ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/applications/hydrodynamics/ApproximationModel.cpp
Revision: 3311
Committed: Wed Jan 16 20:19:28 2008 UTC (16 years, 5 months ago) by xsun
File size: 15860 byte(s)
Log Message:
Changes to do hydrodynamics modeling and to explain a diff file

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Acknowledgement of the program authors must be made in any
10 * publication of scientific results based in part on use of the
11 * program. An acceptable form of acknowledgement is citation of
12 * the article in which the program was described (Matthew
13 * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 * Parallel Simulation Engine for Molecular Dynamics,"
16 * J. Comput. Chem. 26, pp. 252-271 (2005))
17 *
18 * 2. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 *
21 * 3. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the
24 * distribution.
25 *
26 * This software is provided "AS IS," without a warranty of any
27 * kind. All express or implied conditions, representations and
28 * warranties, including any implied warranty of merchantability,
29 * fitness for a particular purpose or non-infringement, are hereby
30 * excluded. The University of Notre Dame and its licensors shall not
31 * be liable for any damages suffered by licensee as a result of
32 * using, modifying or distributing the software or its
33 * derivatives. In no event will the University of Notre Dame or its
34 * licensors be liable for any lost revenue, profit or data, or for
35 * direct, indirect, special, consequential, incidental or punitive
36 * damages, however caused and regardless of the theory of liability,
37 * arising out of the use of or inability to use software, even if the
38 * University of Notre Dame has been advised of the possibility of
39 * such damages.
40 */
41
42 #include "applications/hydrodynamics/ApproximationModel.hpp"
43 #include "math/LU.hpp"
44 #include "math/DynamicRectMatrix.hpp"
45 #include "math/SquareMatrix3.hpp"
46 #include "utils/OOPSEConstant.hpp"
47 #include "hydrodynamics/Sphere.hpp"
48 #include "hydrodynamics/Ellipsoid.hpp"
49 #include "applications/hydrodynamics/CompositeShape.hpp"
50 #include "math/LU.hpp"
51 #include "utils/simError.h"
52 namespace oopse {
53 /**
54 * Reference:
55 * Beatriz Carrasco and Jose Gracia de la Torre, Hydrodynamic Properties of Rigid Particles:
56 * Comparison of Different Modeling and Computational Procedures.
57 * Biophysical Journal, 75(6), 3044, 1999
58 */
59
60 ApproximationModel::ApproximationModel(StuntDouble* sd, SimInfo* info): HydrodynamicsModel(sd, info){
61 }
62
63 void ApproximationModel::init() {
64 if (!createBeads(beads_)) {
65 sprintf(painCave.errMsg, "ApproximationModel::init() : Can not create beads\n");
66 painCave.isFatal = 1;
67 simError();
68 }
69
70 }
71
72 bool ApproximationModel::calcHydroProps(Shape* shape, RealType viscosity, RealType temperature) {
73
74 bool ret = true;
75 HydroProp* cr = new HydroProp();
76 HydroProp* cd = new HydroProp();
