LOOP
878      if (FF_RequiresPrepairCalc() .and. SIM_requires_prepair_calc) then
879         loopStart = PREPAIR_LOOP
# Line 508 | Line 887 | contains
887         ! (but only on the first time through):
888         if (loop .eq. loopStart) then
889   #ifdef IS_MPI
890 <          call checkNeighborList(nGroupsInRow, q_group_row, listSkin, &
891 <             update_nlist)
890 >          call checkNeighborList(nGroupsInRow, q_group_row, skinThickness, &
891 >               update_nlist)
892   #else
893 <          call checkNeighborList(nGroups, q_group, listSkin, &
894 <             update_nlist)
893 >          call checkNeighborList(nGroups, q_group, skinThickness, &
894 >               update_nlist)
895   #endif
896         endif
897 <      
897 >
898         if (update_nlist) then
899            !! save current configuration and construct neighbor list
900   #ifdef IS_MPI
# Line 526 | Line 905 | contains
905            neighborListSize = size(list)
906            nlist = 0
907         endif
908 <      
908 >
909         istart = 1
910   #ifdef IS_MPI
911         iend = nGroupsInRow
# Line 536 | Line 915 | contains
915         outer: do i = istart, iend
916  
917            if (update_nlist) point(i) = nlist + 1
918 <          
918 >
919            n_in_i = groupStartRow(i+1) - groupStartRow(i)
920 <          
920 >
921            if (update_nlist) then
922   #ifdef IS_MPI
923               jstart = 1
# Line 553 | Line 932 | contains
932               ! make sure group i has neighbors
933               if (jstart .gt. jend) cycle outer
934            endif
935 <          
935 >
936            do jnab = jstart, jend
937               if (update_nlist) then
938                  j = jnab
# Line 562 | Line 941 | contains
941               endif
942  
943   #ifdef IS_MPI
944 +             me_j = atid_col(j)
945               call get_interatomic_vector(q_group_Row(:,i), &
946                    q_group_Col(:,j), d_grp, rgrpsq)
947   #else
948 +             me_j = atid(j)
949               call get_interatomic_vector(q_group(:,i), &
950                    q_group(:,j), d_grp, rgrpsq)
951 < #endif
951 > #endif      
952  
953 <             if (rgrpsq < rlistsq) then
953 >             if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rListsq) then
954                  if (update_nlist) then
955                     nlist = nlist + 1
956 <                  
956 >
957                     if (nlist > neighborListSize) then
958   #ifdef IS_MPI                
959                        call expandNeighborList(nGroupsInRow, listerror)
# Line 586 | Line 967 | contains
967                        end if
968                        neighborListSize = size(list)
969                     endif
970 <                  
970 >
971                     list(nlist) = j
972                  endif
973 <                
974 <                if (loop .eq. PAIR_LOOP) then
975 <                   vij = 0.0d0
976 <                   fij(1:3) = 0.0d0
977 <                endif
978 <                
979 <                call get_switch(rgrpsq, sw, dswdr, rgrp, group_switch, &
980 <                     in_switching_region)
981 <                
982 <                n_in_j = groupStartCol(j+1) - groupStartCol(j)
602 <                
603 <                do ia = groupStartRow(i), groupStartRow(i+1)-1
973 >                
974 >                if (rgrpsq < gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCutsq) then
975 >
976 >                   rCut = gtypeCutoffMap(groupToGtypeRow(i),groupToGtypeCol(j))%rCut
977 >                   if (loop .eq. PAIR_LOOP) then
978 >                      vij = 0.0d0
979 >                      fij(1) = 0.0_dp
980 >                      fij(2) = 0.0_dp
981 >                      fij(3) = 0.0_dp
982 >                   endif
983                    
984 <                   atom1 = groupListRow(ia)
984 >                   call get_switch(rgrpsq, sw, dswdr,rgrp, in_switching_region)
985                    
986 <                   inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
986 >                   n_in_j = groupStartCol(j+1) - groupStartCol(j)
987 >                  
988 >                   do ia = groupStartRow(i), groupStartRow(i+1)-1
989                        
990 <                      atom2 = groupListCol(jb)
990 >                      atom1 = groupListRow(ia)
991                        
992 <                      if (skipThisPair(atom1, atom2)) cycle inner
993 <
994 <                      if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
995 <                         d_atm(1:3) = d_grp(1:3)
996 <                         ratmsq = rgrpsq
997 <                      else
992 >                      inner: do jb = groupStartCol(j), groupStartCol(j+1)-1
993 >                        
994 >                         atom2 = groupListCol(jb)
995 >                        
996 >                         if (skipThisPair(atom1, atom2))  cycle inner
997 >                        
998 >                         if ((n_in_i .eq. 1).and.(n_in_j .eq. 1)) then
999 >                            d_atm(1) = d_grp(1)
1000 >                            d_atm(2) = d_grp(2)
1001 >                            d_atm(3) = d_grp(3)
1002 >                            ratmsq = rgrpsq
1003 >                         else
1004   #ifdef IS_MPI
1005 <                         call get_interatomic_vector(q_Row(:,atom1), &
1006 <                              q_Col(:,atom2), d_atm, ratmsq)
1005 >                            call get_interatomic_vector(q_Row(:,atom1), &
1006 >                                 q_Col(:,atom2), d_atm, ratmsq)
1007   #else
1008 <                         call get_interatomic_vector(q(:,atom1), &
1009 <                              q(:,atom2), d_atm, ratmsq)
1008 >                            call get_interatomic_vector(q(:,atom1), &
1009 >                                 q(:,atom2), d_atm, ratmsq)
1010   #endif
1011 <                      endif
1012 <
1013 <                      if (loop .eq. PREPAIR_LOOP) then
1011 >                         endif
1012 >                        
1013 >                         if (loop .eq. PREPAIR_LOOP) then
1014   #ifdef IS_MPI                      
1015 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1016 <                              rgrpsq, d_grp, do_pot, do_stress, &
1017 <                              u_l, A, f, t, pot_local)
1015 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1016 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1017 >                                 eFrame, A, f, t, pot_local)
