ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/applications/hydrodynamics/ApproximationModel.cpp
Revision: 2665
Committed: Thu Mar 23 15:03:33 2006 UTC (18 years, 4 months ago) by tim
File size: 16333 byte(s)
Log Message:
update writeBeads method

File Contents

# User Rev Content
1 tim 2634 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     */
41    
42     #include "applications/hydrodynamics/ApproximationModel.hpp"
43     #include "math/LU.hpp"
44     #include "math/DynamicRectMatrix.hpp"
45     #include "math/SquareMatrix3.hpp"
46     #include "utils/OOPSEConstant.hpp"
47     #include "applications/hydrodynamics/Spheric.hpp"
48     #include "applications/hydrodynamics/Ellipsoid.hpp"
49     #include "applications/hydrodynamics/CompositeShape.hpp"
50     #include "math/LU.hpp"
51     namespace oopse {
52     /**
53     * Reference:
54     * Beatriz Carrasco and Jose Gracia de la Torre, Hydrodynamic Properties of Rigid Particles:
55     * Comparison of Different Modeling and Computational Procedures.
56     * Biophysical Journal, 75(6), 3044, 1999
57     */
58    
59     ApproximationModel::ApproximationModel(StuntDouble* sd, SimInfo* info): HydrodynamicsModel(sd, info){
60     /*
61     DynamicProperty::const_iterator iter;
62    
63     iter = extraParams.find("Viscosity");
64     if (iter != extraParams.end()) {
65     boost::any param = iter->second;
66     viscosity = boost::any_cast<double>(param);
67     }else {
68     std::cout << "ApproximationModel Error\n" ;
69     }
70    
71     iter = extraParams.find("Temperature");
72     if (iter != extraParams.end()) {
73     boost::any param = iter->second;
74     temperature = boost::any_cast<double>(param);
75     }else {
76     std::cout << "ApproximationModel Error\n" ;
77     }
78     */
79     }
80    
81     bool ApproximationModel::calcHydroProps(Spheric* spheric, double viscosity, double temperature) {
82     return internalCalcHydroProps(static_cast<Shape*>(spheric), viscosity, temperature);
83     }
84    
85     bool ApproximationModel::calcHydroProps(Ellipsoid* ellipsoid, double viscosity, double temperature) {
86     return internalCalcHydroProps(static_cast<Shape*>(ellipsoid), viscosity, temperature);
87     }
88     bool ApproximationModel::calcHydroProps(CompositeShape* compositeShape, double viscosity, double temperature) {
89     return internalCalcHydroProps(static_cast<Shape*>(compositeShape), viscosity, temperature);
90     }
91    
92    
93     bool ApproximationModel::internalCalcHydroProps(Shape* shape, double viscosity, double temperature) {
94     if (!createBeads(beads_)) {
95     std::cout << "can not create beads" << std::endl;
96     return false;
97     }
98    
99     bool ret = true;
100     HydroProps cr;
101     HydroProps cd;
102     calcHydroPropsAtCR(beads_, viscosity, temperature, cr);
103     calcHydroPropsAtCD(beads_, viscosity, temperature, cd);
104     setCR(cr);
105     setCD(cd);
106    
107     return true;
108     }
109    
110     bool ApproximationModel::calcHydroPropsAtCR(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) {
111    
112     int nbeads = beads.size();
113     DynamicRectMatrix<double> B(3*nbeads, 3*nbeads);
114     DynamicRectMatrix<double> C(3*nbeads, 3*nbeads);
115     Mat3x3d I;
116     I(0, 0) = 1.0;
117     I(1, 1) = 1.0;
118     I(2, 2) = 1.0;
119    
120     for (std::size_t i = 0; i < nbeads; ++i) {
121     for (std::size_t j = 0; j < nbeads; ++j) {
122     Mat3x3d Tij;
123     if (i != j ) {
124     Vector3d Rij = beads[i].pos - beads[j].pos;
125     double rij = Rij.length();
126     double rij2 = rij * rij;
127 tim 2650 double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2;
128 tim 2634 Mat3x3d tmpMat;
129     tmpMat = outProduct(Rij, Rij) / rij2;
130     double constant = 8.0 * NumericConstant::PI * viscosity * rij;
131     Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant;