77 calcHydroPropsAtCR(beads_, viscosity, temperature, cr);
78 calcHydroPropsAtCD(beads_, viscosity, temperature, cd);
79 setCR(cr);
80 setCD(cd);
81 return true;
82 }
83
84 bool ApproximationModel::calcHydroPropsAtCR(std::vector<BeadParam>& beads, RealType viscosity, RealType temperature, HydroProp* cr) {
85
86 int nbeads = beads.size();
87 DynamicRectMatrix<RealType> B(3*nbeads, 3*nbeads);
88 DynamicRectMatrix<RealType> C(3*nbeads, 3*nbeads);
89 Mat3x3d I;
90 I(0, 0) = 1.0;
91 I(1, 1) = 1.0;
92 I(2, 2) = 1.0;
93
94 for (std::size_t i = 0; i < nbeads; ++i) {
95 for (std::size_t j = 0; j < nbeads; ++j) {
96 Mat3x3d Tij;
97 if (i != j ) {
98 Vector3d Rij = beads[i].pos - beads[j].pos;
99 RealType rij = Rij.length();
100 RealType rij2 = rij * rij;
101 RealType sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2;
102 Mat3x3d tmpMat;
103 tmpMat = outProduct(Rij, Rij) / rij2;
104 RealType constant = 8.0 * NumericConstant::PI * viscosity * rij;
105 RealType tmp1 = 1.0 + sumSigma2OverRij2/3.0;
106 RealType tmp2 = 1.0 - sumSigma2OverRij2;
107 Tij = (tmp1 * I + tmp2 * tmpMat ) / constant;
108 }else {
109 RealType constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius);
110 Tij(0, 0) = constant;
111 Tij(1, 1) = constant;
112 Tij(2, 2) = constant;
113 }
114 B.setSubMatrix(i*3, j*3, Tij);
115 }
116 }
117
118 //invert B Matrix
119 invertMatrix(B, C);
120
121 //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0)
122 std::vector<Mat3x3d> U;
123 for (int i = 0; i < nbeads; ++i) {
124 Mat3x3d currU;
125 currU.setupSkewMat(beads[i].pos);
126 U.push_back(currU);
127 }
128
129 //calculate Xi matrix at arbitrary origin O
130 Mat3x3d Xiott;
131 Mat3x3d Xiorr;
132 Mat3x3d Xiotr;
133
134 //calculate the total volume
135
136 RealType volume = 0.0;
137 for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) {
138 volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3);
139 }
140
141 for (std::size_t i = 0; i < nbeads; ++i) {
142 for (std::size_t j = 0; j < nbeads; ++j) {
143 Mat3x3d Cij;
144 C.getSubMatrix(i*3, j*3, Cij);
145
146 Xiott += Cij;
147 Xiotr += U[i] * Cij;
148 // uncorrected here. Volume correction is added after we assemble Xiorr
149 Xiorr += -U[i] * Cij * U[j];
150 }
151 }
152
153 // add the volume correction
154 Xiorr += (6.0 * viscosity * volume) * I;
155
156 const RealType convertConstant = 1.439326479e4; //converts Poise angstroms
157 // to kcal fs mol^-1 Angstrom^-1
158
159 Xiott *= convertConstant;
160 Xiotr *= convertConstant;
161 Xiorr *= convertConstant;
162
163 Mat3x3d tmp;
164 Mat3x3d tmpInv;
165 Vector3d tmpVec;
166 tmp(0, 0) = Xiott(1, 1) + Xiott(2, 2);
167 tmp(0, 1) = - Xiott(0, 1);
168 tmp(0, 2) = -Xiott(0, 2);
169 tmp(1, 0) = -Xiott(0, 1);
170 tmp(1, 1) = Xiott(0, 0) + Xiott(2, 2);
171 tmp(1, 2) = -Xiott(1, 2);
172 tmp(2, 0) = -Xiott(0, 2);
173 tmp(2, 1) = -Xiott(1, 2);
174 tmp(2, 2) = Xiott(1, 1) + Xiott(0, 0);
175 tmpVec[0] = Xiotr(2, 1) - Xiotr(1, 2);
176 tmpVec[1] = Xiotr(0, 2) - Xiotr(2, 0);
177 tmpVec[2] = Xiotr(1, 0) - Xiotr(0, 1);
