ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/applications/hydrodynamics/ApproximationModel.cpp
Revision: 2634
Committed: Fri Mar 17 23:20:35 2006 UTC (18 years, 4 months ago) by tim
File size: 16333 byte(s)
Log Message:
refactor Hydrodynamics module.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 #include "applications/hydrodynamics/ApproximationModel.hpp"
43 #include "math/LU.hpp"
44 #include "math/DynamicRectMatrix.hpp"
45 #include "math/SquareMatrix3.hpp"
46 #include "utils/OOPSEConstant.hpp"
47 #include "applications/hydrodynamics/Spheric.hpp"
48 #include "applications/hydrodynamics/Ellipsoid.hpp"
49 #include "applications/hydrodynamics/CompositeShape.hpp"
50 #include "math/LU.hpp"
51 namespace oopse {
52 /**
53 * Reference:
54 * Beatriz Carrasco and Jose Gracia de la Torre, Hydrodynamic Properties of Rigid Particles:
55 * Comparison of Different Modeling and Computational Procedures.
56 * Biophysical Journal, 75(6), 3044, 1999
57 */
58
59 ApproximationModel::ApproximationModel(StuntDouble* sd, SimInfo* info): HydrodynamicsModel(sd, info){
60 /*
61 DynamicProperty::const_iterator iter;
62
63 iter = extraParams.find("Viscosity");
64 if (iter != extraParams.end()) {
65 boost::any param = iter->second;
66 viscosity = boost::any_cast<double>(param);
67 }else {
68 std::cout << "ApproximationModel Error\n" ;
69 }
70
71 iter = extraParams.find("Temperature");
72 if (iter != extraParams.end()) {
73 boost::any param = iter->second;
74 temperature = boost::any_cast<double>(param);
75 }else {
76 std::cout << "ApproximationModel Error\n" ;
77 }
78 */
79 }
80
81 bool ApproximationModel::calcHydroProps(Spheric* spheric, double viscosity, double temperature) {
82 return internalCalcHydroProps(static_cast<Shape*>(spheric), viscosity, temperature);
83 }
84
85 bool ApproximationModel::calcHydroProps(Ellipsoid* ellipsoid, double viscosity, double temperature) {
86 return internalCalcHydroProps(static_cast<Shape*>(ellipsoid), viscosity, temperature);
87 }
88 bool ApproximationModel::calcHydroProps(CompositeShape* compositeShape, double viscosity, double temperature) {
89 return internalCalcHydroProps(static_cast<Shape*>(compositeShape), viscosity, temperature);
90 }
91
92
93 bool ApproximationModel::internalCalcHydroProps(Shape* shape, double viscosity, double temperature) {
94 if (!createBeads(beads_)) {
95 std::cout << "can not create beads" << std::endl;
96 return false;
97 }
98
99 bool ret = true;
100 HydroProps cr;
101 HydroProps cd;
102 calcHydroPropsAtCR(beads_, viscosity, temperature, cr);
103 calcHydroPropsAtCD(beads_, viscosity, temperature, cd);
104 setCR(cr);
105 setCD(cd);
106
107 return true;
108 }
109
110 bool ApproximationModel::calcHydroPropsAtCR(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) {
111
112 int nbeads = beads.size();
113 DynamicRectMatrix<double> B(3*nbeads, 3*nbeads);
114 DynamicRectMatrix<double> C(3*nbeads, 3*nbeads);
115 Mat3x3d I;
116 I(0, 0) = 1.0;
117 I(1, 1) = 1.0;
118 I(2, 2) = 1.0;
119
120 for (std::size_t i = 0; i < nbeads; ++i) {
121 for (std::size_t j = 0; j < nbeads; ++j) {
122 Mat3x3d Tij;
123 if (i != j ) {
124 Vector3d Rij = beads[i].pos - beads[j].pos;
125 double rij = Rij.length();
126 double rij2 = rij * rij;
127 double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[i].radius*beads[i].radius)) / rij2;
128 Mat3x3d tmpMat;
129 tmpMat = outProduct(Rij, Rij) / rij2;
130 double constant = 8.0 * NumericConstant::PI * viscosity * rij;