1018   #else
1019 <                         call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1020 <                              rgrpsq, d_grp, do_pot, do_stress, &
1021 <                              u_l, A, f, t, pot)
1019 >                            call do_prepair(atom1, atom2, ratmsq, d_atm, sw, &
1020 >                                 rgrpsq, d_grp, rCut, do_pot, do_stress, &
1021 >                                 eFrame, A, f, t, pot)
1022   #endif                                              
1023 <                      else
1023 >                         else
1024   #ifdef IS_MPI                      
1025 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1026 <                              do_pot, &
1027 <                              u_l, A, f, t, pot_local, vpair, fpair)
1025 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1026 >                                 do_pot, eFrame, A, f, t, pot_local, vpair, &
1027 >                                 fpair, d_grp, rgrp, rCut)
1028   #else
1029 <                         call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1030 <                              do_pot,  &
1031 <                              u_l, A, f, t, pot, vpair, fpair)
1029 >                            call do_pair(atom1, atom2, ratmsq, d_atm, sw, &
1030 >                                 do_pot, eFrame, A, f, t, pot, vpair, fpair, &
1031 >                                 d_grp, rgrp, rCut)
1032   #endif
1033 +                            vij = vij + vpair
1034 +                            fij(1) = fij(1) + fpair(1)
1035 +                            fij(2) = fij(2) + fpair(2)
1036 +                            fij(3) = fij(3) + fpair(3)
1037 +                         endif
1038 +                      enddo inner
1039 +                   enddo
1040  
1041 <                         vij = vij + vpair
1042 <                         fij(1:3) = fij(1:3) + fpair(1:3)
1043 <                      endif
1044 <                   enddo inner
1045 <                enddo
1046 <                
1047 <                if (loop .eq. PAIR_LOOP) then
1048 <                   if (in_switching_region) then
1049 <                      swderiv = vij*dswdr/rgrp
1050 <                      fij(1) = fij(1) + swderiv*d_grp(1)
657 <                      fij(2) = fij(2) + swderiv*d_grp(2)
658 <                      fij(3) = fij(3) + swderiv*d_grp(3)
659 <                      
660 <                      do ia=groupStartRow(i), groupStartRow(i+1)-1
661 <                         atom1=groupListRow(ia)
662 <                         mf = mfactRow(atom1)
1041 >                   if (loop .eq. PAIR_LOOP) then
1042 >                      if (in_switching_region) then
1043 >                         swderiv = vij*dswdr/rgrp
1044 >                         fij(1) = fij(1) + swderiv*d_grp(1)
1045 >                         fij(2) = fij(2) + swderiv*d_grp(2)
1046 >                         fij(3) = fij(3) + swderiv*d_grp(3)
1047 >                        
1048 >                         do ia=groupStartRow(i), groupStartRow(i+1)-1
1049 >                            atom1=groupListRow(ia)
1050 >                            mf = mfactRow(atom1)
1051   #ifdef IS_MPI
1052 <                         f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1053 <                         f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1054 <                         f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1052 >                            f_Row(1,atom1) = f_Row(1,atom1) + swderiv*d_grp(1)*mf
1053 >                            f_Row(2,atom1) = f_Row(2,atom1) + swderiv*d_grp(2)*mf
1054 >                            f_Row(3,atom1) = f_Row(3,atom1) + swderiv*d_grp(3)*mf
1055   #else
1056 <                         f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1057 <                         f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1058 <                         f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1056 >                            f(1,atom1) = f(1,atom1) + swderiv*d_grp(1)*mf
1057 >                            f(2,atom1) = f(2,atom1) + swderiv*d_grp(2)*mf
1058 >                            f(3,atom1) = f(3,atom1) + swderiv*d_grp(3)*mf
1059   #endif
1060 <                      enddo
1061 <                      
1062 <                      do jb=groupStartCol(j), groupStartCol(j+1)-1
1063 <                         atom2=groupListCol(jb)
1064 <                         mf = mfactCol(atom2)
1060 >                         enddo
1061 >                        
1062 >                         do jb=groupStartCol(j), groupStartCol(j+1)-1
1063 >                            atom2=groupListCol(jb)
1064 >                            mf = mfactCol(atom2)
1065   #ifdef IS_MPI
1066 <                         f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1067 <                         f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1068 <                         f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1066 >                            f_Col(1,atom2) = f_Col(1,atom2) - swderiv*d_grp(1)*mf
1067 >                            f_Col(2,atom2) = f_Col(2,atom2) - swderiv*d_grp(2)*mf
1068 >                            f_Col(3,atom2) = f_Col(3,atom2) - swderiv*d_grp(3)*mf
1069   #else
1070 <                         f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1071 <                         f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1072 <                         f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1070 >                            f(1,atom2) = f(1,atom2) - swderiv*d_grp(1)*mf
1071 >                            f(2,atom2) = f(2,atom2) - swderiv*d_grp(2)*mf
1072 >                            f(3,atom2) = f(3,atom2) - swderiv*d_grp(3)*mf
1073   #endif
1074 <                      enddo
1074 >                         enddo
1075 >                      endif
1076 >
1077 >                      if (do_stress) call add_stress_tensor(d_grp, fij)
1078                     endif
688                  
689                   if (do_stress) call add_stress_tensor(d_grp, fij)
1079                  endif
1080 <             end if
1080 >             endif
1081            enddo
1082 +          
1083         enddo outer
1084 <      
1084 >
1085         if (update_nlist) then
1086   #ifdef IS_MPI
1087            point(nGroupsInRow + 1) = nlist + 1
# Line 705 | Line 1095 | contains
1095               update_nlist = .false.                              