178 tmpInv = tmp.inverse();
179 Vector3d ror = tmpInv * tmpVec; //center of resistance
180 Mat3x3d Uor;
181 Uor.setupSkewMat(ror);
182
183 Mat3x3d Xirtt;
184 Mat3x3d Xirrr;
185 Mat3x3d Xirtr;
186
187 Xirtt = Xiott;
188 Xirtr = (Xiotr - Uor * Xiott);
189 Xirrr = Xiorr - Uor * Xiott * Uor + Xiotr * Uor - Uor * Xiotr.transpose();
190
191
192 SquareMatrix<RealType,6> Xir6x6;
193 SquareMatrix<RealType,6> Dr6x6;
194
195 Xir6x6.setSubMatrix(0, 0, Xirtt);
196 Xir6x6.setSubMatrix(0, 3, Xirtr.transpose());
197 Xir6x6.setSubMatrix(3, 0, Xirtr);
198 Xir6x6.setSubMatrix(3, 3, Xirrr);
199
200 invertMatrix(Xir6x6, Dr6x6);
201 Mat3x3d Drtt;
202 Mat3x3d Drtr;
203 Mat3x3d Drrt;
204 Mat3x3d Drrr;
205 Dr6x6.getSubMatrix(0, 0, Drtt);
206 Dr6x6.getSubMatrix(0, 3, Drrt);
207 Dr6x6.getSubMatrix(3, 0, Drtr);
208 Dr6x6.getSubMatrix(3, 3, Drrr);
209 RealType kt = OOPSEConstant::kb * temperature ; // in kcal mol^-1
210 Drtt *= kt;
211 Drrt *= kt;
212 Drtr *= kt;
213 Drrr *= kt;
214 //Xirtt *= OOPSEConstant::kb * temperature;
215 //Xirtr *= OOPSEConstant::kb * temperature;
216 //Xirrr *= OOPSEConstant::kb * temperature;
217
218 Mat6x6d Xi, D;
219
220 cr->setCOR(ror);
221
222 Xi.setSubMatrix(0, 0, Xirtt);
223 Xi.setSubMatrix(0, 3, Xirtr);
224 Xi.setSubMatrix(3, 0, Xirtr);
225 Xi.setSubMatrix(3, 3, Xirrr);
226
227 cr->setXi(Xi);
228
229 D.setSubMatrix(0, 0, Drtt);
230 D.setSubMatrix(0, 3, Drrt);
231 D.setSubMatrix(3, 0, Drtr);
232 D.setSubMatrix(3, 3, Drrr);
233
234 cr->setD(D);
235
236 std::cout << "-----------------------------------------\n";
237 std::cout << "center of resistance :" << std::endl;
238 std::cout << ror << std::endl;
239 std::cout << "resistant tensor at center of resistance" << std::endl;
240 std::cout << "translation:" << std::endl;
241 std::cout << Xirtt << std::endl;
242 std::cout << "translation-rotation:" << std::endl;
243 std::cout << Xirtr << std::endl;
244 std::cout << "rotation:" << std::endl;
245 std::cout << Xirrr << std::endl;
246 std::cout << "diffusion tensor at center of resistance" << std::endl;
247 std::cout << "translation:" << std::endl;
248 std::cout << Drtt << std::endl;
249 std::cout << "rotation-translation:" << std::endl;
250 std::cout << Drrt << std::endl;
251 std::cout << "translation-rotation:" << std::endl;
252 std::cout << Drtr << std::endl;
253 std::cout << "rotation:" << std::endl;
254 std::cout << Drrr << std::endl;
255 std::cout << "-----------------------------------------\n";
256
257 return true;
258 }
259
260 bool ApproximationModel::calcHydroPropsAtCD(std::vector<BeadParam>& beads, RealType viscosity, RealType temperature, HydroProp* cd) {
261
262 int nbeads = beads.size();
263 DynamicRectMatrix<RealType> B(3*nbeads, 3*nbeads);
264 DynamicRectMatrix<RealType> C(3*nbeads, 3*nbeads);
265 Mat3x3d I;
266 I(0, 0) = 1.0;
267 I(1, 1) = 1.0;
268 I(2, 2) = 1.0;
269
270 for (std::size_t i = 0; i < nbeads; ++i) {
271 for (std::size_t j = 0; j < nbeads; ++j) {
272 Mat3x3d Tij;
273 if (i != j ) {
274 Vector3d Rij = beads[i].pos - beads[j].pos;
275 RealType rij = Rij.length();