131 Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant;
132 }else {
133 double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius);
134 Tij(0, 0) = constant;
135 Tij(1, 1) = constant;
136 Tij(2, 2) = constant;
137 }
138 B.setSubMatrix(i*3, j*3, Tij);
139 }
140 }
141
142 //invert B Matrix
143 invertMatrix(B, C);
144
145 //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0)
146 std::vector<Mat3x3d> U;
147 for (int i = 0; i < nbeads; ++i) {
148 Mat3x3d currU;
149 currU.setupSkewMat(beads[i].pos);
150 U.push_back(currU);
151 }
152
153 //calculate Xi matrix at arbitrary origin O
154 Mat3x3d Xiott;
155 Mat3x3d Xiorr;
156 Mat3x3d Xiotr;
157
158 //calculate the total volume
159
160 double volume = 0.0;
161 for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) {
162 volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3);
163 }
164
165 for (std::size_t i = 0; i < nbeads; ++i) {
166 for (std::size_t j = 0; j < nbeads; ++j) {
167 Mat3x3d Cij;
168 C.getSubMatrix(i*3, j*3, Cij);
169
170 Xiott += Cij;
171 Xiotr += U[i] * Cij;
172 Xiorr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I;
173 }
174 }
175
176 const double convertConstant = 6.023; //convert poise.angstrom to amu/fs
177 Xiott *= convertConstant;
178 Xiotr *= convertConstant;
179 Xiorr *= convertConstant;
180
181
182
183 Mat3x3d tmp;
184 Mat3x3d tmpInv;
185 Vector3d tmpVec;
186 tmp(0, 0) = Xiott(1, 1) + Xiott(2, 2);
187 tmp(0, 1) = - Xiott(0, 1);
188 tmp(0, 2) = -Xiott(0, 2);
189 tmp(1, 0) = -Xiott(0, 1);
190 tmp(1, 1) = Xiott(0, 0) + Xiott(2, 2);
191 tmp(1, 2) = -Xiott(1, 2);
192 tmp(2, 0) = -Xiott(0, 2);
193 tmp(2, 1) = -Xiott(1, 2);
194 tmp(2, 2) = Xiott(1, 1) + Xiott(0, 0);
195 tmpVec[0] = Xiotr(2, 1) - Xiotr(1, 2);
196 tmpVec[1] = Xiotr(0, 2) - Xiotr(2, 0);
197 tmpVec[2] = Xiotr(1, 0) - Xiotr(0, 1);
198 tmpInv = tmp.inverse();
199 Vector3d ror = tmpInv * tmpVec; //center of resistance
200 Mat3x3d Uor;
201 Uor.setupSkewMat(ror);
202
203 Mat3x3d Xirtt;
204 Mat3x3d Xirrr;
205 Mat3x3d Xirtr;
206
207 Xirtt = Xiott;
208 Xirtr = (Xiotr - Uor * Xiott);
209 Xirrr = Xiorr - Uor * Xiott * Uor + Xiotr * Uor - Uor * Xiotr.transpose();
210
211
212 SquareMatrix<double,6> Xir6x6;
213 SquareMatrix<double,6> Dr6x6;
214
215 Xir6x6.setSubMatrix(0, 0, Xirtt);
216 Xir6x6.setSubMatrix(0, 3, Xirtr.transpose());
217 Xir6x6.setSubMatrix(3, 0, Xirtr);
218 Xir6x6.setSubMatrix(3, 3, Xirrr);
219
220 invertMatrix(Xir6x6, Dr6x6);
221 Mat3x3d Drtt;
222 Mat3x3d Drtr;
223 Mat3x3d Drrt;
224 Mat3x3d Drrr;
225 Dr6x6.getSubMatrix(0, 0, Drtt);
226 Dr6x6.getSubMatrix(0, 3, Drrt);
227 Dr6x6.getSubMatrix(3, 0, Drtr);
228 Dr6x6.getSubMatrix(3, 3, Drrr);
229 double kt = OOPSEConstant::kB * temperature ;
230 Drtt *= kt;
231 Drrt *= kt;
232 Drtr *= kt;
233 Drrr *= kt;
234 Xirtt *= OOPSEConstant::kb * temperature;
235 Xirtr *= OOPSEConstant::kb * temperature;
236 Xirrr *= OOPSEConstant::kb * temperature;
237
238
239 cr.center = ror;
240 cr.Xi.setSubMatrix(0, 0, Xirtt);
241 cr.Xi.setSubMatrix(0, 3, Xirtr);
242 cr.Xi.setSubMatrix(3, 0, Xirtr);
243 cr.Xi.setSubMatrix(3, 3, Xirrr);
244 cr.D.setSubMatrix(0, 0, Drtt);
245 cr.D.setSubMatrix(0, 3, Drrt);
246 cr.D.setSubMatrix(3, 0, Drtr);
247 cr.D.setSubMatrix(3, 3, Drrr);
248
249 std::cout << "-----------------------------------------\n";
250 std::cout << "center of resistance :" << std::endl;
251 std::cout << ror << std::endl;
252 std::cout << "resistant tensor at center of resistance" << std::endl;
253 std::cout << "translation:" << std::endl;