1096            endif
1097         endif
1098 <            
1098 >
1099         if (loop .eq. PREPAIR_LOOP) then
1100            call do_preforce(nlocal, pot)
1101         endif
1102 <      
1102 >
1103      enddo
1104 <    
1104 >
1105      !! Do timing
1106   #ifdef PROFILE
1107      call cpu_time(forceTimeFinal)
1108      forceTime = forceTime + forceTimeFinal - forceTimeInitial
1109   #endif    
1110 <    
1110 >
1111   #ifdef IS_MPI
1112      !!distribute forces
1113 <    
1113 >
1114      f_temp = 0.0_dp
1115      call scatter(f_Row,f_temp,plan_atom_row_3d)
1116      do i = 1,nlocal
1117         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1118      end do
1119 <    
1119 >
1120      f_temp = 0.0_dp
1121      call scatter(f_Col,f_temp,plan_atom_col_3d)
1122      do i = 1,nlocal
1123         f(1:3,i) = f(1:3,i) + f_temp(1:3,i)
1124      end do
1125 <    
1125 >
1126      if (FF_UsesDirectionalAtoms() .and. SIM_uses_DirectionalAtoms) then
1127         t_temp = 0.0_dp
1128         call scatter(t_Row,t_temp,plan_atom_row_3d)
# Line 741 | Line 1131 | contains
1131         end do
1132         t_temp = 0.0_dp
1133         call scatter(t_Col,t_temp,plan_atom_col_3d)
1134 <      
1134 >
1135         do i = 1,nlocal
1136            t(1:3,i) = t(1:3,i) + t_temp(1:3,i)
1137         end do
1138      endif
1139 <    
1139 >
1140      if (do_pot) then
1141         ! scatter/gather pot_row into the members of my column
1142 <       call scatter(pot_Row, pot_Temp, plan_atom_row)
1143 <      
1142 >       do i = 1,LR_POT_TYPES
1143 >          call scatter(pot_Row(i,:), pot_Temp(i,:), plan_atom_row)
1144 >       end do
1145         ! scatter/gather pot_local into all other procs
1146         ! add resultant to get total pot
1147         do i = 1, nlocal
1148 <          pot_local = pot_local + pot_Temp(i)
1148 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES) &
1149 >               + pot_Temp(1:LR_POT_TYPES,i)
1150         enddo
1151 <      
1151 >
1152         pot_Temp = 0.0_DP
1153 <      
1154 <       call scatter(pot_Col, pot_Temp, plan_atom_col)
1153 >       do i = 1,LR_POT_TYPES
1154 >          call scatter(pot_Col(i,:), pot_Temp(i,:), plan_atom_col)
1155 >       end do
1156         do i = 1, nlocal
1157 <          pot_local = pot_local + pot_Temp(i)
1157 >          pot_local(1:LR_POT_TYPES) = pot_local(1:LR_POT_TYPES)&
1158 >               + pot_Temp(1:LR_POT_TYPES,i)
1159         enddo
1160 <      
1160 >
1161      endif
1162   #endif
1163 <    
1164 <    if (FF_RequiresPostpairCalc() .and. SIM_requires_postpair_calc) then
1165 <      
772 <       if (FF_uses_RF .and. SIM_uses_RF) then
1163 >
1164 >    if (SIM_requires_postpair_calc) then
1165 >       do i = 1, nlocal            
1166            
1167 < #ifdef IS_MPI
1168 <          call scatter(rf_Row,rf,plan_atom_row_3d)
776 <          call scatter(rf_Col,rf_Temp,plan_atom_col_3d)
777 <          do i = 1,nlocal
778 <             rf(1:3,i) = rf(1:3,i) + rf_Temp(1:3,i)
779 <          end do
780 < #endif
1167 >          ! we loop only over the local atoms, so we don't need row and column
1168 >          ! lookups for the types
1169            
1170 <          do i = 1, nLocal
1171 <            
1172 <             rfpot = 0.0_DP
1170 >          me_i = atid(i)
1171 >          
1172 >          ! is the atom electrostatic?  See if it would have an
1173 >          ! electrostatic interaction with itself
1174 >          iHash = InteractionHash(me_i,me_i)
1175 >
1176 >          if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1177   #ifdef IS_MPI
1178 <             me_i = atid_row(i)
1178 >             call self_self(i, eFrame, pot_local(ELECTROSTATIC_POT), &
1179 >                  t, do_pot)
1180   #else
1181 <             me_i = atid(i)
1181 >             call self_self(i, eFrame, pot(ELECTROSTATIC_POT), &
1182 >                  t, do_pot)
1183   #endif
1184 +          endif
1185 +  
1186 +          
1187 +          if (electrostaticSummationMethod.eq.REACTION_FIELD) then
1188              
1189 <             if (PropertyMap(me_i)%is_Dipole) then
1189 >             ! loop over the excludes to accumulate RF stuff we've
1190 >             ! left out of the normal pair loop
1191 >            
1192 >             do i1 = 1, nSkipsForAtom(i)
1193 >                j = skipsForAtom(i, i1)
1194                  
1195 <                mu_i = getDipoleMoment(me_i)
1196 <                
1197 <                !! The reaction field needs to include a self contribution
1198 <                !! to the field:
1199 <                call accumulate_self_rf(i, mu_i, u_l)
798 <                !! Get the reaction field contribution to the
799 <                !! potential and torques:
800 <                call reaction_field_final(i, mu_i, u_l, rfpot, t, do_pot)
1195 >                ! prevent overcounting of the skips
1196 >                if (i.lt.j) then
1197 >                   call get_interatomic_vector(q(:,i), q(:,j), d_atm, ratmsq)
1198 >                   rVal = dsqrt(ratmsq)
1199 >                   call get_switch(ratmsq, sw, dswdr, rVal,in_switching_region)
1200   #ifdef IS_MPI
1201 <                pot_local = pot_local + rfpot
1201 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1202 >                        vpair, pot_local(ELECTROSTATIC_POT), f, t, do_pot)
1203   #else
1204 <                pot = pot + rfpot
1205 <      
1204 >                   call rf_self_excludes(i, j, sw, eFrame, d_atm, rVal, &
1205 >                        vpair, pot(ELECTROSTATIC_POT), f, t, do_pot)
1206   #endif
1207 <             endif            
1208 <          enddo
1209 <       endif
1207 >                endif
1208 >             enddo
1209 >          endif
1210 >       enddo
1211      endif
1212      
812    
1213   #ifdef IS_MPI
1214      
1215      if (do_pot) then
1216 <       pot = pot + pot_local
1217 <       !! we assume the c code will do the allreduce to get the total potential
818 <       !! we could do it right here if we needed to...