132     }else {
133     double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius);
134     Tij(0, 0) = constant;
135     Tij(1, 1) = constant;
136     Tij(2, 2) = constant;
137     }
138     B.setSubMatrix(i*3, j*3, Tij);
139     }
140     }
141    
142     //invert B Matrix
143     invertMatrix(B, C);
144 tim 2650
145 tim 2634 //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0)
146     std::vector<Mat3x3d> U;
147     for (int i = 0; i < nbeads; ++i) {
148     Mat3x3d currU;
149     currU.setupSkewMat(beads[i].pos);
150     U.push_back(currU);
151     }
152    
153     //calculate Xi matrix at arbitrary origin O
154     Mat3x3d Xiott;
155     Mat3x3d Xiorr;
156     Mat3x3d Xiotr;
157    
158     //calculate the total volume
159    
160     double volume = 0.0;
161     for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) {
162     volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3);
163     }
164    
165     for (std::size_t i = 0; i < nbeads; ++i) {
166     for (std::size_t j = 0; j < nbeads; ++j) {
167     Mat3x3d Cij;
168     C.getSubMatrix(i*3, j*3, Cij);
169    
170     Xiott += Cij;
171     Xiotr += U[i] * Cij;
172     Xiorr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I;
173     }
174     }
175    
176     const double convertConstant = 6.023; //convert poise.angstrom to amu/fs
177     Xiott *= convertConstant;
178     Xiotr *= convertConstant;
179     Xiorr *= convertConstant;
180    
181    
182    
183     Mat3x3d tmp;
184     Mat3x3d tmpInv;
185     Vector3d tmpVec;
186     tmp(0, 0) = Xiott(1, 1) + Xiott(2, 2);
187     tmp(0, 1) = - Xiott(0, 1);
188     tmp(0, 2) = -Xiott(0, 2);
189     tmp(1, 0) = -Xiott(0, 1);
190     tmp(1, 1) = Xiott(0, 0) + Xiott(2, 2);
191     tmp(1, 2) = -Xiott(1, 2);
192     tmp(2, 0) = -Xiott(0, 2);
193     tmp(2, 1) = -Xiott(1, 2);
194     tmp(2, 2) = Xiott(1, 1) + Xiott(0, 0);
195     tmpVec[0] = Xiotr(2, 1) - Xiotr(1, 2);
196     tmpVec[1] = Xiotr(0, 2) - Xiotr(2, 0);
197     tmpVec[2] = Xiotr(1, 0) - Xiotr(0, 1);
198     tmpInv = tmp.inverse();
199     Vector3d ror = tmpInv * tmpVec; //center of resistance
200     Mat3x3d Uor;
201     Uor.setupSkewMat(ror);
202    
203     Mat3x3d Xirtt;
204     Mat3x3d Xirrr;
205     Mat3x3d Xirtr;
206    
207     Xirtt = Xiott;
208     Xirtr = (Xiotr - Uor * Xiott);
209     Xirrr = Xiorr - Uor * Xiott * Uor + Xiotr * Uor - Uor * Xiotr.transpose();
210    
211    
212     SquareMatrix<double,6> Xir6x6;
213     SquareMatrix<double,6> Dr6x6;
214    
215     Xir6x6.setSubMatrix(0, 0, Xirtt);
216     Xir6x6.setSubMatrix(0, 3, Xirtr.transpose());
217     Xir6x6.setSubMatrix(3, 0, Xirtr);
218     Xir6x6.setSubMatrix(3, 3, Xirrr);
219    
220     invertMatrix(Xir6x6, Dr6x6);
221     Mat3x3d Drtt;
222     Mat3x3d Drtr;
223     Mat3x3d Drrt;
224     Mat3x3d Drrr;
225     Dr6x6.getSubMatrix(0, 0, Drtt);
226     Dr6x6.getSubMatrix(0, 3, Drrt);
227     Dr6x6.getSubMatrix(3, 0, Drtr);
228     Dr6x6.getSubMatrix(3, 3, Drrr);
229     double kt = OOPSEConstant::kB * temperature ;
230     Drtt *= kt;
231     Drrt *= kt;
232     Drtr *= kt;
233     Drrr *= kt;
234     Xirtt *= OOPSEConstant::kb * temperature;
235     Xirtr *= OOPSEConstant::kb * temperature;
236     Xirrr *= OOPSEConstant::kb * temperature;
237    
238    
239     cr.center = ror;
240     cr.Xi.setSubMatrix(0, 0, Xirtt);
241     cr.Xi.setSubMatrix(0, 3, Xirtr);
242     cr.Xi.setSubMatrix(3, 0, Xirtr);
243     cr.Xi.setSubMatrix(3, 3, Xirrr);
244     cr.D.setSubMatrix(0, 0, Drtt);
245     cr.D.setSubMatrix(0, 3, Drrt);
246     cr.D.setSubMatrix(3, 0, Drtr);
247     cr.D.setSubMatrix(3, 3, Drrr);
248    
249     std::cout << "-----------------------------------------\n";
250     std::cout << "center of resistance :" << std::endl;
251     std::cout << ror << std::endl;
252     std::cout << "resistant tensor at center of resistance" << std::endl;
