ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE-4/src/applications/staticProps/Hxy.cpp
Revision: 3054
Committed: Wed Oct 18 21:58:48 2006 UTC (17 years, 9 months ago) by gezelter
File size: 13004 byte(s)
Log Message:
fixing a wrapVector problem in staticProps, also making Shifted force
and electrostatic damping the default behavior

File Contents

# User Rev Content
1 xsun 2751 /*
2     * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9     * 1. Acknowledgement of the program authors must be made in any
10     * publication of scientific results based in part on use of the
11     * program. An acceptable form of acknowledgement is citation of
12     * the article in which the program was described (Matthew
13     * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14     * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15     * Parallel Simulation Engine for Molecular Dynamics,"
16     * J. Comput. Chem. 26, pp. 252-271 (2005))
17     *
18     * 2. Redistributions of source code must retain the above copyright
19     * notice, this list of conditions and the following disclaimer.
20     *
21     * 3. Redistributions in binary form must reproduce the above copyright
22     * notice, this list of conditions and the following disclaimer in the
23     * documentation and/or other materials provided with the
24     * distribution.
25     *
26     * This software is provided "AS IS," without a warranty of any
27     * kind. All express or implied conditions, representations and
28     * warranties, including any implied warranty of merchantability,
29     * fitness for a particular purpose or non-infringement, are hereby
30     * excluded. The University of Notre Dame and its licensors shall not
31     * be liable for any damages suffered by licensee as a result of
32     * using, modifying or distributing the software or its
33     * derivatives. In no event will the University of Notre Dame or its
34     * licensors be liable for any lost revenue, profit or data, or for
35     * direct, indirect, special, consequential, incidental or punitive
36     * damages, however caused and regardless of the theory of liability,
37     * arising out of the use of or inability to use software, even if the
38     * University of Notre Dame has been advised of the possibility of
39     * such damages.
40     *
41     *
42     * Hxy.cpp
43     * OOPSE-2.0
44     *
45     * Created by Xiuquan Sun on 05/09/06.
46     * @author Xiuquan Sun
47 gezelter 3054 * @version $Id: Hxy.cpp,v 1.7 2006-10-18 21:58:47 gezelter Exp $
48 xsun 2751 *
49     */
50    
51     /* Calculates the undulation spectrum of the lipid membrance. */
52    
53     #include <algorithm>
54     #include <fstream>
55     #include "applications/staticProps/Hxy.hpp"
56     #include "utils/simError.h"
57     #include "io/DumpReader.hpp"
58     #include "primitives/Molecule.hpp"
59     #include<stdio.h>
60     #include<string.h>
61     #include<stdlib.h>
62     #include<math.h>
63    
64     namespace oopse {
65    