1216 >       call mpi_allreduce(pot_local, pot, LR_POT_TYPES,mpi_double_precision,mpi_sum, &
1217 >            mpi_comm_world,mpi_err)            
1218      endif
1219      
1220      if (do_stress) then
# Line 833 | Line 1232 | contains
1232      endif
1233      
1234   #endif
1235 <      
1235 >    
1236    end subroutine do_force_loop
1237 <  
1237 >
1238    subroutine do_pair(i, j, rijsq, d, sw, do_pot, &
1239 <       u_l, A, f, t, pot, vpair, fpair)
1239 >       eFrame, A, f, t, pot, vpair, fpair, d_grp, r_grp, rCut)
1240  
1241 <    real( kind = dp ) :: pot, vpair, sw
1241 >    real( kind = dp ) :: vpair, sw
1242 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1243      real( kind = dp ), dimension(3) :: fpair
1244      real( kind = dp ), dimension(nLocal)   :: mfact
1245 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1245 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1246      real( kind = dp ), dimension(9,nLocal) :: A
1247      real( kind = dp ), dimension(3,nLocal) :: f
1248      real( kind = dp ), dimension(3,nLocal) :: t
# Line 850 | Line 1250 | contains
1250      logical, intent(inout) :: do_pot
1251      integer, intent(in) :: i, j
1252      real ( kind = dp ), intent(inout) :: rijsq
1253 <    real ( kind = dp )                :: r
1253 >    real ( kind = dp ), intent(inout) :: r_grp
1254      real ( kind = dp ), intent(inout) :: d(3)
1255 +    real ( kind = dp ), intent(inout) :: d_grp(3)
1256 +    real ( kind = dp ), intent(inout) :: rCut
1257 +    real ( kind = dp ) :: r
1258 +    real ( kind = dp ) :: a_k, b_k, c_k, d_k, dx
1259      integer :: me_i, me_j
1260 +    integer :: k
1261  
1262 <    r = sqrt(rijsq)
1262 >    integer :: iHash
1263 >
1264 >    if (useSpline) then
1265 >       call lookupUniformSpline(splineSqrt, rijsq, r)
1266 >    else
1267 >       r = sqrt(rijsq)
1268 >    endif
1269 >
1270      vpair = 0.0d0
1271      fpair(1:3) = 0.0d0
1272  
# Line 865 | Line 1277 | contains
1277      me_i = atid(i)
1278      me_j = atid(j)
1279   #endif
1280 +
1281 +    iHash = InteractionHash(me_i, me_j)
1282      
1283 <    if (FF_uses_LennardJones .and. SIM_uses_LennardJones) then
1284 <      
1285 <       if ( PropertyMap(me_i)%is_LennardJones .and. &
872 <            PropertyMap(me_j)%is_LennardJones ) then
873 <          call do_lj_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, do_pot)
874 <       endif
875 <      
1283 >    if ( iand(iHash, LJ_PAIR).ne.0 ) then
1284 >       call do_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1285 >            pot(VDW_POT), f, do_pot)
1286      endif
1287      
1288 <    if (FF_uses_charges .and. SIM_uses_charges) then
1289 <      
1290 <       if (PropertyMap(me_i)%is_Charge .and. PropertyMap(me_j)%is_Charge) then
881 <          call do_charge_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
882 <               pot, f, do_pot)
883 <       endif
884 <      
1288 >    if ( iand(iHash, ELECTROSTATIC_PAIR).ne.0 ) then
1289 >       call doElectrostaticPair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1290 >            pot(ELECTROSTATIC_POT), eFrame, f, t, do_pot)
1291      endif
1292      
1293 <    if (FF_uses_dipoles .and. SIM_uses_dipoles) then
1294 <      
1295 <       if ( PropertyMap(me_i)%is_Dipole .and. PropertyMap(me_j)%is_Dipole) then
890 <          call do_dipole_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
891 <               pot, u_l, f, t, do_pot)
892 <          if (FF_uses_RF .and. SIM_uses_RF) then
893 <             call accumulate_rf(i, j, r, u_l, sw)
894 <             call rf_correct_forces(i, j, d, r, u_l, sw, f, fpair)
895 <          endif
896 <       endif
897 <
1293 >    if ( iand(iHash, STICKY_PAIR).ne.0 ) then
1294 >       call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1295 >            pot(HB_POT), A, f, t, do_pot)
1296      endif
1297 <
1298 <    if (FF_uses_Sticky .and. SIM_uses_sticky) then
1299 <
1300 <       if ( PropertyMap(me_i)%is_Sticky .and. PropertyMap(me_j)%is_Sticky) then
903 <          call do_sticky_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
904 <               pot, A, f, t, do_pot)
905 <       endif
906 <      
1297 >    
1298 >    if ( iand(iHash, STICKYPOWER_PAIR).ne.0 ) then
1299 >       call do_sticky_power_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1300 >            pot(HB_POT), A, f, t, do_pot)
1301      endif
1302 <
1303 <
1304 <    if (FF_uses_GayBerne .and. SIM_uses_GayBerne) then
1305 <      
912 <       if ( PropertyMap(me_i)%is_GayBerne .and. &
913 <            PropertyMap(me_j)%is_GayBerne) then
914 <          call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
915 <               pot, u_l, f, t, do_pot)
916 <       endif
917 <      
1302 >    
1303 >    if ( iand(iHash, GAYBERNE_PAIR).ne.0 ) then
1304 >       call do_gb_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1305 >            pot(VDW_POT), A, f, t, do_pot)
1306      endif
1307      
1308 <    if (FF_uses_EAM .and. SIM_uses_EAM) then
1309 <      
1310 <       if ( PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) then
923 <          call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, pot, f, &
924 <               do_pot)
925 <       endif
926 <      
1308 >    if ( iand(iHash, GAYBERNE_LJ).ne.0 ) then
1309 >       call do_gb_lj_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1310 >            pot(VDW_POT), A, f, t, do_pot)
1311      endif
1312 <
1313 <    if (FF_uses_Shapes .and. SIM_uses_Shapes) then
1314 <       if ( PropertyMap(me_i)%is_Shape .and. &
1315 <            PropertyMap(me_j)%is_Shape ) then
932 <          call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
933 <               pot, A, f, t, do_pot)
934 <       endif
935 <      
1312 >    
1313 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1314 >       call do_eam_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1315 >            pot(METALLIC_POT), f, do_pot)
1316      endif
1317      
1318 +    if ( iand(iHash, SHAPE_PAIR).ne.0 ) then      
1319 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1320 +            pot(VDW_POT), A, f, t, do_pot)
1321 +    endif
1322 +    
1323 +    if ( iand(iHash, SHAPE_LJ).ne.0 ) then      
1324 +       call do_shape_pair(i, j, d, r, rijsq, sw, vpair, fpair, &
1325 +            pot(VDW_POT), A, f, t, do_pot)
1326 +    endif
1327 +