253     std::cout << "translation:" << std::endl;
254     std::cout << Xirtt << std::endl;
255     std::cout << "translation-rotation:" << std::endl;
256     std::cout << Xirtr << std::endl;
257     std::cout << "rotation:" << std::endl;
258     std::cout << Xirrr << std::endl;
259     std::cout << "diffusion tensor at center of resistance" << std::endl;
260     std::cout << "translation:" << std::endl;
261     std::cout << Drtt << std::endl;
262     std::cout << "rotation-translation:" << std::endl;
263     std::cout << Drrt << std::endl;
264     std::cout << "translation-rotation:" << std::endl;
265     std::cout << Drtr << std::endl;
266     std::cout << "rotation:" << std::endl;
267     std::cout << Drrr << std::endl;
268     std::cout << "-----------------------------------------\n";
269    
270     return true;
271     }
272    
273     bool ApproximationModel::calcHydroPropsAtCD(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) {
274    
275     int nbeads = beads.size();
276     DynamicRectMatrix<double> B(3*nbeads, 3*nbeads);
277     DynamicRectMatrix<double> C(3*nbeads, 3*nbeads);
278     Mat3x3d I;
279     I(0, 0) = 1.0;
280     I(1, 1) = 1.0;
281     I(2, 2) = 1.0;
282    
283     for (std::size_t i = 0; i < nbeads; ++i) {
284     for (std::size_t j = 0; j < nbeads; ++j) {
285     Mat3x3d Tij;
286     if (i != j ) {
287     Vector3d Rij = beads[i].pos - beads[j].pos;
288     double rij = Rij.length();
289     double rij2 = rij * rij;
290 tim 2650 double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2;
291 tim 2634 Mat3x3d tmpMat;
292     tmpMat = outProduct(Rij, Rij) / rij2;
293     double constant = 8.0 * NumericConstant::PI * viscosity * rij;
294     Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant;
295     }else {
296     double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius);
297     Tij(0, 0) = constant;
298     Tij(1, 1) = constant;
299     Tij(2, 2) = constant;
300     }
301     B.setSubMatrix(i*3, j*3, Tij);
302     }
303     }
304    
305     //invert B Matrix
306     invertMatrix(B, C);
307    
308     //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0)
309     std::vector<Mat3x3d> U;
310     for (int i = 0; i < nbeads; ++i) {
311     Mat3x3d currU;
312     currU.setupSkewMat(beads[i].pos);
313     U.push_back(currU);
314     }
315    
316     //calculate Xi matrix at arbitrary origin O
317     Mat3x3d Xitt;
318     Mat3x3d Xirr;
319     Mat3x3d Xitr;
320    
321     //calculate the total volume
322    
323     double volume = 0.0;
324     for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) {
325     volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3);
326     }
327    
328     for (std::size_t i = 0; i < nbeads; ++i) {
329     for (std::size_t j = 0; j < nbeads; ++j) {
330     Mat3x3d Cij;
331     C.getSubMatrix(i*3, j*3, Cij);
332    
333     Xitt += Cij;
334     Xitr += U[i] * Cij;
335     Xirr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I;
336     }
337     }
338    
339     const double convertConstant = 6.023; //convert poise.angstrom to amu/fs
340     Xitt *= convertConstant;
341     Xitr *= convertConstant;
342     Xirr *= convertConstant;
343    
344     double kt = OOPSEConstant::kB * temperature;
345    
346     Mat3x3d Dott; //translational diffusion tensor at arbitrary origin O
347     Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O
348     Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O
349    
350     const static Mat3x3d zeroMat(0.0);
351    
352     Mat3x3d XittInv(0.0);
353     XittInv = Xitt.inverse();
354    
355     Mat3x3d XirrInv;
356     XirrInv = Xirr.inverse();
357    
358     Mat3x3d tmp;
359     Mat3x3d tmpInv;
360     tmp = Xitt - Xitr.transpose() * XirrInv * Xitr;
361     tmpInv = tmp.inverse();
362    
363     Dott = tmpInv;
364     Dotr = -XirrInv * Xitr * tmpInv;
365    
366     tmp = Xirr - Xitr * XittInv * Xitr.transpose();