276 RealType rij2 = rij * rij;
277 RealType sumSigma2OverRij2 = ((beads[i].radius*beads[i].radius) + (beads[j].radius*beads[j].radius)) / rij2;
278 Mat3x3d tmpMat;
279 tmpMat = outProduct(Rij, Rij) / rij2;
280 RealType constant = 8.0 * NumericConstant::PI * viscosity * rij;
281 RealType tmp1 = 1.0 + sumSigma2OverRij2/3.0;
282 RealType tmp2 = 1.0 - sumSigma2OverRij2;
283 Tij = (tmp1 * I + tmp2 * tmpMat ) / constant;
284 }else {
285 RealType constant = 1.0 / (6.0 * NumericConstant::PI * viscosity * beads[i].radius);
286 Tij(0, 0) = constant;
287 Tij(1, 1) = constant;
288 Tij(2, 2) = constant;
289 }
290 B.setSubMatrix(i*3, j*3, Tij);
291 }
292 }
293
294 //invert B Matrix
295 invertMatrix(B, C);
296
297 //prepare U Matrix relative to arbitrary origin O(0.0, 0.0, 0.0)
298 std::vector<Mat3x3d> U;
299 for (int i = 0; i < nbeads; ++i) {
300 Mat3x3d currU;
301 currU.setupSkewMat(beads[i].pos);
302 U.push_back(currU);
303 }
304
305 //calculate Xi matrix at arbitrary origin O
306 Mat3x3d Xitt;
307 Mat3x3d Xirr;
308 Mat3x3d Xitr;
309
310 //calculate the total volume
311
312 RealType volume = 0.0;
313 for (std::vector<BeadParam>::iterator iter = beads.begin(); iter != beads.end(); ++iter) {
314 volume += 4.0/3.0 * NumericConstant::PI * pow((*iter).radius,3);
315 }
316
317 for (std::size_t i = 0; i < nbeads; ++i) {
318 for (std::size_t j = 0; j < nbeads; ++j) {
319 Mat3x3d Cij;
320 C.getSubMatrix(i*3, j*3, Cij);
321
322 Xitt += Cij;
323 Xitr += U[i] * Cij;
324 // uncorrected here. Volume correction is added after we assemble Xiorr
325 Xirr += -U[i] * Cij * U[j];
326 }
327 }
328 // add the volume correction here:
329 Xirr += (6.0 * viscosity * volume) * I;
330
331 const RealType convertConstant = 1.439326479e4; //converts Poise angstroms
332 // to kcal fs mol^-1 Angstrom^-1
333 Xitt *= convertConstant;
334 Xitr *= convertConstant;
335 Xirr *= convertConstant;
336
337 RealType kt = OOPSEConstant::kb * temperature; // in kcal mol^-1
338
339 Mat3x3d Dott; //translational diffusion tensor at arbitrary origin O
340 Mat3x3d Dorr; //rotational diffusion tensor at arbitrary origin O
341 Mat3x3d Dotr; //translation-rotation couplingl diffusion tensor at arbitrary origin O
342
343 const static Mat3x3d zeroMat(0.0);
344
345 Mat3x3d XittInv(0.0);
346 XittInv = Xitt.inverse();
347
348 Mat3x3d XirrInv;
349 XirrInv = Xirr.inverse();
350
351 Mat3x3d tmp;
352 Mat3x3d tmpInv;
353 tmp = Xitt - Xitr.transpose() * XirrInv * Xitr;
354 tmpInv = tmp.inverse();
355
356 Dott = tmpInv;
357 Dotr = -XirrInv * Xitr * tmpInv;
358
359 tmp = Xirr - Xitr * XittInv * Xitr.transpose();
360 tmpInv = tmp.inverse();
361
362 Dorr = tmpInv;
363
364 //calculate center of diffusion
365 tmp(0, 0) = Dorr(1, 1) + Dorr(2, 2);
366 tmp(0, 1) = - Dorr(0, 1);
367 tmp(0, 2) = -Dorr(0, 2);
368 tmp(1, 0) = -Dorr(0, 1);
369 tmp(1, 1) = Dorr(0, 0) + Dorr(2, 2);
370 tmp(1, 2) = -Dorr(1, 2);
371 tmp(2, 0) = -Dorr(0, 2);
372 tmp(2, 1) = -Dorr(1, 2);
373 tmp(2, 2) = Dorr(1, 1) + Dorr(0, 0);
374
375 Vector3d tmpVec;