1328 +    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1329 +       call do_SC_pair(i, j, d, r, rijsq, rcut, sw, vpair, fpair, &
1330 +            pot(METALLIC_POT), f, do_pot)
1331 +    endif
1332 +    
1333    end subroutine do_pair
1334  
1335 <  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, &
1336 <       do_pot, do_stress, u_l, A, f, t, pot)
1335 >  subroutine do_prepair(i, j, rijsq, d, sw, rcijsq, dc, rCut, &
1336 >       do_pot, do_stress, eFrame, A, f, t, pot)
1337  
1338 <   real( kind = dp ) :: pot, sw
1339 <   real( kind = dp ), dimension(3,nLocal) :: u_l
1340 <   real (kind=dp), dimension(9,nLocal) :: A
1341 <   real (kind=dp), dimension(3,nLocal) :: f
1342 <   real (kind=dp), dimension(3,nLocal) :: t
1343 <  
949 <   logical, intent(inout) :: do_pot, do_stress
950 <   integer, intent(in) :: i, j
951 <   real ( kind = dp ), intent(inout)    :: rijsq, rcijsq
952 <   real ( kind = dp )                :: r, rc
953 <   real ( kind = dp ), intent(inout) :: d(3), dc(3)
954 <  
955 <   logical :: is_EAM_i, is_EAM_j
956 <  
957 <   integer :: me_i, me_j
958 <  
1338 >    real( kind = dp ) :: sw
1339 >    real( kind = dp ), dimension(LR_POT_TYPES) :: pot
1340 >    real( kind = dp ), dimension(9,nLocal) :: eFrame
1341 >    real (kind=dp), dimension(9,nLocal) :: A
1342 >    real (kind=dp), dimension(3,nLocal) :: f
1343 >    real (kind=dp), dimension(3,nLocal) :: t
1344  
1345 <    r = sqrt(rijsq)
1346 <    if (SIM_uses_molecular_cutoffs) then
1347 <       rc = sqrt(rcijsq)
1345 >    logical, intent(inout) :: do_pot, do_stress
1346 >    integer, intent(in) :: i, j
1347 >    real ( kind = dp ), intent(inout)    :: rijsq, rcijsq, rCut
1348 >    real ( kind = dp )                :: r, rc
1349 >    real ( kind = dp ), intent(inout) :: d(3), dc(3)
1350 >
1351 >    integer :: me_i, me_j, iHash
1352 >
1353 >    if (useSpline) then
1354 >       call lookupUniformSpline(splineSqrt, rijsq, r)
1355      else
1356 <       rc = r
1356 >       r = sqrt(rijsq)
1357      endif
966  
1358  
1359   #ifdef IS_MPI  
1360 <   me_i = atid_row(i)
1361 <   me_j = atid_col(j)  
1360 >    me_i = atid_row(i)
1361 >    me_j = atid_col(j)  
1362   #else  
1363 <   me_i = atid(i)
1364 <   me_j = atid(j)  
1363 >    me_i = atid(i)
1364 >    me_j = atid(j)  
1365   #endif
975  
976   if (FF_uses_EAM .and. SIM_uses_EAM) then
977      
978      if (PropertyMap(me_i)%is_EAM .and. PropertyMap(me_j)%is_EAM) &
979           call calc_EAM_prepair_rho(i, j, d, r, rijsq )
980      
981   endif
982  
983 end subroutine do_prepair
984
985
986 subroutine do_preforce(nlocal,pot)
987   integer :: nlocal
988   real( kind = dp ) :: pot
989  
990   if (FF_uses_EAM .and. SIM_uses_EAM) then
991      call calc_EAM_preforce_Frho(nlocal,pot)
992   endif
993  
994  
995 end subroutine do_preforce
996
997
998 subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
999  
1000   real (kind = dp), dimension(3) :: q_i
1001   real (kind = dp), dimension(3) :: q_j
1002   real ( kind = dp ), intent(out) :: r_sq
1003   real( kind = dp ) :: d(3), scaled(3)
1004   integer i
1005  
1006   d(1:3) = q_j(1:3) - q_i(1:3)
1007  
1008   ! Wrap back into periodic box if necessary
1009   if ( SIM_uses_PBC ) then
1010      
1011      if( .not.boxIsOrthorhombic ) then
1012         ! calc the scaled coordinates.
1013        
1014         scaled = matmul(HmatInv, d)
1015        
1016         ! wrap the scaled coordinates
1017        
1018         scaled = scaled  - anint(scaled)
1019        
1020        
1021         ! calc the wrapped real coordinates from the wrapped scaled
1022         ! coordinates
1023        
1024         d = matmul(Hmat,scaled)
1025        
1026      else
1027         ! calc the scaled coordinates.
1028        
1029         do i = 1, 3
1030            scaled(i) = d(i) * HmatInv(i,i)
1031            
1032            ! wrap the scaled coordinates
1033            
1034            scaled(i) = scaled(i) - anint(scaled(i))
1035            
1036            ! calc the wrapped real coordinates from the wrapped scaled
1037            ! coordinates
1038            
1039            d(i) = scaled(i)*Hmat(i,i)
1040         enddo
1041      endif
1042      
1043   endif
1044  
1045   r_sq = dot_product(d,d)
1046  
1047 end subroutine get_interatomic_vector
1048
1049 subroutine zero_work_arrays()
1050  
1051 #ifdef IS_MPI
1052  
1053   q_Row = 0.0_dp
1054   q_Col = 0.0_dp
1366  
1367 <   q_group_Row = 0.0_dp
1368 <   q_group_Col = 0.0_dp  
1369 <  
1370 <   u_l_Row = 0.0_dp
1371 <   u_l_Col = 0.0_dp
1372 <  
1373 <   A_Row = 0.0_dp
1374 <   A_Col = 0.0_dp
1375 <  
1376 <   f_Row = 0.0_dp
1377 <   f_Col = 0.0_dp
1378 <   f_Temp = 0.0_dp
1379 <  
1380 <   t_Row = 0.0_dp
1381 <   t_Col = 0.0_dp
1382 <   t_Temp = 0.0_dp
1383 <  
1384 <   pot_Row = 0.0_dp
1385 <   pot_Col = 0.0_dp
1386 <   pot_Temp = 0.0_dp
1387 <  
1388 <   rf_Row = 0.0_dp
1389 <   rf_Col = 0.0_dp
1390 <   rf_Temp = 0.0_dp
1391 <  
1367 >    iHash = InteractionHash(me_i, me_j)
1368 >
1369 >    if ( iand(iHash, EAM_PAIR).ne.0 ) then      
1370 >            call calc_EAM_prepair_rho(i, j, d, r, rijsq)
1371 >    endif
1372 >
1373 >    if ( iand(iHash, SC_PAIR).ne.0 ) then      
1374 >            call calc_SC_prepair_rho(i, j, d, r, rijsq, rcut )
1375 >    endif
1376 >    
1377 >  end subroutine do_prepair
1378 >
1379 >
1380 >  subroutine do_preforce(nlocal,pot)
1381 >    integer :: nlocal
1382 >    real( kind = dp ),dimension(LR_POT_TYPES) :: pot
1383 >
1384 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1385 >       call calc_EAM_preforce_Frho(nlocal,pot(METALLIC_POT))
1386 >    endif
1387 >    if (FF_uses_SC .and. SIM_uses_SC) then
1388 >       call calc_SC_preforce_Frho(nlocal,pot(METALLIC_POT))
1389 >    endif
1390 >  end subroutine do_preforce
1391 >
1392 >
1393 >  subroutine get_interatomic_vector(q_i, q_j, d, r_sq)
1394 >
1395 >    real (kind = dp), dimension(3) :: q_i
1396 >    real (kind = dp), dimension(3) :: q_j
1397 >    real ( kind = dp ), intent(out) :: r_sq
1398 >    real( kind = dp ) :: d(3), scaled(3)
1399 >    integer i
1400 >
1401 >    d(1) = q_j(1) - q_i(1)
1402 >    d(2) = q_j(2) - q_i(2)
1403 >    d(3) = q_j(3) - q_i(3)
1404 >
1405 >    ! Wrap back into periodic box if necessary
1406 >    if ( SIM_uses_PBC ) then
1407 >
1408 >       if( .not.boxIsOrthorhombic ) then
1409 >          ! calc the scaled coordinates.