66     Hxy::Hxy(SimInfo* info, const std::string& filename, const std::string& sele, int nbins_x, int nbins_y, int nrbins)
67     : StaticAnalyser(info, filename), selectionScript_(sele), evaluator_(info), seleMan_(info), nBinsX_(nbins_x), nBinsY_(nbins_y), nbins_(nrbins){
68    
69     evaluator_.loadScriptString(sele);
70     if (!evaluator_.isDynamic()) {
71     seleMan_.setSelectionSet(evaluator_.evaluate());
72     }
73    
74     gridsample_.resize(nBinsX_*nBinsY_);
75     gridZ_.resize(nBinsX_*nBinsY_);
76 xsun 2763 mag.resize(nBinsX_*nBinsY_);
77     newmag.resize(nBinsX_*nBinsY_);
78 xsun 2751
79 gezelter 2752 sum_bin.resize(nbins_);
80     avg_bin.resize(nbins_);
81     errbin_sum.resize(nbins_);
82     errbin.resize(nbins_);
83     sum_bin_sq.resize(nbins_);
84     avg_bin_sq.resize(nbins_);
85     errbin_sum_sq.resize(nbins_);
86     errbin_sq.resize(nbins_);
87 xsun 2751
88 xsun 2763 bin.resize(nbins_);
89     samples.resize(nbins_);
90    
91 xsun 2751 setOutputName(getPrefix(filename) + ".Hxy");
92     }
93    
94 xsun 2763 Hxy::~Hxy(){
95     gridsample_.clear();
96     gridZ_.clear();
97     sum_bin.clear();
98     avg_bin.clear();
99     errbin_sum.clear();
100     errbin.clear();
101     sum_bin_sq.clear();
102     avg_bin_sq.clear();
103     errbin_sum_sq.clear();
104     errbin_sq.clear();
105    
106     for(int i=0; i < bin.size(); i++)
107     bin[i].clear();
108     for(int i=0; i < samples.size(); i++)
109     samples[i].clear();
110    
111     mag.clear();
112     newmag.clear();
113     }
114    
115 xsun 2751 void Hxy::process() {
116 gezelter 2753 #if defined(HAVE_FFTW_H) || defined(HAVE_DFFTW_H) || defined(HAVE_FFTW3_H)
117 xsun 2751 DumpReader reader(info_, dumpFilename_);
118     int nFrames = reader.getNFrames();
119     nProcessed_ = nFrames/step_;
120 gezelter 2752
121 xsun 2763 for(int k=0; k < bin.size(); k++)
122     bin[k].resize(nFrames);
123     for(int k=0; k < samples.size(); k++)
124     samples[k].resize(nFrames);
125    
126 tim 2759 RealType lenX_, lenY_;
127     RealType gridX_, gridY_;
128     RealType halfBoxX_, halfBoxY_;
129 xsun 2763
130 xsun 2751 int binNoX, binNoY;
131 tim 2759 RealType interpsum, value;
132 xsun 2751 int ninterp, px, py, newp;
133     int newx, newy, newindex, index;
134     int new_i, new_j, new_index;
135 xsun 2763
136 tim 2759 RealType freq_x, freq_y, zero_freq_x, zero_freq_y, freq;
137 xsun 2763 RealType maxfreqx, maxfreqy, maxfreq;
138    
139 xsun 2751 int whichbin;
140 gezelter 2752 int nMolecules;
141 xsun 2763
142 xsun 2765 std::fill(sum_bin.begin(), sum_bin.end(), 0.0);
143     std::fill(avg_bin.begin(), avg_bin.end(), 0.0);
144     std::fill(errbin_sum.begin(), errbin_sum.end(), 0.0);
145     std::fill(errbin.begin(), errbin.end(), 0.0);
146     std::fill(sum_bin_sq.begin(), sum_bin_sq.end(), 0.0);
147     std::fill(avg_bin_sq.begin(), avg_bin_sq.end(), 0.0);
148     std::fill(errbin_sum_sq.begin(), errbin_sum_sq.end(), 0.0);
149     std::fill(errbin_sq.begin(), errbin_sq.end(), 0.0);
150    
151     for(int i=0; i < bin.size(); i++)
152     std::fill(bin[i].begin(), bin[i].end(), 0.0);
153    