367     tmpInv = tmp.inverse();
368    
369     Dorr = tmpInv;
370    
371     //calculate center of diffusion
372     tmp(0, 0) = Dorr(1, 1) + Dorr(2, 2);
373     tmp(0, 1) = - Dorr(0, 1);
374     tmp(0, 2) = -Dorr(0, 2);
375     tmp(1, 0) = -Dorr(0, 1);
376     tmp(1, 1) = Dorr(0, 0) + Dorr(2, 2);
377     tmp(1, 2) = -Dorr(1, 2);
378     tmp(2, 0) = -Dorr(0, 2);
379     tmp(2, 1) = -Dorr(1, 2);
380     tmp(2, 2) = Dorr(1, 1) + Dorr(0, 0);
381    
382     Vector3d tmpVec;
383     tmpVec[0] = Dotr(1, 2) - Dotr(2, 1);
384     tmpVec[1] = Dotr(2, 0) - Dotr(0, 2);
385     tmpVec[2] = Dotr(0, 1) - Dotr(1, 0);
386    
387     tmpInv = tmp.inverse();
388    
389     Vector3d rod = tmpInv * tmpVec;
390    
391     //calculate Diffusion Tensor at center of diffusion
392     Mat3x3d Uod;
393     Uod.setupSkewMat(rod);
394    
395     Mat3x3d Ddtt; //translational diffusion tensor at diffusion center
396     Mat3x3d Ddtr; //rotational diffusion tensor at diffusion center
397     Mat3x3d Ddrr; //translation-rotation couplingl diffusion tensor at diffusion tensor
398    
399     Ddtt = Dott - Uod * Dorr * Uod + Dotr.transpose() * Uod - Uod * Dotr;
400     Ddrr = Dorr;
401     Ddtr = Dotr + Dorr * Uod;
402    
403     SquareMatrix<double, 6> Dd;
404     Dd.setSubMatrix(0, 0, Ddtt);
405     Dd.setSubMatrix(0, 3, Ddtr.transpose());
406     Dd.setSubMatrix(3, 0, Ddtr);
407     Dd.setSubMatrix(3, 3, Ddrr);
408     SquareMatrix<double, 6> Xid;
409     Ddtt *= kt;
410     Ddtr *=kt;
411     Ddrr *= kt;
412     invertMatrix(Dd, Xid);
413    
414    
415    
416     //Xidtt in units of kcal*fs*mol^-1*Ang^-2
417     //Xid /= OOPSEConstant::energyConvert;
418     Xid *= OOPSEConstant::kb * temperature;
419    
420     cr.center = rod;
421     cr.D.setSubMatrix(0, 0, Ddtt);
422     cr.D.setSubMatrix(0, 3, Ddtr);
423     cr.D.setSubMatrix(3, 0, Ddtr);
424     cr.D.setSubMatrix(3, 3, Ddrr);
425     cr.Xi = Xid;
426    
427     std::cout << "viscosity = " << viscosity << std::endl;
428     std::cout << "temperature = " << temperature << std::endl;
429     std::cout << "center of diffusion :" << std::endl;
430     std::cout << rod << std::endl;
431     std::cout << "diffusion tensor at center of diffusion " << std::endl;
432     std::cout << "translation(A^2/fs) :" << std::endl;
433     std::cout << Ddtt << std::endl;
434     std::cout << "translation-rotation(A^3/fs):" << std::endl;
435     std::cout << Ddtr << std::endl;
436     std::cout << "rotation(A^4/fs):" << std::endl;
437     std::cout << Ddrr << std::endl;
438    
439     std::cout << "resistance tensor at center of diffusion " << std::endl;
440     std::cout << "translation(kcal*fs*mol^-1*Ang^-2) :" << std::endl;
441    
442     Mat3x3d Xidtt;
443     Mat3x3d Xidrt;
444     Mat3x3d Xidtr;
445     Mat3x3d Xidrr;
446     Xid.getSubMatrix(0, 0, Xidtt);
447     Xid.getSubMatrix(0, 3, Xidrt);
448     Xid.getSubMatrix(3, 0, Xidtr);
449     Xid.getSubMatrix(3, 3, Xidrr);
450    
451     std::cout << Xidtt << std::endl;
452     std::cout << "rotation-translation (kcal*fs*mol^-1*Ang^-3):" << std::endl;
453     std::cout << Xidrt << std::endl;
454     std::cout << "translation-rotation(kcal*fs*mol^-1*Ang^-3):" << std::endl;
455     std::cout << Xidtr << std::endl;
456     std::cout << "rotation(kcal*fs*mol^-1*Ang^-4):" << std::endl;
457     std::cout << Xidrr << std::endl;
458    
459     return true;
460    
461     }
462    
463 tim 2665
464 tim 2634 void ApproximationModel::writeBeads(std::ostream& os) {
465     std::vector<BeadParam>::iterator iter;
466     os << beads_.size() << std::endl;
467     os << "Generated by Hydro" << std::endl;
468     for (iter = beads_.begin(); iter != beads_.end(); ++iter) {
469     os << iter->atomName << "\t" << iter->pos[0] << "\t" << iter->pos[1] << "\t" << iter->pos[2] << std::endl;
470     }
471    
472     }
473    
474    
475 tim 2665
476 tim 2634 }