1410 >          ! scaled = matmul(HmatInv, d)
1411 >
1412 >          scaled(1) = HmatInv(1,1)*d(1) + HmatInv(1,2)*d(2) + HmatInv(1,3)*d(3)
1413 >          scaled(2) = HmatInv(2,1)*d(1) + HmatInv(2,2)*d(2) + HmatInv(2,3)*d(3)
1414 >          scaled(3) = HmatInv(3,1)*d(1) + HmatInv(3,2)*d(2) + HmatInv(3,3)*d(3)
1415 >          
1416 >          ! wrap the scaled coordinates
1417 >
1418 >          scaled(1) = scaled(1) - dnint(scaled(1))
1419 >          scaled(2) = scaled(2) - dnint(scaled(2))
1420 >          scaled(3) = scaled(3) - dnint(scaled(3))
1421 >
1422 >          ! calc the wrapped real coordinates from the wrapped scaled
1423 >          ! coordinates
1424 >          ! d = matmul(Hmat,scaled)
1425 >          d(1)= Hmat(1,1)*scaled(1) + Hmat(1,2)*scaled(2) + Hmat(1,3)*scaled(3)
1426 >          d(2)= Hmat(2,1)*scaled(1) + Hmat(2,2)*scaled(2) + Hmat(2,3)*scaled(3)
1427 >          d(3)= Hmat(3,1)*scaled(1) + Hmat(3,2)*scaled(2) + Hmat(3,3)*scaled(3)
1428 >
1429 >       else
1430 >          ! calc the scaled coordinates.
1431 >
1432 >          scaled(1) = d(1) * HmatInv(1,1)
1433 >          scaled(2) = d(2) * HmatInv(2,2)
1434 >          scaled(3) = d(3) * HmatInv(3,3)
1435 >          
1436 >          ! wrap the scaled coordinates
1437 >          
1438 >          scaled(1) = scaled(1) - dnint(scaled(1))
1439 >          scaled(2) = scaled(2) - dnint(scaled(2))
1440 >          scaled(3) = scaled(3) - dnint(scaled(3))
1441 >
1442 >          ! calc the wrapped real coordinates from the wrapped scaled
1443 >          ! coordinates
1444 >
1445 >          d(1) = scaled(1)*Hmat(1,1)
1446 >          d(2) = scaled(2)*Hmat(2,2)
1447 >          d(3) = scaled(3)*Hmat(3,3)
1448 >
1449 >       endif
1450 >
1451 >    endif
1452 >
1453 >    r_sq = d(1)*d(1) + d(2)*d(2) + d(3)*d(3)
1454 >
1455 >  end subroutine get_interatomic_vector
1456 >
1457 >  subroutine zero_work_arrays()
1458 >
1459 > #ifdef IS_MPI
1460 >
1461 >    q_Row = 0.0_dp
1462 >    q_Col = 0.0_dp
1463 >
1464 >    q_group_Row = 0.0_dp
1465 >    q_group_Col = 0.0_dp  
1466 >
1467 >    eFrame_Row = 0.0_dp
1468 >    eFrame_Col = 0.0_dp
1469 >
1470 >    A_Row = 0.0_dp
1471 >    A_Col = 0.0_dp
1472 >
1473 >    f_Row = 0.0_dp
1474 >    f_Col = 0.0_dp
1475 >    f_Temp = 0.0_dp
1476 >
1477 >    t_Row = 0.0_dp
1478 >    t_Col = 0.0_dp
1479 >    t_Temp = 0.0_dp
1480 >
1481 >    pot_Row = 0.0_dp
1482 >    pot_Col = 0.0_dp
1483 >    pot_Temp = 0.0_dp
1484 >
1485   #endif
1486 <
1487 <   if (FF_uses_EAM .and. SIM_uses_EAM) then
1488 <      call clean_EAM()
1489 <   endif
1490 <  
1491 <   rf = 0.0_dp
1492 <   tau_Temp = 0.0_dp
1493 <   virial_Temp = 0.0_dp
1494 < end subroutine zero_work_arrays
1495 <
1496 < function skipThisPair(atom1, atom2) result(skip_it)
1497 <   integer, intent(in) :: atom1
1498 <   integer, intent(in), optional :: atom2
1499 <   logical :: skip_it
1500 <   integer :: unique_id_1, unique_id_2
1501 <   integer :: me_i,me_j
1502 <   integer :: i
1503 <  
1504 <   skip_it = .false.