254 std::cout << Xirtt << std::endl;
255 std::cout << "translation-rotation:" << std::endl;
256 std::cout << Xirtr << std::endl;
257 std::cout << "rotation:" << std::endl;
258 std::cout << Xirrr << std::endl;
259 std::cout << "diffusion tensor at center of resistance" << std::endl;
260 std::cout << "translation:" << std::endl;
261 std::cout << Drtt << std::endl;
262 std::cout << "rotation-translation:" << std::endl;
263 std::cout << Drrt << std::endl;
264 std::cout << "translation-rotation:" << std::endl;
265 std::cout << Drtr << std::endl;
266 std::cout << "rotation:" << std::endl;
267 std::cout << Drrr << std::endl;
268 std::cout << "-----------------------------------------\n";
269
270 return true;
271 }
272
273 bool ApproximationModel::calcHydroPropsAtCD(std::vector<BeadParam>& beads, double viscosity, double temperature, HydroProps& cr) {
274
275 int nbeads = beads.size();
276 DynamicRectMatrix<double> B(3*nbeads, 3*nbeads);
277 DynamicRectMatrix<double> C(3*nbeads, 3*nbeads);
278 Mat3x3d I;
279 I(0, 0) = 1.0;
280 I(1, 1) = 1.0;
281 I(2, 2) = 1.0;
282
283 for (std::size_t i = 0; i < nbeads; ++i) {
284 for (std::size_t j = 0; j < nbeads; ++j) {
285 Mat3x3d Tij;
286 if (i != j ) {
287 Vector3d Rij = beads[i].pos - beads[j].pos;
288 double rij = Rij.length();
289 double rij2 = rij * rij;
290 double sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[i].radius*beads[i].radius)) / rij2;
291 Mat3x3d tmpMat;
292 tmpMat = outProduct(Rij, Rij) / rij2;
293 double constant = 8.0 * NumericConstant::PI * viscosity * rij;
294 Tij = ((1.0 + sumSigma2OverRij2/3.0) * I + (1.0 - sumSigma2OverRij2) * tmpMat ) / constant;
295 }else {
296 double constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius);
297 Tij(0, 0) = constant;
298 Tij(1, 1) = constant;
299 Tij(2, 2) = constant;
300 }
301 B.setSubMatrix(i*3, j*3, Tij);
302 }
303 }
304
305 //invert B Matrix
306 invertMatrix(B, C);
307
308 //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0)
309 std::vector<Mat3x3d> U;
310 for (int i = 0; i < nbeads; ++i) {
311 Mat3x3d currU;
312 currU.setupSkewMat(beads[i].pos);
313 U.push_back(currU);
314 }
315
316 //calculate Xi matrix at arbitrary origin O
317 Mat3x3d Xitt;
318 Mat3x3d Xirr;
319 Mat3x3d Xitr;
320
321 //calculate the total volume
322
323 double volume = 0.0;
324 for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) {
325 volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3);
326 }
327
328 for (std::size_t i = 0; i < nbeads; ++i) {
329 for (std::size_t j = 0; j < nbeads; ++j) {
330 Mat3x3d Cij;
331 C.getSubMatrix(i*3, j*3, Cij);
332
333 Xitt += Cij;
334 Xitr += U[i] * Cij;
335 Xirr += -U[i] * Cij * U[j] + (6 * viscosity * volume) * I;
336 }
337 }
338
339 const double convertConstant = 6.023; //convert poise.angstrom to amu/fs
340 Xitt *= convertConstant;
341 Xitr *= convertConstant;
342 Xirr *= convertConstant;
343
344 double kt = OOPSEConstant::kB * temperature;
345
346 Mat3x3d Dott; //translational diffusion tensor at arbitrary origin O
347 Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O
348 Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O
349
350 const static Mat3x3d zeroMat(0.0);
351
352 Mat3x3d XittInv(0.0);
353 XittInv = Xitt.inverse();
354
355 Mat3x3d XirrInv;
356 XirrInv = Xirr.inverse();
357
358 Mat3x3d tmp;
359 Mat3x3d tmpInv;
360 tmp = Xitt - Xitr.transpose() * XirrInv * Xitr;
361 tmpInv = tmp.inverse();
362
363 Dott = tmpInv;
364 Dotr = -XirrInv * Xitr * tmpInv;
365