376 tmpVec[0] = Dotr(1, 2) - Dotr(2, 1);
377 tmpVec[1] = Dotr(2, 0) - Dotr(0, 2);
378 tmpVec[2] = Dotr(0, 1) - Dotr(1, 0);
379
380 tmpInv = tmp.inverse();
381
382 Vector3d rod = tmpInv * tmpVec;
383
384 //calculate Diffusion Tensor at center of diffusion
385 Mat3x3d Uod;
386 Uod.setupSkewMat(rod);
387
388 Mat3x3d Ddtt; //translational diffusion tensor at diffusion center
389 Mat3x3d Ddtr; //rotational diffusion tensor at diffusion center
390 Mat3x3d Ddrr; //translation-rotation couplingl diffusion tensor at diffusion tensor
391
392 Ddtt = Dott - Uod * Dorr * Uod + Dotr.transpose() * Uod - Uod * Dotr;
393 Ddrr = Dorr;
394 Ddtr = Dotr + Dorr * Uod;
395
396 SquareMatrix<RealType, 6> Dd;
397 Dd.setSubMatrix(0, 0, Ddtt);
398 Dd.setSubMatrix(0, 3, Ddtr.transpose());
399 Dd.setSubMatrix(3, 0, Ddtr);
400 Dd.setSubMatrix(3, 3, Ddrr);
401 SquareMatrix<RealType, 6> Xid;
402 Ddtt *= kt;
403 Ddtr *=kt;
404 Ddrr *= kt;
405 invertMatrix(Dd, Xid);
406
407
408
409 //Xidtt in units of kcal*fs*mol^-1*Ang^-2
410 //Xid /= OOPSEConstant::energyConvert;
411 Xid *= OOPSEConstant::kb * temperature;
412
413 Mat6x6d Xi, D;
414
415 cd->setCOR(rod);
416
417 cd->setXi(Xid);
418
419 D.setSubMatrix(0, 0, Ddtt);
420 D.setSubMatrix(0, 3, Ddtr);
421 D.setSubMatrix(3, 0, Ddtr);
422 D.setSubMatrix(3, 3, Ddrr);
423
424 cd->setD(D);
425
426 std::cout << "viscosity = " << viscosity << std::endl;
427 std::cout << "temperature = " << temperature << std::endl;
428 std::cout << "center of diffusion :" << std::endl;
429 std::cout << rod << std::endl;
430 std::cout << "diffusion tensor at center of diffusion " << std::endl;
431 std::cout << "translation(A^2 / fs) :" << std::endl;
432 std::cout << Ddtt << std::endl;
433 std::cout << "translation-rotation(A / fs):" << std::endl;
434 std::cout << Ddtr << std::endl;
435 std::cout << "rotation(fs^-1):" << std::endl;
436 std::cout << Ddrr << std::endl;
437
438 std::cout << "resistance tensor at center of diffusion " << std::endl;
439 std::cout << "translation(kcal*fs*mol^-1*Ang^-2) :" << std::endl;
440
441 Mat3x3d Xidtt;
442 Mat3x3d Xidrt;
443 Mat3x3d Xidtr;
444 Mat3x3d Xidrr;
445 Xid.getSubMatrix(0, 0, Xidtt);
446 Xid.getSubMatrix(0, 3, Xidrt);
447 Xid.getSubMatrix(3, 0, Xidtr);
448 Xid.getSubMatrix(3, 3, Xidrr);
449
450 std::cout << Xidtt << std::endl;
451 std::cout << "rotation-translation (kcal*fs*mol^-1*Ang^-1):" << std::endl;
452 std::cout << Xidrt << std::endl;
453 std::cout << "translation-rotation(kcal*fs*mol^-1*Ang^-1):" << std::endl;
454 std::cout << Xidtr << std::endl;
455 std::cout << "rotation(kcal*fs*mol^-1):" << std::endl;
456 std::cout << Xidrr << std::endl;
457
458 return true;
459
460 }
461
462 void ApproximationModel::writeBeads(std::ostream& os) {
463 std::vector<BeadParam>::iterator iter;
464 os << beads_.size() << std::endl;
465 os << "Generated by Hydro" << std::endl;
466 for (iter = beads_.begin(); iter != beads_.end(); ++iter) {
467 os << iter->atomName << "\t" << iter->pos[0] << "\t" << iter->pos[1] << "\t" << iter->pos[2] << std::endl;
468 }
469
470 }
471 }