1505 <  
1506 <   !! there are a number of reasons to skip a pair or a particle
1507 <   !! mostly we do this to exclude atoms who are involved in short
1508 <   !! range interactions (bonds, bends, torsions), but we also need
1509 <   !! to exclude some overcounted interactions that result from
1510 <   !! the parallel decomposition
1107 <  
1486 >
1487 >    if (FF_uses_EAM .and. SIM_uses_EAM) then
1488 >       call clean_EAM()
1489 >    endif
1490 >
1491 >    tau_Temp = 0.0_dp
1492 >    virial_Temp = 0.0_dp
1493 >  end subroutine zero_work_arrays
1494 >
1495 >  function skipThisPair(atom1, atom2) result(skip_it)
1496 >    integer, intent(in) :: atom1
1497 >    integer, intent(in), optional :: atom2
1498 >    logical :: skip_it
1499 >    integer :: unique_id_1, unique_id_2
1500 >    integer :: me_i,me_j
1501 >    integer :: i
1502 >
1503 >    skip_it = .false.
1504 >
1505 >    !! there are a number of reasons to skip a pair or a particle
1506 >    !! mostly we do this to exclude atoms who are involved in short
1507 >    !! range interactions (bonds, bends, torsions), but we also need
1508 >    !! to exclude some overcounted interactions that result from
1509 >    !! the parallel decomposition
1510 >
1511   #ifdef IS_MPI
1512 <   !! in MPI, we have to look up the unique IDs for each atom
1513 <   unique_id_1 = AtomRowToGlobal(atom1)
1512 >    !! in MPI, we have to look up the unique IDs for each atom
1513 >    unique_id_1 = AtomRowToGlobal(atom1)
1514   #else
1515 <   !! in the normal loop, the atom numbers are unique
1516 <   unique_id_1 = atom1
1515 >    !! in the normal loop, the atom numbers are unique
1516 >    unique_id_1 = atom1
1517   #endif
1518 <  
1519 <   !! We were called with only one atom, so just check the global exclude
1520 <   !! list for this atom
1521 <   if (.not. present(atom2)) then
1522 <      do i = 1, nExcludes_global
1523 <         if (excludesGlobal(i) == unique_id_1) then
1524 <            skip_it = .true.
1525 <            return
1526 <         end if
1527 <      end do
1528 <      return
1529 <   end if
1530 <  
1518 >
1519 >    !! We were called with only one atom, so just check the global exclude
1520 >    !! list for this atom
1521 >    if (.not. present(atom2)) then
1522 >       do i = 1, nExcludes_global
1523 >          if (excludesGlobal(i) == unique_id_1) then
1524 >             skip_it = .true.
1525 >             return
1526 >          end if
1527 >       end do
1528 >       return
1529 >    end if
1530 >
1531   #ifdef IS_MPI
1532 <   unique_id_2 = AtomColToGlobal(atom2)
1532 >    unique_id_2 = AtomColToGlobal(atom2)
1533   #else
1534 <   unique_id_2 = atom2
1534 >    unique_id_2 = atom2
1535   #endif
1536 <  
1536 >
1537   #ifdef IS_MPI
1538 <   !! this situation should only arise in MPI simulations
1539 <   if (unique_id_1 == unique_id_2) then
1540 <      skip_it = .true.
1541 <      return
1542 <   end if
1543 <  
1544 <   !! this prevents us from doing the pair on multiple processors
1545 <   if (unique_id_1 < unique_id_2) then
1546 <      if (mod(unique_id_1 + unique_id_2,2) == 0) then
1547 <         skip_it = .true.
1548 <         return
1549 <      endif
1550 <   else                
1551 <      if (mod(unique_id_1 + unique_id_2,2) == 1) then
1552 <         skip_it = .true.
1553 <         return
1554 <      endif
1555 <   endif
1538 >    !! this situation should only arise in MPI simulations
1539 >    if (unique_id_1 == unique_id_2) then
1540 >       skip_it = .true.
1541 >       return
1542 >    end if
1543 >
1544 >    !! this prevents us from doing the pair on multiple processors
1545 >    if (unique_id_1 < unique_id_2) then
1546 >       if (mod(unique_id_1 + unique_id_2,2) == 0) then
1547 >          skip_it = .true.
1548 >          return
1549 >       endif
1550 >    else                
1551 >       if (mod(unique_id_1 + unique_id_2,2) == 1) then
1552 >          skip_it = .true.
1553 >          return
1554 >       endif
1555 >    endif
1556   #endif
1557 <  
1558 <   !! the rest of these situations can happen in all simulations:
1559 <   do i = 1, nExcludes_global      
1560 <      if ((excludesGlobal(i) == unique_id_1) .or. &
1561 <           (excludesGlobal(i) == unique_id_2)) then
1562 <         skip_it = .true.
1563 <         return
1564 <      endif
1565 <   enddo
1566 <  
1567 <   do i = 1, nSkipsForAtom(atom1)
1568 <      if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1569 <         skip_it = .true.
1570 <         return
1571 <      endif
1572 <   end do
1573 <  
1574 <   return
1575 < end function skipThisPair
1576 <
1577 < function FF_UsesDirectionalAtoms() result(doesit)
1578 <   logical :: doesit
1579 <   doesit = FF_uses_DirectionalAtoms .or. FF_uses_Dipoles .or. &
1580 <        FF_uses_Sticky .or. FF_uses_GayBerne .or. FF_uses_Shapes
1581 < end function FF_UsesDirectionalAtoms
1582 <
1583 < function FF_RequiresPrepairCalc() result(doesit)
1584 <   logical :: doesit
1585 <   doesit = FF_uses_EAM
1586 < end function FF_RequiresPrepairCalc
1587 <
1185 < function FF_RequiresPostpairCalc() result(doesit)
1186 <   logical :: doesit
1187 <   doesit = FF_uses_RF
1188 < end function FF_RequiresPostpairCalc
1189 <
1557 >
1558 >    !! the rest of these situations can happen in all simulations:
1559 >    do i = 1, nExcludes_global      
1560 >       if ((excludesGlobal(i) == unique_id_1) .or. &
1561 >            (excludesGlobal(i) == unique_id_2)) then
1562 >          skip_it = .true.
1563 >          return
1564 >       endif
1565 >    enddo
1566 >
1567 >    do i = 1, nSkipsForAtom(atom1)
1568 >       if (skipsForAtom(atom1, i) .eq. unique_id_2) then
1569 >          skip_it = .true.