366 tmp = Xirr - Xitr * XittInv * Xitr.transpose();
367 tmpInv = tmp.inverse();
368
369 Dorr = tmpInv;
370
371 //calculate center of diffusion
372 tmp(0, 0) = Dorr(1, 1) + Dorr(2, 2);
373 tmp(0, 1) = - Dorr(0, 1);
374 tmp(0, 2) = -Dorr(0, 2);
375 tmp(1, 0) = -Dorr(0, 1);
376 tmp(1, 1) = Dorr(0, 0) + Dorr(2, 2);
377 tmp(1, 2) = -Dorr(1, 2);
378 tmp(2, 0) = -Dorr(0, 2);
379 tmp(2, 1) = -Dorr(1, 2);
380 tmp(2, 2) = Dorr(1, 1) + Dorr(0, 0);
381
382 Vector3d tmpVec;
383 tmpVec[0] = Dotr(1, 2) - Dotr(2, 1);
384 tmpVec[1] = Dotr(2, 0) - Dotr(0, 2);
385 tmpVec[2] = Dotr(0, 1) - Dotr(1, 0);
386
387 tmpInv = tmp.inverse();
388
389 Vector3d rod = tmpInv * tmpVec;
390
391 //calculate Diffusion Tensor at center of diffusion
392 Mat3x3d Uod;
393 Uod.setupSkewMat(rod);
394
395 Mat3x3d Ddtt; //translational diffusion tensor at diffusion center
396 Mat3x3d Ddtr; //rotational diffusion tensor at diffusion center
397 Mat3x3d Ddrr; //translation-rotation couplingl diffusion tensor at diffusion tensor
398
399 Ddtt = Dott - Uod * Dorr * Uod + Dotr.transpose() * Uod - Uod * Dotr;
400 Ddrr = Dorr;
401 Ddtr = Dotr + Dorr * Uod;
402
403 SquareMatrix<double, 6> Dd;
404 Dd.setSubMatrix(0, 0, Ddtt);
405 Dd.setSubMatrix(0, 3, Ddtr.transpose());
406 Dd.setSubMatrix(3, 0, Ddtr);
407 Dd.setSubMatrix(3, 3, Ddrr);
408 SquareMatrix<double, 6> Xid;
409 Ddtt *= kt;
410 Ddtr *=kt;
411 Ddrr *= kt;
412 invertMatrix(Dd, Xid);
413
414
415
416 //Xidtt in units of kcal*fs*mol^-1*Ang^-2
417 //Xid /= OOPSEConstant::energyConvert;
418 Xid *= OOPSEConstant::kb * temperature;
419
420 cr.center = rod;
421 cr.D.setSubMatrix(0, 0, Ddtt);
422 cr.D.setSubMatrix(0, 3, Ddtr);
423 cr.D.setSubMatrix(3, 0, Ddtr);
424 cr.D.setSubMatrix(3, 3, Ddrr);
425 cr.Xi = Xid;
426
427 std::cout << "viscosity = " << viscosity << std::endl;
428 std::cout << "temperature = " << temperature << std::endl;
429 std::cout << "center of diffusion :" << std::endl;
430 std::cout << rod << std::endl;
431 std::cout << "diffusion tensor at center of diffusion " << std::endl;
432 std::cout << "translation(A^2/fs) :" << std::endl;
433 std::cout << Ddtt << std::endl;
434 std::cout << "translation-rotation(A^3/fs):" << std::endl;
435 std::cout << Ddtr << std::endl;
436 std::cout << "rotation(A^4/fs):" << std::endl;
437 std::cout << Ddrr << std::endl;
438
439 std::cout << "resistance tensor at center of diffusion " << std::endl;
440 std::cout << "translation(kcal*fs*mol^-1*Ang^-2) :" << std::endl;
441
442 Mat3x3d Xidtt;
443 Mat3x3d Xidrt;
444 Mat3x3d Xidtr;
445 Mat3x3d Xidrr;
446 Xid.getSubMatrix(0, 0, Xidtt);
447 Xid.getSubMatrix(0, 3, Xidrt);
448 Xid.getSubMatrix(3, 0, Xidtr);
449 Xid.getSubMatrix(3, 3, Xidrr);
450
451 std::cout << Xidtt << std::endl;
452 std::cout << "rotation-translation (kcal*fs*mol^-1*Ang^-3):" << std::endl;
453 std::cout << Xidrt << std::endl;
454 std::cout << "translation-rotation(kcal*fs*mol^-1*Ang^-3):" << std::endl;
455 std::cout << Xidtr << std::endl;
456 std::cout << "rotation(kcal*fs*mol^-1*Ang^-4):" << std::endl;
457 std::cout << Xidrr << std::endl;
458
459 return true;
460
461 }
462
463 /*
464 void ApproximationModel::writeBeads(std::ostream& os) {
465 std::vector<BeadParam>::iterator iter;
466 os << beads_.size() << std::endl;
467 os << "Generated by Hydro" << std::endl;
468 for (iter = beads_.begin(); iter != beads_.end(); ++iter) {
469 os << iter->atomName << "\t" << iter->pos[0] << "\t" << iter->pos[1] << "\t" << iter->pos[2] << std::endl;
470 }
471
472 }
473 */
474
475
476 }