154     for(int i=0; i < samples.size(); i++)
155     std::fill(samples[i].begin(), samples[i].end(), 0);
156    
157 xsun 2751 for (int istep = 0; istep < nFrames; istep += step_) {
158    
159 gezelter 2752 reader.readFrame(istep);
160     currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot();
161     nMolecules = info_->getNGlobalMolecules();
162 gezelter 2753
163 gezelter 2752 Mat3x3d hmat = currentSnapshot_->getHmat();
164    
165 gezelter 2753 #ifdef HAVE_FFTW3_H
166     fftw_plan p;
167     #else
168     fftwnd_plan p;
169     #endif
170 xsun 2751 fftw_complex *in, *out;
171 gezelter 2752
172     in = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * (nBinsX_*nBinsY_));
173     out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) *(nBinsX_*nBinsY_));
174 gezelter 2753
175     #ifdef HAVE_FFTW3_H
176     p = fftw_plan_dft_2d(nBinsX_, nBinsY_, in, out,
177     FFTW_FORWARD, FFTW_ESTIMATE);
178     #else
179     p = fftw2d_create_plan(nBinsX_, nBinsY_, FFTW_FORWARD, FFTW_ESTIMATE);
180     #endif
181 xsun 2765
182 xsun 2763 std::fill(gridsample_.begin(), gridsample_.end(), 0);
183     std::fill(gridZ_.begin(), gridZ_.end(), 0.0);
184     std::fill(mag.begin(), mag.end(), 0.0);
185     std::fill(newmag.begin(), newmag.end(), 0.0);
186    
187 xsun 2765 int i, j;
188 gezelter 2752
189 xsun 2751 StuntDouble* sd;
190 gezelter 2752
191 xsun 2751 lenX_ = hmat(0,0);
192     lenY_ = hmat(1,1);
193 gezelter 2752
194 xsun 2751 gridX_ = lenX_ /(nBinsX_);
195     gridY_ = lenY_ /(nBinsY_);
196 gezelter 2752
197 xsun 2763 halfBoxX_ = lenX_ / 2.0;
198     halfBoxY_ = lenY_ / 2.0;
199 gezelter 2752
200 xsun 2751 if (evaluator_.isDynamic()) {
201     seleMan_.setSelectionSet(evaluator_.evaluate());
202     }
203    
204     //wrap the stuntdoubles into a cell
205     for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) {
206     Vector3d pos = sd->getPos();
207 gezelter 3054 if (usePeriodicBoundaryConditions_)
208     currentSnapshot_->wrapVector(pos);
209 xsun 2751 sd->setPos(pos);
210 xsun 2763 }
211 xsun 2751
212     //determine which atom belongs to which grid
213     for (sd = seleMan_.beginSelected(i); sd != NULL; sd = seleMan_.nextSelected(i)) {
214     Vector3d pos = sd->getPos();
215     //int binNo = (pos.z() /deltaR_) - 1;
216 xsun 2763 int binNoX = (int) ((pos.x() + halfBoxX_) / gridX_);
217     int binNoY = (int) ((pos.y() + halfBoxY_) / gridY_);
218 xsun 2751 //std::cout << "pos.z = " << pos.z() << " halfBoxZ_ = " << halfBoxZ_ << " deltaR_ = " << deltaR_ << " binNo = " << binNo << "\n";
219     gridZ_[binNoX*nBinsY_+binNoY] += pos.z();
220     gridsample_[binNoX*nBinsY_+binNoY]++;
221     }
222    
223     // FFT stuff depends on nx and ny, so delay allocation until we have
224     // that information
225    
226     for(i = 0; i < nBinsX_; i++){
227     for(j = 0; j < nBinsY_; j++){
228     newindex = i * nBinsY_ + j;
229     if(gridsample_[newindex] > 0){
230 tim 2759 gridZ_[newindex] = gridZ_[newindex] / (RealType)gridsample_[newindex];
231 xsun 2751 }
232     }
233     }
234 gezelter 2752
235 xsun 2751 for (i=0; i< nBinsX_; i++) {
236     for(j=0; j< nBinsY_; j++) {
237     newindex = i*nBinsY_ + j;
238     if (gridsample_[newindex] == 0) {
239     // interpolate from surrounding points:
240    
241     interpsum = 0.0;
242     ninterp = 0;
243    
244     //point1 = bottom;
245    
246     px = i;
247     py = j - 1;
248     newp = px*nBinsY_ + py;
249     if ((py >= 0) && (gridsample_[newp] > 0)) {
250     interpsum += gridZ_[newp];
251     ninterp++;
252     }
253    
254     //point2 = top;
255    
256     px = i;
257     py = j + 1;
258     newp = px*nBinsY_ + py;
259     if ((py < nBinsY_) && (gridsample_[newp] > 0)) {
260     interpsum += gridZ_[newp];
261     ninterp++;
262     }
263    
264     //point3 = left;
265    
266     px = i - 1;
267     py = j;
268     newp = px*nBinsY_ + py;
269     if ((px >= 0) && (gridsample_[newp] > 0)) {
270     interpsum += gridZ_[newp];
271     ninterp++;
272     }
273    
274     //point4 = right;
275    
276     px = i + 1;
277     py = j;
278     newp = px*nBinsY_ + py;
279 gezelter 2752 if ( (px < nBinsX_ ) && ( gridsample_[newp] > 0 )) {
280     interpsum += gridZ_[newp];
281     ninterp++;
282     }
283    
284 tim 2759 value = interpsum / (RealType)ninterp;
285 xsun 2751
286     gridZ_[newindex] = value;
287     }
288     }
289     }
290    
291     for (i=0; i < nBinsX_; i++) {
292     for (j=0; j < nBinsY_; j++) {
293     newindex = i*nBinsY_ + j;
294    
295     c_re(in[newindex]) = gridZ_[newindex];
296     c_im(in[newindex]) = 0.0;
297     }
298     }
299 xsun 2763
300 gezelter 2753 #ifdef HAVE_FFTW3_H
301     fftw_execute(p);
302     #else
303     fftwnd_one(p, in, out);
304     #endif
305 xsun 2751
306     for (i=0; i< nBinsX_; i++) {
307     for(j=0; j< nBinsY_; j++) {
308     newindex = i*nBinsY_ + j;
309     mag[newindex] = pow(c_re(out[newindex]),2) + pow(c_im(out[newindex]),2);
310     }
311     }
312 xsun 2763
313 gezelter 2753 #ifdef HAVE_FFTW3_H
314 xsun 2751 fftw_destroy_plan(p);
315 gezelter 2753 #else
316     fftwnd_destroy_plan(p);
317     #endif
318 xsun 2751 fftw_free(out);
319     fftw_free(in);
320    
321     for (i=0; i< (nBinsX_/2); i++) {
322     for(j=0; j< (nBinsY_/2); j++) {
323     index = i*nBinsY_ + j;
324     new_i = i + (nBinsX_/2);
325     new_j = j + (nBinsY_/2);
326     new_index = new_i*nBinsY_ + new_j;
327     newmag[new_index] = mag[index];
328     }
329     }
330    
331     for (i=(nBinsX_/2); i< nBinsX_; i++) {
332     for(j=0; j< (nBinsY_/2); j++) {
333     index = i*nBinsY_ + j;
334     new_i = i - (nBinsX_/2);
335     new_j = j + (nBinsY_/2);
336     new_index = new_i*nBinsY_ + new_j;
337     newmag[new_index] = mag[index];
338     }
339     }
340    
341     for (i=0; i< (nBinsX_/2); i++) {
342     for(j=(nBinsY_/2); j< nBinsY_; j++) {
343     index = i*nBinsY_ + j;
344     new_i = i + (nBinsX_/2);
345     new_j = j - (nBinsY_/2);
346     new_index = new_i*nBinsY_ + new_j;
347     newmag[new_index] = mag[index];
348     }
349     }
350    
351     for (i=(nBinsX_/2); i< nBinsX_; i++) {
352     for(j=(nBinsY_/2); j< nBinsY_; j++) {
353     index = i*nBinsY_ + j;
354     new_i = i - (nBinsX_/2);
355     new_j = j - (nBinsY_/2);
356     new_index = new_i*nBinsY_ + new_j;
357     newmag[new_index] = mag[index];
358     }
359     }
360    
361     maxfreqx = 1.0 / gridX_;
362     maxfreqy = 1.0 / gridY_;
363    
364     // printf("%lf\t%lf\t%lf\t%lf\n", dx, dy, maxfreqx, maxfreqy);
365    
366     maxfreq = sqrt(maxfreqx*maxfreqx + maxfreqy*maxfreqy);
367 tim 2759 dfreq = maxfreq/(RealType)(nbins_-1);
368 xsun 2751
369     //printf("%lf\n", dfreq);
370    
371     zero_freq_x = nBinsX_/2;
372     zero_freq_y = nBinsY_/2;
373    
374     for (i=0; i< nBinsX_; i++) {
375     for(j=0; j< nBinsY_; j++) {
376    
377 tim 2759 freq_x = (RealType)(i - zero_freq_x)*maxfreqx*2 / nBinsX_;
378     freq_y = (RealType)(j - zero_freq_y)*maxfreqy*2 / nBinsY_;
379 xsun 2751
380     freq = sqrt(freq_x*freq_x + freq_y*freq_y);
381    
382     whichbin = (int) (freq / dfreq);
383     newindex = i*nBinsY_ + j;
384     // printf("%d %d %lf %lf\n", whichbin, newindex, freq, dfreq);
385     bin[whichbin][istep] += newmag[newindex];
386     samples[whichbin][istep]++;
387     }
388     }
389    
390 gezelter 2752 for ( i = 0; i < nbins_; i++) {
391 xsun 2751 if ( samples[i][istep] > 0) {
392 xsun 2765 bin[i][istep] = 4.0 * sqrt(bin[i][istep] / (RealType)samples[i][istep]) / (RealType)nBinsX_ / (RealType)nBinsY_;
393 xsun 2751 }
394     }
395     }
396 xsun 2763
397 gezelter 2752 for (int i = 0; i < nbins_; i++) {
398     for (int j = 0; j < nFrames; j++) {
399 xsun 2751 sum_bin[i] += bin[i][j];
400     sum_bin_sq[i] += bin[i][j] * bin[i][j];
401     }
402 tim 2759 avg_bin[i] = sum_bin[i] / (RealType)nFrames;
403     avg_bin_sq[i] = sum_bin_sq[i] / (RealType)nFrames;
404 gezelter 2752 for (int j = 0; j < nFrames; j++) {
405 xsun 2751 errbin_sum[i] += pow((bin[i][j] - avg_bin[i]), 2);
406     errbin_sum_sq[i] += pow((bin[i][j] * bin[i][j] - avg_bin_sq[i]), 2);
407     }
408 tim 2759 errbin[i] = sqrt( errbin_sum[i] / (RealType)nFrames );
409     errbin_sq[i] = sqrt( errbin_sum_sq[i] / (RealType)nFrames );
410 xsun 2751 }
411 xsun 2763
412 gezelter 2752 printSpectrum();
413 xsun 2763
414 gezelter 2752 #else
415     sprintf(painCave.errMsg, "Hxy: FFTW support was not compiled in!\n");
416     painCave.isFatal = 1;
417     simError();
418 xsun 2751
419 gezelter 2752 #endif
420 xsun 2763 }
421 xsun 2751
422     void Hxy::printSpectrum() {
423     std::ofstream rdfStream(outputFilename_.c_str());
424     if (rdfStream.is_open()) {
425 xsun 2763
426     for (int i = 0; i < nbins_; ++i) {
427 xsun 2751 if ( avg_bin[i] > 0 ){
428 xsun 2763 rdfStream << (RealType)i * dfreq << "\t"
429 xsun 2751 <<pow(avg_bin[i], 2)<<"\t"
430     <<errbin_sq[i]<<"\t"
431     <<avg_bin[i]<<"\t"
432     <<errbin[i]<<"\n";
433     }
434     }
435     } else {
436    
437     sprintf(painCave.errMsg, "Hxy: unable to open %s\n", outputFilename_.c_str());
438     painCave.isFatal = 1;
439     simError();
440     }
441 xsun 2763
442 xsun 2751 rdfStream.close();
443 xsun 2763
444 xsun 2751 }
445    
446     }