1570 >          return
1571 >       endif
1572 >    end do
1573 >
1574 >    return
1575 >  end function skipThisPair
1576 >
1577 >  function FF_UsesDirectionalAtoms() result(doesit)
1578 >    logical :: doesit
1579 >    doesit = FF_uses_DirectionalAtoms
1580 >  end function FF_UsesDirectionalAtoms
1581 >
1582 >  function FF_RequiresPrepairCalc() result(doesit)
1583 >    logical :: doesit
1584 >    doesit = FF_uses_EAM .or. FF_uses_SC &
1585 >         .or. FF_uses_MEAM
1586 >  end function FF_RequiresPrepairCalc
1587 >
1588   #ifdef PROFILE
1589 < function getforcetime() result(totalforcetime)
1590 <   real(kind=dp) :: totalforcetime
1591 <   totalforcetime = forcetime
1592 < end function getforcetime
1589 >  function getforcetime() result(totalforcetime)
1590 >    real(kind=dp) :: totalforcetime
1591 >    totalforcetime = forcetime
1592 >  end function getforcetime
1593   #endif
1196
1197 !! This cleans componets of force arrays belonging only to fortran
1594  
1595 < subroutine add_stress_tensor(dpair, fpair)
1200 <  
1201 <   real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1202 <  
1203 <   ! because the d vector is the rj - ri vector, and
1204 <   ! because fx, fy, fz are the force on atom i, we need a
1205 <   ! negative sign here:  
1206 <  
1207 <   tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1208 <   tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1209 <   tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1210 <   tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1211 <   tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1212 <   tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1213 <   tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1214 <   tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1215 <   tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1216 <  
1217 <   virial_Temp = virial_Temp + &
1218 <        (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1219 <  
1220 < end subroutine add_stress_tensor
1221 <
1222 < end module doForces
1595 >  !! This cleans componets of force arrays belonging only to fortran
1596  
1597 < !! Interfaces for C programs to module....
1597 >  subroutine add_stress_tensor(dpair, fpair)
1598  
1599 < subroutine initFortranFF(use_RF_c, thisStat)
1227 <    use doForces, ONLY: init_FF
1228 <    logical, intent(in) :: use_RF_c
1599 >    real( kind = dp ), dimension(3), intent(in) :: dpair, fpair
1600  
1601 <    integer, intent(out) :: thisStat  
1602 <    call init_FF(use_RF_c, thisStat)
1601 >    ! because the d vector is the rj - ri vector, and
1602 >    ! because fx, fy, fz are the force on atom i, we need a
1603 >    ! negative sign here:  
1604  
1605 < end subroutine initFortranFF
1605 >    tau_Temp(1) = tau_Temp(1) - dpair(1) * fpair(1)
1606 >    tau_Temp(2) = tau_Temp(2) - dpair(1) * fpair(2)
1607 >    tau_Temp(3) = tau_Temp(3) - dpair(1) * fpair(3)
1608 >    tau_Temp(4) = tau_Temp(4) - dpair(2) * fpair(1)
1609 >    tau_Temp(5) = tau_Temp(5) - dpair(2) * fpair(2)
1610 >    tau_Temp(6) = tau_Temp(6) - dpair(2) * fpair(3)
1611 >    tau_Temp(7) = tau_Temp(7) - dpair(3) * fpair(1)
1612 >    tau_Temp(8) = tau_Temp(8) - dpair(3) * fpair(2)
1613 >    tau_Temp(9) = tau_Temp(9) - dpair(3) * fpair(3)
1614  
1615 <  subroutine doForceloop(q, q_group, A, u_l, f, t, tau, pot, &
1616 <       do_pot_c, do_stress_c, error)
1237 <      
1238 <       use definitions, ONLY: dp
1239 <       use simulation
1240 <       use doForces, ONLY: do_force_loop
1241 <    !! Position array provided by C, dimensioned by getNlocal
1242 <    real ( kind = dp ), dimension(3, nLocal) :: q
1243 <    !! molecular center-of-mass position array
1244 <    real ( kind = dp ), dimension(3, nGroups) :: q_group
1245 <    !! Rotation Matrix for each long range particle in simulation.
1246 <    real( kind = dp), dimension(9, nLocal) :: A    
1247 <    !! Unit vectors for dipoles (lab frame)
1248 <    real( kind = dp ), dimension(3,nLocal) :: u_l
1249 <    !! Force array provided by C, dimensioned by getNlocal
1250 <    real ( kind = dp ), dimension(3,nLocal) :: f
1251 <    !! Torsion array provided by C, dimensioned by getNlocal
1252 <    real( kind = dp ), dimension(3,nLocal) :: t    
1615 >    virial_Temp = virial_Temp + &
1616 >         (tau_Temp(1) + tau_Temp(5) + tau_Temp(9))
1617  
1618 <    !! Stress Tensor
1619 <    real( kind = dp), dimension(9) :: tau  
1620 <    real ( kind = dp ) :: pot
1621 <    logical ( kind = 2) :: do_pot_c, do_stress_c
1622 <    integer :: error
1618 >  end subroutine add_stress_tensor
1619 >
1620 >  subroutine setupSplineSqrt(rmax)
1621 >    real(kind=dp), intent(in) :: rmax
1622 >    real(kind=dp), dimension(np) :: xvals, yvals
1623 >    real(kind=dp) :: r2_1, r2_n, dx, r2
1624 >    integer :: i
1625 >
1626 >    r2_1 = 0.5d0
1627 >    r2_n = rmax*rmax
1628 >
1629 >    dx = (r2_n-r2_1) / dble(np-1)
1630      
1631 <    call do_force_loop(q, q_group, A, u_l, f, t, tau, pot, &
1632 <       do_pot_c, do_stress_c, error)
1633 <      
1634 < end subroutine doForceloop
1631 >    do i = 1, np
1632 >       r2 = r2_1 + dble(i-1)*dx
1633 >       xvals(i) = r2
1634 >       yvals(i) = dsqrt(r2)
1635 >    enddo
1636 >
1637 >    call newSpline(splineSqrt, xvals, yvals, .true.)
1638 >    
1639 >    haveSplineSqrt = .true.
1640 >    return
1641 >  end subroutine setupSplineSqrt
1642 >
1643 >  subroutine deleteSplineSqrt()
1644 >    call deleteSpline(splineSqrt)
1645 >    haveSplineSqrt = .false.
1646 >    return
1647 >  end subroutine deleteSplineSqrt
1648 >
1649 > end module doForces

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines